
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ParallelTime: Dynamically Weighting the
Balance of Short- and Long-Term Temporal
Dependencies

Anonymous authors
Paper under double-blind review

Abstract

Modern multivariate time series forecasting primarily relies on two architec-
tures: the Transformer with attention mechanism and Mamba. In natural
language processing, an approach has been used that combines local window
attention for capturing short-term dependencies and Mamba for capturing
long-term dependencies, with their outputs averaged to assign equal weight
to both. We find that for time-series forecasting tasks, assigning equal weight
to long-term and short-term dependencies is not optimal. To mitigate this,
we propose a dynamic weighting mechanism, ParallelTime Weighter, which
calculates interdependent weights for long-term and short-term dependencies
for each token based on the input and the model’s knowledge. Furthermore,
we introduce the ParallelTime architecture, which incorporates the Paral-
lelTime Weighter mechanism to deliver state-of-the-art performance across
diverse benchmarks. Our architecture demonstrates robustness, achieves
lower FLOPs, requires fewer parameters, scales effectively to longer pre-
diction horizons, and significantly outperforms existing methods. These
advances highlight a promising path for future developments of parallel
Attention-Mamba in time series forecasting. The implementation is readily
available at: GitHub.

1 Introduction

Forecasting is one of the most important tasks in time series analysis. To address this
challenge, various architectures have been proposed. The Transformer architecture (Vaswani
et al., 2017), which has achieved remarkable success in natural language processing (Brown
et al., 2020) and computer vision (Dosovitskiy et al., 2021), has also shown promise in time
series forecasting (Nie et al., 2023). Another successful architecture introduced in recent
years is the State Space Model (SSM) (Gu et al., 2022; Smith et al., 2023). SSM-based
models, such as Mamba (Gu and Dao, 2023), have demonstrated strong performance in time
series forecasting (Wang et al., 2024) and other domains.

Each approach has its distinct advantages. Mamba, through its parameter initialization,
produces a summary of long-term dependencies (Gu et al., 2020). The latter allows for
extraction of the leading features for forecasting, while filtering out the noise in the time series.
Attention models, such as the transformer, are highly accurate and excel at capturing complex
patterns and interactions across the sequence, enabling robust forecasting performance
(Nie et al., 2023). Moreover, in cases of channel independence, where each variable in a
multivariate time series is processed separately using the same model weights, attention
models demonstrate superior performance on datasets with similar variates series (Nie et al.,
2023). In contrast, Mamba models, such as those proposed in Wang et al. (2024), achieve
better results on datasets with heterogeneous variates series.

In this paper, we propose a novel method that combines the strengths of Mamba and the
attention mechanism by computing both Mamba, which captures long-term dependencies,
and a small local window attention, which focuses on short-term dependencies. Recent papers
in natural language processing (Dong et al., 2024) tackle this problem by computing the

1

https://github.com


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

mean of the values and assigning equal weight to both components. In contradistinction, our
approach weights each component of each token separately. In cases where more long-range
dependencies are needed for the prediction, the ParallelTime Weighter gives more weight to
the Mamba component. When more short-term dependency predictions are required, more
weight is given to the window attention component. Additionally, we leverage registers as
domain-specific global context, providing a persistent reference that captures information
beyond the input series. We demonstrate that our method is robust and significantly
outperforms existing approaches, on almost every benchmark dataset.

Figure 1: A High level visualization of ParallelTime module. B Diagram of the attention
map of ParallelTime, integrating global registers, local window attention, and Mamba
components.

Our contributions. The main contributions of this paper are three-fold:

• We propose a novel ParallelTime Weighter that selects the contributions of short-
term, long-term, and global memory for each time series patch, implemented via
window-based attention, Mamba, and registers, respectively, to improve the accuracy
of long-term forecasting.

• We demonstrate that the parallel Mamba-Attention architecture is the most effective
approach for long-term time series forecasting.

• Our model, ParallelTime, achieves SOTA performance on real-world benchmarks,
delivering better results from previews models with fewer parameters and lower com-
putational cost, a characteristic highly critical for real-time forecasting applications.

2 Related Work

Figure 2: Comparison of five neural network block architectures: Transformer Blocks with
Registers, Transformer Blocks, (Ours) Parallel Mamba-Attention with dynamic weighting
mechanism , Mamba Blocks, and Hybrid Sequential Mamba-Attention Architecture.

Transformer Vaswani et al. (2017), leveraging causal self-attention layers and feed-forward
networks, has laid a powerful foundation for time series forecasting (Zhou et al., 2021; 2022).
A standout example is PatchTST (Nie et al., 2023), which achieves SOTA performance
by utilizing channel independence to process each variable in a multivariate time series
separately. By feeding contiguous time series patches as tokens into a standard self-attention
mechanism, PatchTST outperforms many previous models. In standard self-attention, each
token attends to all preceding tokens to capture global dependencies. To focus on local
patterns, windowed attention variants, such as those in LongFormer (Beltagy et al., 2020a)
and Swin Transformer (Liu et al., 2021), restrict each token to attend only to the most recent
S tokens, as illustrated in Figure 1 (B).

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Registers are model parameters that function as tokens, concatenated with input tokens to
provide additional global domain-specific information. They serve as a persistent reference
for the model, capturing information not explicitly present in the input tokens. Registers
have shown considerable promise in natural language processing, as demonstrated by Burtsev
et al. (2020), and in computer vision, as explored by Darcet et al. (2024), where they enhance
model performance by leveraging task-specific memory.

Mamba (Gu and Dao, 2023) is a State Space Model (SSM) (Gu et al., 2022; Smith et al.,
2023) designed for efficient (Waleffe et al., 2024) and high-performance sequence modeling.
At the core of the Mamba architecture is the HIPPO matrix (Gu et al., 2020), which
prioritizes recent tokens by assigning them greater influence in the state representation while
compressing older tokens into a compact, approximated summary. This approach effectively
captures a condensed representation of long-range dependencies, making it well-suited for time
series forecasting. S-Mamba (Wang et al., 2024) has demonstrated competitive performance
across several time series forecasting benchmarks.

