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Abstract

Modern multivariate time series forecasting primarily relies on two architec-
tures: the Transformer with attention mechanism and Mamba. In natural
language processing, an approach has been used that combines local window
attention for capturing short-term dependencies and Mamba for capturing
long-term dependencies, with their outputs averaged to assign equal weight
to both. We find that for time-series forecasting tasks, assigning equal weight
to long-term and short-term dependencies is not optimal. To mitigate this,
we propose a dynamic weighting mechanism, ParallelTime Weighter, which
calculates interdependent weights for long-term and short-term dependencies
for each token based on the input and the model’s knowledge. Furthermore,
we introduce the ParallelTime architecture, which incorporates the Paral-
lelTime Weighter mechanism to deliver state-of-the-art performance across
diverse benchmarks. Our architecture demonstrates robustness, achieves
lower FLOPs, requires fewer parameters, scales effectively to longer pre-
diction horizons, and significantly outperforms existing methods. These
advances highlight a promising path for future developments of parallel
Attention-Mamba in time series forecasting. The implementation is readily
available at: GitHub.

1 Introduction

Forecasting is one of the most important tasks in time series analysis. To address this
challenge, various architectures have been proposed. The Transformer architecture (Vaswani
et al., 2017), which has achieved remarkable success in natural language processing (Brown
et al., 2020) and computer vision (Dosovitskiy et al., 2021), has also shown promise in time
series forecasting (Nie et al., 2023). Another successful architecture introduced in recent
years is the State Space Model (SSM) (Gu et al., 2022; Smith et al., 2023). SSM-based
models, such as Mamba (Gu and Dao, 2023), have demonstrated strong performance in time
series forecasting (Wang et al., 2024) and other domains.

Each approach has its distinct advantages. Mamba, through its parameter initialization,
produces a summary of long-term dependencies (Gu et al., 2020). The latter allows for
extraction of the leading features for forecasting, while filtering out the noise in the time series.
Attention models, such as the transformer, are highly accurate and excel at capturing complex
patterns and interactions across the sequence, enabling robust forecasting performance
(Nie et al., 2023). Moreover, in cases of channel independence, where each variable in a
multivariate time series is processed separately using the same model weights, attention
models demonstrate superior performance on datasets with similar variates series (Nie et al.,
2023). In contrast, Mamba models, such as those proposed in Wang et al. (2024), achieve
better results on datasets with heterogeneous variates series.

In this paper, we propose a novel method that combines the strengths of Mamba and the
attention mechanism by computing both Mamba, which captures long-term dependencies,
and a small local window attention, which focuses on short-term dependencies. Recent papers
in natural language processing (Dong et al., 2024) tackle this problem by computing the
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mean of the values and assigning equal weight to both components. In contradistinction, our
approach weights each component of each token separately. In cases where more long-range
dependencies are needed for the prediction, the ParallelTime Weighter gives more weight to
the Mamba component. When more short-term dependency predictions are required, more
weight is given to the window attention component. Additionally, we leverage registers as
domain-specific global context, providing a persistent reference that captures information
beyond the input series. We demonstrate that our method is robust and significantly
outperforms existing approaches, on almost every benchmark dataset.

Figure 1: A High level visualization of ParallelTime module. B Diagram of the attention
map of ParallelTime, integrating global registers, local window attention, and Mamba
components.

Our contributions. The main contributions of this paper are three-fold:

• We propose a novel ParallelTime Weighter that selects the contributions of short-
term, long-term, and global memory for each time series patch, implemented via
window-based attention, Mamba, and registers, respectively, to improve the accuracy
of long-term forecasting.

• We demonstrate that the parallel Mamba-Attention architecture is the most effective
approach for long-term time series forecasting.

• Our model, ParallelTime, achieves SOTA performance on real-world benchmarks,
delivering better results from previews models with fewer parameters and lower com-
putational cost, a characteristic highly critical for real-time forecasting applications.

2 Related Work

Figure 2: Comparison of five neural network block architectures: Transformer Blocks with
Registers, Transformer Blocks, (Ours) Parallel Mamba-Attention with dynamic weighting
mechanism , Mamba Blocks, and Hybrid Sequential Mamba-Attention Architecture.

Transformer Vaswani et al. (2017), leveraging causal self-attention layers and feed-forward
networks, has laid a powerful foundation for time series forecasting (Zhou et al., 2021; 2022).
A standout example is PatchTST (Nie et al., 2023), which achieves SOTA performance
by utilizing channel independence to process each variable in a multivariate time series
separately. By feeding contiguous time series patches as tokens into a standard self-attention
mechanism, PatchTST outperforms many previous models. In standard self-attention, each
token attends to all preceding tokens to capture global dependencies. To focus on local
patterns, windowed attention variants, such as those in LongFormer (Beltagy et al., 2020a)
and Swin Transformer (Liu et al., 2021), restrict each token to attend only to the most recent
S tokens, as illustrated in Figure 1 (B).
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Registers are model parameters that function as tokens, concatenated with input tokens to
provide additional global domain-specific information. They serve as a persistent reference
for the model, capturing information not explicitly present in the input tokens. Registers
have shown considerable promise in natural language processing, as demonstrated by Burtsev
et al. (2020), and in computer vision, as explored by Darcet et al. (2024), where they enhance
model performance by leveraging task-specific memory.

