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Abstract
This paper introduces the Deep Functional Factor
Model (DF2M), a Bayesian nonparametric model
designed for analysis of high-dimensional func-
tional time series. DF2M is built upon the Indian
Buffet Process and the multi-task Gaussian Pro-
cess, incorporating a deep kernel function that
captures non-Markovian and nonlinear temporal
dynamics. Unlike many black-box deep learning
models, DF2M offers an explainable approach to
utilizing neural networks by constructing a fac-
tor model and integrating deep neural networks
within the kernel function. Additionally, we de-
velop a computationally efficient variational in-
ference algorithm to infer DF2M. Empirical re-
sults from four real-world datasets demonstrate
that DF2M provides better explainability and su-
perior predictive accuracy compared to conven-
tional deep learning models for high-dimensional
functional time series.

1. Introduction
Functional time series refers to a sequential collection of
functional objects that exhibit temporal dependence, and
this area of study has garnered increasing attention in recent
years. With the advancements in data collection technol-
ogy and computational power, high-dimensional datasets
containing numerous functional time series have become
more prevalent. Examples of such data include annual age-
specific mortality rates for different countries, daily energy
consumption curves from various households, and cumu-
lative intraday return trajectories for hundreds of stocks.
These datasets can be represented as p-dimensional func-
tional time series Y t(·) =

(
Yt1(·), . . . , Ytp(·)

)T
, where
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each Ytj(·) is a random function defined on a compact inter-
val U . The number of functional variables p is comparable
to, or even larger than, the number of temporally depen-
dent observations n. Analyzing high-dimensional functional
time series presents a challenging task, as it necessitates the
use of dimension reduction techniques to address the high-
dimensional problem, functional approaches to handle the
infinite-dimensional nature of curve data, and time series
modeling methods to capture the temporal dependence.

Several statistical methods have been proposed to address
these challenges, such as those presented in Gao et al.
(2019); Chen et al. (2022); Fang et al. (2022); Chang et al.
(2023a); Guo & Qiao (2023); Zhou & Dette (2023). How-
ever, these approaches often assume the existence of linear
and Markovian dynamics over time, which may fail to ac-
curately capture the complex nonlinear or non-Markovian
temporal dependence that often arises in real-world scenar-
ios.

On the other hand, while deep learning has achieved impres-
sive results in computer vision and natural language process-
ing (NLP) (Guo et al., 2016; He et al., 2016; Vaswani et al.,
2017; Torfi et al., 2020), applying deep neural networks
directly to handle high-dimensional functional time series is
challenging. One major issue when dealing with time series
data is that deep learning is a general black-box method that
lacks explainability, thus making it difficult to understand
the cross-sectionally and serially correlated relationships.
However, explainability is crucial in many applications. For
instance, in finance, healthcare, and climate change, the
accuracy and reliability of a model’s predictions have sig-
nificant impacts on business decisions, patient outcomes, or
environmental safety, respectively. Additionally, the non-
stationarity of data and the large number of parameters in
deep neural networks pose extra challenges during training.

In this paper, we propose an explainable approach called the
deep functional factor model (DF2M), which has the ability
to discover nonlinear and non-Markovian dynamics in high-
dimensional functional time series. Developed as a Bayesian
nonparametric model, DF2M employs a functional version
of a factor model for dimension reduction, incorporates
an Indian buffet process prior in the infinite-dimensional
loading matrix to encourage column sparsity (Guo et al.,
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2021), utilizes a functional version of a Gaussian process
dynamical model to capture temporal dependence within
latent functional factors, and employs deep neural networks
to construct the temporal kernel.

DF2M offers several advantages for the analysis of high-
dimensional functional time series. (i) Firstly, it facilitates a
more intuitive understanding of the underlying data structure
by representing observed curve variables using a smaller
set of latent functional factors. This enhances model ex-
plainability and provides a clear and interpretable map-
ping of relationships between variables, which is crucial
for decision-making and subsequent analysis. (ii) Secondly,
DF2M is capable of discovering non-Markovian and non-
linear temporal dependence in the functional latent factor
space. This enables more accurate predictions of future
values. (iii) Lastly, DF2M offers a flexible framework that
combines modern sequential deep neural networks with a
backbone Bayesian model. This allows for the utilization
of sequential deep learning techniques such as gated recur-
rent unit (GRU) (Cho et al., 2014), long short-term memory
(LSTM) (Hochreiter & Schmidhuber, 1997), and attention
mechanisms (Vaswani et al., 2017).

2. Preliminaries
2.1. Indian Buffet Process

The Indian buffet process (IBP) (Griffiths & Ghahramani,
2011) is a probability distribution over a sparse binary ma-
trix with a finite number of rows and an infinite number
of columns. The matrix Z, generated from the IBP with
parameter α, is denoted as Z ∼ IBP(α), where α controls
the column sparsity of Z.

IBP can be explained using a metaphor that customers se-
quentially visit a buffet and choose dishes. The first cus-
tomer samples a number of dishes based on Poisson(α).
Subsequent the i-th consumer, in turn, samples each pre-
viously selected dish with a probability proportional to its
popularity (mk/i for dish k), and also tries new dishes fol-
lowing Poisson(α/i).

It is worth noting that the distribution remains exchangeable
with respect to the customers, meaning that the distribution
is invariant to the permutations of the customers. The Indian
buffet process admits a stick-breaking representation as
vj | α ∼ Beta(α, 1) independently for j = 1, 2, . . . , wk =∏k

j=1 vj for k = 1, 2, . . . , and Zik | wk ∼ Bernoulli(wk)
independently for i = 1, . . . , n, and the IBP is then defined
as Z = (Zik)1≤i≤n,k≥1. The stick-breaking representation
is frequently used in the inference for IBP.

2.2. Gaussian Process

A Gaussian process X(·), defined on a compact interval U ,
is a continuous stochastic process characterized by the fact
that every finite collection of its values, X(u1), . . . , X(uL)
with u1, . . . , uL ∈ U , belongs to an L-dimensional mul-
tivariate Gaussian distribution (Williams & Rasmussen,
2006). This means that a Gaussian process is completely
determined by its mean function m(u) = E

[
X(u)

]
and

its covariance function κ(u, v) = Cov
(
X(u), X(v)

)
=

E
[(
X(u)−m(u)

)(
X(v)−m(v)

)]
for any u, v ∈ U .

The covariance function, also known as the kernel
function in machine learning literature, specifies the
correlation between values at distinct points. Exam-
ples include the squared exponential kernel κ(u, v) =
exp

(
−|u− v|2/ℓ2

)
and the Ornstein–Uhlenbeck kernel

κ(u, v) = exp (−|u− v|/ℓ), where ℓ is the length-scale
parameter. Additionally, the kernel function can be made
more complex using the kernel trick (Hofmann et al., 2008)
by rewriting it as κ(u, v) =

〈
ϕ(u), ϕ(v)

〉
, where ⟨·, ·⟩ de-

notes the inner product, and the feature function ϕ(·) maps
x into a feature space. As ϕ(·) can be an arbitrary function
(linear or nonlinear), the Gaussian process offers consider-
able flexibility in modeling complex patterns in the data.

Furthermore, a multi-task Gaussian process (MTGP)
(Bonilla et al., 2007) can be employed to model vector-
valued random fields. It is defined as X(·) =(
X1(·), . . . , XM (·)

)T
, where X1(·), . . . , XM (·) are M

Gaussian processes defined on U . The covariance
function between the l-th and k-th task is given
by Cov

(
Xl(u), Xk(v)

)
= Σlkκ(u, v), where Σ =

{Σlk}1≤l,k≤M is a positive semi-definite matrix encoding
the similarities between pairs of tasks. The MTGP can
effectively capture inter-task correlations and improve pre-
dictions (Moreno-Muñoz et al., 2018).