Hybrid models which combine Mamba and Attention layers in a sequential stack, have
gained prominence in natural language processing, as demonstrated by models such as
Jamba (Team et al., 2024) and Samba (Ren et al., 2024). In time-series forecasting, Hera-
cles (Patro et al., 2024) showcases the versatility and effectiveness of this approach. However,
sequential stacking may introduce information bottlenecks (Dong et al., 2024) and poses chal-
lenges in determining the optimal placement of each component, potentially compromising
forecasting accuracy.

Parallel architectures where Mamba and attention mechanisms process the same input
simultaneously and their outputs are combined in some way, have recently been proposed in
natural language processing. For instance, Hymba (Dong et al., 2024) proposed aggregating
Mamba and attention outputs via simple averaging. However, in time series forecasting, where
window attention mechanisms capture short-term dependencies at each layer, and Mamba
is responsible for summarizing long-term dependencies, assigning equal weights to both
long-term and short-term dependencies may not optimally capture the right amount of each
dependency needed for each prediction, especially when time series variates differ significantly.
To the best of our knowledge, no prior work has applied parallel Mamba-Attention models
to long-term time series forecasting. We demonstrate that our novel weighted aggregation
approach, ParallelTime Weighter, outperforms naive combinations, leveraging the strengths
of both components to achieve state-of-the-art performance.

3 ParallelTime

Problem definition. In multivariate long-term time series forecasting, the task is to
predict future values of multiple interdependent variables based on historical data. Given a
multivariate time series X = (x1, . . . ,xT ) ∈ RN×T , where N is the number of variables and T
is the number of timestamps, the goal is to forecast H future values Y = (xT+1, . . . ,xT+H) ∈
RN×H . Each xt ∈ RN represents the observations of N variables at time t.

3.1 Overall Architecture

The ParallelTime architecture is illustrated in Figure 3. Our model begins by decomposing the
multivariate time series input into N univariate series, leveraging the channel independence
framework (Nie et al., 2023). This approach enables all model weights to learn more than
one variant, enhancing robustness during testing. To address distribution shifts across
different time series, we apply instance normalization (ReVIn) (Kim et al., 2022) to the input.
Subsequently, a patching mechanism divides each univariate series into non-overlapping
patches, treating each patch as a "token" with features derived from the univariate time
series values. We tried overlapping patches, but they increased computational cost without
improving accuracy, so they were not used.

To effectively extract both global trend and local trends from each patch, we employ a dual
embedding strategy. A linear layer aggregates global information by mixing all data points
within the patch, while a Conv1D layer (O’Shea and Nash, 2015) captures local trends within

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Figure 3: The architecture of ParallelTime. The input time series 1 is sliced into non-
overlapping patches. 2 Each patch is embedded and augmented with positional encoding.
The resulting tokens are processed through N stacked ParallelTime blocks. Each block
first normalizes the input, applies Mamba computation and 3 windowed attention with a
register in parallel, 4 weights their outputs using a ParallelTime Weighter mechanism, and
then applies normalization followed by a nonlinear feedforward layer. Finally, the output is
normalized 5 and processed through an expand-compress-projection mechanism to generate
the horizon prediction.

the patch. The global and local representations are then combined through summation to
form the final xe patch embedding.

To capture sequential order in attention models, which function as a bag of words without
positional encoding (Vaswani et al., 2017), we incorporate absolute positional encoding,
defined as xd = xe + xpos ∈ RP×dim, where xe represents the input embedding, xpos denotes
the positional encoding, and xd is the resulting encoded representation.

3.2 ParallelTime Decoder Block

Our approach builds upon a decoder-only transformer architecture (Vaswani et al., 2017) As
illustrated in Figure 3, the decoder is composed of a stack of N identical layers, with each
layer comprising two sublayers. The first sublayer integrates parallel Mamba and attention
mechanisms, with their outputs processed by the ParallelTime Weighter, which dynamically
allocates weights to the Mamba and attention outputs for each patch or token. The second
sublayer is a non-linear feed-forward network with SiLU activation. Each sublayer begins
with LayerNorm (Ba et al., 2016) and is enclosed by residual connections (He et al., 2016).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

3.3 Mamba and Windowed Attention with Global Registers

Mamba mechanism. To achieve high accuracy with low memory requirements, we added
a Mamba block (Gu and Dao, 2023), which leverages a state-space model. Mamba’s strength
lies in its high accuracy (Wang et al., 2024) and constant memory usage, making it ideal for
long time series forecasting. The core operation of Mamba is defined as:

ht = Aht−1 +Bxt, yt = Cht,

where xt ∈ Rdim is the input at time t, ht ∈ Rdim is the hidden state, and A,B,C are
learnable parameters of the state-space model. The output:

xmamba = Mamba(xd),

effectively captures long-range dependencies in the input sequence xd ∈ RP×dim.

Windowed Attention Mechanism. To capture local interactions efficiently within each
layer, we utilize a causal multi-head windowed self-attention mechanism Beltagy et al. (2020b).
This approach allows us to restrict attention to a fixed window. We select a small window
size, set at a 1 : 9 ratio relative to the number of input sequence patches, ensuring that the
attention mechanism focuses solely on short-term dependencies while delegating long-term
dependencies to Mamba.

Global Registers. To incorporate global context, we introduce global register tokens,
denoted as Wreg ∈ RR×dim, where R is the number of registers and dim is the embedding
dimension. These tokens serve as a compact repository of domain-specific global information,
providing the model with access to broader contextual cues. The input sequence xd ∈ RP×dim,
is concatenated with the global registers to form: xcat = Concat(Wreg,xd) ∈ R(R+P )×dim.
This concatenated sequence is then processed by the causal multi-head windowed attention
mechanism, yielding:

xatt = WinAtt(xcat).

3.4 ParallelTime Weighter

Considering the Mamba xmamba, which encapsulates both short-term and long-term depen-
dencies, and the window attention xatt, which reflects short-term dependencies alongside
global dependencies obtained from the registers, to make accurate prediction for different
inputs, some inputs need to have more long-term dependency and some need more global,
and short-term dependencies, giving a weight to each representation isn’t enough, we want
the weights to be in respect to each other, so we created the novel ParallelTime Weighter.