Mamba (Gu and Dao, 2023) is a State Space Model (SSM) (Gu et al., 2022; Smith et al.,
2023) designed for efficient (Waleffe et al., 2024) and high-performance sequence modeling.
At the core of the Mamba architecture is the HIPPO matrix (Gu et al., 2020), which
prioritizes recent tokens by assigning them greater influence in the state representation while
compressing older tokens into a compact, approximated summary. This approach effectively
captures a condensed representation of long-range dependencies, making it well-suited for time
series forecasting. S-Mamba (Wang et al., 2024) has demonstrated competitive performance
across several time series forecasting benchmarks.

Hybrid models which combine Mamba and Attention layers in a sequential stack, have
gained prominence in natural language processing, as demonstrated by models such as
Jamba (Team et al., 2024) and Samba (Ren et al., 2024). In time-series forecasting, Hera-
cles (Patro et al., 2024) showcases the versatility and effectiveness of this approach. However,
sequential stacking may introduce information bottlenecks (Dong et al., 2024) and poses chal-
lenges in determining the optimal placement of each component, potentially compromising
forecasting accuracy.

Parallel architectures where Mamba and attention mechanisms process the same input
simultaneously and their outputs are combined in some way, have recently been proposed in
natural language processing. For instance, Hymba (Dong et al., 2024) proposed aggregating
Mamba and attention outputs via simple averaging. However, in time series forecasting, where
window attention mechanisms capture short-term dependencies at each layer, and Mamba
is responsible for summarizing long-term dependencies, assigning equal weights to both
long-term and short-term dependencies may not optimally capture the right amount of each
dependency needed for each prediction, especially when time series variates differ significantly.
To the best of our knowledge, no prior work has applied parallel Mamba-Attention models
to long-term time series forecasting. We demonstrate that our novel weighted aggregation
approach, ParallelTime Weighter, outperforms naive combinations, leveraging the strengths
of both components to achieve state-of-the-art performance.

3 ParallelTime

Problem definition. In multivariate long-term time series forecasting, the task is to
predict future values of multiple interdependent variables based on historical data. Given a
multivariate time series X = (x1, . . . ,xT ) ∈ RN×T , where N is the number of variables and T
is the number of timestamps, the goal is to forecast H future values Y = (xT+1, . . . ,xT+H) ∈
RN×H . Each xt ∈ RN represents the observations of N variables at time t.

3.1 Overall Architecture

The ParallelTime architecture is illustrated in Figure 3. Our model begins by decomposing the
multivariate time series input into N univariate series, leveraging the channel independence
framework (Nie et al., 2023). This approach enables all model weights to learn more than
one variant, enhancing robustness during testing. To address distribution shifts across
different time series, we apply instance normalization (ReVIn) (Kim et al., 2022) to the input.
Subsequently, a patching mechanism divides each univariate series into non-overlapping
patches, treating each patch as a "token" with features derived from the univariate time
series values. We tried overlapping patches, but they increased computational cost without
improving accuracy, so they were not used.

To effectively extract both global trend and local trends from each patch, we employ a dual
embedding strategy. A linear layer aggregates global information by mixing all data points
within the patch, while a Conv1D layer (O’Shea and Nash, 2015) captures local trends within
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Figure 3: The architecture of ParallelTime. The input time series 1 is sliced into non-
overlapping patches. 2 Each patch is embedded and augmented with positional encoding.
The resulting tokens are processed through N stacked ParallelTime blocks. Each block
first normalizes the input, applies Mamba computation and 3 windowed attention with a
register in parallel, 4 weights their outputs using a ParallelTime Weighter mechanism, and
then applies normalization followed by a nonlinear feedforward layer. Finally, the output is
normalized 5 and processed through an expand-compress-projection mechanism to generate
the horizon prediction.

the patch. The global and local representations are then combined through summation to
form the final xe patch embedding.

To capture sequential order in attention models, which function as a bag of words without
positional encoding (Vaswani et al., 2017), we incorporate absolute positional encoding,
defined as xd = xe + xpos ∈ RP×dim, where xe represents the input embedding, xpos denotes
the positional encoding, and xd is the resulting encoded representation.

3.2 ParallelTime Decoder Block

Our approach builds upon a decoder-only transformer architecture (Vaswani et al., 2017) As
illustrated in Figure 3, the decoder is composed of a stack of N identical layers, with each
layer comprising two sublayers. The first sublayer integrates parallel Mamba and attention
mechanisms, with their outputs processed by the ParallelTime Weighter, which dynamically
allocates weights to the Mamba and attention outputs for each patch or token. The second
sublayer is a non-linear feed-forward network with SiLU activation. Each sublayer begins
with LayerNorm (Ba et al., 2016) and is enclosed by residual connections (He et al., 2016).
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3.3 Mamba and Windowed Attention with Global Registers

Mamba mechanism. To achieve high accuracy with low memory requirements, we added
a Mamba block (Gu and Dao, 2023), which leverages a state-space model. Mamba’s strength
lies in its high accuracy (Wang et al., 2024) and constant memory usage, making it ideal for
long time series forecasting. The core operation of Mamba is defined as:

ht = Aht−1 +Bxt, yt = Cht,

where xt ∈ Rdim is the input at time t, ht ∈ Rdim is the hidden state, and A,B,C are
learnable parameters of the state-space model. The output:

xmamba = Mamba(xd),

effectively captures long-range dependencies in the input sequence xd ∈ RP×dim.

