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ABSTRACT

Enhancing the representation power of graph neural networks (GNNs) through
their ability to count substructures is a recent trend in graph learning. Among
these works, a popular way is to use subgraph GNNs, which decompose the input
graph into a collection of subgraphs and enhance the representation of the graph
by applying GNN to individual subgraphs. Although subgraph GNNs are able to
count complicated substructures, they suffer from high computational and memory
costs. In this paper, we address a non-trivial question: can we count substructures
efficiently and provably with GNNs? To answer the question, we first theoretically
show that the distance to the rooted nodes within subgraphs is key to boosting the
counting power of subgraph GNNs. We then precompute structural embeddings
that encode such information to avoid extracting information over all subgraphs
via GNNs repeatedly. Experiments show that the proposed model can preserve the
counting power of subgraph GNNs while running orders of magnitude faster.

1 INTRODUCTION

Message Passing Neural Networks (MPNNs) are the most commonly used Graph Neural Networks
(GNNs). They have achieved remarkable success on graph representation learning (Kipf & Welling,
2017; Xu et al., 2018), and have been widely used in various downstream tasks (Wu et al., 2020;
Zhou et al., 2020). However, the representation power of MPNNs is limited (Xu et al., 2018), thus
increasing efforts have been spent on designing more powerful GNNs.

An essential and intuitive way to evaluate the representation power of GNNs is whether they provably
approximate specific functions, such as counting graph substructures. Substructures often represent
meaningful components in graphs and can reveal essential structural insights in chemistry (Deshpande
et al., 2002; Jin et al., 2018), biology (Koyutürk et al., 2004), and sociology (Jiang et al., 2010). For
instance, in a molecule graph, the presence of a 6-cycle (hexagon) passing through a node suggests
its potential association with a benzene ring. Moreover, substructures are closely connected to many
fundamental graph properties (Shervashidze et al., 2009; Preciado & Jadbabaie, 2010). In graph
representation learning tasks, many targets are unknown or intractable functions of the graph structure
which we need to learn from the data. However, MPNNs’ substructure counting ability is shown to
be very limited, failing to count even triangles (Chen et al., 2020). If the underlying graph functions
depend on some substructures that the GNN theoretically cannot detect/count, we can never trust its
performance on these tasks.

In this paper, we focus on the counting power of GNNs, i.e., whether GNNs can provably count the
number of given connected substructures within a graph. Notice that we are not designing models
to only count substructures (which can be perfectly done by traditional algorithms), but to propose
GNNs with high enough representation power to solve unknown structure-related tasks that we need
to learn from the data. In classic works (Fürer, 2017), to reach a high representation power, globally
expressive models such as 3-WL (Maron et al., 2019; Tahmasebi et al., 2020) are needed. However,
their high computational costs restrict their universal use in real-world applications.

Recently, a series of works called subgraph GNNs (You et al., 2021; Zhang & Li, 2021; Bevilacqua
et al., 2022; Zhao et al., 2022; Frasca et al., 2022; Huang et al., 2023) are shown to provably count
certain substructures. For an input graph, they first decompose the input graph into a collection
of subgraphs (overlap is allowed) based on certain subgraph selection policies. Then some base
GNNs are applied to the extracted subgraphs whose representations are used to enhance the graph
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representation. Although faster than globally expressive GNNs, they still need to run GNNs over all
subgraphs. Therefore they are much slower compared with classic MPNNs, and suffer from high
computational cost when encoding large and dense graphs.

Based on the above observation, we raise a nontrivial question: can we count substructures efficiently
and provably with GNNs, ideally using a similar cost to MPNNs? To answer the above, we
decompose it into two sub-questions: (1) what provides the extra representation power of subgraph
GNNs compared with classic MPNNs? (2) can we utilize such information efficiently without running
GNNs on subgraphs? To answer the first question, we show that the key to boosting the counting
power of subgraph GNNs is the distance to the rooted nodes within the subgraph. To answer the
second question, we find that such distance information can be encoded into a precomputed structural
embedding. Combining it with a base GNN, there is no need to run GNNs repeatedly on each
subgraph. In this way, we only need to run GNNs on the original graph (augmented with precomputed
structural embeddings), while being able to efficiently count substructures.

In summary, our contributions are listed as follows:

(1) We theoretically characterize the general substructure counting power of subgraph GNNs, showing
that they are much more efficient yet nearly as powerful as globally expressive models.

(2) To accelerate subgraph GNNs, we theoretically show that the distance to the rooted nodes within
subgraphs is key to boosting their representation power. We then propose a structural embedding to
encode such distance information.