The attention and Mamba outputs, xatt and xmamba, are first normalized using RMSNorm
(Zhang and Sennrich, 2019) to address their differing scales. Each output is then processed
by a dedicated linear transformation that compresses the dimensionality from dim to

√
dim,

preserving essential features:

x′
att = RMSNorm(xatt)Watt ∈ RP×

√
dim,

x′
mamba = RMSNorm(xmamba)Wmamba ∈ RP×

√
dim.

These specialized linear layers effectively tailor the compression to the unique characteristics
of the attention and Mamba outputs. The compressed representations are then concatenated
to form a unified feature set:

x′
cat = Concat(x′

att,x
′
mamba) ∈ RP×2

√
dim,

Following concatenation, the compressed features from the attention and Mamba branches
are processed through a two-layer transformation to capture complex interactions. Inspired
by the kernel trick (Hearst et al., 1998), this approach leverages higher-dimensional spaces
to reveal patterns not readily discernible in lower dimensions, this step generates adaptive
weights:

xweights = σ(ReLU(x′
catW1)W2) ∈ RP×2,W1 ∈ R2

√
dim×dim-h,W2 ∈ Rdim-h×2

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

where dim-h denotes a dimension higher than 2
√

dim, and σ represents the sigmoid function.
We attempted to replace the sigmoid function with softmax, but it yielded suboptimal results.
This observation aligns with other weight mechanisms, such as the Squeeze-and-Excitation
approach (Hu et al., 2018), which also performed better with sigmoid. The weight vector is
defined as xweights = [xatt

weight,x
mamba
weight ]. The final output is computed as a weighted sum of

the original attention and Mamba outputs:

xout = xatt · xatt
weight + xmamba · xmamba

weight ,

This architecture enables the weights to dynamically balance the contributions of each branch,
leading to superior performance, as demonstrated in Table 1.

Following the decoder layers, we apply Layer Normalization (LayerNorm). Unlike standard
time series forecasting architectures that simply flatten and project data, our Expand-
Compress-Project approach is more efficient. We first expand the data to a higher dimension
than the input (dim × higher-dim) and then compress it to a significantly smaller dimension
(dim ÷ some-dim) than the input dimension. This approach reduces millions of parameters
while maintaining comparable performance (see Appendix 5 for details). The projection
output forms our model’s prediction, which we then de-normalize using ReVIn (Kim et al.,
2022).

4 Evaluations

4.1 Baselines and Experimental Setup

To assess the performance of our proposed ParallelTime, we compare it against several
SOTA models for long time series forecasting. These include Transformer-based models
such as PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024) and FEDFormer (Zhou
et al., 2022), Mamba models S-Mamba (Wang et al., 2024), Linear model DLinear (Zeng
et al., 2023), foundational models including Moment (Goswami et al., 2024), GPT4TS (Zhou
et al., 2023), and TimesNet (Wu et al., 2023). We evaluate all models on eight widely used
datasets: Electricity, Weather, Illness, Traffic, and four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2). For detailed dataset descriptions, see Appendix 9.1.

We adopt standard evaluation protocols with prediction horizons of T ∈ {24, 36, 48, 60} for
the Illness dataset and T ∈ {96, 192, 336, 720} for all other datasets. Performance metrics
for baseline models are obtained from Goswami et al. (2024), while our model’s results are
newly computed. A look-back window of L = 512 is used for all models, except DLinear,
which employs an optimized input length of L = 96 to enhance performance.

4.2 Main Results

Comprehensive forecasting results are listed in Table 1, with the best performance highlighted
in red and the second best underlined. All model results are from (Goswami et al., 2024),
except S-mamba and iTransformer, which we trained due to unavailable results for window
size 512. A lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) indicate
more accurate predictions. Our proposed model, ParallelTime, demonstrates exceptional per-
formance across a diverse set of datasets and prediction horizons, consistently outperforming
a range of state-of-the-art models, ParallelTime achieves the best forecasting accuracy in a
significant number of scenarios, particularly excelling in datasets such as Weather, ETTh1,
ETTh2, ETTm2, Electricity, Traffic, and Illness.

Our model, ParallelTime, surpasses SOTA models, including PatchTST (Nie et al., 2023) and
Moment (Goswami et al., 2024), in long-term time series forecasting. Although PatchTST
remains a strong contender, ranking as the second-best performer, and Moment excels on
the ETTm2 dataset (likely due to its training data), ParallelTime achieves superior perfor-
mance with significantly fewer parameters and lower computational complexity, compared to
PatchTST (see Table 2). Specifically, ParallelTime reduces MSE by an average of 4.25% and
MAE by 4.31% relative to PatchTST. This combination of high accuracy, computational
efficiency, and reduced resource requirements highlights the versatility and effectiveness

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Methods ParallelTime S-Mamba iTransformer PatchTST DLinear TimesNet FEDFormer MOMENT GPT4TS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.145 0.189 0.158 0.210 0.168 0.219 0.149 0.198 0.176 0.237 0.172 0.220 0.217 0.296 0.154 0.209 0.162 0.212
192 0.189 0.232 0.203 0.252 0.211 0.255 0.194 0.241 0.220 0.282 0.219 0.261 0.276 0.336 0.197 0.248 0.204 0.248
336 0.242 0.273 0.258 0.292 0.260 0.292 0.245 0.282 0.265 0.319 0.280 0.306 0.339 0.380 0.246 0.285 0.254 0.286
720 0.323 0.331 0.328 0.340 0.332 0.341 0.314 0.334 0.333 0.362 0.365 0.359 0.403 0.428 0.315 0.336 0.326 0.337

ETTh1

96 0.365 0.398 0.395 0.422 0.407 0.428 0.370 0.399 0.375 0.399 0.384 0.402 0.376 0.419 0.387 0.410 0.376 0.397
192 0.399 0.415 0.427 0.443 0.427 0.443 0.413 0.421 0.405 0.416 0.436 0.429 0.420 0.448 0.410 0.426 0.416 0.418
336 0.385 0.414 0.462 0.469 0.456 0.463 0.422 0.436 0.439 0.443 0.491 0.469 0.459 0.465 0.422 0.437 0.442 0.433
720 0.420 0.443 0.522 0.518 0.468 0.472 0.447 0.466 0.472 0.490 0.521 0.500 0.506 0.507 0.454 0.472 0.477 0.456