2.3. Sequential Deep Learning

Deep learning methods, widely used in computer vision,
NLP, and reinforcement learning, have become increas-
ingly popular for time series prediction as well (Lim &
Zohren, 2021). In particular, recurrent neural networks
(RNN) and attention mechanisms, commonly used for se-
quence prediction tasks in NLP, can be adapted for temporal
forecasting tasks in time series data. A multivariate time
series can be modeled recursively in RNN as xt = gdec(ht)
and ht = genc(ht−1,xt−1), where ht is a latent variable
and gdec and genc are the decoder and encoder functions,
respectively. Two renowned RNN models, LSTM and
GRU, are designed to learn long-range dependencies in a
sequence. For simplicity, we denote their encoder functions
as ht = LSTM(x1:t) and ht = GRU(x1:t), respectively,
where x1:t = (x1, . . . ,xt). Moreover, attention mecha-
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Figure 1. Sparse functional factor model. The blue (or white) cells in Z indicate 1 (or 0), while the darker (or lighter) shades of orange in
A represent larger (or smaller) values.

nisms, which have achieved state-of-the-art performance in
NLP tasks, can also be utilized to model time series data. Un-
like RNNs, attention mechanisms directly aggregate infor-
mation from multiple time steps in the past. Attention mech-
anisms can be expressed as ht =

∑t−1
i=1 ω(kt,qτ )vt−τ ,

where key kt, query qt, and value vt are intermediate
representations generated by linear or nonlinear transfor-
mations of xt. We denote such attention mechanisms as
ht = ATTN(x1:t). See detailed structures for both RNNs
and attention mechanisms in Appendix A.

3. Deep Functional Factor model
3.1. Sparse Functional Factor Model

First, we propose a functional factor model from the
Bayesian perspective,

Y t(·) = (Z ⊙A)Xt(·) + ϵt(·), t = 1, . . . , n. (1)

The observed functional time series is denoted as Y t(·),
and the binary matrix Z is sampled from the Indian buffet
process, Z ∼ IBP(α). The Hadamard (elementwise) prod-
uct is represented by ⊙. The loading weight matrix A has
elements Atr ∼ Normal(0, σ2

A) for any r ∈ N+ indepen-
dently. The latent functional factor time series are denoted
as Xt(·) =

(
Xt1(·), Xt2(·), . . . , Xtr(·), . . .

)T
, and the id-

iosyncratic component is denoted as ϵt(·), which follows a
Gaussian distributed white noise process on a scale σϵ.

In this framework, we do not specify the number of latent
factors. Instead, Y t(·), Z, and A can be regarded as p×∞
matrices, and Xt(·) as an infinite-dimensional vector of
functions, or heuristically, a ∞×∞ matrix. The dimension
reduction framework in equation (1) is illustrated in Fig-
ure 1. This Bayesian nonparametric factor model allows for
a potentially unlimited number of latent factors, eliminating
the need to specify a fixed dimensionality of the factor space.
The nonparametric approach introduces flexibility and pro-
vides a foundation for inferring the number of factors in the
posterior distribution using nonparametric inference frame-
works such as Gibbs sampling (Teh et al., 2006), merge-split
algorithm (Hughes & Sudderth, 2013), and conditional and
adaptively truncated variational inference (Liu et al., 2022,
2023).

Additionally, the Indian buffet process can provide column
sparsity (Vu & Lei, 2013) to Z and, therefore, to the loading
matrix Z ⊙A. This implies that most elements in each row
are zeros, as wk in the stick-breaking representation of the
IBP approaches zero as k increases. In the factor model,
this column sparsity implies that each factor affects only a
small fraction of functional variables (Guo et al., 2021), or
equivalently, the factors are related to each other through a
hierarchy (Griffiths & Ghahramani, 2011).

3.2. Functional Gaussian Process Dynamical Model

Secondly, by projecting high-dimensional observations
Y t(·) onto low-dimensional latent functional factors Xt(·),
we can capture the sequential structure of the time series
model through the factors. To model the temporal depen-
dence of Xt(·), we adopt a Gaussian process over time to
encode historical information. In particular, we design the
covariance across factors r and l as follows. Let Xt repre-
sent the historical information up to time t, and let X be the
space containing {Xt}t∈N. For any u, v ∈ U ,

Cov
(
Xtr(u), Xsl(v)

)
= κX (Xt−1,Xs−1)κU (u, v)I(r = l),

(2)
where t and s indicate two time stamps, and κX and κU are
the kernels defined on X and U , respectively. The indicator
function I(r = l) equals 1 if r = l and 0 otherwise. The
kernel κX captures historical information from different
periods and can be regarded as a temporal kernel. Similarly,
the kernel κU can be seen as a spatial kernel.

Therefore, Xr(·) =
(
X1r(·), . . . , Xtr(·), . . . , Xnr(·)

)
be-

longs to a multi-task Gaussian process (Bonilla et al., 2007)
such that for any u1, . . . , uL ∈ U , vec

(
Xr(u1, . . . , uL)

)
∼

Normal(0,ΣX ⊗ Σu
U ), where ⊗ denotes the Kronecker

product, or equivalently Xr(u1, . . . , uL) follows a matrix
normal distribution (Dawid, 1981) with mean 0, row co-
variance matrix Σu

U , and column covariance matrix ΣX .
Here, Xr(u1, . . . , uL) =

[
Xtr(uj)

]
1≤t≤n,1≤j≤L

, ΣX =[
κX (Xt,Xs)

]
0≤t,s≤n−1

, and Σu
U =

[
κU (ui, uj)

]
1≤i,j≤L

.

In Appendix B, we demonstrate the detailed relationship
between the multi-task Gaussian process and the matrix
normal distribution. In the literature, the n-task Gaussian
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process is often used to refer to multiple outputs generated
by the model, each corresponding to a specific timestamp in
our time series setting. For ease of expression, we denote
the presented multi-task Gaussian process as

Xr(·) ∼ MTGP
(
0, κU (·, ·), κX (·, ·)

)
. (3)

Importantly, the marginal distributions of latent factors, de-
noted as X1, . . . ,Xr, . . . , exhibit cross-sectional depen-
dence due to their common temporal kernel κX , which incor-
porates historical information up to period t−1. This shared
kernel promotes similarity and dependence across different
time periods in the multi-task Gaussian process. However,
when conditioned on Xt−1 and the corresponding kernel,
X1, . . . ,Xr, . . . , become conditionally independent and
Gaussian distributed. This conditionality arises from our
approach, where the predictive temporal kernel exclusively
relies on past information Xt−1 rather than current data
Xt. Consequently, this approach enables forward-looking
predictions based solely on historical data.

The proposed model can be seen as a functional variant of
the Gaussian process dynamical model (Wang et al., 2005).
The connections between the two models can be found
in Appendix A. Using the proposed model to capture the
temporal dependence of functional time series has several
advantages. First, the temporal kernel and spatial kernel can
be separated, which allows for a closed form and computa-
tional convenience. Additionally, since the temporal kernel
considers the entire historical information rather than just
the latest state, the model can be non-Markovian. For ex-
ample, by defining the temporal kernel as κ(Xt−1,Xs−1) =
α1

∫
Xt−1(u)

TXs−1(u)du+α2

∫
Xt−2(u)

TXs−2(u)du,
features from the last two periods can be incorporated. Fur-
thermore, nonlinearity can be introduced using the kernel
trick by setting a nonlinear kernel function. This opens
the possibility of constructing deep kernels, which will be
discussed in Section 3.3.

3.3. Deep Temporal Kernels

To capture the complex latent temporal structure, we use
neural networks to construct the kernel function. However,
compared to standard deep kernels (Wilson et al., 2016;
Al-Shedivat et al., 2017; Xue et al., 2019; Li et al., 2019;
Watson et al., 2021; Fortuin, 2022), two extra steps are
needed when applying deep kernels to functional time series.

Firstly, since Xt(·) is a continuous process on U , a map-
ping function F : F → Rd is required to map the infinite-
dimensional Gaussian processes to d-dimensional vectors.
Here, F represents the space of continuous functions de-
fined on U . Various approaches can be used for this map-
ping function, including pre-specified basis expansion, data-
dependent basis expansion (such as functional principal
component analysis and its dynamic variants (Bathia et al.,

2010; Hormann et al., 2015)), adaptive functional neural
network (Yao et al., 2021), or even a simple specification
such as Xt(u0, . . . , uL) with u0, . . . , uL ∈ U .

Secondly, the d-dimensional vectors are used as inputs for
deep neural networks, and the outputs generated by these
networks are employed to construct kernel functions. Specif-
ically, the input vector is transformed as

ht = H
(
F (Xt−1), F (Xt−2), . . .