(3) We propose a model, Efficient Substructure Counting GNN (ESC-GNN), which enhances a basic
GNN with the structural embedding. It only needs to run message passing on the whole graph, and
thus is much more efficient than subgraph GNNs. We evaluate ESC-GNN on various real-world and
synthetic benchmarks. Experiments show that ESC-GNN performs comparably with subgraph GNNs
on real-world tasks and counting substructures, while running much faster.

2 RELATED WORKS

Representation power of GNNs. There are two major perspectives to evaluate the representation
power of GNNs: the ability to distinguish non-isomorphic graphs, and the ability to approximate
specific functions. In terms of differentiating graphs, existing works (Xu et al., 2018; Morris
et al., 2019) showed that MPNNs are at most as powerful as 1-WL (Weisfeiler & Leman, 1968).
Following works improve the expressiveness of GNNs by using high-order information (Morris et al.,
2019; 2020; Maron et al., 2019; Bodnar et al., 2021b;a; Vignac et al., 2020) or augmenting node
features (Bouritsas et al., 2022; Barceló et al., 2021; Dwivedi et al., 2021; Loukas, 2020; Abboud
et al., 2021; Kreuzer et al., 2021; Lim et al., 2022).

In terms of approximating specific functions, some works use GNNs to approximate graph
algorithms (Veličković et al., 2019; Xhonneux et al., 2021; Yan et al., 2022) or detect bi-
connectivity (Zhang et al., 2023). In this paper, we focus on counting substructures. Previous
works (Fürer, 2017; Arvind et al., 2020) relate the counting power to the expressiveness of GNNs.
Following works count substructures with globally expressive networks (Murphy et al., 2019; Chen
et al., 2020; Tahmasebi et al., 2020) that are with high computational costs. Several other works (Liu
et al., 2020; Liu & Song, 2022; Yu et al., 2023) also focus on counting substructures. However, they
do not provide theoretical guarantees for these counts. Therefore we cannot trust their performance
on substructure-related tasks, which are abundant in chemistry and biology.

Subgraph GNNs. Subgraph GNNs can be divided according to their subgraph selection policies,
such as graph element deletion (Bevilacqua et al., 2022; Cotta et al., 2021; Papp et al., 2021), k-hop
subgraph extraction (Abu-El-Haija et al., 2019; Sandfelder et al., 2021; Nikolentzos et al., 2020; Feng
et al., 2022), node identity augmentation (You et al., 2021), and rooted subgraph extraction (Zhang &
Chen, 2018; Zhang & Li, 2021; Zhao et al., 2022; Frasca et al., 2022; Papp & Wattenhofer, 2022;
Zhang et al., 2021; Huang et al., 2023; Qian et al., 2022). Most subgraph GNNs need to run message
passing over all subgraphs, therefore performing much slower than classic MPNNs. This prevents
their use in large real-world datasets.

Positional/Structural Encodings on Graphs. To leverage the spectral properties of graphs, many
works (Dwivedi et al., 2020; Lim et al., 2022; Dwivedi et al., 2021; Kreuzer et al., 2021; Mialon et al.,
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2021; Park et al., 2022; Rampášek et al., 2022) introduce the eigenvectors of the graph Laplacian as
augmented node features. Other approaches introduce encodings with essential graph features (Li
et al., 2020; Feldman et al., 2022; Ying et al., 2021; Wang et al., 2022; Yan et al., 2021; Bouritsas
et al., 2022). Our work can be viewed as a subgraph-based structural encoding.

3 PRELIMINARIES

Let G = (V,E) be a simple, undirected graph, where V = {1, 2, ..., N} is the node set, and E is
the edge set. We use xv to represent the node attribute for v ∈ V , and euv to represent the edge
attribute for uv ∈ E. Denote the h-hop neighborhood of node v as V h

v = {u ∈ V |d(u, v) ≤ h},
where d(u, v) denotes the shortest path distance between node u and v. For a special case where
h = 1, we call it the neighborhood of node v: N(v) = V 1

v .

Define a subgraph of G as any graph GS = (V S , ES) with V S ⊆ V and Es ⊆ E. And an induced
subgraph of G is any graph GI = (V I , EI) where V I ⊂ V , and EI = E ∩ (V I)2 is the set of all
edges in E where both nodes belong to V I . For a k-tuple v⃗ = (v1, ..., vk) ∈ (V )k, define its rooted
h-hop subgraph as Gh

v⃗ = (V h
v⃗ , Eh

v⃗ ), where V h
v⃗ is the union of the h-hop neighborhoods of all vertices

in v⃗: V h
v⃗ = V h

v1 ∪ ... ∪ V h
vk

, and Eh
v⃗ = E ∩ (V h

v⃗ )2 are edges whose two nodes both belong to V h
v⃗ .

Later, We will omit the hop parameter h for simplicity.