ETTh2

96 0.262 0.328 0.298 0.356 0.298 0.357 0.274 0.336 0.289 0.353 0.340 0.374 0.358 0.397 0.288 0.345 0.285 0.342
192 0.322 0.368 0.372 0.399 0.377 0.406 0.339 0.379 0.383 0.418 0.402 0.414 0.429 0.439 0.349 0.386 0.354 0.389
336 0.312 0.370 0.402 0.432 0.424 0.440 0.329 0.380 0.448 0.465 0.452 0.452 0.496 0.487 0.369 0.408 0.373 0.407
720 0.399 0.434 0.419 0.449 0.438 0.462 0.379 0.422 0.605 0.551 0.462 0.468 0.463 0.474 0.403 0.439 0.406 0.441

ETTm1

96 0.284 0.337 0.309 0.361 0.313 0.367 0.290 0.342 0.299 0.343 0.338 0.375 0.379 0.419 0.293 0.349 0.292 0.346
192 0.329 0.366 0.345 0.384 0.348 0.385 0.332 0.369 0.335 0.365 0.374 0.387 0.426 0.441 0.326 0.368 0.332 0.372
336 0.365 0.391 0.375 0.403 0.377 0.403 0.366 0.392 0.369 0.386 0.410 0.411 0.445 0.459 0.352 0.384 0.366 0.394
720 0.424 0.430 0.435 0.440 0.438 0.438 0.416 0.420 0.425 0.421 0.478 0.450 0.543 0.490 0.405 0.416 0.417 0.421

ETTm2

96 0.162 0.252 0.177 0.270 0.179 0.273 0.165 0.255 0.167 0.269 0.187 0.267 0.203 0.287 0.170 0.260 0.173 0.262
192 0.218 0.291 0.229 0.305 0.242 0.315 0.220 0.292 0.224 0.303 0.249 0.309 0.269 0.328 0.227 0.297 0.229 0.301
336 0.276 0.327 0.281 0.338 0.291 0.345 0.274 0.329 0.281 0.342 0.321 0.351 0.325 0.366 0.275 0.328 0.286 0.341
720 0.356 0.380 0.371 0.392 0.377 0.398 0.362 0.385 0.397 0.421 0.408 0.403 0.421 0.415 0.363 0.387 0.378 0.401

Illness

24 1.166 0.657 1.918 0.847 1.960 0.952 1.319 0.754 2.215 1.081 2.317 0.934 3.228 1.260 2.728 1.114 2.063 0.881
36 1.293 0.727 2.006 0.944 2.264 0.978 1.430 0.834 1.963 0.963 1.972 0.920 2.679 1.080 2.669 1.092 1.868 0.892
48 1.399 0.772 2.080 0.898 2.266 1.042 1.553 0.815 2.130 1.024 2.238 0.940 2.622 1.078 2.728 1.098 1.790 0.884
60 1.615 0.844 2.414 1.094 2.541 1.108 1.470 0.788 2.368 1.096 2.027 0.928 2.857 1.157 2.883 1.126 1.979 0.957

Electricity

96 0.128 0.222 0.133 0.230 0.131 0.227 0.129 0.222 0.140 0.237 0.168 0.272 0.193 0.308 0.136 0.233 0.139 0.238
192 0.148 0.240 0.155 0.250 0.153 0.249 0.157 0.240 0.153 0.249 0.184 0.289 0.201 0.315 0.152 0.247 0.153 0.251
336 0.163 0.258 0.169 0.268 0.168 0.264 0.163 0.259 0.169 0.267 0.198 0.300 0.214 0.329 0.167 0.264 0.169 0.266
720 0.197 0.288 0.197 0.293 0.198 0.291 0.197 0.290 0.203 0.301 0.220 0.320 0.246 0.355 0.205 0.295 0.206 0.297

Traffic

96 0.349 0.231 0.354 0.252 0.350 0.257 0.360 0.249 0.410 0.282 0.593 0.321 0.587 0.366 0.391 0.282 0.388 0.282
192 0.371 0.240 0.373 0.260 0.387 0.276 0.379 0.256 0.423 0.287 0.617 0.336 0.604 0.373 0.404 0.287 0.407 0.290
336 0.388 0.250 0.390 0.265 0.407 0.289 0.392 0.264 0.436 0.296 0.629 0.336 0.621 0.383 0.414 0.292 0.412 0.294
720 0.429 0.274 0.430 0.288 0.433 0.297 0.432 0.286 0.466 0.315 0.640 0.350 0.626 0.382 0.450 0.310 0.450 0.312

Table 1: The complete results of in-domain forecasting experiments. A lower MSE or MAE
indicates a better prediction. Red: the best, Underline: the 2nd best.

Table 2: Comparison of ParallelTime and PatchTST on the Traffic dataset. The table reports
MSE, MAE, forward and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the
number of parameters (#Params). Bold values indicate superior performance. ↓ indicates
that lower values are better. The improvement percentages for ParallelTime over PatchTST
are shown in parentheses.

MSE MAE Fwd+Bwd FLOPs #Params

Pred Len ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST

96 0.349 (↓3.1%) 0.360 0.231 (↓7.2%) 0.249 25.2G (↓36%) 39.5G 614k (↓48%) 1194k
192 0.371 (↓2.1%) 0.379 0.240 (↓6.3%) 0.256 25.2G (↓37%) 40.5G 651k (↓67%) 1980k
336 0.388 (↓1.0%) 0.392 0.250 (↓5.3%) 0.264 25.3G (↓39%) 42.1G 707k (↓77%) 3160k
720 0.429 (↓0.7%) 0.432 0.274 (↓4.2%) 0.286 25.5G (↓44%) 46.3G 855k (↓86%) 6306k

of ParallelTime, positioning it as a leading solution for real-world time series forecasting
challenges.