Windowed Attention Mechanism. To capture local interactions efficiently within each
layer, we utilize a causal multi-head windowed self-attention mechanism Beltagy et al. (2020b).
This approach allows us to restrict attention to a fixed window. We select a small window
size, set at a 1 : 9 ratio relative to the number of input sequence patches, ensuring that the
attention mechanism focuses solely on short-term dependencies while delegating long-term
dependencies to Mamba.

Global Registers. To incorporate global context, we introduce global register tokens,
denoted as Wreg ∈ RR×dim, where R is the number of registers and dim is the embedding
dimension. These tokens serve as a compact repository of domain-specific global information,
providing the model with access to broader contextual cues. The input sequence xd ∈ RP×dim,
is concatenated with the global registers to form: xcat = Concat(Wreg,xd) ∈ R(R+P )×dim.
This concatenated sequence is then processed by the causal multi-head windowed attention
mechanism, yielding:

xatt = WinAtt(xcat).

3.4 ParallelTime Weighter

Considering the Mamba xmamba, which encapsulates both short-term and long-term depen-
dencies, and the window attention xatt, which reflects short-term dependencies alongside
global dependencies obtained from the registers, to make accurate prediction for different
inputs, some inputs need to have more long-term dependency and some need more global,
and short-term dependencies, giving a weight to each representation isn’t enough, we want
the weights to be in respect to each other, so we created the novel ParallelTime Weighter.

The attention and Mamba outputs, xatt and xmamba, are first normalized using RMSNorm
(Zhang and Sennrich, 2019) to address their differing scales. Each output is then processed
by a dedicated linear transformation that compresses the dimensionality from dim to

√
dim,

preserving essential features:

x′
att = RMSNorm(xatt)Watt ∈ RP×

√
dim,

x′
mamba = RMSNorm(xmamba)Wmamba ∈ RP×

√
dim.

These specialized linear layers effectively tailor the compression to the unique characteristics
of the attention and Mamba outputs. The compressed representations are then concatenated
to form a unified feature set:

x′
cat = Concat(x′

att,x
′
mamba) ∈ RP×2

√
dim,

Following concatenation, the compressed features from the attention and Mamba branches
are processed through a two-layer transformation to capture complex interactions. Inspired
by the kernel trick (Hearst et al., 1998), this approach leverages higher-dimensional spaces
to reveal patterns not readily discernible in lower dimensions, this step generates adaptive
weights:

xweights = σ(ReLU(x′
catW1)W2) ∈ RP×2,W1 ∈ R2

√
dim×dim-h,W2 ∈ Rdim-h×2
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where dim-h denotes a dimension higher than 2
√

dim, and σ represents the sigmoid function.
We attempted to replace the sigmoid function with softmax, but it yielded suboptimal results.
This observation aligns with other weight mechanisms, such as the Squeeze-and-Excitation
approach (Hu et al., 2018), which also performed better with sigmoid. The weight vector is
defined as xweights = [xatt

weight,x
mamba
weight ]. The final output is computed as a weighted sum of

the original attention and Mamba outputs:

xout = xatt · xatt
weight + xmamba · xmamba

weight ,

This architecture enables the weights to dynamically balance the contributions of each branch,
leading to superior performance, as demonstrated in Table 1.

Following the decoder layers, we apply Layer Normalization (LayerNorm). Unlike standard
time series forecasting architectures that simply flatten and project data, our Expand-
Compress-Project approach is more efficient. We first expand the data to a higher dimension
than the input (dim × higher-dim) and then compress it to a significantly smaller dimension
(dim ÷ some-dim) than the input dimension. This approach reduces millions of parameters
while maintaining comparable performance (see Appendix 5 for details). The projection
output forms our model’s prediction, which we then de-normalize using ReVIn (Kim et al.,
2022).

4 Evaluations

4.1 Baselines and Experimental Setup

To assess the performance of our proposed ParallelTime, we compare it against several
SOTA models for long time series forecasting. These include Transformer-based models
such as PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024) and FEDFormer (Zhou
et al., 2022), Mamba models S-Mamba (Wang et al., 2024), Linear model DLinear (Zeng
et al., 2023), foundational models including Moment (Goswami et al., 2024), GPT4TS (Zhou
et al., 2023), and TimesNet (Wu et al., 2023). We evaluate all models on eight widely used
datasets: Electricity, Weather, Illness, Traffic, and four ETT datasets (ETTh1, ETTh2,
ETTm1, ETTm2). For detailed dataset descriptions, see Appendix 9.1.