In this paper, we focus on graph-level counting of connected substructures1. Connected substructures
are substructures whose nodes belong to a connected component. We study four types of connected
substructures that are widely used in existing works: cycles, cliques, stars, and paths. An L-path is a
sequence of edges [(v1, v2), ..., (vL, vL+1)] such that all nodes are distinct; an L-cycle is an L-path
except that v1 = vL+1; an L-clique is a fully connected graph with L nodes; and an L-star denotes a
set of edges [(v, v1), (v, v2), ..., (v, vL−1)] where all nodes with different symbols are distinct. Two
substructures are called equivalent if their sets of edges are equal. Given a substructure S and a graph
G, the subgraph counting is defined as counting the number of inequivalent substructures CS(S,G)
that are subgraphs of G. The induced subgraph counting is defined as counting the number of
inequivalent substructures that are induced subgraphs of G. In this paper, we focus on subgraph
counting, but we also provide theoretical results on induced subgraph counting.

Following existing works (Chen et al., 2020; Huang et al., 2023), we formally define our task as:
Definition 3.1. Let G be the set of all graphs and F be a function class over graphs. We say F can
count connected substructure S on G if for all G1, G2 ∈ G such that CS(S,G1) ̸= CS(S,G2), their
exists f ∈ F that f(G1) ̸= f(G2).

Using the Stone-Weierstrass theorem, the definition is equivalent to approximating subgraph-counting
functions (Chen et al., 2020). If replacing CS by CI , then the task will be naturally turned to induced
subgraph counting.

4 COUNTING POWER OF SUBGRAPH GNNS

Subgraph GNNs have been proven to possess the capability to count specific substructures (Chen
et al., 2020; You et al., 2021; Zhao et al., 2022; Huang et al., 2023). We commence by introducing
subgraph GNNs in Section 4.1. In Section 4.2, we characterize the general substructure counting
power of subgraph GNNs, by proving that they are nearly as powerful as globally expressive models
while running much faster. We theoretically show that the distance information within the subgraph
is key to boosting the counting power of GNNs. Such information can be encoded into a structural
embedding, providing the basis for our proposed efficient substructure-counting model2.

4.1 SUBGRAPH GNNS

In this section, we introduce subgraph GNNs and refer readers to the supplementary material for
details on the Weisfeiler-Leman algorithm (WL) (Weisfeiler & Leman, 1968) and MPNNs.

1Some works (Huang et al., 2023) focus on node-level counting, which can also be transferred to graph-level
counting.

2The distance-related information also strongly influences the expressiveness of subgraph GNNs since the
subgraph selection policies and the unsymmetric treatment to the rooted node and other nodes are both based on
such information.
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Subgraph GNNs first represent the input graph by a collection of subgraphs based on certain subgraph
selection policies. They then encode the subgraphs using backbone GNNs and aggregate subgraph
representations into the graph representation. We note that there exist some other variants of subgraph
GNNs (Qian et al., 2022; Zhao et al., 2022; Frasca et al., 2022; Bevilacqua et al., 2022), but in
this paper, we focus on a specific type of subgraph GNNs without information exchange between
subgraphs, which covers reconstruction GNNs (Papp et al., 2021; Cotta et al., 2021), ID-GNNs (You
et al., 2021), and nested GNNs (Zhang & Li, 2021; Huang et al., 2023). We will show that this type
of subgraph GNNs is powerful enough in terms of counting connected substructures.

We call their subgraph selection policy as rooted subgraph extraction policy. Existing works select
subgraphs rooted at either nodes (Zhang & Li, 2021; You et al., 2021) or k-tuples (Huang et al., 2023;
Qian et al., 2022), and typically use a 1-WL equivalent GNN as the backbone. In this paper, we
propose a more general framework with m-WL (or its equivalent GNN) as the backbone on subgraphs
rooted at connected k-tuples, i.e., k-tuples in which their induced subgraphs are connected. For a
connected k-tuple v⃗, the selected subgraph is its rooted subgraph Gv⃗ = (Vv⃗, Ev⃗).

Denote ctv⃗,u⃗ as the color for an m-tuple u⃗ = (u1, ..., um) in Gv⃗ at iteration t. It is computed by:

ctv⃗,u⃗ = HASH(ct−1
v⃗,v⃗ , ct−1

v⃗,u⃗ , ctv⃗,u⃗,(1), ..., c
t
v⃗,u⃗,(k)) (1)

where
ctv⃗,u⃗,(i) = {{ct−1

v⃗,q⃗ |q⃗ ∈ Nv⃗,i(u⃗)}}, i ∈ [m] (2)

Here Nv⃗,i(u⃗) = {(u1, ..., ui−1, w, ui+1, ..., um)|w ∈ Vv⃗} denotes the i-th neighborhood of u⃗ in Gv⃗ .