5 Model Analysis

5.1 Patch-Level Weight Analysis

To illustrate how our model allocates short-term and long-term dependencies for each token
(patch), we analyze a sample from the Traffic dataset at prediction lengths of 96 and 192.
We extract the weights assigned by our ParallelTime Weighter and present them in Figure
4. Looking at the input and the first block at each prediction length, when the previous
patch (from left to right) exhibits a high value, our model assigns greater weight to Mamba,
prioritizing long-term dependencies to reduce overfitting to potential noise. Similarly, in the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

second block for each prediction length, when consecutive patches are similar, the model
leverages Mamba to emphasize long-term dependencies, capturing a broader range of historical
behaviors rather than focusing solely on recent patterns. Conversely, when preceding patches
differ significantly, the model assigns more weight to the attention mechanism to prioritize
short-term dependencies. Notably, for the second blocks, longer prediction lengths exhibit a
stronger emphasis on long-term dependencies. For an additional result, see Appendix 10.3.

Figure 4: Visualization of input series and the weight distribution for prediction length 96,
192 per patch in sample from Traffic dataset, for each of the first and second ParallelTime
blocks.

5.2 Dynamic Weighting Analysis

To evaluate the performance of our dynamic weighting mechanism across various datasets,
we computed the mean weight of all tokens (patches) for each layer in our ParallelTime,
as shown in Figure 5. The analysis includes the Weather, Electricity, ETTh1, and Traffic
datasets.

The results demonstrate that, in the setting where the Attention-Mamba weights of each
patch are averaged across all patches, each dataset emphasizes a different balance between
short-term and long-term dependencies. Notably, across all datasets, the second layer
consistently assigns more weight to the window attention mechanism compared to the first
layer. For example, in the Weather dataset, when the prediction lengths are 192 and 336,
the model relies more heavily on long-term dependencies, which are captured by the Mamba
mechanism in the first layer. Conversely, for prediction lengths of 96 and 720, short-term
dependencies are prioritized via the attention mechanism. In the second layer, attention
receives a larger share of the weights regardless of the prediction length.

Figure 5: Mean weight of tokens (patches) per layer in the ParallelTime model, highlighting
varying requirements for short-term and long-term dependencies across different datasets
and prediction horizons.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

6 Ablation study

6.1 Weighting Strategy for Attention and Mamba

We assess the impact of our proposed ParallelTime weighting methodology. We compare
multiple strategies, including mean weighting, as in (Dong et al., 2024), and sum weighting.
To ensure compatibility, Attention and Mamba outputs are normalized prior to weighting to
address their differing scales. Our results, as shown in Figure 6, confirm the effectiveness
of this approach across all datasets. Additional results for other datasets are provided in
Appendix 10.1.

Figure 6: Ablation study of various weighting strategies - Mean, Sum and our ParallelTime
Weighter for combining Attention and Mamba outputs.

6.2 Model Efficiency Analysis

Table 2 presents a comparison of MSE and MAE, Floating-Point Operations (FLOPs), and
number of parameters, of our model against PatchTST across various prediction lengths using
the Traffic dataset. The results show that our model requires significantly fewer FLOPs for
both training and inference, achieves higher accuracy, and scales better with larger prediction
lengths. This efficiency makes our model particularly well-suited for real-time long-term
forecasting applications, where computational resources and speed are critical. For results
on additional datasets, refer to Appendix 7.

7 Conclusion and Future Work

In this work, we present ParallelTime, a novel decoder-only architecture that integrates local
window attention and Mamba in parallel to effectively capture short-term and long-term
dependencies, respectively. The outputs of these components are processed by our innovative
ParallelTime Weighter, which adaptively assigns weights to each component for accurate
predictions. Our approach achieves state-of-the-art performance across multiple real-world
benchmarks while requiring fewer parameters and lower computational costs. This work
establishes a foundation for future advancements in parallel Attention-Mamba architectures,
poised to enhance long-term time series forecasting.

Future research can explore the model’s potential as a foundation for time series analysis
with minimal adjustments. Specifically, efforts can focus on fine-tuning the model for diverse
tasks, such as anomaly detection, classification, and multi-step forecasting, across various
domains.

8 Reproducibility Statement

The data and code necessary to reproduce the results presented in this paper are publicly
available in the supplementary material located here. Detailed instructions for reproduction
can be found in the README.md file within the repository.

9

https://drive.google.com/drive/folders/166Px4HzRTra1-Nq6cS1i81Nj7cBqU19O


486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

References
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017. URL https://proceedings.neurips.
cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems
33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In 9th International Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is
worth 64 words: Long-term forecasting with transformers. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.net/pdf?id=Jbdc0vTOcol.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with
structured state spaces. In The Tenth International Conference on Learning Represen-
tations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL
https://openreview.net/forum?id=uYLFoz1vlAC.

Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space
layers for sequence modeling. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL
https://openreview.net/pdf?id=Ai8Hw3AXqks.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces,
2023. URL https://arxiv.org/abs/2312.00752.

Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling
Wang, and Yifei Zhang. Is mamba effective for time series forecasting?, 2024. URL
https://arxiv.org/abs/2403.11144.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent mem-
ory with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia
Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Informa-
tion Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.
neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html.

Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabalesh-
warkar, Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan
Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small
language models, 2024. URL https://arxiv.org/abs/2411.13676.

10

https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/pdf?id=Jbdc0vTOcol
https://openreview.net/forum?id=uYLFoz1vlAC
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://arxiv.org/abs/2312.00752
https://arxiv.org/abs/2403.11144
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html
https://arxiv.org/abs/2411.13676


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and
Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series
forecasting. In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021,
Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021,
The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,
Virtual Event, February 2-9, 2021, pages 11106–11115. AAAI Press, 2021. URL https:
//ojs.aaai.org/index.php/AAAI/article/view/17325.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
Frequency enhanced decomposed transformer for long-term series forecasting. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvári, Gang Niu, and Sivan
Sabato, editors, International Conference on Machine Learning, ICML 2022, 17-23 July
2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine Learning Re-
search, pages 27268–27286. PMLR, 2022. URL https://proceedings.mlr.press/v162/
zhou22g.html.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020a. URL https://arxiv.org/abs/2004.05150.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
dows. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pages 9992–10002. IEEE, 2021.
doi:10.1109/ICCV48922.2021.00986. URL https://doi.org/10.1109/ICCV48922.2021.
00986.