We adopt standard evaluation protocols with prediction horizons of T ∈ {24, 36, 48, 60} for
the Illness dataset and T ∈ {96, 192, 336, 720} for all other datasets. Performance metrics
for baseline models are obtained from Goswami et al. (2024), while our model’s results are
newly computed. A look-back window of L = 512 is used for all models, except DLinear,
which employs an optimized input length of L = 96 to enhance performance.

4.2 Main Results

Comprehensive forecasting results are listed in Table 1, with the best performance highlighted
in red and the second best underlined. All model results are from (Goswami et al., 2024),
except S-mamba and iTransformer, which we trained due to unavailable results for window
size 512. A lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) indicate
more accurate predictions. Our proposed model, ParallelTime, demonstrates exceptional per-
formance across a diverse set of datasets and prediction horizons, consistently outperforming
a range of state-of-the-art models, ParallelTime achieves the best forecasting accuracy in a
significant number of scenarios, particularly excelling in datasets such as Weather, ETTh1,
ETTh2, ETTm2, Electricity, Traffic, and Illness.

Our model, ParallelTime, surpasses SOTA models, including PatchTST (Nie et al., 2023) and
Moment (Goswami et al., 2024), in long-term time series forecasting. Although PatchTST
remains a strong contender, ranking as the second-best performer, and Moment excels on
the ETTm2 dataset (likely due to its training data), ParallelTime achieves superior perfor-
mance with significantly fewer parameters and lower computational complexity, compared to
PatchTST (see Table 2). Specifically, ParallelTime reduces MSE by an average of 4.25% and
MAE by 4.31% relative to PatchTST. This combination of high accuracy, computational
efficiency, and reduced resource requirements highlights the versatility and effectiveness
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Methods ParallelTime S-Mamba iTransformer PatchTST DLinear TimesNet FEDFormer MOMENT GPT4TS
Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.145 0.189 0.158 0.210 0.168 0.219 0.149 0.198 0.176 0.237 0.172 0.220 0.217 0.296 0.154 0.209 0.162 0.212
192 0.189 0.232 0.203 0.252 0.211 0.255 0.194 0.241 0.220 0.282 0.219 0.261 0.276 0.336 0.197 0.248 0.204 0.248
336 0.242 0.273 0.258 0.292 0.260 0.292 0.245 0.282 0.265 0.319 0.280 0.306 0.339 0.380 0.246 0.285 0.254 0.286
720 0.323 0.331 0.328 0.340 0.332 0.341 0.314 0.334 0.333 0.362 0.365 0.359 0.403 0.428 0.315 0.336 0.326 0.337

ETTh1

96 0.365 0.398 0.395 0.422 0.407 0.428 0.370 0.399 0.375 0.399 0.384 0.402 0.376 0.419 0.387 0.410 0.376 0.397
192 0.399 0.415 0.427 0.443 0.427 0.443 0.413 0.421 0.405 0.416 0.436 0.429 0.420 0.448 0.410 0.426 0.416 0.418
336 0.385 0.414 0.462 0.469 0.456 0.463 0.422 0.436 0.439 0.443 0.491 0.469 0.459 0.465 0.422 0.437 0.442 0.433
720 0.420 0.443 0.522 0.518 0.468 0.472 0.447 0.466 0.472 0.490 0.521 0.500 0.506 0.507 0.454 0.472 0.477 0.456

ETTh2

96 0.262 0.328 0.298 0.356 0.298 0.357 0.274 0.336 0.289 0.353 0.340 0.374 0.358 0.397 0.288 0.345 0.285 0.342
192 0.322 0.368 0.372 0.399 0.377 0.406 0.339 0.379 0.383 0.418 0.402 0.414 0.429 0.439 0.349 0.386 0.354 0.389
336 0.312 0.370 0.402 0.432 0.424 0.440 0.329 0.380 0.448 0.465 0.452 0.452 0.496 0.487 0.369 0.408 0.373 0.407
720 0.399 0.434 0.419 0.449 0.438 0.462 0.379 0.422 0.605 0.551 0.462 0.468 0.463 0.474 0.403 0.439 0.406 0.441

ETTm1

96 0.284 0.337 0.309 0.361 0.313 0.367 0.290 0.342 0.299 0.343 0.338 0.375 0.379 0.419 0.293 0.349 0.292 0.346
192 0.329 0.366 0.345 0.384 0.348 0.385 0.332 0.369 0.335 0.365 0.374 0.387 0.426 0.441 0.326 0.368 0.332 0.372
336 0.365 0.391 0.375 0.403 0.377 0.403 0.366 0.392 0.369 0.386 0.410 0.411 0.445 0.459 0.352 0.384 0.366 0.394
720 0.424 0.430 0.435 0.440 0.438 0.438 0.416 0.420 0.425 0.421 0.478 0.450 0.543 0.490 0.405 0.416 0.417 0.421