)
, (4)

where Xt−1 = (Xt−1,1, . . . , Xt−1,r, . . . )
T , F is the map-

ping function, and H represents a sequential deep learning
framework. Various deep neural network architectures can
be utilized for this purpose, such as LSTM, GRU, and at-
tention mechanisms, which have shown their effectiveness
in modeling complex patterns and dependencies. Since the
inputs for the temporal kernels are ordered sequences from
X0 to Xn−1, unidirectional deep neural networks should
be used instead of bidirectional networks. The transformed
representations ht and hs are then used to construct a kernel

κX (Xt−1,Xs−1) = κ(ht,hs), (5)

where κ(·, ·) is a suitable kernel function, such as the
squared exponential kernel or the Ornstein-Uhlenbeck ker-
nel. It should be noted that the temporal kernel is related to
the historical values of all the relevant factors and is shared
across factors. This approach builds a time-dependent vari-
ant of a deep Gaussian process (Damianou & Lawrence,
2013), where the kernel incorporates historical information.

To address overfitting, spectrum normalization can be ap-
plied, which effectively enforces a Lipschitz condition on
the neural networks as suggested by Miyato et al. (2018).
Notably, this Lipschitz condition on the model’s output
concerning its input ensures that similar inputs within the
Gaussian process exhibit comparable distances in the ker-
nel space. This implies that the inputs for κ can reflect the
distance between Xt−1 and Xs−1.

3.4. The Imperative of Element Integration

In summary, by combining the functional version of the
sparse factor model, sequential deep learning kernel, and
Gaussian process dynamical model, we define a probabilis-
tic generative model for high-dimensional functional time
series named the deep functional factor model (DF2M).

Factorization is essential in this context. Directly feeding
the original high-dimensional input into the kernel function
is not viable. The issue arises because without the factoriza-
tion of high-dimensional functional data, the kernel would
have to handle extremely high-dimensional inputs using an
excessive number of parameters, while in training time steps
are limited. This situation is prone to overfitting, making
it challenging to achieve accurate estimation. Additionally,
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the interpretability of our proposed method relies on these
factors.

Applying a deep kernel without utilizing an IBP with a finite
number of latent factors poses difficulties. The challenge
lies in determining the optimal number of latent factors. If
there are too many factors or too few, it can affect the kernel
distance. An excess of factors, often redundant and similar,
can distort distance measurements, while an inadequate
number of factors may miss critical distances, leading to
inaccurate model representations.

The sequential deep learning kernel is essential for intro-
ducing non-Markovian and non-linear patterns. When com-
bined with IBP and factorization, it effectively models tem-
poral similarities among observations, enabling capture of
high-dimensional functional data dynamics.

4. Bayesian Inference for DF2M
4.1. Sparse Variational Inference

We adopt the variational inference framework to infer the
proposed DF2M. This algorithm approximates the poste-
rior probability by maximizing the evidence lower bound
(ELBO), which is equivalent to minimizing the Kullback–
Leibler (KL) divergence between a variational distribution
and true posterior distribution (Blei et al., 2017). For
DF2M, with mean-field factorization assuming indepen-
dence among the variational distributions for latent vari-
ables, its ELBO can be expressed as

ELBO = Eq

[
log p(Z | α)p(A | σA)

n∏

t=1

p
(
Y t(·) | Xt(·),Z,A

)∏

r≥1

p
(
Xr(·) | κX , κU

)]

−Eq

[
log q(Z)q(A)

∏

r≥1

q
(
Xr(·)

)]
.

(6)

Using the stick-breaking representation of the Indian buf-
fet process as in Section 2.1, we factorize the varia-
tional distribution for Z as q(vj) = Beta(vj ; τ1j , τ

0
j )

and q(Ztj) = Bernoulli(Ztj ;mtj). The corresponding
variational distribution for A is factorized as q(Atj) =
Normal(Atj ; ηtj , σ

2
A,tj).

To avoid singular matrix inversions and improve computa-
tional efficiency, we propose a sparse variational inference
approach for DF2M based on Titsias (2009). Our method
introduces a set of inducing variables representing the val-
ues of the latent function at a small subset of points in
U . Moreover, we adopt the approach of having common
locations for the inducing variables across functional fac-
tors, as suggested by Hamelijnck et al. (2021). In other
words, we utilize the same set of inducing points for all
tasks, which can lead to further improvement in computa-

tional efficiency. Consequently, the variational distribution
for multi-task Gaussian process with inducing variables is
defined as,

q
(
Xr(·)

)
= p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . ,

Xnr(v), κX , κU

) n∏

t=1

q
(
Xtr(v)

)
,

(7)

where v = (v1, . . . , vK)T with v1, . . . , vK ∈ U with
K being the number of inducing points. The variational
distribution for the inducing variables is constructed as
q(Xtr(v)) = Normal(µtr,Str). It is important to note
that the conditional prior distribution for Xr(·), , which is
the first term on the right-hand side of equation (7), can-
not be factorized as

∏n
t=1 p

(
Xtr(·) | Xtr(v)

)
due to their

temporal dependence. However, by exploiting the setting
of equation (7), the conditional prior distribution appears in
both the variational and prior distributions and therefore can
be cancelled. In Appendix D.1, we derive that the ELBO in
equation (6) can be simplified as

ELBO =

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

−KL
[
q(Z) ∥ p(Z | α)

]
− KL

[
q(A) ∥ p(A | σA)

]

−
∑

r≥1

KL
[
q
(
Xr(v)

)
∥ p

(
Xr(v) | κX , κU

)]
,

(8)

where Xr(v) =
(
X1r(v), . . . , Xnr(v)

)
with Xtr(v) =(

Xtr(v1), . . . , Xtr(vK)
)T

for t = 1, . . . , n. Furthermore,
using the formula of the KL divergence between two multi-
variate Gaussian distributions, we derive a closed form of
the last term as

2KL
[
q
(
Xr(v)

)
∥ p

(
Xr(v) | κX , κU

)]

= trace
(
(Σ−1

X ⊗Σvv
U

−1)
(
Sr + vec(µr)vec(µr)

T
))

+K log |ΣX |+ n log |Σvv
U | −

n∑

t=1

log |Str| − nK,

where µr = (µ1r, . . . ,µnr), Sr = diag(S1r, . . . ,Snr),
and Σvv

U =
[
κU (vj , vj)

]
1≤i,j≤K

. See Appendix D.2 for
the detailed derivation.

4.2. Sampling for Variational Distribution of Factors

To optimize the variational distributions, the automatic dif-
ferentiation variational inference (ADVI) algorithm (Ku-
cukelbir et al., 2017; Blei et al., 2017; Ranganath et al.,
2014) is adopted to maximize the ELBO in equation (8).

To perform ADVI in our model, we need to sample Xr(·)
from its variational distribution as specified in equation (7).
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However, directly sampling from a nL× nL matrix is com-
putationally expensive even though this distribution is Gaus-
sian conditional on Xr(v). To address this issue and ac-
celerate the computation of the ELBO, we take advantage
of the separability of the temporal and spatial kernels as
described in Section 3.2, and propose the following method.

For any u = (u1, . . . , uL)
T with u1, . . . , uL ∈ U being the

observation points in U , we first partition the spatial covari-
ance matrix for X(u,v) into a blockwise matrix shown as[
Σuu

U Σuv
U

Σuv
U

T Σvv
U

]
, where Σuu

U =
[
κU (ui, uj)

]
1≤i,j≤L

, and

Σuv
U =

[
κU (ui, vj)

]
1≤i≤L,1≤j≤K

.

Theorem 1 (Posterior Mean) The mean function of the
posterior for Xtr(·) is solely dependent on the variational
mean of Xtr(v), the inducing variables at time t. That is,
for any u

E
(
Xtr(u)

)
= Σuv

U Σvv
U

−1µtr. (9)

It means that for MTGP, the variational mean is indepen-
dent of the inducing variables at timestamps other than the
current one. See also an analogous theorem for Gaussian
process regression in Bonilla et al. (2007).

Theorem 2 (Posterior Variance) The variance function of
the posterior for Xr(·) contains two parts. For any u,

Varq
[
vec

(
Xr(u)

)]
=(I⊗Σuv

U Σvv
X

−1) diag(S1r, . . . ,Snr)

+ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).
(10)

The first part is solely dependent on the variational vari-
ance of Xtr(v), while the second part is independent
of the variational distributions of all inducing variables.
In particular, the first part corresponds to a group of

independent Gaussian processes such that X̃
(1)

tr (u) ∼
Normal(Σuv

U Σvv
X

−1µtr,Σ
uv
U Σvv

X
−1Str) for any u. One

the other hand, X̃
(2)

r (·) is a zero-mean multi-task Gaus-

sian process, with X̃
(2)

r (u) ∼ MatrixNormal(0,Σuu
U −

Σuv
U Σvv

U
−1Σuv

U
T ,ΣX ) for any u. Therefore, based on The-

orems 1 and 2, we can decompose Xr(·) = X̃
(1)

r (·) +
X̃

(2)

r (·) under the variational distribution. Notably, the sam-

pling of X̃
(1)

r (·) is more efficient as it only depends on
inducting variables within the same period.

