
000 PARALLELTIME: DYNAMICALLY WEIGHTING THE
001 BALANCE OF SHORT- AND LONG-TERM TEMPORAL
002 DEPENDENCIES
003
004

006 **Anonymous authors**

007 Paper under double-blind review
008

009
010 ABSTRACT
011

012 Modern multivariate time series forecasting primarily relies on two architectures:
013 the Transformer with attention mechanism and Mamba. In natural
014 language processing, an approach has been used that combines local window
015 attention for capturing short-term dependencies and Mamba for capturing
016 long-term dependencies, with their outputs averaged to assign equal weight
017 to both. We find that for time-series forecasting tasks, assigning equal weight
018 to long-term and short-term dependencies is not optimal. To mitigate this,
019 we propose a dynamic weighting mechanism, ParallelTime Weighter, which
020 calculates interdependent weights for long-term and short-term dependencies
021 for each token based on the input and the model’s knowledge. Furthermore,
022 we introduce the ParallelTime architecture, which incorporates the Paral-
023 lelTime Weighter mechanism to deliver state-of-the-art performance across
024 diverse benchmarks. Our architecture demonstrates robustness, achieves
025 lower FLOPs, requires fewer parameters, scales effectively to longer pre-
026 diction horizons, and significantly outperforms existing methods. These
027 advances highlight a promising path for future developments of parallel
028 Attention-Mamba in time series forecasting. The implementation is readily
029 available at: GitHub.
030

031 1 INTRODUCTION
032

033 Forecasting is one of the most important tasks in time series analysis. To address this
034 challenge, various architectures have been proposed. The Transformer architecture (Vaswani
035 et al., 2017), which has achieved remarkable success in natural language processing (Brown
036 et al., 2020) and computer vision (Dosovitskiy et al., 2021), has also shown promise in time
037 series forecasting (Nie et al., 2023). Another successful architecture introduced in recent
038 years is the State Space Model (SSM) (Gu et al., 2022; Smith et al., 2023). SSM-based
039 models, such as Mamba (Gu and Dao, 2023), have demonstrated strong performance in time
040 series forecasting (Wang et al., 2024) and other domains.

041 Each approach has its distinct advantages. Mamba, through its parameter initialization,
042 produces a summary of long-term dependencies (Gu et al., 2020). The latter allows for
043 extraction of the leading features for forecasting, while filtering out the noise in the time series.
044 Attention models, such as the transformer, are highly accurate and excel at capturing complex
045 patterns and interactions across the sequence, enabling robust forecasting performance
046 (Nie et al., 2023). Moreover, in cases of channel independence, where each variable in a
047 multivariate time series is processed separately using the same model weights, attention
048 models demonstrate superior performance on datasets with similar variates series (Nie et al.,
049 2023). In contrast, Mamba models, such as those proposed in Wang et al. (2024), achieve
050 better results on datasets with heterogeneous variates series.

051 In this paper, we propose a novel method that combines the strengths of Mamba and the
052 attention mechanism by computing both Mamba, which captures long-term dependencies,
053 and a small local window attention, which focuses on short-term dependencies. Recent
054 papers in natural language processing (Dong et al., 2024) tackle this problem by computing

the mean of the values and assigning equal weight to both components. In contrast, our approach weights each component of each token separately. In cases where more long-range dependencies are needed for the prediction, the ParallelTime Weighter gives more weight to the Mamba component. When more short-term dependency predictions are required, more weight is given to the window attention component. Additionally, we leverage registers as domain-specific global context, providing a persistent reference that captures information beyond the input series. We demonstrate that our method is robust and significantly outperforms existing approaches, on almost every benchmark dataset.

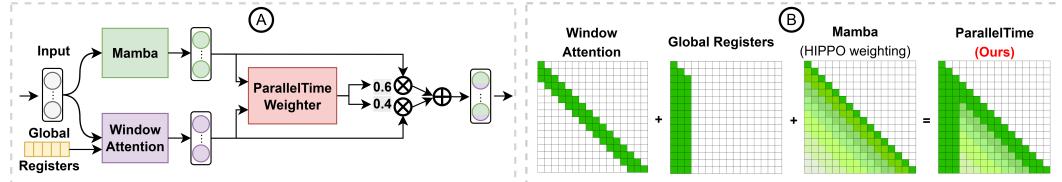


Figure 1: (A) High level visualization of ParallelTime module. (B) Diagram of the attention map of ParallelTime, integrating global registers, local window attention, and Mamba components.

Our contributions. The main contributions of this paper are three-fold:

- We propose a novel ParallelTime Weighter that selects the contributions of short-term, long-term, and global memory for each time series patch, implemented via window-based attention, Mamba, and registers, respectively, to improve the accuracy of long-term forecasting.
- We demonstrate that the parallel Mamba-Attention architecture is the most effective approach for long-term time series forecasting.
- Our model, ParallelTime, achieves SOTA performance on real-world benchmarks, delivering better results from previous models with fewer parameters and lower computational cost, a characteristic highly critical for real-time forecasting applications.

2 RELATED WORK

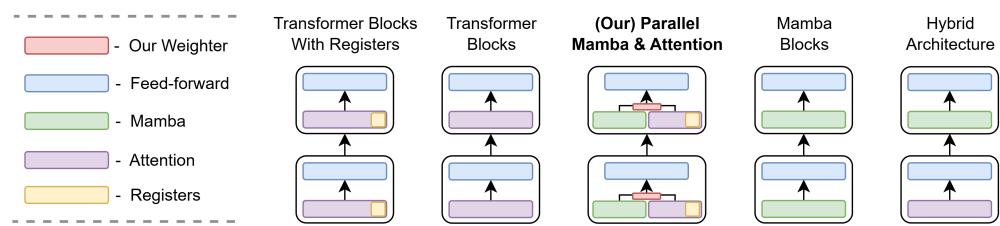


Figure 2: Comparison of five neural network block architectures: Transformer Blocks with Registers, Transformer Blocks, (Ours) Parallel Mamba-Attention with dynamic weighting mechanism, Mamba Blocks, and Hybrid Sequential Mamba-Attention Architecture.

Transformer Vaswani et al. (2017), leveraging causal self-attention layers and feed-forward networks, has laid a powerful foundation for time series forecasting (Zhou et al., 2021; 2022). A standout example is PatchTST (Nie et al., 2023), which achieves SOTA performance by utilizing channel independence to process each variable in a multivariate time series separately. By feeding contiguous time series patches as tokens into a standard self-attention mechanism, PatchTST outperforms many previous models. In standard self-attention, each token attends to all preceding tokens to capture global dependencies. To focus on local patterns, windowed attention variants, such as those in LongFormer (Beltagy et al., 2020a) and Swin Transformer (Liu et al., 2021), restrict each token to attend only to the most recent S tokens, as illustrated in Figure 1 (B).

108 **Registers** are model parameters that function as tokens, concatenated with input tokens to
109 provide additional global domain-specific information. They serve as a persistent reference
110 for the model, capturing information not explicitly present in the input tokens. Registers
111 have shown considerable promise in natural language processing, as demonstrated by Burtsev
112 et al. (2020), and in computer vision, as explored by Darcet et al. (2024), where they enhance
113 model performance by leveraging task-specific memory.

114 **Mamba** (Gu and Dao, 2023) is a State Space Model (SSM) (Gu et al., 2022; Smith et al.,
115 2023) designed for efficient (Waleffe et al., 2024) and high-performance sequence modeling.
116 At the core of the Mamba architecture is the HIPPO matrix (Gu et al., 2020), which
117 prioritizes recent tokens by assigning them greater influence in the state representation while
118 compressing older tokens into a compact, approximated summary. This approach effectively
119 captures a condensed representation of long-range dependencies, making it well-suited for time
120 series forecasting. S-Mamba (Wang et al., 2024) has demonstrated competitive performance
121 across several time series forecasting benchmarks.

122 **Hybrid models** which combine Mamba and Attention layers in a sequential stack, have
123 gained prominence in natural language processing, as demonstrated by models such as
124 Jamba (Team et al., 2024) and Samba (Ren et al., 2024). In time-series forecasting, Hera-
125 cles (Patro et al., 2024) showcases the versatility and effectiveness of this approach. However,
126 sequential stacking may introduce information bottlenecks (Dong et al., 2024) and poses chal-
127 lenges in determining the optimal placement of each component, potentially compromising
128 forecasting accuracy.