ETTm2

96 0.162 0.252 0.177 0.270 0.179 0.273 0.165 0.255 0.167 0.269 0.187 0.267 0.203 0.287 0.170 0.260 0.173 0.262
192 0.218 0.291 0.229 0.305 0.242 0.315 0.220 0.292 0.224 0.303 0.249 0.309 0.269 0.328 0.227 0.297 0.229 0.301
336 0.276 0.327 0.281 0.338 0.291 0.345 0.274 0.329 0.281 0.342 0.321 0.351 0.325 0.366 0.275 0.328 0.286 0.341
720 0.356 0.380 0.371 0.392 0.377 0.398 0.362 0.385 0.397 0.421 0.408 0.403 0.421 0.415 0.363 0.387 0.378 0.401

Illness

24 1.166 0.657 1.918 0.847 1.960 0.952 1.319 0.754 2.215 1.081 2.317 0.934 3.228 1.260 2.728 1.114 2.063 0.881
36 1.293 0.727 2.006 0.944 2.264 0.978 1.430 0.834 1.963 0.963 1.972 0.920 2.679 1.080 2.669 1.092 1.868 0.892
48 1.399 0.772 2.080 0.898 2.266 1.042 1.553 0.815 2.130 1.024 2.238 0.940 2.622 1.078 2.728 1.098 1.790 0.884
60 1.615 0.844 2.414 1.094 2.541 1.108 1.470 0.788 2.368 1.096 2.027 0.928 2.857 1.157 2.883 1.126 1.979 0.957

Electricity

96 0.128 0.222 0.133 0.230 0.131 0.227 0.129 0.222 0.140 0.237 0.168 0.272 0.193 0.308 0.136 0.233 0.139 0.238
192 0.148 0.240 0.155 0.250 0.153 0.249 0.157 0.240 0.153 0.249 0.184 0.289 0.201 0.315 0.152 0.247 0.153 0.251
336 0.163 0.258 0.169 0.268 0.168 0.264 0.163 0.259 0.169 0.267 0.198 0.300 0.214 0.329 0.167 0.264 0.169 0.266
720 0.197 0.288 0.197 0.293 0.198 0.291 0.197 0.290 0.203 0.301 0.220 0.320 0.246 0.355 0.205 0.295 0.206 0.297

Traffic

96 0.349 0.231 0.354 0.252 0.350 0.257 0.360 0.249 0.410 0.282 0.593 0.321 0.587 0.366 0.391 0.282 0.388 0.282
192 0.371 0.240 0.373 0.260 0.387 0.276 0.379 0.256 0.423 0.287 0.617 0.336 0.604 0.373 0.404 0.287 0.407 0.290
336 0.388 0.250 0.390 0.265 0.407 0.289 0.392 0.264 0.436 0.296 0.629 0.336 0.621 0.383 0.414 0.292 0.412 0.294
720 0.429 0.274 0.430 0.288 0.433 0.297 0.432 0.286 0.466 0.315 0.640 0.350 0.626 0.382 0.450 0.310 0.450 0.312

Table 1: The complete results of in-domain forecasting experiments. A lower MSE or MAE
indicates a better prediction. Red: the best, Underline: the 2nd best.

Table 2: Comparison of ParallelTime and PatchTST on the Traffic dataset. The table reports
MSE, MAE, forward and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the
number of parameters (#Params). Bold values indicate superior performance. ↓ indicates
that lower values are better. The improvement percentages for ParallelTime over PatchTST
are shown in parentheses.

MSE MAE Fwd+Bwd FLOPs #Params

Pred Len ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST

96 0.349 (↓3.1%) 0.360 0.231 (↓7.2%) 0.249 25.2G (↓36%) 39.5G 614k (↓48%) 1194k
192 0.371 (↓2.1%) 0.379 0.240 (↓6.3%) 0.256 25.2G (↓37%) 40.5G 651k (↓67%) 1980k
336 0.388 (↓1.0%) 0.392 0.250 (↓5.3%) 0.264 25.3G (↓39%) 42.1G 707k (↓77%) 3160k
720 0.429 (↓0.7%) 0.432 0.274 (↓4.2%) 0.286 25.5G (↓44%) 46.3G 855k (↓86%) 6306k

of ParallelTime, positioning it as a leading solution for real-world time series forecasting
challenges.

5 Model Analysis

5.1 Patch-Level Weight Analysis

To illustrate how our model allocates short-term and long-term dependencies for each token
(patch), we analyze a sample from the Traffic dataset at prediction lengths of 96 and 192.
We extract the weights assigned by our ParallelTime Weighter and present them in Figure
4. Looking at the input and the first block at each prediction length, when the previous
patch (from left to right) exhibits a high value, our model assigns greater weight to Mamba,
prioritizing long-term dependencies to reduce overfitting to potential noise. Similarly, in the
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second block for each prediction length, when consecutive patches are similar, the model
leverages Mamba to emphasize long-term dependencies, capturing a broader range of historical
behaviors rather than focusing solely on recent patterns. Conversely, when preceding patches
differ significantly, the model assigns more weight to the attention mechanism to prioritize
short-term dependencies. Notably, for the second blocks, longer prediction lengths exhibit a
stronger emphasis on long-term dependencies. For an additional result, see Appendix 10.3.