Denote the final iteration as iteration T . The color of v⃗ after the final iteration will be the combination
of all m-tuples’ colors inside Gv⃗ . Formally,

cv⃗ = Readout({{cTv⃗,u⃗|u⃗ ∈ (Vv⃗)
m}}) (3)

where Readout is a readout function, e.g., the sum function. Intuitively, compared with MPNNs,
subgraph GNNs (1) update the representation using not only the neighboring information but also the
information from the rooted nodes; (2) the neighborhood is restricted to the subgraph level.

4.2 COUNTING POWER OF SUBGRAPH GNNS

Subgraph GNNs have long been used to count substructures. Existing works mainly focus on counting
certain types of substructures, e.g., walks (You et al., 2021) and cycles (Huang et al., 2023) and do
not relate subgraph GNNs with substructure counting in a holistic perspective. In this section, we
characterize the general substructure counting power of subgraph GNNs by showing that they are
nearly as powerful as globally expressive models, e.g., high-dimensional WL, while running much
faster. We first theoretically characterize m-WL’s power for counting any substructures.

Counting power of m-WL. Different substructures with no more than m nodes have different initial
isomorphic types. We can assign each isomorphic type a unique color, and define the color histogram
of the graph as the output function. Therefore the lower bound of the counting power of m-WL is:
Remark 4.1. m-WL (m ≥ 2) can count all connected substructures with no more than m nodes.

As for the upper bound, we show that for any m ≥ 2, there exists a type of connected substructure
with m+ 1 nodes that m-WL cannot count. The theorem is formally stated below, and the proofs of
the following theorems are provided in the supplementary material.
Theorem 4.2. For any m ≥ 2, there exists a pair of graphs G and H , such that G contains an
(m+ 1)-clique as its subgraph while H does not, and that m-WL cannot distinguish G from H .

Theorem 4.2 makes the lower bound in Remark 4.1 tight.

Decomposition of counting connected substructures. Before discussing the counting power of
subgraph GNNs, we first provide the basis for the discussion: any graph-level substructure counting
can be naturally decomposed into a collection of local substructure counting. For example, to count
3-cliques/3-cycles in a given graph, we can first compute the number of 3-cycles that pass each node,
sum the number among all nodes, and then divide the number by 3 3 to compute the graph-level result.
We can extend the observation to a more general version:

3This number is strongly related to graph automorphism and is specific to the type of structure.
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Figure 1: Framework of ESC-GNN. The rooted 2-tuples are colored red during subgraph extraction.

Remark 4.3. To count a certain type of connected substructures with no more than m + k (m ≥
2, k > 0) nodes in a given graph, we can decompose it into counting over k-tuples. First, select a
specific type of connected k-tuple whose induced subgraph is a subgraph of the target substructure.
Then count the substructures that pass each k-tuple. Finally, the result is the sum of the numbers over
all k-tuples divided by a constant dependent on the substructure.

Counting power of subgraph GNNs. We first give the lower bound below.

Theorem 4.4. For any connected substructure with no more than m+ k (m ≥ 2, k > 0) nodes, there
exists a subgraph GNN rooted at k-tuples with backbone GNN as powerful as m-WL that can count
it.

Based on the proof and the insights gained from popular subgraph GNNs, we can safely conclude
that the distance from the rooted nodes to nodes within the subgraph provides valuable information
for substructure counting. As for the upper bound of the counting power of subgraph GNNs, existing
works (Geerts, 2020; Frasca et al., 2022) show that for m ≥ 2, (1) m-WL is as powerful as a specific
GNN, called m-IGN (Maron et al., 2018); (2) a subgraph GNN rooted at k-tuples with backbone
GNN as powerful as m-WL can be implemented by (m+ k)-IGN. Therefore, we have:

Proposition 4.5. Any subgraph GNN rooted at k-tuples with backbone GNN as powerful as m-WL
(m ≥ 2) is not more powerful than (m+ k)-WL.

Combining with Theorem 4.2, we obtain a tight characterization of subgraph GNNs’ counting power
for any substructures, which is the same as (m+k)-WL. This suggests that subgraph GNNs are nearly
as powerful as globally expressive models in terms of graph-level general substructure counting. Note
that globally expressive models might still be more powerful at counting specific substructures.