129 **Parallel architectures** where Mamba and attention mechanisms process the same input
130 simultaneously and their outputs are combined in some way, have recently been proposed in
131 natural language processing. For instance, Hymba (Dong et al., 2024) proposed aggregating
132 Mamba and attention outputs via simple averaging. However, in time series forecasting, where
133 window attention mechanisms capture short-term dependencies at each layer, and Mamba
134 is responsible for summarizing long-term dependencies, assigning equal weights to both
135 long-term and short-term dependencies may not optimally capture the right amount of each
136 dependency needed for each prediction, especially when time series variates differ significantly.
137 To the best of our knowledge, no prior work has applied parallel Mamba-Attention models
138 to long-term time series forecasting. We demonstrate that our novel weighted aggregation
139 approach, ParallelTime Weighter, outperforms naive combinations, leveraging the strengths
140 of both components to achieve state-of-the-art performance.

141 3 PARALLEL TIME

142 **Problem definition.** In multivariate long-term time series forecasting, the task is to
143 predict future values of multiple interdependent variables based on historical data. Given a
144 multivariate time series $\mathbf{X} = (\mathbf{x}_1, \dots, \mathbf{x}_T) \in \mathbb{R}^{N \times T}$, where N is the number of variables and T
145 is the number of timestamps, the goal is to forecast H future values $\mathbf{Y} = (\mathbf{x}_{T+1}, \dots, \mathbf{x}_{T+H}) \in$
146 $\mathbb{R}^{N \times H}$. Each $\mathbf{x}_t \in \mathbb{R}^N$ represents the observations of N variables at time t .

147 3.1 OVERALL ARCHITECTURE

148 The ParallelTime architecture is illustrated in Figure 3. Our model begins by decomposing the
149 multivariate time series input into N univariate series, leveraging the channel independence
150 framework (Nie et al., 2023). This approach enables all model weights to learn more than
151 one variant, enhancing robustness during testing. To address distribution shifts across
152 different time series, we apply instance normalization (ReVIN) (Kim et al., 2022) to the input.
153 Subsequently, a patching mechanism divides each univariate series into non-overlapping
154 patches, treating each patch as a "token" with features derived from the univariate time
155 series values. We tried overlapping patches, but they increased computational cost without
156 improving accuracy, so they were not used.

157 To effectively extract both global trend and local trends from each patch, we employ a dual
158 embedding strategy. A linear layer aggregates global information by mixing all data points
159 within the patch, while a Conv1D layer (O’Shea and Nash, 2015) captures local trends within

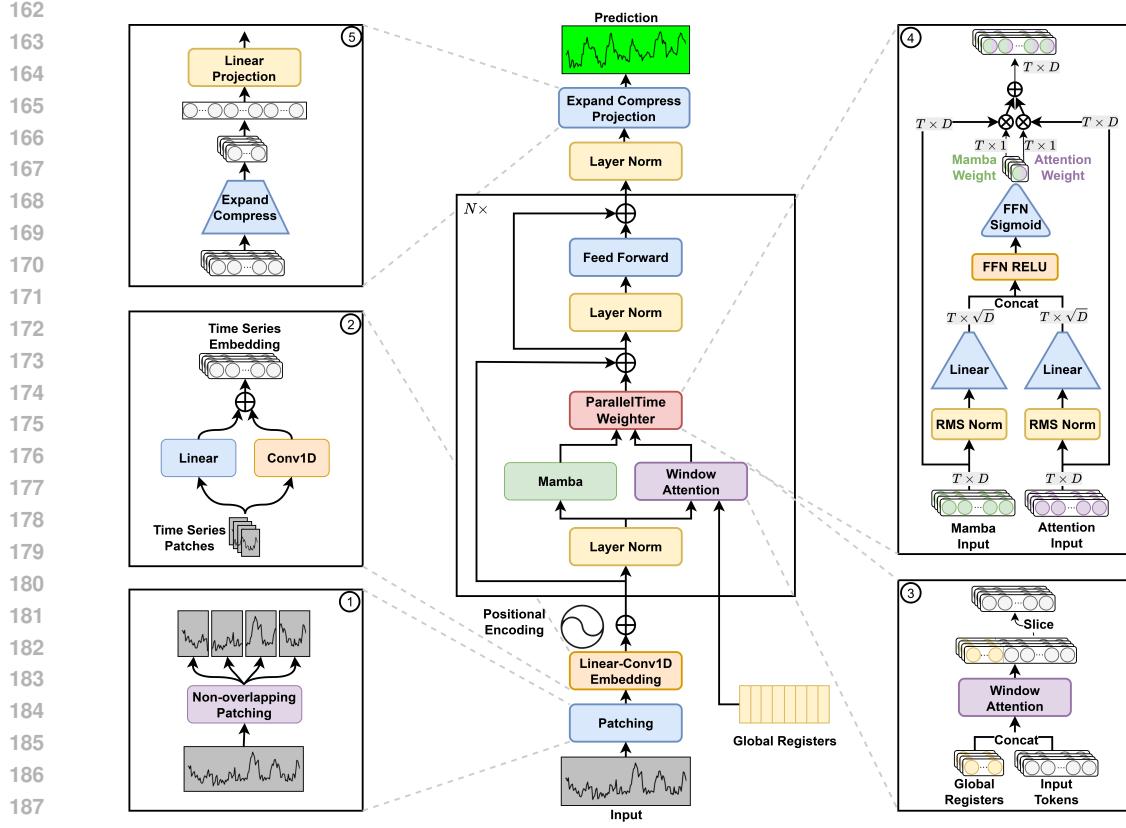


Figure 3: The architecture of ParallelTime. The input time series ① is sliced into non-overlapping patches. ② Each patch is embedded and augmented with positional encoding. The resulting tokens are processed through N stacked ParallelTime blocks. Each block first normalizes the input, applies Mamba computation and ③ windowed attention with a register in parallel, ④ weights their outputs using a ParallelTime Weighter mechanism, and then applies normalization followed by a nonlinear feedforward layer. Finally, the output is normalized ⑤ and processed through an expand-compress-projection mechanism to generate the horizon prediction.

the patch. The global and local representations are then combined through summation to form the final \mathbf{x}_e patch embedding.

To capture sequential order in attention models, which function as a bag of words without positional encoding (Vaswani et al., 2017), we incorporate absolute positional encoding, defined as $\mathbf{x}_d = \mathbf{x}_e + \mathbf{x}_{pos} \in \mathbb{R}^{P \times dim}$, where \mathbf{x}_e represents the input embedding, \mathbf{x}_{pos} denotes the positional encoding, and \mathbf{x}_d is the resulting encoded representation.

3.2 PARALLELTIME DECODER BLOCK

Our approach builds upon a decoder-only transformer architecture (Vaswani et al., 2017). As illustrated in Figure 3, the decoder is composed of a stack of N identical layers, with each layer comprising two sublayers. The first sublayer integrates parallel Mamba and attention mechanisms, with their outputs processed by the ParallelTime Weighter, which dynamically allocates weights to the Mamba and attention outputs for each patch or token. The second sublayer is a non-linear feed-forward network with SiLU activation. Each sublayer begins with LayerNorm (Ba et al., 2016) and is enclosed by residual connections (He et al., 2016).

216 3.3 MAMBA AND WINDOWED ATTENTION WITH GLOBAL REGISTERS
 217

218 **Mamba mechanism.** To achieve high accuracy with low memory requirements, we added
 219 a Mamba block (Gu and Dao, 2023), which leverages a state-space model. Mamba’s strength
 220 lies in its high accuracy (Wang et al., 2024) and constant memory usage, making it ideal for
 221 long time series forecasting. The core operation of Mamba is defined as:

222 $\mathbf{h}_t = \mathbf{A}\mathbf{h}_{t-1} + \mathbf{B}\mathbf{x}_t, \quad \mathbf{y}_t = \mathbf{C}\mathbf{h}_t,$
 223

224 where $\mathbf{x}_t \in \mathbb{R}^{dim}$ is the input at time t , $\mathbf{h}_t \in \mathbb{R}^{dim}$ is the hidden state, $\mathbf{y}_t \in \mathbb{R}^{dim}$ is the output
 225 at time t , and $\mathbf{A}, \mathbf{B}, \mathbf{C}$ are learnable parameters of the state-space model. The output:

226 $\mathbf{x}_{mamba} = \text{Mamba}(\mathbf{x}_d),$
 227

228 effectively captures long-range dependencies in the input sequence $\mathbf{x}_d \in \mathbb{R}^{P \times dim}$.

229 **Windowed Attention Mechanism.** To capture local interactions efficiently within each
 230 layer, we utilize a causal multi-head windowed self-attention mechanism Beltagy et al. (2020b).
 231 This approach allows us to restrict attention to a fixed window. We select a small window
 232 size, set at a 1 : 9 ratio relative to the number of input sequence patches, ensuring that the
 233 attention mechanism focuses solely on short-term dependencies while delegating long-term
 234 dependencies to Mamba.