Theorem 3 (Irrelevance to ELBO) Conditional on ΣX

and ΣU , sampling Xtr(·) from the distribution of X̃
(1)

r (·)
does not change the variational mean. Moreover, the corre-
sponding ELBO of DF2M in equation (8) is only modified

by a constant term given by

1

2σ2
ϵ

∥Z ⊙A∥2F trace
[
ΣX

]
trace

[
Σuu

U −Σuv
U Σvv

U
−1Σuv

U
T ],

(11)
where ∥M∥F =

(∑
i,j M

2
ij

) 1
2 denotes the Frobenius norm

of any matrix M.

See Appendices D.3, D.4 and D.5 for the derivations of
Theorem 1, 2 and 3, respectively. With the help of these the-
orems, we can sample Xtr(·) from the proxy variational dis-
tribution Normal(Σuv

U Σvv
X

−1µtr,Σ
uv
U Σvv

X
−1Str), which

relies solely on the variational distributions at time t. This
approach provides a more efficient way of computing the
ELBO compared to direct sampling, which requires the
complete Cholesky decomposition of the nL× nL matrix.

4.3. Initialization, Training and Prediction

We use the technique of ADVI to train the variational pa-
rameters of the posteriors, by computing the gradient of
the ELBO with respect to the parameters. The training
process requires iterating through the following steps until
the ELBO converges. The steps of Bayesian inference for
DF2M are summarized in Algorithm 1 in Appendix E.

First, conditional on ΣX , we update the variational dis-
tribution parameters µtr and Str for inducing variables
Xtr(v) for all t and r, as well as other variational parame-
ters including {τ1j , τ2j }1≤j≤M and {mtj}1≤t≤n,1≤j≤M for
India buffet process Z, {ηtj , σA

tj}1≤t≤n,1≤j≤M for loading
weight matrix A. We also update the idiosyncratic noise
scale σϵ and the parameters in the spatial kernel κU (·, ·).
In this step, the gradient of ELBO is accelerated by sam-
pling Xtr(·) independently according to Theorem 3 and the
analytical expression for the KL divergence in equation (9).

Second, conditional on a sample of Xr(·), we update the
trainable parameters in sequential deep learning framework
H that constructs the temporal kernels κX (·, ·), via the gra-
dient of ELBO with respect to ΣX . Although any mapping
function F can be used in our model, it is natural to choose
F
(
Xt(·)

)
= Xt(v), which eliminates the need to sample

Xr(·) when computing the gradient. This is inspired by
the fact that the variational distribution of inducing vari-
ables can be regarded as sufficient statistics of the Gaussian
processes (Titsias, 2009).

Once we have observed the data at time n, we use the trained
model to generate a posterior distribution that captures our
updated understanding of the underlying patterns in the data.
Based on this distribution, we make a prediction for the
value of the data at the next time step, n + 1. We present
the one-step ahead prediction as:

Ȳ n+1(u) = (Z̄ ⊙ Ā)X̄n+1(u),

X̄n+1,r(u) = Σuv
U Σvv

U
−1µrΣ

−1
X Σn+1,1:n

X
T
,

(12)
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where Ȳ and X̄ represent the predictive means for the
observations and factors, respectively. The terms Z̄ and
Ā are the posterior means of Z and A, respectively. The
component Σn+1,1:n

X is a 1×n matrix given by Σn+1,1:n
X =[

κX (Xn+1,X0), · · · , κX (Xn+1,Xn)
]
. See Appendix D.6

for the derivations. By repeating this process iteratively, we
can generate a sequence of predictions for future time steps,
thereby forecasting the behavior of the system over time.

5. Experiments
5.1. Datasets

We apply DF2M to four real-world datasets consisting of
high-dimensional functional time series. Japanese Mor-
tality dataset contains age-specific mortality rates for 47
Japanese prefectures (p=47) from 1975 to 2017, with 43
observations per prefecture (n=43). Energy Consumption
dataset includes half-hourly measured energy consumption
curves for selected London households (p=40) between De-
cember 2012 and January 2013 (n=55). Global Mortality
dataset provides a broader perspective on mortality rates by
including age-specific mortality data across different coun-
tries (p=32) from 1960 to 2010 (n=50). Stock Intraday
dataset comprises high-frequency price observations for the
S&P 100 component stocks (we removed 2 stocks with miss-
ing values, so p=98) in 2017. The data includes 45 trading
days (n=45), with ten-minute resolution prices and cumula-
tive intraday return trajectories (Horváth et al., 2014). Each
dataset is preprocessed and transformed into an appropriate
format for analysis. See Appendix F for the details. We
denote the data as

{
Ytj(uk)

}
1≤t≤n,1≤j≤p,1≤k≤K

, where
K is the number of observations per curve. Examples of
functional time series for a randomly selected j are plotted
in Row (1) of Figure 2.

Our work is centered on functional time series, distinct from
univariate or multivariate time series. It is important to high-
light that functional time series analysis is inherently more
complex due to the observations being infinite-dimensional
functional objects, making it much more challenging than
non-functional time series (Ramsay & Silverman, 2005).
The choice of datasets with time steps n deliberately limited
to less than 50 is a standard practice in functional time series
literature, suitable for demonstrating the robustness of our
method in more challenging scenarios with limited data, in
line with Chang et al. (2023a) and Tang et al. (2022).

5.2. Experiment Setup and Metrics

To assess the predictive accuracy of the proposed model, we
split the data into a training set with the first n1 periods and
a test set with the last n2 periods. We use the training set
to train the parameters in the model following the steps in
Section 4. Then for an integer h > 0, we make the h-step-

ahead prediction given the fitted model using the first n1

periods. We then repeat this process by moving the training
window by one period, refitting the model, and making the
h-step-ahead prediction. We compute the mean absolute
prediction error (MAPE) and mean squared prediction error
(MSPE) using the following equations:

MAPE(h)=
1

M

p∑

j=1

K∑

k=1

n∑

t=n1+h

∣∣Ŷtj(uk)− Ytj(uk)
∣∣,

MSPE(h)=
1

M

p∑

j=1

K∑

k=1

n∑

t=n1+h

[
Ŷtj(uk)− Ytj(uk)

]2
,

where M = Kp(n2−h+1). In our DF2M implementation,
we incorporate three cutting-edge deep learning modules:
LSTM, GRU, and the self-attention mechanism. In the deep
learning modules, we employ a feedforward neural network
equipped with ReLU activation functions to map inputs into
a designated hidden layer size. Subsequently, the trans-
formed inputs are channeled through a time-invariant full
connected neural network, LSTM, GRU, or self-attention
mechanisms, denoted as DF2M-LIN, DF2M-LSTM, DF2M-
GRU and DF2M-ATTN, respectively. For DF2M, the out-
puts of the deep learning modules are passed to the kernel
function, while in conventional deep learning, they are con-
verted to outputs via a linear transformation. We evaluate
their performance against conventional deep learning mod-
els under the same structural setting and regulations. The op-
timal hyperparameters, along with a detailed description of
the deep learning architecture, can be found in Appendix G.

5.3. Empirical Results

Our primary objective is to improve the explainability of
deep learning models like RNNs or transformers, while
maintaining or enhancing prediction accuracy.

Explainability Firstly, Row (2) of Figure 2 shows the tem-
poral dynamic of the largest factors in the fitted models.
We can observe a decreasing trend over time for the first
three datasets. This is particularly valuable as these factors
exhibit a clear and smooth dynamic, which can be used to
explain the underlying reasons for changes over time and
also to make robust predictions. Secondly, the temporal
covariance matrix (ΣX ) can be seen in Row (3) of Figure 2.
It is evident that the first three datasets exhibit stronger au-
tocorrelation than the Stock Intraday dataset, which aligns
with the intuition that financial data is generally noisier and
characterized by short-term dependencies.