Mikhail S. Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V. Sapunov. Memory
transformer, 2020. URL https://arxiv.org/abs/2006.11527.

Timothée Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers
need registers. In The Twelfth International Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024. URL https:
//openreview.net/forum?id=2dnO3LLiJ1.

Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao,
Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha,
Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An
empirical study of mamba-based language models, 2024. URL https://arxiv.org/abs/
2406.07887.

Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg,
Ben Aviram, Chen Almagor, Clara Fridman, Dan Padnos, Daniel Gissin, Daniel Jannai,
Dor Muhlgay, Dor Zimberg, Edden M Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi,
Erez Schwartz, Gal Cohen, Gal Shachaf, Haim Rozenblum, Hofit Bata, Ido Blass, Inbal
Magar, Itay Dalmedigos, Jhonathan Osin, Julie Fadlon, Maria Rozman, Matan Danos,
Michael Gokhman, Mor Zusman, Naama Gidron, Nir Ratner, Noam Gat, Noam Rozen,
Oded Fried, Ohad Leshno, Omer Antverg, Omri Abend, Opher Lieber, Or Dagan, Orit
Cohavi, Raz Alon, Ro’i Belson, Roi Cohen, Rom Gilad, Roman Glozman, Shahar Lev,
Shaked Meirom, Tal Delbari, Tal Ness, Tomer Asida, Tom Ben Gal, Tom Braude, Uriya
Pumerantz, Yehoshua Cohen, Yonatan Belinkov, Yuval Globerson, Yuval Peleg Levy,
and Yoav Shoham. Jamba-1.5: Hybrid transformer-mamba models at scale, 2024. URL
https://arxiv.org/abs/2408.12570.

Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba:
Simple hybrid state space models for efficient unlimited context language modeling, 2024.
URL https://arxiv.org/abs/2406.07522.

Badri N. Patro, Suhas Ranganath, Vinay P. Namboodiri, and Vijay S. Agneeswaran. Heracles:
A hybrid ssm-transformer model for high-resolution image and time-series analysis, 2024.
URL https://arxiv.org/abs/2403.18063.

11

https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://ojs.aaai.org/index.php/AAAI/article/view/17325
https://proceedings.mlr.press/v162/zhou22g.html
https://proceedings.mlr.press/v162/zhou22g.html
https://arxiv.org/abs/2004.05150
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/ICCV48922.2021.00986
https://arxiv.org/abs/2006.11527
https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2408.12570
https://arxiv.org/abs/2406.07522
https://arxiv.org/abs/2403.18063


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
Reversible instance normalization for accurate time-series forecasting against distribution
shift. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=cGDAkQo1C0p.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015.
URL https://arxiv.org/abs/1511.08458.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
https://arxiv.org/abs/1607.06450.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer Society,
2016. doi:10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
transformer, 2020b. URL https://arxiv.org/abs/2004.05150.

Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M.
Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
Roman Garnett, editors, Advances in Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
2019, Vancouver, BC, Canada, pages 12360–12371, 2019. URL https://proceedings.
neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html.

M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vec-
tor machines. IEEE Intelligent Systems and their Applications, 13(4):18–28, 1998.
doi:10.1109/5254.708428.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In 2018 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
City, UT, USA, June 18-22, 2018, pages 7132–7141. IEEE Computer Society, 2018.
doi:10.1109/CVPR.2018.00745. URL http://openaccess.thecvf.com/content_cvpr_
2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
Long. itransformer: Inverted transformers are effective for time series forecasting. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?
id=JePfAI8fah.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time
series forecasting? In Brian Williams, Yiling Chen, and Jennifer Neville, editors, Thirty-
Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on
Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, Febru-
ary 7-14, 2023, pages 11121–11128. AAAI Press, 2023. doi:10.1609/AAAI.V37I9.26317.
URL https://doi.org/10.1609/aaai.v37i9.26317.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
MOMENT: A family of open time-series foundation models. In Forty-first International
Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. Open-
Review.net, 2024. URL https://openreview.net/forum?id=FVvf69a5rx.

Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power
general time series analysis by pretrained LM. In Alice Oh, Tristan Naumann,
Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, Advances
in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
10 - 16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
86c17de05579cde52025f9984e6e2ebb-Abstract-Conference.html.

12

https://openreview.net/forum?id=cGDAkQo1C0p
https://openreview.net/forum?id=cGDAkQo1C0p
https://arxiv.org/abs/1511.08458
https://arxiv.org/abs/1607.06450
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://arxiv.org/abs/2004.05150
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html
https://doi.org/10.1109/5254.708428
https://doi.org/10.1109/CVPR.2018.00745
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
https://openreview.net/forum?id=JePfAI8fah
https://openreview.net/forum?id=JePfAI8fah
https://doi.org/10.1609/AAAI.V37I9.26317
https://doi.org/10.1609/aaai.v37i9.26317
https://openreview.net/forum?id=FVvf69a5rx
http://papers.nips.cc/paper_files/paper/2023/hash/86c17de05579cde52025f9984e6e2ebb-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/86c17de05579cde52025f9984e6e2ebb-Abstract-Conference.html


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
net: Temporal 2d-variation modeling for general time series analysis. In The Eleventh
International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May
1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf?id=ju_Uqw384Oq.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
transformers with auto-correlation for long-term series forecasting. In Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
editors, Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual,
pages 22419–22430, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