235 **Global Registers.** To incorporate global context, we introduce global register tokens,
 236 denoted as $\mathbf{W}_{\text{reg}} \in \mathbb{R}^{R \times dim}$, where R is the number of registers and dim is the embedding
 237 dimension. These tokens serve as a compact repository of domain-specific global information,
 238 providing the model with access to broader contextual cues. The input sequence $\mathbf{x}_d \in \mathbb{R}^{P \times dim}$,
 239 is concatenated with the global registers to form: $\mathbf{x}_{\text{cat}} = \text{Concat}(\mathbf{W}_{\text{reg}}, \mathbf{x}_d) \in \mathbb{R}^{(R+P) \times dim}$.
 240 This concatenated sequence is then processed by the causal multi-head windowed attention
 241 mechanism, yielding:

242 $\mathbf{x}_{att} = \text{WinAtt}(\mathbf{x}_{\text{cat}}).$
 243

244 3.4 PARALLEL TIME WEIGHTER
 245

246 Considering the Mamba \mathbf{x}_{mamba} , which encapsulates both short-term and long-term dependencies,
 247 and the window attention \mathbf{x}_{att} , which reflects short-term dependencies alongside
 248 global dependencies obtained from the registers, to make accurate prediction for different
 249 inputs, some inputs need to have more long-term dependency and some need more global,
 250 and short-term dependencies, giving a weight to each representation is not enough, we want
 251 the weights to be in respect to each other, so we created the novel ParallelTime Weighter.

252 The attention and Mamba outputs, \mathbf{x}_{att} and \mathbf{x}_{mamba} , are first normalized using RMSNorm
 253 (Zhang and Sennrich, 2019) to address their differing scales. Each output is then processed
 254 by a dedicated linear transformation that compresses the dimensionality from dim to \sqrt{dim}
 255 (a choice based on intuition, not cross-validated), preserving essential features:

256 $\mathbf{x}'_{att} = \text{RMSNorm}(\mathbf{x}_{att})\mathbf{W}_{att} \in \mathbb{R}^{P \times \sqrt{dim}},$
 257

258 $\mathbf{x}'_{mamba} = \text{RMSNorm}(\mathbf{x}_{mamba})\mathbf{W}_{mamba} \in \mathbb{R}^{P \times \sqrt{dim}}.$
 259

260 These specialized linear layers effectively tailor the compression to the unique characteristics
 261 of the attention and Mamba outputs. The compressed representations are then concatenated
 262 to form a unified feature set:

263 $\mathbf{x}'_{cat} = \text{Concat}(\mathbf{x}'_{att}, \mathbf{x}'_{mamba}) \in \mathbb{R}^{P \times 2\sqrt{dim}},$
 264

265 Following concatenation, the compressed features from the attention and Mamba branches
 266 are processed through a two-layer transformation to capture complex interactions. Inspired
 267 by the kernel trick (Hearst et al., 1998), this approach leverages higher-dimensional spaces
 268 to reveal patterns not readily discernible in lower dimensions, this step generates adaptive
 269 weights:

270 $\mathbf{x}_{\text{weights}} = \sigma(\text{ReLU}(\mathbf{x}'_{cat}\mathbf{W}_1)\mathbf{W}_2) \in \mathbb{R}^{P \times 2}, \mathbf{W}_1 \in \mathbb{R}^{2\sqrt{dim} \times \text{dim-h}}, \mathbf{W}_2 \in \mathbb{R}^{\text{dim-h} \times 2}$

270 where dim-h denotes a dimension higher than $2\sqrt{\text{dim}}$, and σ represents the sigmoid function.
271 We attempted to replace the sigmoid function with softmax, but it yielded suboptimal results.
272 This observation aligns with other weight mechanisms, such as the Squeeze-and-Excitation
273 approach (Hu et al., 2018), which also performed better with sigmoid. The weight vector is
274 defined as $\mathbf{x}_{\text{weights}} = [\mathbf{x}_{\text{weight}}^{\text{att}}, \mathbf{x}_{\text{weight}}^{\text{mamba}}]$. The final output is computed as a weighted sum of
275 the original attention and Mamba outputs:

$$\mathbf{x}_{\text{out}} = \mathbf{x}_{\text{att}} \cdot \mathbf{x}_{\text{weight}}^{\text{att}} + \mathbf{x}_{\text{mamba}} \cdot \mathbf{x}_{\text{weight}}^{\text{mamba}},$$

278 This architecture enables the weights to dynamically balance the contributions of each branch,
279 leading to superior performance, as demonstrated in Table 1.

280 Following the decoder layers, we apply Layer Normalization (LayerNorm). Unlike standard
281 time series forecasting architectures that simply flatten and project data, our Expand-
282 Compress-Project approach is more efficient. We first expand the data to a higher dimension
283 than the input ($\text{dim} \times \text{higher-dim}$) and then compress it to a significantly smaller dimension
284 ($\text{dim} \div \text{some-dim}$) than the input dimension. This approach reduces millions of parameters
285 while maintaining comparable performance (see Appendix 5 for details). The projection
286 output forms our model’s prediction, which we then de-normalize using ReVIN (Kim et al.,
287 2022).

289 4 EVALUATIONS

291 4.1 BASELINES AND EXPERIMENTAL SETUP

293 To assess the performance of our proposed ParallelTime, we compare it against several
294 SOTA models for long time series forecasting. These include Transformer-based models
295 such as PatchTST (Nie et al., 2023) iTransformer (Liu et al., 2024) and FEDFormer (Zhou
296 et al., 2022), Mamba models S-Mamba (Wang et al., 2024), Linear model DLinear (Zeng
297 et al., 2023), foundational models including Moment (Goswami et al., 2024), GPT4TS (Zhou
298 et al., 2023), and TimesNet (Wu et al., 2023). We evaluate all models on eight widely used
299 datasets: Electricity, Weather, Illness, Traffic, and four ETT datasets (ETTh1, ETTh2,
300 ETTm1, ETTm2). For detailed dataset descriptions, see Appendix 8.1.

301 We adopt standard evaluation protocols with prediction horizons of $T \in \{24, 36, 48, 60\}$ for
302 the Illness dataset and $T \in \{96, 192, 336, 720\}$ for all other datasets. Performance metrics
303 for baseline models are obtained from Goswami et al. (2024), while our model’s results are
304 newly computed. A look-back window of $L = 512$ is used for all models, except DLinear,
305 which employs an optimized input length of $L = 96$ to enhance performance.

307 4.2 MAIN RESULTS

309 Comprehensive forecasting results are listed in Table 1, with the best performance highlighted
310 in red and the second best underlined. All model results are from (Goswami et al., 2024),
311 except S-mamba and iTransformer, which we trained due to unavailable results for window
312 size 512. A lower Mean Squared Error (MSE) and Mean Absolute Error (MAE) indicate
313 more accurate predictions. Our proposed model, ParallelTime, demonstrates exceptional per-
314 formance across a diverse set of datasets and prediction horizons, consistently outperforming
315 a range of state-of-the-art models. ParallelTime achieves the best forecasting accuracy in a
316 significant number of scenarios, particularly excelling in datasets such as Weather, ETTh1,
317 ETTh2, ETTm2, Electricity, Traffic, and Illness.