Figure 4: Visualization of input series and the weight distribution for prediction length 96,
192 per patch in sample from Traffic dataset, for each of the first and second ParallelTime
blocks.

5.2 Dynamic Weighting Analysis

To evaluate the performance of our dynamic weighting mechanism across various datasets,
we computed the mean weight of all tokens (patches) for each layer in our ParallelTime,
as shown in Figure 5. The analysis includes the Weather, Electricity, ETTh1, and Traffic
datasets.

The results demonstrate that, in the setting where the Attention-Mamba weights of each
patch are averaged across all patches, each dataset emphasizes a different balance between
short-term and long-term dependencies. Notably, across all datasets, the second layer
consistently assigns more weight to the window attention mechanism compared to the first
layer. For example, in the Weather dataset, when the prediction lengths are 192 and 336,
the model relies more heavily on long-term dependencies, which are captured by the Mamba
mechanism in the first layer. Conversely, for prediction lengths of 96 and 720, short-term
dependencies are prioritized via the attention mechanism. In the second layer, attention
receives a larger share of the weights regardless of the prediction length.

Figure 5: Mean weight of tokens (patches) per layer in the ParallelTime model, highlighting
varying requirements for short-term and long-term dependencies across different datasets
and prediction horizons.
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6 Ablation study

6.1 Weighting Strategy for Attention and Mamba

We assess the impact of our proposed ParallelTime weighting methodology. We compare
multiple strategies, including mean weighting, as in (Dong et al., 2024), and sum weighting.
To ensure compatibility, Attention and Mamba outputs are normalized prior to weighting to
address their differing scales. Our results, as shown in Figure 6, confirm the effectiveness
of this approach across all datasets. Additional results for other datasets are provided in
Appendix 10.1.

Figure 6: Ablation study of various weighting strategies - Mean, Sum and our ParallelTime
Weighter for combining Attention and Mamba outputs.

6.2 Model Efficiency Analysis

Table 2 presents a comparison of MSE and MAE, Floating-Point Operations (FLOPs), and
number of parameters, of our model against PatchTST across various prediction lengths using
the Traffic dataset. The results show that our model requires significantly fewer FLOPs for
both training and inference, achieves higher accuracy, and scales better with larger prediction
lengths. This efficiency makes our model particularly well-suited for real-time long-term
forecasting applications, where computational resources and speed are critical. For results
on additional datasets, refer to Appendix 7.

7 Conclusion and Future Work

In this work, we present ParallelTime, a novel decoder-only architecture that integrates local
window attention and Mamba in parallel to effectively capture short-term and long-term
dependencies, respectively. The outputs of these components are processed by our innovative
ParallelTime Weighter, which adaptively assigns weights to each component for accurate
predictions. Our approach achieves state-of-the-art performance across multiple real-world
benchmarks while requiring fewer parameters and lower computational costs. This work
establishes a foundation for future advancements in parallel Attention-Mamba architectures,
poised to enhance long-term time series forecasting.

Future research can explore the model’s potential as a foundation for time series analysis
with minimal adjustments. Specifically, efforts can focus on fine-tuning the model for diverse
tasks, such as anomaly detection, classification, and multi-step forecasting, across various
domains.

8 Reproducibility Statement

The data and code necessary to reproduce the results presented in this paper are publicly
available in the supplementary material located here. Detailed instructions for reproduction
can be found in the README.md file within the repository.
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9 Appendix

9.1 Dataset

In this study, we assessed the efficacy of our approach by employing seven datasets widely
recognized in the domain of long-term time series forecasting: Weather, Traffic, Electricity,
Illness, and the ETT datasets (ETTh1, ETTh2, ETTm1, and ETTm2). These datasets
encompass a diverse array of periodic patterns and real-world scenarios that present significant
predictive challenges, rendering them particularly appropriate for applications such as
long-term time series forecasting, data generation, and imputation tasks. The datasets
are characterized by the following attributes: Dataset, Variants, Frequency, Timesteps,
Information, Forecasting Horizon, and Term. Specifically, the Weather dataset comprises
21 meteorological variables recorded every 10 minutes at the Max Planck Biogeochemistry
Institute’s Weather Station in 2020. The Electricity dataset captures hourly electricity usage
data from 321 customers. The Traffic dataset records hourly road occupancy rates from 862
sensors across San Francisco Bay Area freeways, spanning January 2015 to December 2016
(Zhou et al., 2021). The ETT datasets include 7 variables related to electricity transformers,
collected from July 2016 to July 2018, consisting of four subsets: ETTh1 and ETTh2,
recorded hourly, and ETTm1 and ETTm2, recorded every 15 minutes (Wu et al., 2021). The
Illness dataset contains weekly data on patient numbers and influenza-like illness ratios (Nie
et al., 2023). Detailed characteristics of these datasets are outlined in Table 3.