9 Appendix

9.1 Dataset

In this study, we assessed the efficacy of our approach by employing seven datasets widely
recognized in the domain of long-term time series forecasting: Weather, Traffic, Electricity,
Illness, and the ETT datasets (ETTh1, ETTh2, ETTm1, and ETTm2). These datasets
encompass a diverse array of periodic patterns and real-world scenarios that present significant
predictive challenges, rendering them particularly appropriate for applications such as
long-term time series forecasting, data generation, and imputation tasks. The datasets
are characterized by the following attributes: Dataset, Variants, Frequency, Timesteps,
Information, Forecasting Horizon, and Term. Specifically, the Weather dataset comprises
21 meteorological variables recorded every 10 minutes at the Max Planck Biogeochemistry
Institute’s Weather Station in 2020. The Electricity dataset captures hourly electricity usage
data from 321 customers. The Traffic dataset records hourly road occupancy rates from 862
sensors across San Francisco Bay Area freeways, spanning January 2015 to December 2016
(Zhou et al., 2021). The ETT datasets include 7 variables related to electricity transformers,
collected from July 2016 to July 2018, consisting of four subsets: ETTh1 and ETTh2,
recorded hourly, and ETTm1 and ETTm2, recorded every 15 minutes (Wu et al., 2021). The
Illness dataset contains weekly data on patient numbers and influenza-like illness ratios (Nie
et al., 2023). Detailed characteristics of these datasets are outlined in Table 3.

Table 3: Details of multivariate real-world datasets.
Dataset Variants Timesteps Information Forecasting Horizon Term
Weather 21 52,696 Weather (96, 192, 336, 720) 4 years

Electricity 321 17,544 Electricity (96, 192, 336, 720) 2 years
Traffic 862 26,304 Road occupancy (96, 192, 336, 720) -
Illness 7 967 health outcomes (24, 36, 48, 60) -
ETTh1 7 17,420 electricity transformers (96, 192, 336, 720) 2 years
ETTh2 7 17,420 electricity transformers (96, 192, 336, 720) 2 years
ETTm1 7 69,680 electricity transformers (96, 192, 336, 720) 2 years
ETTm2 7 69,680 electricity transformers (96, 192, 336, 720) 2 years

13

https://openreview.net/pdf?id=ju_Uqw384Oq
https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html
http://arxiv.org/abs/1412.6980


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

9.2 Training Details and Hyperparameter Settings

9.2.1 Training

All our training was conducted on a single Nvidia RTX 4090. For optimization, we used
the Adam optimizer (Kingma and Ba, 2015), which provides efficient adaptive learning rate
adjustments. For the loss function to train the model, we used the classical Huber loss
function, chosen for its enhanced robustness to outliers and contribution to improved training
stability.

Efficient Training Strategy. Given the extensive variety in datasets such as Electricity
and Traffic, our model encounters memory constraints, even with small batch sizes, on the
experimental hardware. Training on high-dimensional multivariate time series, common in
real-world applications, is resource-intensive. To mitigate this, we adopt an efficient training
strategy inspired by (Liu et al., 2024). Specifically, we randomly select a subset of variates
for each batch, training the model exclusively on these variates to improve efficiency. For
the Electricity and Traffic datasets, we use 30 randomly selected variates for the training set
and 40 for the validation set, while the test set is used in its entirety.

9.2.2 Hyperparameter settings

We detail the hyperparameters employed in our ParallelTime model for long-term time series
forecasting. These include common hyperparameters, applied uniformly across all datasets,
and dataset-specific hyperparameters. Common settings include a random seed of 2023 for
reproducibility, an input sequence length of 512, Huber loss with a delta of 1.0, attention
dropout of 0.1, projection dropout of 0.05, 2 block layers with an attention head size of 4, a
patch length of 16, a window attention length of 4, 32 register tokens, and Mamba settings
with a state dimension of 16 and convolution dimension of 2. Dataset-specific settings in the
table 4.

More Details: We have not explored optimizers beyond Adam. The attention mechanism
utilized Flash Attention. We tested Absolute Positional Embedding, Rotary Positional
Embedding, and Relative Positional Embedding, with Absolute Positional Embedding
performing best.

Table 4: Hyperparameters for the ParallelTime model
Parameter Electricity ETTh1 ETTh2 ETTm1 ETTm2 Illness Traffic Weather

epochs 20 20 15 30 25 10 25 25
lr 0.005 0.0008 0.0006 0.0001 0.0001 0.012 0.005 0.0004
batch 64 256 512 64 512 64 64 64
dim 128 16 16 32 32 32 128 16

9.3 Component Selection

Linear-Conv1D Embedding. The proposed embedding method, designed to capture both
global and local features, demonstrates modest performance improvements across most data
sets. More research is required to fully understand the potential of this component and
optimize its effectiveness.

Global Registers. The integration of global registers yields slight performance enhance-
ments. We keep them because we believe that when scaling the model to a larger number of
parameters, the model’s performance can benefit.

S4 vs. Mamba. In our very original and clear paper, we did not choose to use S4 (Gu
et al., 2022) instead of Mamba due to the limitations of S4, which exhibits deficiencies in the
selective copying task and the induction heads task (Gu and Dao, 2023).

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

10 Additional results

10.1 Weighting Strategy

This section presents additional results for the weighting strategies applied to Attention and
Mamba models, as discussed in Subsection 6.1. The findings demonstrate that, across all
prediction lengths and datasets, our ParallelTime Weighter consistently outperforms other
weighting strategies, achieving the best results on every dataset.

Figure 7: Performance comparison of weighting strategies for Attention and Mamba models
across various prediction lengths and datasets, highlighting the superior results of our
ParallelTime Weighter.

10.2 Study of Expand-Compress-Project

In this subsection, we present a comparative analysis of our proposed Expand-Compress-
Project method against the standard projection method in time series forecasting. Table 5
provides a detailed comparison across various datasets and prediction lengths. It is evident
from the table that the our Expand-Compress-Project method consistently achieves similar
and sometimes better MSE values to the standard projection method while significantly
reduces the number of parameters required. In addition we can see that our model scales
better on larger sequence length.