318 Our model, ParallelTime, surpasses SOTA models, including PatchTST (Nie et al., 2023) and
319 Moment (Goswami et al., 2024), in long-term time series forecasting. Although PatchTST
320 remains a strong contender, ranking as the second-best performer, and Moment excels on
321 the ETTm2 dataset (likely due to its training data), ParallelTime achieves superior performance
322 with significantly fewer parameters and lower computational complexity, compared to
323 PatchTST (see Table 2). Specifically, ParallelTime reduces MSE by an average of 4.25% and
MAE by 4.31% relative to PatchTST. This combination of high accuracy, computational
efficiency, and reduced resource requirements highlights the versatility and effectiveness

324	325	Methods	ParallelTime		S-Mamba		iTransformer		PatchTST		DLinear		TimesNet		FEDFormer		MOMENT		GPT4TS			
			Metric	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE			
326	327	Weather	96	0.145	0.189	0.158	0.210	0.168	0.219	<u>0.149</u>	<u>0.198</u>	0.176	0.237	0.172	0.220	0.217	0.296	0.154	0.209	0.162	0.212	
			192	0.189	0.232	0.203	0.252	0.211	0.255	<u>0.194</u>	<u>0.241</u>	0.220	0.282	0.219	0.261	0.276	0.336	0.197	0.248	0.204	0.248	
			336	0.242	0.273	0.258	0.292	0.260	0.292	<u>0.245</u>	<u>0.282</u>	0.265	0.319	0.280	0.306	0.339	0.380	0.246	0.285	0.254	0.286	
			720	0.323	0.331	0.328	0.340	0.332	0.341	0.314	<u>0.334</u>	0.333	0.362	0.365	0.359	0.403	0.428	<u>0.315</u>	0.336	0.326	0.337	
329	330	ETTh1	96	0.365	<u>0.398</u>	0.395	0.422	0.407	0.428	<u>0.370</u>	0.399	0.375	0.399	0.384	0.402	0.376	0.419	0.387	0.410	0.376	0.397	
			192	0.399	0.415	0.427	0.443	0.427	0.443	0.413	0.421	<u>0.405</u>	<u>0.416</u>	0.436	0.429	0.420	0.448	0.410	0.426	0.416	0.418	
			336	0.385	0.414	0.462	0.469	0.456	0.463	<u>0.422</u>	0.436	0.439	0.443	0.491	0.469	0.459	0.465	<u>0.422</u>	0.437	0.442	0.433	
			720	0.420	0.443	0.522	0.518	0.468	0.472	<u>0.447</u>	0.466	0.472	0.490	0.521	0.500	0.506	0.507	0.454	0.472	0.477	<u>0.456</u>	
331	332	ETTh2	96	0.262	0.328	0.298	0.356	0.298	0.357	<u>0.274</u>	<u>0.336</u>	0.289	0.353	0.340	0.374	0.358	0.397	0.288	0.345	0.285	0.342	
			192	0.322	0.368	0.372	0.399	0.377	0.406	<u>0.339</u>	<u>0.379</u>	0.383	0.418	0.402	0.414	0.429	0.439	0.349	0.386	0.354	0.389	
			336	0.312	0.370	0.402	0.432	0.424	0.440	<u>0.329</u>	<u>0.380</u>	0.448	0.465	0.452	0.452	0.496	0.487	0.369	0.408	0.373	0.407	
			720	0.399	<u>0.434</u>	0.419	0.449	0.438	0.462	0.379	0.422	0.605	0.551	0.462	0.468	0.463	0.474	0.403	0.439	0.406	0.441	
333	334	ETTm1	96	0.284	0.337	0.309	0.361	0.313	0.367	<u>0.290</u>	<u>0.342</u>	0.299	0.343	0.338	0.375	0.379	0.419	0.293	0.349	0.292	0.346	
			192	<u>0.329</u>	0.366	0.345	0.384	0.348	0.385	0.332	0.369	<u>0.335</u>	0.365	0.374	0.387	0.426	0.441	0.326	0.368	0.332	0.372	
			336	0.365	0.391	0.375	0.403	0.377	0.403	0.366	0.392	0.369	<u>0.386</u>	0.410	0.411	0.445	0.459	0.352	0.384	0.366	0.394	
			720	0.424	0.430	0.435	0.440	0.438	0.438	<u>0.416</u>	<u>0.420</u>	0.425	0.421	0.478	0.450	0.543	0.490	0.405	0.416	0.417	0.421	
335	336	ETTm2	96	0.162	0.252	0.177	0.270	0.179	0.273	<u>0.165</u>	<u>0.255</u>	0.167	0.269	0.187	0.267	0.203	0.287	0.170	0.260	0.173	0.262	
			192	0.218	0.291	0.229	0.305	0.242	0.315	<u>0.220</u>	<u>0.292</u>	0.224	0.303	0.249	0.309	0.269	0.328	0.227	0.297	0.229	0.301	
			336	0.276	0.327	0.281	0.338	0.291	0.345	0.274	0.329	0.281	0.342	0.321	0.351	0.325	0.366	<u>0.275</u>	<u>0.328</u>	0.286	0.341	
			720	0.356	0.380	0.371	0.392	0.377	0.398	<u>0.362</u>	<u>0.385</u>	0.397	0.421	0.408	0.403	0.421	0.415	0.363	0.387	0.378	0.401	
337	338	Illness	24	1.166	0.657	1.918	0.847	1.960	0.952	<u>1.319</u>	<u>0.754</u>	2.215	1.081	2.317	0.934	3.224	1.260	2.728	1.114	2.063	0.881	
			36	1.293	0.727	2.006	0.944	2.264	0.978	<u>1.430</u>	<u>0.834</u>	1.963	0.963	1.972	0.920	2.679	1.080	2.669	1.092	1.868	0.892	
			48	1.399	0.772	2.080	0.898	2.266	1.042	<u>1.553</u>	<u>0.815</u>	2.130	1.024	2.238	0.940	2.622	1.078	2.728	1.098	1.790	0.884	
			60	1.615	<u>0.844</u>	2.414	1.094	2.541	1.108	1.470	0.788	2.368	1.096	2.027	0.928	2.857	1.157	2.883	1.126	1.979	0.957	
339	340	Electricity	96	0.128	0.222	0.133	0.230	0.131	<u>0.227</u>	<u>0.129</u>	0.222	0.140	0.237	0.168	0.272	0.193	0.308	0.136	0.233	0.139	0.238	
			192	0.148	0.240	0.155	0.250	0.153	0.249	0.157	0.240	0.153	0.249	0.184	0.289	0.201	0.315	0.152	0.247	0.153	0.251	
			336	0.163	0.258	0.169	0.268	0.168	0.264	0.163	<u>0.259</u>	0.169	0.267	0.198	0.300	0.214	0.329	0.167	0.264	0.169	0.266	
			720	0.197	0.288	0.197	0.293	<u>0.198</u>	0.291	0.197	<u>0.290</u>	0.203	0.301	0.220	0.320	0.246	0.355	0.205	0.295	0.206	0.297	
341	342	Traffic	96	0.349	0.231	0.354	0.252	<u>0.350</u>	0.257	0.360	<u>0.249</u>	0.410	0.282	0.593	0.321	0.587	0.366	0.391	0.282	0.388	0.282	
			192	0.371	0.240	0.373	0.260	0.387	0.276	0.379	<u>0.256</u>	0.423	0.287	0.617	0.336	0.604	0.373	0.404	0.287	0.407	0.290	
			336	0.388	0.250	0.390	0.265	0.407	0.289	0.392	<u>0.264</u>	0.436	0.296	0.629	0.336	0.621	0.383	0.414	0.292	0.412	0.294	
			720	0.429	0.274	0.430	0.288	0.433	0.297	0.432	<u>0.286</u>	0.466	0.315	0.640	0.350	0.626	0.382	0.450	0.310	0.450	0.312	
343	344	Electricity	96	0.218	0.222	0.234	0.230	0.231	<u>0.227</u>	<u>0.222</u>	0.247	0.237	0.268	0.272	0.292	0.308	0.316	0.233	0.238	0.239	0.241	
			192	0.241	0.240	0.254	0.250	0.251	0.249	0.257	0.240	0.253	0.249	0.249	0.289	0.201	0.315	0.247	0.251	0.249	0.251	
			336	0.256	0.258	0.269	0.268	0.267	0.264	0.259	0.269	0.271	0.273	0.287	0.287	0.306	0.214	0.329	0.264	0.266	0.264	0.266
			720	0.274	0.288	0.282	0.288	0.287	0.286	0.286	0.287	0.293	0.295	0.306	0.307	0.327	0.224	0.355	0.295	0.297	0.295	0.297
345	346	Traffic	96	0.349	0.231	0.354	0.252	<u>0.350</u>	0.257	0.360	<u>0.249</u>	0.410	0.282	0.593	0.321	0.587	0.366	0.391	0.282	0.388	0.282	
			192	0.371	0.240	0.373	0.260	0.387	0.276	0.379	<u>0.256</u>	0.423	0.287	0.617	0.336	0.604	0.373	0.404	0.287	0.407	0.290	
			336	0.388	0.250	0.390	0.265	0.407	0.289	0.392	<u>0.264</u>	0.436	0.296	0.629	0.336	0.621	0.383	0.414	0.292	0.412	0.294	
			720	0.429	0.274	0.430	0.288	0.433	0.297	0.432	<u>0.286</u>	0.466	0.315	0.640	0.350	0.626	0.382	0.450	0.310	0.450	0.312	

Table 1: The complete results of in-domain forecasting experiments. A lower MSE or MAE indicates a better prediction. **Red**: the best, Underline: the 2nd best.