Furthermore, both mortality datasets display a strong autore-
gressive pattern, as evidenced by the large covariance values
close to the diagonal. They also show a blockwise pattern,
which indicates the existence of change points in 1980s.
Another interesting observation is the periodic pattern in the
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(a) Japanese mortality (b) Energy consumption (c) Global mortality (d) Stock Intraday

Figure 2. A visualization of real datasets with analysis. Row (1): raw functional time series. Row (2): the largest functional factor.
Row (3): temporal covariance matrix. Rows (1) and (2) use a blue-to-red gradient to denote time progression. Blue for older and red for
recent data. Row (3) employs brightness variations to represent covariance, with brighter areas indicating higher covariance.

Energy Consumption dataset, which reveals distinct patterns
for weekdays and weekends during the first 21 days. This
data corresponds to the first 21 days in December. In con-
trast, the second half of the time steps do not exhibit this
pattern. This could be attributed to the Christmas holidays
in London, during which the differences between weekdays
and weekends are smaller, as people are on holiday.

Predictive Accuracy Compared to standard deep learn-
ing models, the DF2M framework consistently outperforms
other models in terms of both MSPE and MAPE across
all four datasets. The only exception to this is the Stock
Intraday dataset, where DF2M-ATTN and ATTN achieve
similar levels of accuracy. Specifically, the DF2M-LSTM
model performs exceptionally well on the Energy Consump-
tion and Global Mortality datasets, while the DF2M-ATTN
model exhibits the lowest prediction error for the Japanese
Mortality dataset. These results demonstrate that the inte-
gration of an explainable structure with the nonlinearity of
LSTM and attention mechanisms can significantly improve
the overall performance of the model.

On the other hand, the DF2M-LIN model outperforms
both DF2M-LSTM and DF2M-GRU on the Stock Intra-
day dataset. This can be attributed to the fact that, in the
context of financial data, long-term dependencies may not
be present, rendering the Markovian model more suitable
for capturing the underlying dynamics. Consequently, the
DF2M-LIN model emerges as a better choice for the Stock

Intraday dataset. Compared to standard deep learning mod-
els with multiple layers, DF2M achieves better or compa-
rable results, as shown in Appendix G. However, in such
cases, standard deep learning models sacrifice explainability
due to their utilization of a large number of layers.

6. Related Works
In the literature concerning frequentist statistical methods
for high-dimensional functional time series, various ap-
proaches have been employed. For instance, principal com-
ponents based dimension reduction (Guo & Qiao, 2023;
Chang et al., 2023a), factor model (Guo et al., 2021) and seg-
mentation transformation (Chang et al., 2023b). However,
all these methods use either vector autoregressive (VAR) or
functional VAR to describe the temporal dynamics, imply-
ing linear and Markovian models. In contrast, our work is
the first to propose a Bayesian model for high-dimensional
functional time series that can handle nonlinear and non-
Markovian dynamics.

Moreover, several studies (Wilson et al., 2016; Al-Shedivat
et al., 2017; Xue et al., 2019; Li et al., 2019; Watson et al.,
2021; Fortuin, 2022) have utilized deep kernels in Gaussian
processes for classification or regression tasks. In contrast,
our framework introduces the use of a deep kernel specifi-
cally designed for time series prediction.

Furthermore, prior work (Lawrence, 2003; Wang et al.,
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Table 1. Comparision of DF2M to Standard Deep Learning Models. For formatting reasons, MAPEs are multiplied by 10, and MSPEs are
multiplied by 102, except for the Energy Consumption dataset.

(a) Comparison of DF2M-LIN and LIN

Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
LIN

MSPE 4.707 4.567 5.623 10.29 17.58 17.64 10.78 9.300 9.706 99.58 101.2 89.82
MAPE 1.539 1.446 1.635 2.334 3.060 3.100 2.319 2.041 2.106 6.424 6.505 6.269

LIN
MSPE 7.808 8.774 9.228 16.16 18.95 20.27 16.84 18.05 19.93 137.5 127.8 139.1
MAPE 2.092 2.227 2.313 2.939 3.214 3.342 2.783 2.949 3.174 7.896 7.491 7.924

(b) Comparison of DF2M-LSTM and LSTM

Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
LSTM

MSPE 3.753 4.164 4.513 8.928 11.60 17.26 7.672 8.088 8.954 107.5 118.8 113.6
MAPE 1.205 1.322 1.427 2.176 2.478 3.063 1.726 1.823 1.978 6.741 7.141 7.294

LSTM
MSPE 4.989 5.597 6.501 13.51 19.71 24.61 13.28 16.29 17.08 193.3 176.0 213.8
MAPE 1.447 1.523 1.684 2.635 3.278 3.759 2.332 2.572 2.680 9.281 9.283 10.20

(c) Comparison of DF2M-GRU and GRU

Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
GRU

MSPE 4.092 4.395 4.898 9.132 8.714 9.730 8.741 8.714 9.730 102.5 117.3 95.49
MAPE 1.318 1.402 1.537 2.204 1.951 2.110 1.967 1.951 2.110 6.675 7.339 6.649

GRU
MSPE 8.800 8.552 10.41 15.55 24.02 17.53 14.12 15.33 17.53 414.0 445.9 427.2
MAPE 1.691 1.809 1.865 2.872 3.518 2.597 2.211 2.403 2.597 14.12 14.66 14.07

(d) Comparison of DF2M-ATTN and ATTN

Japanese Mortality Energy Consumption Global Mortality Stock Intraday

h 1 2 3 1 2 3 1 2 3 1 2 3

DF2M-
ATTN

MSPE 3.608 3.839 3.985 14.22 18.70 19.03 14.22 18.70 19.03 104.2 103.4 93.93
MAPE 1.119 1.203 1.264 2.741 3.141 3.163 2.741 3.141 3.163 6.695 6.646 6.427

ATTN
MSPE 13.44 14.85 16.17 17.03 17.79 18.24 39.52 41.83 43.95 103.4 98.39 91.21
MAPE 3.166 3.363 3.546 3.130 3.216 3.268 5.332 5.506 5.643 6.579 6.392 6.257

2005; Titsias & Lawrence, 2010) has employed MTGPs
to model cross-sectional correlations among static data. In
contrast, we propose the use of a factor model to describe
cross-sectional relationships, where the temporal kernel is
constructed based on the features of the historical functional
factors. This unique structure represents a novel contribu-
tion to the current literature.

7. Conclusion
In this paper, we present DF2M, a novel deep Bayesian
nonparametric approach for discovering non-Markovian and
nonlinear dynamics in high-dimensional functional time
series. DF2M combines the strengths of the Indian buffet
process, factor model, Gaussian process, and deep neural
networks to offer a flexible and powerful framework. Our
model effectively captures non-Markovian and nonlinear
dynamics while using deep learning in a structured and
explainable manner. It bridges modern deep learning and
statistical time series. We also propose a computationally

efficient inference algorithm.

Empirical results show the superior predictive performance
of DF2M compared to corresponding standard deep learning
models. However, a potential limitation of our study is its
reliance on simple spatial kernels, thereby neglecting to
account for the intricate relationships within the observation
space. We leave this as an area for future research.
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Supplementary Material to “Deep Functional Factor Models: Forecasting High-
Dimensional Functional Time Series via Bayesian Nonparametric Factorization”

This supplementary material contains a short review of sequential deep learning modules in Appendix A, a description
of multi-task Gaussian process and its connection to matrix normal distribution in Appendix B, the functional version
of Gaussian process dynamical model in Appendix C, technical derivations and proofs in Appendix D, the algorithm of
inference in Appendix E, datasets and their preprocessing in Appendix F, deep learning structures and hyperparameters in
training in Appendix G, finally the standard deviation of the results in Appendix H.

A. An Introduction for Sequential Deep Learning Modules
A.1. Recurrent Neural Networks

LSTM and GRU are both types of Recurrent Neural Networks (RNNs). They are designed to address the problem of
vanishing gradients of vanilla RNNs and to preserve long-term dependencies in the sequential data.