Table 3: Details of multivariate real-world datasets.
Dataset Variants Timesteps Information Forecasting Horizon Term
Weather 21 52,696 Weather (96, 192, 336, 720) 4 years

Electricity 321 17,544 Electricity (96, 192, 336, 720) 2 years
Traffic 862 26,304 Road occupancy (96, 192, 336, 720) -
Illness 7 967 health outcomes (24, 36, 48, 60) -
ETTh1 7 17,420 electricity transformers (96, 192, 336, 720) 2 years
ETTh2 7 17,420 electricity transformers (96, 192, 336, 720) 2 years
ETTm1 7 69,680 electricity transformers (96, 192, 336, 720) 2 years
ETTm2 7 69,680 electricity transformers (96, 192, 336, 720) 2 years
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9.2 Training Details and Hyperparameter Settings

9.2.1 Training

All our training was conducted on a single Nvidia RTX 4090. For optimization, we used
the Adam optimizer (Kingma and Ba, 2015), which provides efficient adaptive learning rate
adjustments. For the loss function to train the model, we used the classical Huber loss
function, chosen for its enhanced robustness to outliers and contribution to improved training
stability.

Efficient Training Strategy. Given the extensive variety in datasets such as Electricity
and Traffic, our model encounters memory constraints, even with small batch sizes, on the
experimental hardware. Training on high-dimensional multivariate time series, common in
real-world applications, is resource-intensive. To mitigate this, we adopt an efficient training
strategy inspired by (Liu et al., 2024). Specifically, we randomly select a subset of variates
for each batch, training the model exclusively on these variates to improve efficiency. For
the Electricity and Traffic datasets, we use 30 randomly selected variates for the training set
and 40 for the validation set, while the test set is used in its entirety.

9.2.2 Hyperparameter settings

We detail the hyperparameters employed in our ParallelTime model for long-term time series
forecasting. These include common hyperparameters, applied uniformly across all datasets,
and dataset-specific hyperparameters. Common settings include a random seed of 2023 for
reproducibility, an input sequence length of 512, Huber loss with a delta of 1.0, attention
dropout of 0.1, projection dropout of 0.05, 2 block layers with an attention head size of 4, a
patch length of 16, a window attention length of 4, 32 register tokens, and Mamba settings
with a state dimension of 16 and convolution dimension of 2. Dataset-specific settings in the
table 4.

More Details: We have not explored optimizers beyond Adam. The attention mechanism
utilized Flash Attention. We tested Absolute Positional Embedding, Rotary Positional
Embedding, and Relative Positional Embedding, with Absolute Positional Embedding
performing best.

Table 4: Hyperparameters for the ParallelTime model
Parameter Electricity ETTh1 ETTh2 ETTm1 ETTm2 Illness Traffic Weather

epochs 20 20 15 30 25 10 25 25
lr 0.005 0.0008 0.0006 0.0001 0.0001 0.012 0.005 0.0004
batch 64 256 512 64 512 64 64 64
dim 128 16 16 32 32 32 128 16

9.3 Component Selection

Linear-Conv1D Embedding. The proposed embedding method, designed to capture both
global and local features, demonstrates modest performance improvements across most data
sets. More research is required to fully understand the potential of this component and
optimize its effectiveness.

Global Registers. The integration of global registers yields slight performance enhance-
ments. We keep them because we believe that when scaling the model to a larger number of
parameters, the model’s performance can benefit.

S4 vs. Mamba. In our very original and clear paper, we did not choose to use S4 (Gu
et al., 2022) instead of Mamba due to the limitations of S4, which exhibits deficiencies in the
selective copying task and the induction heads task (Gu and Dao, 2023).
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10 Additional results

10.1 Weighting Strategy

This section presents additional results for the weighting strategies applied to Attention and
Mamba models, as discussed in Subsection 6.1. The findings demonstrate that, across all
prediction lengths and datasets, our ParallelTime Weighter consistently outperforms other
weighting strategies, achieving the best results on every dataset.

Figure 7: Performance comparison of weighting strategies for Attention and Mamba models
across various prediction lengths and datasets, highlighting the superior results of our
ParallelTime Weighter.

10.2 Study of Expand-Compress-Project

In this subsection, we present a comparative analysis of our proposed Expand-Compress-
Project method against the standard projection method in time series forecasting. Table 5
provides a detailed comparison across various datasets and prediction lengths. It is evident
from the table that the our Expand-Compress-Project method consistently achieves similar
and sometimes better MSE values to the standard projection method while significantly
reduces the number of parameters required. In addition we can see that our model scales
better on larger sequence length.

10.3 Patch-Level Weight Additional Analysis

We visualize a sample from the ETTM1 dataset to illustrate the distribution of short-term and
long-term dependencies utilized by our model for each token (patch). We extract the weights
assigned by our ParallelTime Weighter and present them in Figure 8. The visualization
reveals that patches significantly different from preceding patches (from left to right) rely
more heavily on the Mamba weights, which emphasize long-term dependencies. Conversely,
when the data exhibits minimal variation, greater weight is assigned to window attention,
which prioritizes short-term dependencies. Additionally, we observe distinct behaviors across
different layers.
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Table 5: Comparison of Expand-Compress-Project and Standard Projection Methods for
different prediction lengths, where our method utilizes significantly fewer parameters while
maintaining similar accuracy

Dataset
MSE #params

Expand-Compress Standard Projection Standard Projection Expand-Compress

Electricity

96 0.128 0.127 854.432 K 516 K
192 0.148 0.146 1.2477 M 552.96 K
336 0.163 0.162 1.8377 M 608.4 K
720 0.197 0.196 3.411 M 756.24 K

Traffic

96 0.349 0.353 953.248 K 614.816 K
192 0.371 0.372 1.3466 M 651.776 K
336 0.389 0.389 1.9365 M 707.216 K
720 0.430 0.432 3.5098 M 855.056 K

Figure 8: Visualization of input series and the weight distribution per patch in sample from
ETTM1 dataset, for the first and second ParallelTime blocks.