Table 2: Comparison of ParallelTime and PatchTST on the Traffic dataset. The table reports MSE, MAE, forward and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the number of parameters (#Params). Bold values indicate superior performance. ↓ indicates that lower values are better. The improvement percentages for ParallelTime over PatchTST are shown in parentheses.

5 MODEL ANALYSIS

5.1 PATCH-LEVEL WEIGHT ANALYSIS

To illustrate how our model allocates short-term and long-term dependencies for each token (patch), we analyze a sample from the Traffic dataset at prediction lengths of 96 and 192. We extract the weights assigned by our ParallelTime Weighter and present them in Figure 4. Looking at the input and the first block at each prediction length, when the previous patch (from left to right) exhibits a high value, our model assigns greater weight to Mamba, prioritizing long-term dependencies to reduce overfitting to potential noise. Similarly, in the

second block for each prediction length, when consecutive patches are similar, the model leverages Mamba to emphasize long-term dependencies, capturing a broader range of historical behaviors rather than focusing solely on recent patterns, facilitating precise predictions at the mutation boundary. Conversely, when preceding patches differ significantly, the model assigns more weight to the attention mechanism to prioritize short-term dependencies. Notably, for the second blocks, longer prediction lengths exhibit a stronger emphasis on long-term dependencies. For an additional result, see Appendix 9.3.

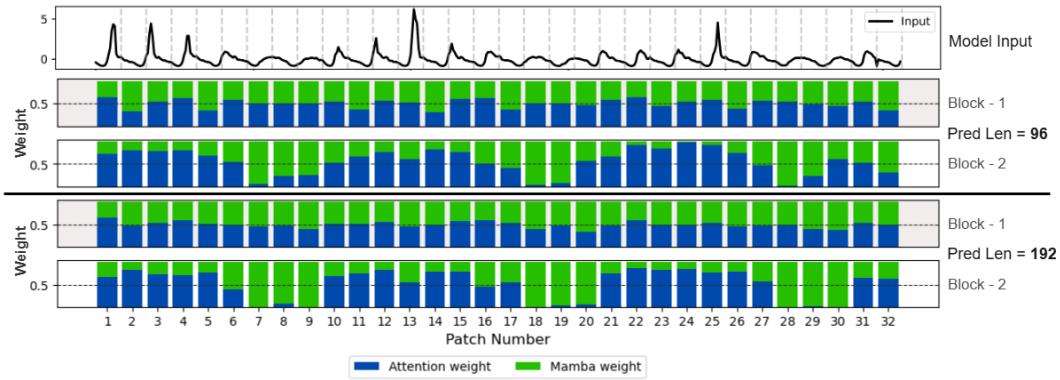


Figure 4: Visualization of input series and the weight distribution for prediction length 96, 192 per patch in sample from Traffic dataset, for each of the first and second ParallelTime blocks.

5.2 DYNAMIC WEIGHTING ANALYSIS

To evaluate the performance of our dynamic weighting mechanism across various datasets, we computed the mean weight of all tokens (patches) for each layer in our ParallelTime, as shown in Figure 5. The analysis includes the Weather, Electricity, ETTh1, and Traffic datasets.

The results demonstrate that, in the setting where the Attention-Mamba weights of each patch are averaged across all patches, each dataset emphasizes a different balance between short-term and long-term dependencies. Notably, across all datasets, the second layer consistently assigns more weight to the window attention mechanism compared to the first layer. For example, in the Weather dataset, when the prediction lengths are 192 and 336, the model relies more heavily on long-term dependencies, which are captured by the Mamba mechanism in the first layer. Conversely, for prediction lengths of 96 and 720, short-term dependencies are prioritized via the attention mechanism. In the second layer, attention receives a larger share of the weights regardless of the prediction length.

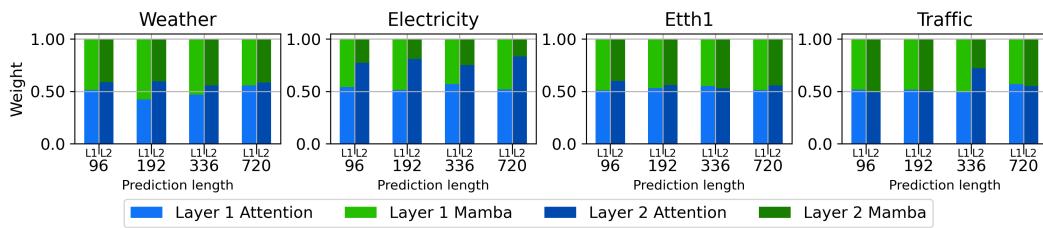
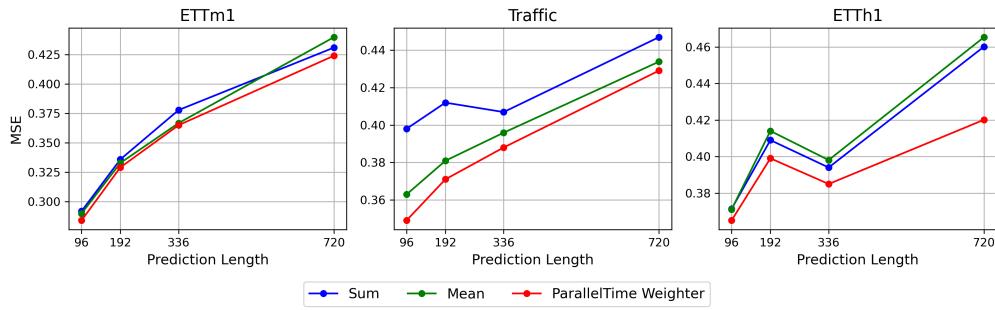


Figure 5: Mean weight of tokens (patches) per layer in the ParallelTime model, highlighting varying requirements for short-term and long-term dependencies across different datasets and prediction horizons.

432 6 ABLATION STUDY

434 6.1 WEIGHTING STRATEGY FOR ATTENTION AND MAMBA

436 We assess the impact of our proposed ParallelTime weighting methodology. We compare
437 multiple strategies, including mean weighting, as in (Dong et al., 2024), and sum weighting.
438 To ensure compatibility, Attention and Mamba outputs are normalized prior to weighting to
439 address their differing scales. Our results, as shown in Figure 6, confirm the effectiveness
440 of this approach across all datasets. Additional results for other datasets are provided in
441 Appendix 9.1.



453 Figure 6: Ablation study of various weighting strategies - Mean, Sum and our ParallelTime
454 Weighter for combining Attention and Mamba outputs.

457 6.2 MODEL EFFICIENCY ANALYSIS

459 Table 2 presents a comparison of MSE and MAE, Floating-Point Operations (FLOPs), and
460 number of parameters, of our model against PatchTST across various prediction lengths using
461 the Traffic dataset. The results show that our model requires significantly fewer FLOPs for
462 both training and inference, achieves higher accuracy, and scales better with larger prediction
463 lengths. This efficiency makes our model particularly well-suited for real-time long-term
464 forecasting applications, where computational resources and speed are critical. For results
465 on additional datasets, refer to Appendix 8.

467 7 CONCLUSION AND FUTURE WORK

469 In this work, we present ParallelTime, a novel decoder-only architecture that integrates local
470 window attention and Mamba in parallel to effectively capture short-term and long-term
471 dependencies, respectively. The outputs of these components are processed by our novel
472 ParallelTime Weighter, which adaptively assigns weights to each component for accurate
473 predictions. Our approach achieves state-of-the-art performance across multiple real-world
474 benchmarks while requiring fewer parameters and lower computational costs. This work
475 establishes a foundation for future advancements in parallel Attention-Mamba architectures,
476 poised to enhance long-term time series forecasting.

477 Future research can explore the model’s potential as a foundation for time series analysis
478 with minimal adjustments. Specifically, efforts can focus on fine-tuning the model for diverse
479 tasks, such as anomaly detection, classification, and multi-step forecasting, across various
480 domains.

482 REFERENCES

484 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
485 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
486 von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,

486 and Roman Garnett, editors, *Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA*, pages 5998–6008, 2017. URL <https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fdb053c1c4a845aa-Abstract.html>.

487

488

489

490 Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfc4967418bfb8ac142f64a-Abstract.html>.

491

492

493

494

495

496

497

498

499

500

501 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*. OpenReview.net, 2021. URL <https://openreview.net/forum?id=YicbFdNTTy>.

502

503

504

505

506

507

508 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words: Long-term forecasting with transformers. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=Jbdc0vT0col>.

509

510

511

512 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state spaces. In *The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=uYLFoz1vlAC>.