10.3 Patch-Level Weight Additional Analysis

We visualize a sample from the ETTM1 dataset to illustrate the distribution of short-term and
long-term dependencies utilized by our model for each token (patch). We extract the weights
assigned by our ParallelTime Weighter and present them in Figure 8. The visualization
reveals that patches significantly different from preceding patches (from left to right) rely
more heavily on the Mamba weights, which emphasize long-term dependencies. Conversely,
when the data exhibits minimal variation, greater weight is assigned to window attention,
which prioritizes short-term dependencies. Additionally, we observe distinct behaviors across
different layers.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 5: Comparison of Expand-Compress-Project and Standard Projection Methods for
different prediction lengths, where our method utilizes significantly fewer parameters while
maintaining similar accuracy

Dataset
MSE #params

Expand-Compress Standard Projection Standard Projection Expand-Compress

Electricity

96 0.128 0.127 854.432 K 516 K
192 0.148 0.146 1.2477 M 552.96 K
336 0.163 0.162 1.8377 M 608.4 K
720 0.197 0.196 3.411 M 756.24 K

Traffic

96 0.349 0.353 953.248 K 614.816 K
192 0.371 0.372 1.3466 M 651.776 K
336 0.389 0.389 1.9365 M 707.216 K
720 0.430 0.432 3.5098 M 855.056 K

Figure 8: Visualization of input series and the weight distribution per patch in sample from
ETTM1 dataset, for the first and second ParallelTime blocks.

10.4 Robustness

Effects of Different Parameter Adjustments. To evaluate the impact of hyperparam-
eter choices on ParallelTime, we conducted additional experiments by adjusting key model
parameters. We tested different configurations by varying the number of ParallelTime layers,
L = 1, 2, 3, and the patch size, P = 8, 16, resulting in a total of six unique hyperparameter
combinations. The MSE scores for these configurations across various datasets are presented
in Figure 9. Most datasets show consistent performance across hyperparameter settings,
except for the ILI dataset, which exhibits slightly variable results.

Impact of Various Random Seeds. The findings presented in the main text and
appendix were obtained using a consistent random seed of 2023. To assess the stability of
these outcomes, we trained the supervised ParallelTime model using five random seeds: 2022,
2023, 2024, 2025, and 2026, computing the MSE and MAE scores for each seed. The average
and standard deviation of these results are shown in Table 10.4. The notably low standard
deviations demonstrate that our model’s performance remains stable across different random
seed selections.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Figure 9: MSE scores for ParallelTime across six hyperparameter configurations (number of
layers L = 1, 2, 3, patch size P = 8, 16).

Dataset ETTh2 Traffic Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.263±0.0011 0.328±0.0007 0.350±0.0009 0.231±0.0000 0.146±0.0007 0.190±0.0011
192 0.323±0.0011 0.368±0.0013 0.371±0.0000 0.241±0.0005 0.191±0.0011 0.234±0.0011
336 0.313±0.0008 0.371±0.0013 0.390±0.0012 0.252±0.0011 0.244±0.0015 0.276±0.0015
720 0.404±0.0036 0.437±0.0027 0.429±0.0009 0.274±0.0004 0.324±0.0026 0.331±0.0015

Dataset ETTm1 ETTm2 Electricity

Horizon MSE MAE MSE MAE MSE MAE
96 0.289±0.0036 0.341±0.0035 0.162±0.0004 0.252±0.0004 0.128±0.0004 0.222±0.0004
192 0.330±0.0019 0.368±0.0021 0.221±0.0029 0.292±0.0016 0.147±0.0005 0.240±0.0015
336 0.361±0.0025 0.389±0.0012 0.276±0.0023 0.327±0.0011 0.164±0.0008 0.258±0.0004
720 0.436±0.0085 0.434±0.0034 0.356±0.0046 0.380±0.0022 0.197±0.0008 0.288±0.0010

Table 6: Robustness from five different random seeds.

Dataset Pred Len MSE MAE Fwd FLOPs Fwd+Bwd FLOPs #Params

ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST

ETTh1

96 0.365 (↓1.4%) 0.370 0.398 (↓0.3%) 0.399 0.325G (↓52%) 0.687G 0.976G (↓52%) 2.062G 69k (↓40%) 116k
192 0.399 (↓3.4%) 0.413 0.415 (↓1.4%) 0.421 0.347G (↓52%) 0.731G 1.042G (↓52%) 2.194G 119k (↓44%) 214k
336 0.385 (↓8.8%) 0.422 0.414 (↓5.0%) 0.436 0.380G (↓52%) 0.797G 1.141G (↓52%) 2.392G 192k (↓46%) 362k
720 0.420 (↓6.0%) 0.447 0.443 (↓4.9%) 0.466 0.468G (↓51%) 0.973G 1.405G (↓51%) 2.920G 389k (↓48%) 755k

Electricity

96 0.128 (↓0.8%) 0.129 0.222 0.222 7.00G (↓47%) 13.2G 21.0G (↓47%) 39.5G 516k (↓57%) 1194k
192 0.148 (↓5.7%) 0.157 0.241 0.240 7.02G (↓48%) 13.5G 21.1G (↓48%) 40.6G 553k (↓72%) 1981k
336 0.163 0.163 0.258 (↓0.4%) 0.259 7.04G (↓50%) 14.1G 21.1G (↓50%) 42.2G 608k (↓81%) 3161k
720 0.196 (↓0.5%) 0.197 0.288 (↓0.7%) 0.290 7.11G (↓54%) 15.5G 21.3G (↓54%) 46.4G 756k (↓88%) 6307k

Table 7: Comparison of ParallelTime and PatchTST on ETTh1 and Electricity datasets.
The table reports MSE, MAE, forward (Fwd) FLOPs (i.e., inference FLOPs), forward
and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the number of parameters
(#Params) for different prediction lengths (Pred Len).

17


	Introduction
	Related Work
	ParallelTime
	Overall Architecture
	ParallelTime Decoder Block
	Mamba and Windowed Attention with Global Registers
	ParallelTime Weighter

	Evaluations
	Baselines and Experimental Setup
	Main Results

	Model Analysis
	Patch-Level Weight Analysis
	Dynamic Weighting Analysis

	Ablation study
	Weighting Strategy for Attention and Mamba
	Model Efficiency Analysis

	Conclusion and Future Work
	Reproducibility Statement
	Appendix
	Dataset
	Training Details and Hyperparameter Settings
	Training
	Hyperparameter settings

	Component Selection

	Additional results
	Weighting Strategy
	Study of Expand-Compress-Project
	Patch-Level Weight Additional Analysis
	Robustness