LSTM, proposed by Hochreiter & Schmidhuber (1997), is composed of memory cells and gates that control the flow of
information into and out of the memory cells. The standard structure of LSTM is composed of three types of gates: input
gate, output gate and forget gate. The input gate controls the flow of new information into the memory cell, the output gate
controls the flow of information out of the memory cell, and the forget gate controls the information that is removed from
the memory cell. The standard structure of LSTM is defined as follows,

f t = σ(W f [ht−1,xt] + bf )

it = σ(W i[ht−1,xt] + bi)

c̃t = tanh(WC [ht−1,xt] + bc)

ct = f t ⊙ ct−1 + it ⊙ c̃t

ot = σ(W o[ht−1,xt] + bo)

ht = ot ⊙ tanh(c̃t),

where [ht−1,xt] is the stack of hidden state vector ht−1 and xt. f t, it, and ot are the activation vectors for forget gate,
update gate, and output gate, respectively. c̃t is cell input activation vector, and ct is cell state vector, σ denotes sigmoid
function. W s and bs refer to weight matrices and bias vectors to be estimated.

GRU is a simplified version of LSTM. It has two gates: update gate and reset gate. The update gate controls the flow of new
information into the memory cell, while the reset gate controls the flow of information out of the memory cell. The structure
of GRU is defined as follows,

zt = σ(W z[ht−1,xt] + bz)

rt = σ(W r[ht−1,xt] + br)

h̃t = tanh(W h[rt ⊙ ht−1,xt] + bh)

ht = (1− zt)⊙ ht−1 + zt ⊙ h̃t,

where zt and rt are the activation vectors for update gate and reset gate, respectively, and h̃t is cell input activation vector.

A.2. Attention Mechanism

Attention mechanism is a deep learning model that is especially effective for sequential data prediction. It allows the model
to assign different weights to different parts of the input, rather than treating them all equally. This can improve the model’s
ability to make predictions by allowing it to focus on the most relevant parts of the input. The commonly used self-attention



Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks

Neural
Networks=RNN Layer

h1

x1

h2

x2

ht−1

xt−1

ht

xt

ht+1

xt+1

hn

xn

ht

x1:t . . . . . .

(a) RNN Layer

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

Query,
Keys,
Values

=Attention
Mechanism

h1

x1

h2

x2

ht−1

xt−1

ht

xt

ht+1

xt+1

hn

xn

ht

x1:t . . . . . .

. . .. . .
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Figure A.1. The structures for sequential deep learning modules. In the attention mechanism, the colored links demonstrate that the
current state relies exclusively on past states, ensuring that the model considers historical information without incorporating future data.

mechanism computes a weight for each element of the input, and the final output is a weighted sum of the input elements,
where the weights are computed based on a query, a set of key-value pairs and a similarity function such as dot-product or
MLP. The structure of standard self-attention mechanism is shown as follows,

qt = xtWQ, kt = xtWK , vt = xtW V

at,s =
exp(qt · k⊤

s /
√
dk)∑T

i=1 exp(qt · k⊤
i /

√
dk)

, ht =

T∑

s=1

at,svs,

where qt, kt, and vt are query, key, and value vectors at time step t, respectively, at,s is the attention value between time
steps t and s, dk is the dimension of the key vector, and T is the total number of time steps in the sequence.

In particular, for time series modeling, the attention value should only depend on historical information rather than future
information. Therefore, the attention value should be revised as

at,s =
exp(qt · k⊤

s /
√
dk)1s≤t∑T

i=1 exp(qt · k⊤
i /

√
dk)1s≤t

,

We illustrate the differences between RNN and attention mechanisms in Figure A.1. In RNNs, the current state depends on
the most recent state, implying a sequential dependence on past states. By contrast, attention mechanisms allow the current
state to depend directly on all past states, providing a more flexible and potentially more expressive way to capture the
relationships between past and current states in the time series.

B. Multi-task Gaussian Process and Matrix Normal Distribution
We first provide a brief introduction of matrix normal distribution. A random matrix M ∈ Rm×n is said to have a matrix
normal distribution, denoted as M ∼ MatrixNormalm×n(M0,U ,V ), if its probability density function is given by

p(M) =
exp

(
− 1

2 trace
[
V −1(M −M0)

⊤U−1(M −M0)
])

(2π)
mn
2 |U |n2 |V |m2 ,

where M0 ∈ Rm×n is the mean matrix, U ∈ Rm×m is a positive definite row covariance matrix, and V ∈ Rn×n is a
positive definite column covariance matrix. Moreover, the distribution of vec(M) is given by

vec(M) ∼ Nmn (vec(M0),V ⊗U) ,

where Nmn(·, ·) represents a multivariate normal distribution with dimension mn. Here, vec(M0) is the mean vector, and
the covariance matrix is formed by the Kronecker product of the row covariance matrix V and the column covariance matrix
U .



For any u1, . . . , uL ∈ U , given equation (2), we have vec
(
Xr(u1, . . . , uL)

)
∼ Normal(0,ΣX ⊗Σu

U ),

where

Xr(u1, . . . , uL) =



X1r(u1) · · · Xnr(u1)

· · · · · · · · · · · ·
X1r(uL) · · · Xnr(uL)


 ,

ΣX =




κX (X0,X0) · · · κX (X0,Xn−1)
· · · · · · · · · · · ·

κX (Xn−1,X0) · · · κX (Xn−1,Xn−1)


 , and Σu

U =



κU (u1, u1) · · · κU (u1, uL)

· · · · · · · · · · · ·
κU (uL, u1) · · · κU (uL, uL)


 .

Therefore, Xr(u1, . . . , uL) ∼ MatrixNormal(0,Σu
U ,ΣX ).

C. Functional Version of Gaussian Process Dynamical Model
Following Wang et al. (2005), we consider a nonlinear function g with respect to historical information, achieved by a linear
combination of nonlinear kernel function ϕis,

Xt(·) = g(Xt−1) =
∑

i

ϕi(Xt−1)ai(·), (C.1)

where Xt−1 = {Xt−1,Xt−2, . . . } is the set of all historical factors till period t− 1, ϕi is a nonlinear basis function with
respect to Xt−1, and ai(·) is a function defined on U . Equivalently, the equation above can be presented as




Xt1(·)
· · ·

Xtr(·)
· · ·


 =

∑

i

ϕi(Xt−1)




a1i(·)
· · ·

ari(·)
· · ·


 ,

where ai(·) =
{
a1i(·), a2i(·), . . . , ari(·), . . . ,

}T
. This functional version of dynamical system corresponds to equa-

tion (3) in Wang et al. (2005). In analogy, the specific form of g(·) in equation (C.1), including the numbers of
kernel functions, is incidental, and therefore can be marginalized out from a Bayesian perspective. Assigning each
ari(·) an independent Gaussian process prior with kernel κU , marginalizing over g leads to equation (2), where
κX (Xt−1,Xs−1) =

∑
i

〈
ϕi(Xt−1), ϕi(Xs−1)

〉
.

D. Technical Derivations and Proofs
D.1. Derivations for Equation (8)

Using the variational seting in equation (7), the ELBO in equation (6) can be written as

ELBO =Eq

[
log p(Z | α)p(A | ΣA)

n∏

t=1

p
(
Y t(·) | Xt(·),Z,A

)∏

r≥1

p
(
Xr(·) | κX , κU

)]

− Eq

[
log q(Z)q(A)

∏

r≥1

q
(
Xr(·)

)]

=Eq

[
log p(Z | α)

]
− Eq

[
log q(Z)

]
+ Eq

[
log p(A | ΣA)

]
− Eq

[
log q(A)

]

+

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

+
∑

r≥1

Eq

[
log p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . , Xnr(v), κX , κU

)

p
(
X1r(v), . . . , Xnr(v) | κX , κU

)]

−
∑

r≥1

Eq

[
log p

(
X1r(·), . . . , Xnr(·) | X1r(v), . . . , Xnr(v), κX , κU

)

q
(
X1r(v), . . . , Xnr(v)

)]
.



Next, we cancel the same items from the equation above to get:

ELBO =Eq

[
log p(Z | α)

]
− Eq

[
log q(Z)

]
+ Eq

[
log p(A | ΣA)

]
− Eq

[
log q(A)

]

+

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

+
∑

r≥1

Eq

[
log p

(
X1r(v), . . . , Xnr(v) | κX , κU

)
− log q

(
X1r(v), . . . , Xnr(v)

)]
.

Finally, equation (8) is obtained using the definition of KL divergence.

D.2. Derivations for Equation (9)

The Kullbuck–Leibler divergence between two k-dimensional multivariate Gaussian distribution N0 = Normal(m0,Σ0)
and N1 = Normal(m1,Σ1) is defined as,

KL (N0 ∥ N1) =
1

2

(
trace

(
Σ−1

1 Σ0

)
− k + (m1 −m0)

T
Σ−1

1 (m1 −m0) + log

(
detΣ1

detΣ0

))
.