513

514

515

516 Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. Simplified state space layers for sequence modeling. In *The Eleventh International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023*. OpenReview.net, 2023. URL <https://openreview.net/pdf?id=Ai8Hw3AXqks>.

517

518

519

520 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces, 2023. URL <https://arxiv.org/abs/2312.00752>.

521

522

523 Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and Yifei Zhang. Is mamba effective for time series forecasting?, 2024. URL <https://arxiv.org/abs/2403.11144>.

524

525

526 Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory with optimal polynomial projections. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, *Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual*, 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/102f0bb6efb3a6128a3c750dd16729be-Abstract.html>.

527

528

529

530

531

532 Xin Dong, Yonggan Fu, Shizhe Diao, Wonmin Byeon, Zijia Chen, Ameya Sunil Mahabaleshwarakar, Shih-Yang Liu, Matthijs Van Keirsbilck, Min-Hung Chen, Yoshi Suhara, Yingyan Lin, Jan Kautz, and Pavlo Molchanov. Hymba: A hybrid-head architecture for small language models, 2024. URL <https://arxiv.org/abs/2411.13676>.

533

534

535

536

537 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial Intelligence, IAAI 2021*,

538

539

540 *The Eleventh Symposium on Educational Advances in Artificial Intelligence, EAAI 2021,*
541 *Virtual Event, February 2-9, 2021*, pages 11106–11115. AAAI Press, 2021. URL <https://ojs.aaai.org/index.php/AAAI/article/view/17325>.

542

543 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer:
544 Frequency enhanced decomposed transformer for long-term series forecasting. In Ka-
545 malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
546 Sabato, editors, *International Conference on Machine Learning, ICML 2022, 17-23 July*
547 *2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings of Machine Learning Re-*
548 *search*, pages 27268–27286. PMLR, 2022. URL <https://proceedings.mlr.press/v162/zhou22g.html>.

549

550

551 Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
552 transformer, 2020a. URL <https://arxiv.org/abs/2004.05150>.

553

554 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
555 Baining Guo. Swin transformer: Hierarchical vision transformer using shifted win-
556 dows. In *2021 IEEE/CVF International Conference on Computer Vision, ICCV*
557 *2021, Montreal, QC, Canada, October 10-17, 2021*, pages 9992–10002. IEEE, 2021.
558 doi:10.1109/ICCV48922.2021.00986. URL <https://doi.org/10.1109/ICCV48922.2021.00986>.

559

560 Mikhail S. Burtsev, Yuri Kuratov, Anton Peganov, and Grigory V. Sapunov. Memory
561 transformer, 2020. URL <https://arxiv.org/abs/2006.11527>.

562

563 Timothe Darcet, Maxime Oquab, Julien Mairal, and Piotr Bojanowski. Vision transformers
564 need registers. In *The Twelfth International Conference on Learning Representations,*
565 *ICLR 2024, Vienna, Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=2dn03LLiJ1>.

566

567 Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Korthikanti, Tri Dao,
568 Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak Narayanan, Garvit Kulshreshtha,
569 Vartika Singh, Jared Casper, Jan Kautz, Mohammad Shoeybi, and Bryan Catanzaro. An
570 empirical study of mamba-based language models, 2024. URL <https://arxiv.org/abs/2406.07887>.

571

572 Jamba Team, Barak Lenz, Alan Arazi, Amir Bergman, Avshalom Manevich, Barak Peleg,
573 Ben Aviram, Chen Almagor, Clara Fridman, Dan Padnos, Daniel Gissin, Daniel Jannai,
574 Dor Muhlgay, Dor Zimberg, Edden M Gerber, Elad Dolev, Eran Krakovsky, Erez Safahi,
575 Erez Schwartz, Gal Cohen, Gal Shachaf, Haim Rozenblum, Hofit Bata, Ido Blass, Inbal
576 Magar, Itay Dalmedigos, Jhonathan Osin, Julie Fadlon, Maria Rozman, Matan Danos,
577 Michael Gokhman, Mor Zusman, Naama Gidron, Nir Ratner, Noam Gat, Noam Rozen,
578 Oded Fried, Ohad Leshno, Omer Antverg, Omri Abend, Opher Lieber, Or Dagan, Orit
579 Cohavi, Raz Alon, Ro'i Belson, Roi Cohen, Rom Gilad, Roman Glzman, Shahar Lev,
580 Shaked Meiriom, Tal Delbari, Tal Ness, Tomer Asida, Tom Ben Gal, Tom Braude, Uriya
581 Pumerantz, Yehoshua Cohen, Yonatan Belinkov, Yuval Globerson, Yuval Peleg Levy,
582 and Yoav Shoham. Jamba-1.5: Hybrid transformer-mamba models at scale, 2024. URL
583 <https://arxiv.org/abs/2408.12570>.

584

585 Liliang Ren, Yang Liu, Yadong Lu, Yelong Shen, Chen Liang, and Weizhu Chen. Samba:
586 Simple hybrid state space models for efficient unlimited context language modeling, 2024.
587 URL <https://arxiv.org/abs/2406.07522>.

588

589 Badri N. Patro, Suhas Ranganath, Vinay P. Namboodiri, and Vijay S. Agneeswaran. Heracles:
590 A hybrid ssm-transformer model for high-resolution image and time-series analysis, 2024.
591 URL <https://arxiv.org/abs/2403.18063>.

592

593 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo.
594 Reversible instance normalization for accurate time-series forecasting against distribution
595 shift. In *The Tenth International Conference on Learning Representations, ICLR 2022,*
596 *Virtual Event, April 25-29, 2022*. OpenReview.net, 2022. URL <https://openreview.net/forum?id=cGDAkQo1C0p>.

594 Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks, 2015.
595 URL <https://arxiv.org/abs/1511.08458>.
596

597 Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016. URL
598 <https://arxiv.org/abs/1607.06450>.
599

600 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
601 recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
602 2016, Las Vegas, NV, USA, June 27-30, 2016*, pages 770–778. IEEE Computer Society,
603 2016. doi:10.1109/CVPR.2016.90. URL <https://doi.org/10.1109/CVPR.2016.90>.
604

605 Iz Beltagy, Matthew E. Peters, and Arman Cohan. Longformer: The long-document
606 transformer, 2020b. URL <https://arxiv.org/abs/2004.05150>.
607

608 Biao Zhang and Rico Sennrich. Root mean square layer normalization. In Hanna M.
609 Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and
610 Roman Garnett, editors, *Advances in Neural Information Processing Systems 32: Annual
611 Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14,
612 2019, Vancouver, BC, Canada*, pages 12360–12371, 2019. URL <https://proceedings.neurips.cc/paper/2019/hash/1e8a19426224ca89e83cef47f1e7f53b-Abstract.html>.
613

614 M.A. Hearst, S.T. Dumais, E. Osuna, J. Platt, and B. Scholkopf. Support vec-
615 tor machines. *IEEE Intelligent Systems and their Applications*, 13(4):18–28, 1998.
616 doi:10.1109/5254.708428.
617

618 Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In *2018 IEEE
619 Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake
620 City, UT, USA, June 18-22, 2018*, pages 7132–7141. IEEE Computer Society, 2018.
621 doi:10.1109/CVPR.2018.00745. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.
622

623 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng
624 Long. itransformer: Inverted transformers are effective for time series forecasting. In
625 *The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
626 Austria, May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=JePfAI8fah>.
627

628 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time
629 series forecasting? In Brian Williams, Yiling Chen, and Jennifer Neville, editors, *Thirty-
630 Seventh AAAI Conference on Artificial Intelligence, AAAI 2023, Thirty-Fifth Conference
631 on Innovative Applications of Artificial Intelligence, IAAI 2023, Thirteenth Symposium on
632 Educational Advances in Artificial Intelligence, EAAI 2023, Washington, DC, USA, Febru-
633 ary 7-14, 2023*, pages 11121–11128. AAAI Press, 2023. doi:10.1609/AAAI.V37I9.26317.
634 URL <https://doi.org/10.1609/aaai.v37i9.26317>.
635

636 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
637 MOMENT: A family of open time-series foundation models. In *Forty-first International
638 Conference on Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024*. Open-
639 Review.net, 2024. URL <https://openreview.net/forum?id=FVvf69a5rx>.
640

641 Tian Zhou, Peisong Niu, Xue Wang, Liang Sun, and Rong Jin. One fits all: Power
642 general time series analysis by pretrained LM. In Alice Oh, Tristan Naumann,
643 Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine, editors, *Advances
644 in Neural Information Processing Systems 36: Annual Conference on Neural Infor-
645 mation Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December
646 10 - 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/86c17de05579cde52025f9984e6e2ebb-Abstract-Conference.html.
647