Efficiency of subgraph GNNs. The computational cost for (m+ k)-WL is O(|V |m+k), where |V |
denotes the number of nodes in the input graph. However, for subgraph GNNs rooted at k-tuples
with backbone GNN as powerful as m-WL, the computational cost can be O(|V |k|Vs|m), where Vs

is the largest number of nodes among all subgraphs. We point out that |Vs| is usually much smaller
than |V |. For example, when counting cliques and stars, the hop parameter can be set to 1; when
counting cycles and paths, the hop parameter can be set to m/2. Therefore subgraph GNNs are much
more efficient. In conclusion, subgraph GNNs rooted at k-tuples with backbone GNN as powerful as
m-WL can reach a similar counting power to (m+ k)-WL while being much more efficient. This
can be a key motivation for the use of subgraph GNNs in counting substructures.
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5 EFFICIENT SUBSTRUCTURE COUNTING GNN (ESC-GNN)
Despite the strong substructure counting ability, subgraph GNNs are still much slower than MPNNs
since they need to run backbone GNNs on all subgraphs. In this section, we propose a model, Efficient
Substructure Counting GNN (ESC-GNN), which can count substructures efficiently and effectively,
while, more importantly, does not need to run GNN on subgraphs. ESC-GNN encodes the distance
information within subgraphs into structural embeddings of edges in a preprocessing step. After that,
it only needs to run the backbone GNN on the input graph once rather than over all subgraphs.
We first introduce ESC-GNN, and then show its representation power theoretically.

5.1 FRAMEWORK OF ESC-GNN
Basic framework. In this section, we first introduce the framework of ESC-GNN, which is illustrated
in Figure 1. In ESC-GNN, we adopt subgraphs rooted at 2-tuples, and use MPNN as the backbone
GNN. Subgraph GNNs rooted at 2-tuples are more expressive than those rooted at nodes, but at the
cost of even higher computational cost (Huang et al., 2023). Thus, instead of running backbone
GNN over subgraphs to extract subgraph features (like distances), we directly encode them into
some carefully designed structural embeddings, which are used as additional edge features of the
input graph. An MPNN is then applied to this augmented graph. Specifically, let ht

v be the node
representation for v ∈ V in the t-th iteration. The update function is given by:

ht+1
v = W t

1(h
t
v,

∑
u∈N(v)

W t
2(h

t
u, h

t
v, euv, suv)) (4)

where suv is the structural embedding for edge uv.

Choice of structural embedding. Recall the proof of Theorem 4.4 and the statement in Section 4
imply that the distance information within subgraphs is key to boosting the counting power of
subgraph GNNs. Therefore, we encode such distance information, as well as some degree information,
which provides the information of isomorphic types, as follows. An example is shown in Figure 1.

• The degree encoding: for each subgraph, we first compute the degree of all nodes within
the subgraph, and then use the degree histogram as the encoding. For example, the degree
histogram for the first subgraph (the subgraph rooted at edge v1v3) of Figure 1 is (0, 0, 4, 0),
since there are 4 nodes with degree 2 in the subgraph.

• The node-level distance encoding: for the subgraph rooted at edge uv, we use the shortest
path distance histograms to the rooted nodes as the distance encoding. Take the first subgraph
of Figure 1 as an example. The distance histogram for v1 is (1, 2, 1, 0), since there are one
node with distance 0 (v1), two nodes with distance 1 (v2 and v3), and one node with distance
2 (v4) to node v1. The same holds for the other rooted node v3.

• The edge-level distance encoding: for the subgraph rooted at edge uv, define the label
for each node as its shortest path distances to all the rooted nodes, i.e., ∀u1, f(u1) =
(d(u1, u), d(u1, v)). Then we can define the label of edges in the subgraph as the con-
catenation of the label of its two end nodes, e.g., for edge u1v1, its label is f(u1v1) =
(f(u1), f(v1)). We then use the edge-level distance histogram as the distance encoding. For
example, for the subgraphs shown in Figure 1, there are seven types of edges: (0,1,1,0),
(0,1,1,1), (0,1,1,2), (1,0,1,1), (1,0,2,1), (1,2,2,1), (2,1,2,1). Therefore the edge-level distance
encoding for the first subgraph is (1,0,1,0,1,1,0), since there are one edge (v1v3) with label
(0,1,1,0), one edge (v1v2) with label (0,1,1,2), one edge (v3v4) with label (1,0,2,1), and one
edge (v2v4) with label (1,2,2,1).

Finally, we concatenate the three encodings to get the final structural embedding suv .

Analysis on the structural embedding. In terms of representation power, since all these distance
encodings can be extracted using an MPNN within the subgraph, we conclude that:
Proposition 5.1. ESC-GNN is not more powerful than subgraph GNNs rooted at 2-tuples with MPNN
as the backbone GNN.