In our settings, v = (v1, . . . , vK)T , the prior and variational distributions for Xr(v) are

p
(

vec
(
Xr(v)

))
= Normal(0,ΣX ⊗Σvv

U )

and

q
(

vec
(
Xr(v)

))
= Normal

(


µ1r

· · ·
µnr


 , diag(S1r, . . . ,Snr)

)
,

respectively, where

ΣX =




κX (X0,X0) · · · κX (X0,Xn−1)
· · · · · · · · · · · ·

κX (Xn−1,X0) · · · κX (Xn−1,Xn−1)


 , Σvv

U =



κU (v1, v1) · · · κU (v1, vK)

· · · · · · · · · · · ·
κU (vK , v1) · · · κU (vK , vK)


 .

Let m0 =



µ1r

· · ·
µnr


, m1 = 0, Σ0 = diag(S1r, . . . ,Snr) and Σ1 = ΣX ⊗Σvv

U , we have

trace(Σ−1
1 Σ0) = trace

(
(Σ−1

X ⊗Σvv
U

−1)diag(S1r, . . . ,Snr)
)
,

det(Σ1) = |ΣX |M |Σvv
U |n, det(Σ0) =

n∏

t=1

|Str|,

and
(µ1 − µ0)

T
Σ−1

1 (µ1 − µ0) = trace(Σ−1
1 µ0µ

T
0 ) = trace

(
(Σ−1

X ⊗Σvv
U

−1)vec(µr)vec(µr)
T
)
.

Therefore,

2KL
(
q(vr) ∥ p(vr | κX , κU )

)
= trace

(
(Σ−1

X ⊗Σvv
U

−1)
(
Sr + vec(µr)vec(µr)

T
))

+K log |ΣX |+ n log |Σvv
U | −

n∑

t=1

log |Str| − nK,

where µr = (µ1r, . . . ,µnr) and Sr = diag(S1r, . . . ,Snr). Moreover, to get avoid of large matrix computation, we can
further simplify

trace
(
(Σ−1

X ⊗Σvv
U

−1)Sr

)
=

n∑

t=1

Σ−1
X t,ttrace(Σvv

U
−1Str),

where Σ−1
X t,t denotes the (t, t)-th entry of Σ−1

X and

trace
(
(Σ−1

X ⊗Σvv
U

−1)vec(µr)vec(µr)
T
)
= vec(µr)

T vec(Σ−1
X µrΣ

−1
U ) = trace(µT

r Σ
−1
U µrΣ

−1
X ).



D.3. Proof for Theorem 1

For any u = (u1, . . . , uL)
T with u1, . . . , uL ∈ U , in the prior distribution, vec

(
Xr(u,v)

)
is also normally distributed. We

first partition the spatial covariance matrix as [
Σuu

U Σuv
U

Σvu
U Σvv

U

]
,

where Σuu
U and Σvv

U correspond to the block covariance matrix of u and v, respectively, and Σuv
U is the cross term. Based

on this partition, using the formula of conditional multivariate Gaussian distribution, we then have

Eq

[
vec

(
Xr(u)

)]
= Eq

[
Eq

[
vec

(
Xr(u)

)
|Xr(v)

]]

= Eq

[
Ep

[
vec

(
Xr(u)

)
|Xr(v)

]]

= (ΣX ⊗Σuv
U )(ΣX ⊗Σvv

U )−1 Eq

[
vec(Xr(v)

]

= (ΣX ⊗Σuv
U )(Σ−1

X ⊗Σvv
U

−1)vec(µr)

= (I ⊗Σuv
U Σvv

U
−1)vec(µr).

Therefore, Eq

[
vec

(
Xr(u)

)]
= Σuv

U Σvv
U

−1vec(µr), which means that conditional on ΣX and ΣU , the mean of variational
distribution are mutually independent over factors.

D.4. Proof for Theorem 2

We first derive the variance for the variational distribution of Xr(u). Note that

Varq

[
vec

(
Xr(u)

)]
= Varq

[
Eq

[
vec

(
Xr(u)

)
| Xr(v)

]]
+ Eq

[
Varq

[
vec

(
Xr(u) | Xr(v)

)]]
.

The first term is obviously
(I ⊗Σuv

U Σvv
X

−1) diag(S1r, . . . ,Snr).

In an analogy of proof for Theorem 1, the second term equals to

ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U )(ΣX ⊗Σvv
U )

−1
(ΣX ⊗Σuv

U )T

= ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U )(Σ−1
X ⊗Σvv

U −1)(ΣX ⊗Σuv
U )T

= ΣX ⊗Σuu
U − (I ⊗Σuv

U Σvv
U

−1)(ΣX ⊗Σuv
U )T

= ΣX ⊗Σuu
U − (ΣX ⊗Σuv

U Σvv
U

−1Σuv
U

T ])

= ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).

Therefore, the variance for Xr(u) with variational distribution is,

Varq

[
vec

(
Xr(u)

)]
= (I ⊗Σuv

U Σvv
X

−1)diag(S1r, . . . ,Snr) +ΣX ⊗ (Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ).

D.5. Proof for Theorem 3

Though the model is infinite-dimensional, the inference is conducted on a finite grid of observations. Suppose {Y t(·)}1≤t≤n

have observations at points u. Conditional on ΣX and ΣU , in equation (8) we have

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

=
1

2σ2
ϵ

Eq

p∑

i=1

trace
[(
Y i(u)−

∑

r

βirXr(u)
)(
Y i(u)−

∑

r

βirXr(u)
)T ]

+ constant

=
1

2σ2
ϵ

Eq

p∑

i=1

∑

r,j

trace
[
βirβilXr(u)X l(u)

T
]
− 1

σ2
ϵ

Eq

p∑

i=1

∑

r

trace
[
βirXr(u)Y i(u)

T
]
+ constant,



where βir = (Z ⊙A)ir, Y i(u) =



Y1i(u1) · · · Yni(u1)
· · · · · · · · · · · ·

Y1i(uL) · · · Yni(uL)


 , and Xr(u) =



X1r(u1) · · · Xnr(u1)

· · · · · · · · · · · ·
X1r(uL) · · · Xnr(uL)


 . Using the

above construction for Xr(·), we also have

Eq Xr(u)X l(u)
T =

{
Eq X̃

(1)

r (u)X̃
(1)

r (u)T + Eq X̃
(2)

r (u)X̃
(2)

r (u)T r = l,

Eq X̃
(1)

r (u)X̃
(1)

l (u)T otherwise.

and
Eq Xr(u)Y i(u)

T = Eq X̃
(1)

r (u)Y i(u)
T ,

because Eq X̃
(2)

r (u) = 0, where X̃
(1)

r (u) =



X̃

(1)
1r (u1) · · · X̃

(1)
nr (u1)

· · · · · · · · · · · ·
X̃

(1)
1r (uL) · · · X̃

(1)
nr (uL)


 and X̃

(2)

r (u) =



X̃

(2)
1r (u1) · · · X̃

(2)
nr (u1)

· · · · · · · · · · · ·
X̃

(2)
1r (uL) · · · X̃

(2)
nr (uL)


 .

Furthermore,
Eq trace

[
X̃

(2)

r (u)X̃
(2)

r (u)T
]
= trace[ΣX ]trace[Σuu

U −Σuv
U Σvv

U
−1Σuv

U
T ].

Given the above results, we obtain that

n∑

t=1

Eq

[
log p

(
Y t(·) | Xt(·),Z,A

)]

=
1

2σ2
ϵ

Eq

p∑

i=1

∑

r,j

trace
[
βirβilX

(1)
r (u)X

(1)
l (u)T

]
− 1

σ2
ϵ

Eq

p∑

i=1

∑

r

trace
[
βirX

(1)
r (u)Y i(u)

T
]

+
1

2σ2
ϵ

∥Z ⊙A∥2F trace[ΣX ]trace[Σuu
U −Σuv

U Σvv
U

−1Σuv
U

T ] + constant.

Therefore, conditional on ΣX and ΣU , ELBO is irrelevant to the inter-task component X(2)
r (u).

D.6. Derivations for Equation (12)

Ȳ t+1(u) = (Z̄ ⊙ Ā)X̄t+1(u) is obvious as the variational variables are assumed to be independent.