648 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Times-
649 net: Temporal 2d-variation modeling for general time series analysis. In *The Eleventh
650 International Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May
651 1-5, 2023*. OpenReview.net, 2023. URL https://openreview.net/pdf?id=ju_Uqw3840q.
652

648 Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition
649 transformers with auto-correlation for long-term series forecasting. In Marc'Aurelio Ran-
650 zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan,
651 editors, *Advances in Neural Information Processing Systems 34: Annual Conference on*
652 *Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual*,
653 pages 22419–22430, 2021. URL <https://proceedings.neurips.cc/paper/2021/hash/bcc0d400288793e8bdcd7c19a8ac0c2b-Abstract.html>.
654

655 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
656 Yoshua Bengio and Yann LeCun, editors, *3rd International Conference on Learning*
657 *Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track*
658 *Proceedings*, 2015. URL <http://arxiv.org/abs/1412.6980>.
659

660 8 APPENDIX

661 8.1 DATASET

662 In this study, we assessed the efficacy of our approach by employing seven datasets widely
663 recognized in the domain of long-term time series forecasting: Weather, Traffic, Electricity,
664 Illness, and the ETT datasets (ETTh1, ETTh2, ETTm1, and ETTm2). These datasets
665 encompass a diverse array of periodic patterns and real-world scenarios that present significant
666 predictive challenges, rendering them particularly appropriate for applications such as
667 long-term time series forecasting, data generation, and imputation tasks. The datasets
668 are characterized by the following attributes: Dataset, Variants, Frequency, Timesteps,
669 Information, Forecasting Horizon, and Term. Specifically, the Weather dataset comprises
670 21 meteorological variables recorded every 10 minutes at the Max Planck Biogeochemistry
671 Institute’s Weather Station in 2020. The Electricity dataset captures hourly electricity usage
672 data from 321 customers. The Traffic dataset records hourly road occupancy rates from 862
673 sensors across San Francisco Bay Area freeways, spanning January 2015 to December 2016
674 (Zhou et al., 2021). The ETT datasets include 7 variables related to electricity transformers,
675 collected from July 2016 to July 2018, consisting of four subsets: ETTh1 and ETTh2,
676 recorded hourly, and ETTm1 and ETTm2, recorded every 15 minutes (Wu et al., 2021). The
677 Illness dataset contains weekly data on patient numbers and influenza-like illness ratios (Nie
678 et al., 2023). Detailed characteristics of these datasets are outlined in Table 3.
679

680 Table 3: Details of multivariate real-world datasets.
681

682 Dataset	683 Variants	684 Timesteps	685 Information	686 Forecasting Horizon	687 Term
688 Weather	689 21	690 52,696	691 Weather	692 (96, 192, 336, 720)	693 4 years
694 Electricity	695 321	696 17,544	697 Electricity	698 (96, 192, 336, 720)	699 2 years
700 Traffic	701 862	702 26,304	703 Road occupancy	704 (96, 192, 336, 720)	705 -
706 Illness	707 7	708 967	709 health outcomes	710 (24, 36, 48, 60)	711 -
714 ETTh1	715 7	716 17,420	717 electricity transformers	718 (96, 192, 336, 720)	719 2 years
722 ETTh2	723 7	724 17,420	725 electricity transformers	726 (96, 192, 336, 720)	727 2 years
730 ETTm1	731 7	732 69,680	733 electricity transformers	734 (96, 192, 336, 720)	735 2 years
739 ETTm2	740 7	741 69,680	742 electricity transformers	743 (96, 192, 336, 720)	744 2 years

696 8.2 TRAINING DETAILS AND HYPERPARAMETER SETTINGS

697 8.2.1 TRAINING

700 All our training was conducted on a single Nvidia RTX 4090. For optimization, we used
701 the Adam optimizer (Kingma and Ba, 2015), which provides efficient adaptive learning rate
702 adjustments. For the loss function to train the model, we used the classical Huber loss

702 function, chosen for its enhanced robustness to outliers and contribution to improved training
703 stability.
704

705 **Efficient Training Strategy.** Given the extensive variety in datasets such as Electricity
706 and Traffic, our model encounters memory constraints, even with small batch sizes, on the
707 experimental hardware. Training on high-dimensional multivariate time series, common in
708 real-world applications, is resource-intensive. To mitigate this, we adopt an efficient training
709 strategy inspired by (Liu et al., 2024). Specifically, we randomly select a subset of variates
710 for each batch, training the model exclusively on these variates to improve efficiency. For
711 the Electricity and Traffic datasets, we use 30 randomly selected variates for the training set
712 and 40 for the validation set, while the test set is used in its entirety.
713

714 8.2.2 HYPERPARAMETER SETTINGS

715 We detail the hyperparameters employed in our ParallelTime model for long-term time series
716 forecasting. These include common hyperparameters, applied uniformly across all datasets,
717 and dataset-specific hyperparameters. Common settings include a random seed of 2023 for
718 reproducibility, an input sequence length of 512, Huber loss with a delta of 1.0, attention
719 dropout of 0.1, projection dropout of 0.05, 2 block layers with an attention head size of 4, a
720 patch length of 16, a window attention length of 4, 32 register tokens, and Mamba settings
721 with a state dimension of 16 and convolution dimension of 2. Dataset-specific settings in the
722 table 4.

723 **More Details:** We have not explored optimizers beyond Adam. The attention mechanism
724 utilized Flash Attention. We tested Absolute Positional Embedding, Rotary Positional
725 Embedding, and Relative Positional Embedding, with Absolute Positional Embedding
726 performing best.
727

728 Table 4: Hyperparameters for the ParallelTime model

729 Parameter	730 Electricity	731 ETTh1	732 ETTh2	733 ETTm1	734 ETTm2	735 Illness	736 Traffic	737 Weather
731 epochs	732 20	733 20	734 15	735 30	736 25	737 10	738 25	739 25
732 lr	733 0.005	734 0.0008	735 0.0006	736 0.0001	737 0.0001	738 0.012	739 0.005	740 0.0004
733 batch	734 64	735 256	736 512	737 64	738 512	739 64	740 64	741 64
734 dim	735 128	736 16	737 16	738 32	739 32	740 32	741 128	742 16

736 8.3 COMPONENT SELECTION

737 **Linear-Conv1D Embedding.** The proposed embedding method, designed to capture both
738 global and local features, demonstrates modest performance improvements across most data
739 sets. More research is required to fully understand the potential of this component and
740 optimize its effectiveness.
741

742 **Global Registers.** The integration of global registers yields slight performance enhance-
743 ments. We keep them because we believe that when scaling the model to a larger number of
744 parameters, the model’s performance can benefit.
745

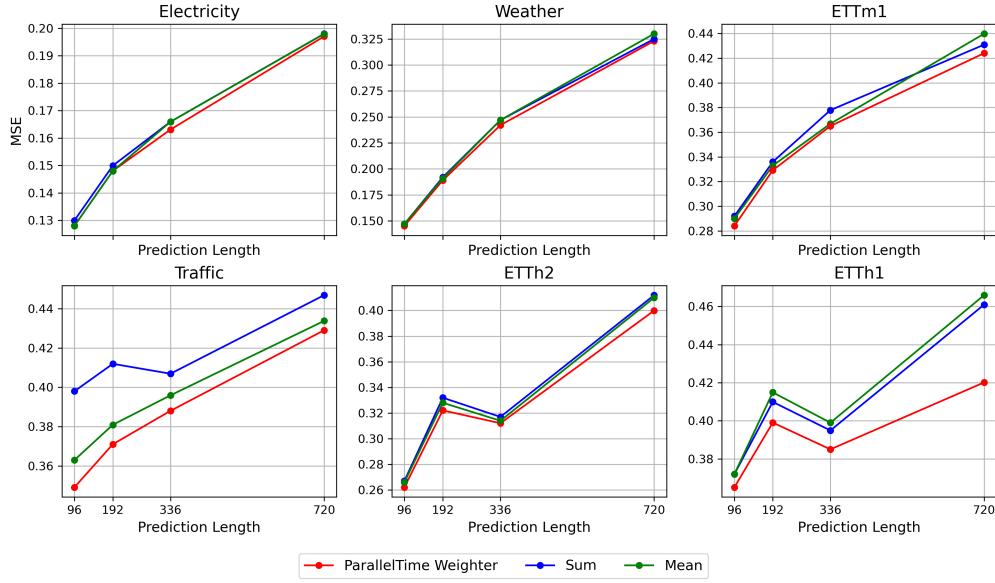
746 **S4 vs. Mamba.** In our very original and clear paper, we did not choose to use S4 (Gu
747 et al., 2022) instead of Mamba due to the limitations of S4, which exhibits deficiencies in the
748 selective copying task and the induction heads task (Gu and Dao, 2023).
749