In terms of algorithm efficiency, we can precompute these structural embeddings during subgraph
extraction (the preprocessing cost can be amortized into each epoch/iteration), and ESC-GNN only
needs to run the backbone GNN on the input graph. Therefore in every iteration, its computational
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cost is only O(|E|), and its memory cost is O(|V |), both the same as MPNN. As for subgraph MPNNs
rooted at edges, they need to run the process of subgraph extraction and run the backbone GNN over
all subgraphs. In every iteration, their computational cost is O(|E||E′

s|), and their memory cost is
O(|E||V ′

s |), where |V ′
s | and |E′

s| are the average numbers of nodes and edges among all subgraphs.
Even if considering subgraph MPNNs rooted at nodes, in every iteration, their computational cost is
O(|V ||Es|), and their memory cost is O(|V ||Vs|). Note that |V ||Es| >> |V |D

2 = |E|, where D is
the average node degree. Therefore we can safely conclude that ESC-GNN is more efficient than
subgraph GNNs. We will empirically evaluate its efficiency in the experiment.

5.2 REPRESENTATION POWER OF ESC-GNN

In this section, we analyze the representation power of ESC-GNN from two perspectives: its counting
power and its ability to distinguish non-isomorphic graphs.

Counting power of ESC-GNN. Existing works (You et al., 2021; Huang et al., 2023) mainly focus
on subgraph counting. Here we provide results on both subgraph counting and induced subgraph
counting. We use four popular types of substructures: cycles, cliques, stars, and paths, as examples to
show the counting power of ESC-GNN. The proof is provided in the supplementary material.
Theorem 5.2. In terms of subgraph counting, ESC-GNN can count (1) up to 4-cycles; (2) up to
4-cliques; (3) stars with arbitrary sizes; (4) up to 3-paths.
Theorem 5.3. In terms of induced subgraph counting, ESC-GNN can count (1) up to 4-cycles; (2) up
to 4-cliques; (3) up to 4-stars; (4) up to 3-paths.

Compared with subgraph GNNs. As shown in Proposition 5.1, ESC-GNN is less powerful than
subgraph MPNNs rooted at 2-tuples (Huang et al., 2023). As for subgraph MPNNs rooted at
nodes (Zhang & Li, 2021; You et al., 2021), they can only count up to 4-cycles, 3-cliques, and
3-paths (Huang et al., 2023). Therefore, ESC-GNN is more powerful than subgraph MPNNs rooted
at nodes in terms of counting these substructures.

The ability to distinguish non-isomorphic graphs.
Theorem 5.4. ESC-GNN is strictly more powerful than 2-WL, while not less expressive than 3-WL.

Compared with subgraph GNNs. In terms of distinguishing non-isomorphic graphs, subgraph
MPNNs rooted at nodes (Zhang & Li, 2021; You et al., 2021) are strictly less powerful than 3-
WL (Frasca et al., 2022), while ESC-GNN is not less expressive than 3-WL.

In addition, although able to distinguish most pairs of non-isomorphic graphs (Babai et al., 1980),
2-WL fails to distinguish any pairs of non-isomorphic r-regular graphs with equal size. In this paper,
we prove that ESC-GNN can distinguish almost all r-regular graphs:

Theorem 5.5. Consider all pairs of r-regular graphs with n nodes, let 3 ≤ r < (2log2n)1/2 and ϵ

be a fixed constant. With the hop parameter h set to ⌊(1/2 + ϵ) log2n
log(r−1)⌋, there exists an ESC-GNN

that can distinguish 1− o(n−1/2) such pairs of graphs.

6 EXPERIMENT

To thoroughly analyze the property of ESC-GNN, we evaluate it from the following perspectives: (1)
we evaluate its representation power in Section 6.1, to show whether it can reach the theoretical power
shown in Section 5.2; (2) we evaluate its performance on real-world benchmarks in Section 6.2, to
show whether the increased representation power can boost its performance on real-world tasks; (3)
we evaluate its efficiency in Section 6.3. The code is available at https://anonymous.4open.
science/r/ESC-GNN-D0E6. We provide the experimental details, the analysis on the limitation
of the paper, and the information of the used assets in the supplementary material.

Baselines. We compare with baseline methods including (1) a basic MPNN (Xu et al., 2018; Kipf
& Welling, 2017); (2) subgraph GNNs including NGNN (Zhang & Li, 2021), IDGNN (You et al.,
2021), GIN-AK+ (Zhao et al., 2022), SUN (Frasca et al., 2022), DSS-GNN (Bevilacqua et al., 2022),
OSAN (Qian et al., 2022), and I2-GNN (Huang et al., 2023); (3) high-order GNN models including
1-2-3-GNN (Morris et al., 2019) and PPGN (Maron et al., 2019); and (4) graph transformers including
Graphormer-GD (Zhang et al., 2023) and GraphGPS (Rampášek et al., 2022).
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Table 1: Evaluation on Counting Substructures (norm MAE), cells with MAE less than 0.01 (an
indicator of successful counting (Huang et al., 2023)) are colored yellow.