10.4 Robustness

Effects of Different Parameter Adjustments. To evaluate the impact of hyperparam-
eter choices on ParallelTime, we conducted additional experiments by adjusting key model
parameters. We tested different configurations by varying the number of ParallelTime layers,
L = 1, 2, 3, and the patch size, P = 8, 16, resulting in a total of six unique hyperparameter
combinations. The MSE scores for these configurations across various datasets are presented
in Figure 9. Most datasets show consistent performance across hyperparameter settings,
except for the ILI dataset, which exhibits slightly variable results.

Impact of Various Random Seeds. The findings presented in the main text and
appendix were obtained using a consistent random seed of 2023. To assess the stability of
these outcomes, we trained the supervised ParallelTime model using five random seeds: 2022,
2023, 2024, 2025, and 2026, computing the MSE and MAE scores for each seed. The average
and standard deviation of these results are shown in Table 10.4. The notably low standard
deviations demonstrate that our model’s performance remains stable across different random
seed selections.
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Figure 9: MSE scores for ParallelTime across six hyperparameter configurations (number of
layers L = 1, 2, 3, patch size P = 8, 16).

Dataset ETTh2 Traffic Weather

Horizon MSE MAE MSE MAE MSE MAE

96 0.263±0.0011 0.328±0.0007 0.350±0.0009 0.231±0.0000 0.146±0.0007 0.190±0.0011
192 0.323±0.0011 0.368±0.0013 0.371±0.0000 0.241±0.0005 0.191±0.0011 0.234±0.0011
336 0.313±0.0008 0.371±0.0013 0.390±0.0012 0.252±0.0011 0.244±0.0015 0.276±0.0015
720 0.404±0.0036 0.437±0.0027 0.429±0.0009 0.274±0.0004 0.324±0.0026 0.331±0.0015

Dataset ETTm1 ETTm2 Electricity

Horizon MSE MAE MSE MAE MSE MAE
96 0.289±0.0036 0.341±0.0035 0.162±0.0004 0.252±0.0004 0.128±0.0004 0.222±0.0004
192 0.330±0.0019 0.368±0.0021 0.221±0.0029 0.292±0.0016 0.147±0.0005 0.240±0.0015
336 0.361±0.0025 0.389±0.0012 0.276±0.0023 0.327±0.0011 0.164±0.0008 0.258±0.0004
720 0.436±0.0085 0.434±0.0034 0.356±0.0046 0.380±0.0022 0.197±0.0008 0.288±0.0010

Table 6: Robustness from five different random seeds.

Dataset Pred Len MSE MAE Fwd FLOPs Fwd+Bwd FLOPs #Params

ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST ParallelTime PatchTST

ETTh1

96 0.365 (↓1.4%) 0.370 0.398 (↓0.3%) 0.399 0.325G (↓52%) 0.687G 0.976G (↓52%) 2.062G 69k (↓40%) 116k
192 0.399 (↓3.4%) 0.413 0.415 (↓1.4%) 0.421 0.347G (↓52%) 0.731G 1.042G (↓52%) 2.194G 119k (↓44%) 214k
336 0.385 (↓8.8%) 0.422 0.414 (↓5.0%) 0.436 0.380G (↓52%) 0.797G 1.141G (↓52%) 2.392G 192k (↓46%) 362k
720 0.420 (↓6.0%) 0.447 0.443 (↓4.9%) 0.466 0.468G (↓51%) 0.973G 1.405G (↓51%) 2.920G 389k (↓48%) 755k

Electricity

96 0.128 (↓0.8%) 0.129 0.222 0.222 7.00G (↓47%) 13.2G 21.0G (↓47%) 39.5G 516k (↓57%) 1194k
192 0.148 (↓5.7%) 0.157 0.241 0.240 7.02G (↓48%) 13.5G 21.1G (↓48%) 40.6G 553k (↓72%) 1981k
336 0.163 0.163 0.258 (↓0.4%) 0.259 7.04G (↓50%) 14.1G 21.1G (↓50%) 42.2G 608k (↓81%) 3161k
720 0.196 (↓0.5%) 0.197 0.288 (↓0.7%) 0.290 7.11G (↓54%) 15.5G 21.3G (↓54%) 46.4G 756k (↓88%) 6307k

Table 7: Comparison of ParallelTime and PatchTST on ETTh1 and Electricity datasets.
The table reports MSE, MAE, forward (Fwd) FLOPs (i.e., inference FLOPs), forward
and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the number of parameters
(#Params) for different prediction lengths (Pred Len).
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