We first compute the predictive mean for the inducing variables at time n+ 1, X̄n+1,r(v). In an analogy to Theorem 1, as
the spatial kernel and temporal kernel are separable, we have

X̄n+1,r(v)
T = Σn+1,1:n

X Σ−1
X µT

r ,

where Σn+1,1:n
X =

[
κX (Xn+1,X0), κX (Xn+1,X1), · · · , κX (Xn+1,Xn−1), κX (Xn+1,Xn)

]
∈ R1×n. Moreover, we can

predict X̄n+1,r(u) by

X̄n+1,r(u) = Σuv
U Σvv

U
−1X̄n+1,r(v) = Σuv

U Σvv
U

−1µrΣ
−1
X Σn+1,1:n

X
T

E. Algorithm of Inference
The steps of Bayesian inference for DF2M are summarized in Algorithm 1 below.

F. Dataset and Preprocessing
Japanese Mortality dataset is available at https://www.ipss.go.jp/p-toukei/JMD/index-en.
html. We use log transformation and only keep the data with ages less than 96 years

https://www.ipss.go.jp/p-toukei/JMD/index-en.html
https://www.ipss.go.jp/p-toukei/JMD/index-en.html


Algorithm 1 Bayesian Inference for DF2M
Set up initialization of trainable parameters in deep learning models.
repeat

1. Update variational distribution parameters µtr and Str for inducing variables Xtr(v), along with other variational
parameters,
2. Update trainable parameters in sequential deep learning framework H using the gradient of ELBO with respect to
ΣX ,

until the convergence of the ELBO in equation (8).

old. Energy Consumption dataset is available at https://data.london.gov.uk/dataset/
smartmeter-energy-use-data-in-london-households. After removing samples with too many
missing values, we randomly split the data into 40 groups and take the average to alleviate the impact of randomness.
Global Mortality dataset downloaded from http://www.mortality.org/ contains mortality data from 32
countries, we use log transformation as well and keep the data with age less than 60 years old. Stock Intraday dataset
is obtained from the Wharton Research Data Services (WRDS) database. Link to the codes for the experiments:
https://github.com/yiruiliu110/df2m.

G. Deep Learning Structures and Hyperparameters
Our deep learning model structure begins with a layer normalization process, designed to standardize the features within
each individual sample in a given batch. Following this, the data is fed into a custom linear layer that implements a
fully-connected layer alongside a ReLU activation function. The architecture then varies based on the specific model
used, with the possibilities including a fully-connected neural network with Relu activation, LSTM, GRU, or an attention
mechanism. The final component of the model is a linear layer that translates the output from the LSTM, GRU, or attention
mechanism into the final predictions with the desired output size. To ensure an unbiased comparison between DF2M and
conventional deep learning models, we configure both to have a hidden_size of 15 and restrict them to a single layer.
For the ATTN model, we also set it to use one head. We also run experiments using multiple layers and heads with Bayesian
hyperparameter optimization and compare the results in Table F.1. Compared to standard deep learning models with multiple
layers, DF2M achieves better or comparable results.

Table F.1. The comparison of DF2M to standard deep learning models with multiple layers. For formatting reasons, the standard deviations
for MAPEs are multiplied by 10, and the standard deviations for MSPEs are multiplied by 102, except for Energy Consumption dataset.

DF2M Standard Deep learning

h=1 h=2 h=3 h=1 h=2 h=3

Japanese

Mortality

MSPE 3.608 3.839 3.958 3.786 4.159 4.341
MAPE 1.119 1.203 1.264 1.180 1.288 1.367

Energy

Consm.

MSPE 8.928 11.60 17.26 9.380 11.19 12.79
MAPE 2.176 2.478 3.063 2.230 2.440 2.651

Global

Mortality

MSPE 7.672 8.088 8.954 8.196 8.755 9.322
MAPE 1.726 1.823 1.978 1.639 1.753 1.857

Stock

Intraday

MSPE 99.58 101.2 89.82 100.0 95.68 88.52
MAPE 6.424 6.505 6.269 6.450 6.283 6.162

We employ Bayesian hyperparameter optimization to tune the key hyperparameters of our model. The tuned hyperparameters
are listed below. The best outcomes for Japanese Mortality are reached through a 3-layer LSTM model, which utilizes a
dropout rate of 0.07, a learning rate of 0.0008, a weight decay coefficient of 0.0002, and a hidden size of 64. Similarly,
for Energy Consumption, a 3-layer GRU model providing the best results employs a dropout rate of 0.08, a learning rate
of 0.0004, a weight decay coefficient of 0.00009, and a hidden layer size of 64. In the case of Global Mortality, the best
performance is achieved with a 2-layer GRU model that operates with a dropout rate of 0.33, a learning rate of 0.001, a
weight decay coefficient of 0.0002, and a hidden layer size of 48. Lastly, for Stock Intraday, the best results are seen with a
5-layer model featuring a 3-head attention mechanism, with a dropout rate of 0.10, a learning rate of 0.0007, a weight decay
coefficient of 0.0010, and a hidden layer size of 2.

https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
https://data.london.gov.uk/dataset/smartmeter-energy-use-data-in-london-households
http://www.mortality.org/
https://github.com/yiruiliu110/df2m


H. Standard Deviation of the Results
In parallel to the computation of MAPE and MSPE, we calculate their associated standard deviations by

MAPE-STD(h)=
( 1

n2 − h

n∑

t=n1+h

{ p∑

j=1

K∑

k=1

1

Kp

∣∣Ŷtj(uk)− Ytj(uk)
∣∣− MAPE(h)

}2
) 1

2

,

MSPE-STD(h)=
( 1

n2 − h

n∑

t=n1+h

{ p∑

j=1

K∑

k=1

1

Kp

[
Ŷtj(uk)− Ytj(uk)

]2 − MSPE(h)
}2

) 1
2

.

The findings are presented in Table H.1 below. The results indicate that the DF2M-based methods exhibit a smaller or
comparable standard deviation compared to other competitors.

Table H.1. Standard deviation of DF2M and Standard Deep Learning Models. For formatting reasons, the standard deviations for MAPEs
are multiplied by 10, and the standard deviations for MSPEs are multiplied by 102, except for Energy Consumption dataset.

h
DF2M-LIN LIN DF2M-LSTM LSTM DF2M-GRU GRU DF2M-ATTN ATTN

MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE MSPE MAPE
-STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD -STD

Ja
pa

ne
se

M
or

ta
lit

y 1 1.794 0.179 3.909 0.757 1.687 0.168 2.180 0.197 1.988 0.198 6.578 0.608 1.780 0.178 1.017 0.107
2 1.737 0.173 4.788 0.864 1.717 0.171 2.833 0.200 2.066 0.206 5.746 0.457 1.449 0.144 1.043 0.116
3 3.841 0.384 5.150 0.915 1.728 0.172 3.040 0.316 2.577 0.257 7.320 0.568 1.735 0.173 0.763 0.077

E
ne

rg
y

C
on

sm
. 1 0.841 0.841 14.91 1.354 0.724 0.724 11.39 1.039 0.679 0.679 9.683 0.833 1.029 1.029 12.47 1.104

2 1.134 1.134 15.32 1.297 0.846 0.846 11.98 0.979 1.121 1.121 18.41 1.407 1.203 1.203 12.67 1.082
3 1.080 1.080 16.35 1.262 1.229 1.229 12.89 1.049 0.985 0.985 13.05 0.949 1.308 1.308 12.72 1.060

G
lo

ba
l

M
or

ta
lit

y 1 3.519 0.351 14.03 1.514 0.686 0.068 3.484 0.546 1.088 0.108 4.108 0.238 1.379 0.137 1.483 0.103
2 2.191 0.219 13.61 1.503 1.469 0.146 4.883 0.623 1.461 0.146 4.318 0.276 1.386 0.138 1.664 0.139
3 2.580 0.258 14.03 1.466 2.676 0.267 4.803 0.640 2.365 0.236 5.747 0.269 1.386 0.138 2.602 0.217

St
oc

k

In
tr

ad
ay

1 20.73 2.073 99.88 2.720 21.75 2.175 117.6 2.858 18.87 1.887 291.3 4.987 18.93 1.893 77.01 2.058
2 22.27 2.227 86.99 2.361 27.17 2.717 93.25 1.823 19.63 1.963 329.2 4.917 21.25 2.125 78.82 2.124
3 18.80 1.880 109.2 2.989 26.59 2.659 115.7 2.614 18.85 1.885 305.7 5.071 20.78 2.078 79.17 2.184