Dataset Tailed Triangle Chordal Cycle 4-Clique 4-Path Triangle-Rectangle 3-cycles 4-cycles 5-cycles 6-cycles

MPNN 0.3631 0.3114 0.1645 0.1592 0.2979 0.3515 0.2742 0.2088 0.1555
ID-GNN 0.1053 0.0454 0.0026 0.0273 0.0628 0.0006 0.0022 0.0490 0.0495
NGNN 0.1044 0.0392 0.0045 0.0244 0.0729 0.0003 0.0013 0.0402 0.0439
GIN-AK+ 0.0043 0.0112 0.0049 0.0075 0.1311 0.0004 0.0041 0.0133 0.0238
PPGN 0.0026 0.0015 0.1646 0.0041 0.0144 0.0005 0.0013 0.0044 0.0079
I2-GNN 0.0011 0.0010 0.0003 0.0041 0.0013 0.0003 0.0016 0.0028 0.0082
Graphormer-GD 0.3660 0.2611 0.1580 0.1125 0.2460 0.3080 0.2317 0.1540 0.1380
GraphGPS 0.0132 0.0630 0.1156 0.0910 0.0551 0.0882 0.1645 0.0462 0.1193

ESC-GNN 0.0052 0.0169 0.0064 0.0254 0.0178 0.0074 0.0044 0.0356 0.0337

6.1 REPRESENTATION POWER OF ESC-GNN

Datasets. We evaluate the representation power of ESC-GNN from two perspectives:

(a) Its ability to differentiate non-isomorphic graphs. We use (1) EXP (Abboud et al., 2021), which
contains 600 pairs of non-isomorphic graphs that 1-WL/2-WL fails to distinguish; (2) SR25 (Balcilar
et al., 2021), which contains 150 pairs of non-isomorphic strongly regular graphs that cannot be
differentiated by 3-WL; (3) CSL (Murphy et al., 2019), which contains 150 regular graphs that 1-
WL/2-WL fails to distinguish. These graphs are classified into 10 isomorphism classes. Classification
accuracy is adopted as the evaluation metric.

(b) Its counting ability. We use the synthetic dataset from (Zhao et al., 2022). The task is to predict
the number of substructures that pass each node in the given graph. The Mean Absolute Error (MAE)
is adopted as the evaluation metric.

Results. In Table 2, ESC-GNN achieves 100% accuracy on all datasets. Considering that models
as powerful as 3-WL (PPGN and 3-GNN) fail the SR25 dataset, the results serve as empirical
evidence that ESC-GNN can effectively differentiate regular graphs (Theorem 5.5), and not less
powerful than 3-WL (Theorem 5.4). In Table 1, ESC-GNN reaches less-than-0.01 MAE in terms
of counting tailed triangles, 4-cliques, 3-cycles, and 4-cycles. The low error allows us to simply
apply a rounding function to obtain the ground truth integer counting results, thus are considered an
indicator of successful counting as in previous works (Huang et al., 2023). These counting results
exactly match Theorem 5.2. Generally speaking, ESC-GNN performs much better than MPNNs, and
slightly beats or performs comparably with node-based subgraph GNNs such as ID-GNN, NGNN
and GIN-AK+. Also, it performs inferior to subgraph GNNs rooted at edges (I2-GNN). This serves as
the empirical evidence for Proposition 5.1. In addition, graph transformers such as GraphGPS 4 and
Graphormer-GD have shown impressive performance in previous studies, particularly on graph-level
prediction tasks. However, they perform inferior to subgraph GNNs and our proposed model on the
substructure-counting task. This observation suggests potential limitations in the applicability of
these transformer-based models to tasks involving substructure analysis.

Table 2: Test Accuracy on EXP/SR25/CSL
Dataset EXP SR25 CSL

MPNN 50 6.67 10
NGNN 100 6.67 -
GIN-AK+ 100 6.67 -
PPGN 100 6.67 -
3-GNN 99.7 6.67 95.7
I2-GNN 100 100 100

ESC-GNN 100 100 100

Table 3: Evaluation on Algorithm Efficiency
(Seconds).

Dataset ogbg-hiv ZINC

Model Pre Run Pre Run

MPNN 2.7 6296.8 6.2 1945.0
NGNN 1288.0 14862.9 300.3 8368.8
I2-GNN 2806.5 1042963.7 677.7 18607.5
GIN-AK+(Sample) 376.2 10275 31.3 8862.9

ESC-GNN 1782.5 6301.0 362.4 2872.2

4We exclude the laplacian-based structural embeddings since they are not permutation-invariant, i.e., they
may produce different outputs for the same graph.
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Table 4: Evaluation on QM9 (MAE)
Dataset 1-GNN 1-2-3-GNN NGNN I2-GNN ESC-GNN

µ 0.493 0.476 0.428 0.428 0.231
α 0.78 0.27 0.29 0.230 0.265
ϵhomo 0.00321 0.00337 0.00265 0.00261 0.00221
ϵlumo 0.00355 0.00351 0.00297 0.00267 0.00204
∆ϵ 0.0049 0.0048 0.0038 0.0038 0.0032
R2 34.1 22.9 20.5 18.64 7.28
ZPVE 0.00124 0.00019 0.0002 0.00014 0.00033
U0 2.32 0.0427 0.295 0.211 0.645
U 2.08 0.111 0.361 0.206 0.380
H 2.23 0.0419 0.305 0.269 0.427
G 1.94 0.0469 0.489 0.261 0.384
Cv 0.27 0.0944 0.174 0.0730 0.105

6.2 REAL WORLD TASKS.

We present the results on QM9 (Ramakrishnan et al., 2014; Wu et al., 2018) in Table 4, and refer the
readers to the supplementary material for additional real-world experiments. QM9 contains 130k
small molecules, and the task is to perform regression on twelve graph properties. Graph transformers
are not included since they need more than 3 days to predict one property.

Generally speaking, ESC-GNN performs better than classic MPNNs and slightly better than NGNN.
This demonstrates that the proposed structural embedding can effectively extract valuable information
from subgraph GNNs which benefits downstream tasks. We are surprised to find that in certain
situations, we beat subgraph GNNs rooted at 2-tuples. This may be due to the fact that the framework
of ESC-GNN is simple enough to avoid problems such as overfitting. We also observe that our
performance on U0, U , and H in Table 4 is not good enough. These targets represent the Internal
energy at 0K, the Internal energy at 298.15K, and the Enthalpy at 298.15K, respectively. To calculate
these targets, computational methods take into account the interactions between all the atoms in the
molecule and their surroundings, including any heat or work exchanged with the environment. As a
result, globally expressive models (1-2-3 GNN) can achieve the best performance, while subgraph
GNNs, which utilize local information to enhance graph representation, perform much worse.

6.3 ALGORITHM EFFICIENCY.

In terms of algorithm efficiency, we compare ESC-GNN with four baselines: an MPNN, NGNN, and
GIN-AK+ whose subgraphs are rooted at node, and I2-GNN whose subgraphs are rooted at 2-tuples.
We accelerate the code of I2-GNN by implementing a parallel subgraph preprocessing strategy. We
report the data preprocessing time and the standard running time (100 epochs for ogbg-hiv, and
1000 epochs for ZINC) in Table 3. We point out that although sampling strategies used in GIN-AK+
make it faster, they lose the theoretical substructure counting ability as the substructures appearing in
unsampled subgraphs will not be counted. Therefore, it is not fair to compare it with our approach.
Nonetheless, to provide a comprehensive analysis, we have included a comparison in Table 3. As
shown in the table, ESC-GNN exhibits a notable advantage in terms of total running time compared to
node-based subgraph GNNs, even when employing sampling methods lacking theoretical guarantees.
This is because the preprocessing needs only to be done once and can be readily used in all the later
training and inference stages. This is consistent with our observation in Section 5.1.

7 CONCLUSION

The huge computational cost is associated with subgraph GNNs due to the requirement of running
backbone GNNs among all subgraphs. To address this challenge and enable efficient substructure
counting with GNNs, we theoretically show that the distance information within subgraphs is key to
boosting the counting power of GNNs. We then encode this information into a structural embedding
and enhance standard GNN models with this embedding, eliminating the need to learn representations
over all subgraphs. Experiments on various benchmarks demonstrate that the proposed model retains
the representation power of subgraph GNNs while running much faster. It can potentially enhance
the utility of subgraph GNNs in a variety of applications that require efficient substructure counting.
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Reproducibility Statement

The code is available at https://anonymous.4open.science/r/ESC-GNN-D0E6.
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Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501–14515, 2022.

Dylan Sandfelder, Priyesh Vijayan, and William L Hamilton. Ego-gnns: Exploiting ego structures
in graph neural networks. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 8523–8527. IEEE, 2021.

Nino Shervashidze, SVN Vishwanathan, Tobias Petri, Kurt Mehlhorn, and Karsten Borgwardt.
Efficient graphlet kernels for large graph comparison. In Artificial intelligence and statistics, pp.
488–495. PMLR, 2009.

Behrooz Tahmasebi, Derek Lim, and Stefanie Jegelka. Counting substructures with higher-order
graph neural networks: Possibility and impossibility results. arXiv preprint arXiv:2012.03174,
2020.
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