750 9 ADDITIONAL RESULTS

751 9.1 WEIGHTING STRATEGY

752 This section presents additional results for the weighting strategies applied to Attention and
753 Mamba models, as discussed in Subsection 6.1. The findings demonstrate that, across all
754

756 prediction lengths and datasets, our ParallelTime Weighter consistently outperforms other
 757 weighting strategies, achieving the best results on every dataset.
 758



779 Figure 7: Performance comparison of weighting strategies for Attention and Mamba models
 780 across various prediction lengths and datasets, highlighting the superior results of our
 781 ParallelTime Weighter.
 782

785 9.2 STUDY OF EXPAND-COMPRESS-PROJECT

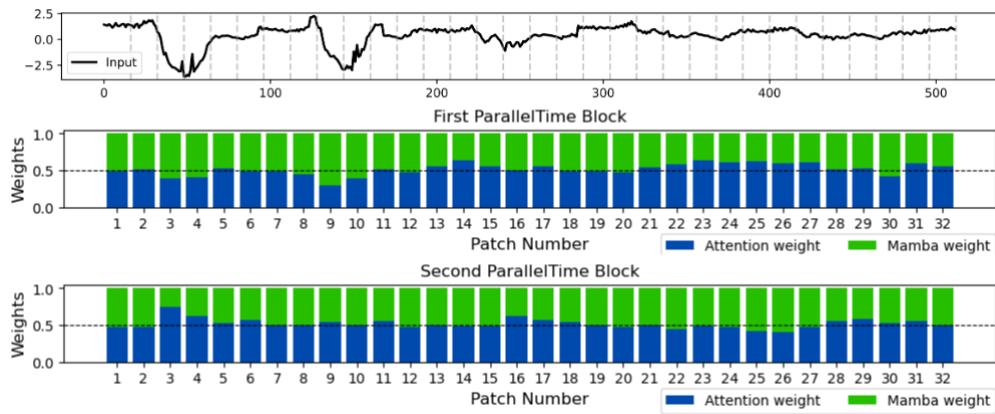
787 In this subsection, we present a comparative analysis of our proposed Expand-Compress-
 788 Project method against the standard projection method in time series forecasting. Table 5
 789 provides a detailed comparison across various datasets and prediction lengths. It is evident
 790 from the table that the our Expand-Compress-Project method consistently achieves similar
 791 and sometimes better MSE values to the standard projection method while significantly
 792 reduces the number of parameters required. In addition we can see that our model scales
 793 better on larger sequence length.
 794

795 Table 5: Comparison of Expand-Compress-Project and Standard Projection Methods for
 796 different prediction lengths, where our method utilizes significantly fewer parameters while
 797 maintaining similar accuracy

799 Dataset	MSE		#params	
	800 Expand-Compress	801 Standard Projection	802 Standard Projection	803 Expand-Compress
804 Electricity	96	0.128	0.127	854.432 K
	192	0.148	0.146	1.2477 M
	336	0.163	0.162	1.8377 M
	720	0.197	0.196	3.411 M
805 Traffic	96	0.349	0.353	953.248 K
	192	0.371	0.372	1.3466 M
	336	0.389	0.389	1.9365 M
	720	0.430	0.432	3.5098 M

810 **9.3 PATCH-LEVEL WEIGHT ADDITIONAL ANALYSIS**
 811

812 We visualize a sample from the ETTM1 dataset to illustrate the distribution of short-term and
 813 long-term dependencies utilized by our model for each token (patch). We extract the weights
 814 assigned by our ParallelTime Weighter and present them in Figure 8. The visualization
 815 reveals that patches significantly different from preceding patches (from left to right) rely
 816 more heavily on the Mamba weights, which emphasize long-term dependencies. Conversely,
 817 when the data exhibits minimal variation, greater weight is assigned to window attention,
 818 which prioritizes short-term dependencies. Additionally, we observe distinct behaviors across
 819 different layers.



820
 821 Figure 8: Visualization of input series and the weight distribution per patch in sample from
 822 ETTM1 dataset, for the first and second ParallelTime blocks.
 823

824 **9.4 COMPARISON OF PARALLELTIME, PURE ATTENTION, AND PURE MAMBA BLOCKS**
 825

826 To further assess the contribution of the ParallelTime block, we conduct an ablation study
 827 in which we retrain the model after replacing this block with either an attention-only or a
 828 Mamba-only variant. The results are summarized in Table 6. Our model consistently achieves
 829 superior performance on datasets with large training horizons—namely Electricity, Traffic,
 830 and Weather—across nearly all prediction lengths. For the ETT datasets, which contain
 831 relatively short and less dense sequences, the differences between methods are smaller and
 832 the outcomes more mixed. This strengthens our suggestion that the ParallelTime Weighter
 833 is better suited for datasets with more data.

834 **9.5 ROBUSTNESS**
 835

836 **Effects of Different Parameter Adjustments.** To evaluate the impact of hyperparameter
 837 choices on ParallelTime, we conducted additional experiments by adjusting key model
 838 parameters. We tested different configurations by varying the number of ParallelTime layers,
 839 $L = 1, 2, 3$, and the patch size, $P = 8, 16$, resulting in a total of six unique hyperparameter
 840 combinations. The MSE scores for these configurations across various datasets are presented
 841 in Figure 9. Most datasets show consistent performance across hyperparameter settings,
 842 except for the ILI dataset, which exhibits slightly variable results.

843 **Impact of Various Random Seeds.** The findings presented in the main text and
 844 appendix were obtained using a consistent random seed of 2023. To assess the stability of
 845 these outcomes, we trained the supervised ParallelTime model using five random seeds: 2022,
 846 2023, 2024, 2025, and 2026, computing the MSE and MAE scores for each seed. The average
 847 and standard deviation of these results are shown in Table 9.5. The notably low standard
 848 deviations demonstrate that our model’s performance remains stable across different random
 849 seed selections.

864
865 Table 6: Comparison of ParallelTime, Attention, and Mamba, **bold** is best value.

866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917	Dataset	Length	ParallelTime		Attention		Mamba	
			MSE	MAE	MSE	MAE	MSE	MAE
Electricity	Electricity	96	0.127	0.222	0.128	0.222	0.129	0.224
		192	0.147	0.241	0.148	0.241	0.146	0.242
		336	0.163	0.258	0.166	0.259	0.163	0.259
		720	0.197	0.288	0.199	0.290	0.199	0.291
Traffic	Traffic	96	0.349	0.231	0.353	0.233	0.364	0.244
		192	0.371	0.240	0.373	0.243	0.383	0.251
		336	0.388	0.250	0.388	0.253	0.391	0.256
		720	0.429	0.274	0.430	0.276	0.436	0.279
Weather	Weather	96	0.145	0.189	0.146	0.191	0.149	0.194
		192	0.189	0.232	0.191	0.234	0.193	0.235
		336	0.242	0.273	0.244	0.275	0.243	0.274
		720	0.323	0.331	0.317	0.329	0.320	0.330
ETTh1	ETTh1	96	0.365	0.398	0.368	0.398	0.363	0.395
		192	0.399	0.415	0.413	0.427	0.399	0.413
		336	0.385	0.414	0.407	0.432	0.388	0.418
		720	0.420	0.443	0.454	0.469	0.451	0.464
ETTh2	ETTh2	96	0.262	0.328	0.263	0.328	0.264	0.329
		192	0.322	0.368	0.324	0.368	0.322	0.367
		336	0.312	0.370	0.314	0.371	0.318	0.373
		720	0.399	0.434	0.397	0.433	0.405	0.438
ETTm1	ETTm1	96	0.284	0.337	0.286	0.341	0.291	0.339
		192	0.329	0.366	0.327	0.366	0.329	0.363
		336	0.365	0.391	0.354	0.384	0.359	0.383
		720	0.424	0.430	0.425	0.427	0.430	0.423
ETTm2	ETTm2	96	0.162	0.252	0.163	0.252	0.163	0.253
		192	0.218	0.291	0.219	0.290	0.216	0.290
		336	0.276	0.327	0.273	0.324	0.270	0.323
		720	0.356	0.380	0.355	0.379	0.350	0.374

Robustness to Window Size. We demonstrate that our model is robust to different window sizes. We evaluated window sizes of 32, 64, and 128, and report the corresponding mean and standard deviation for each configuration in Table 9.5.

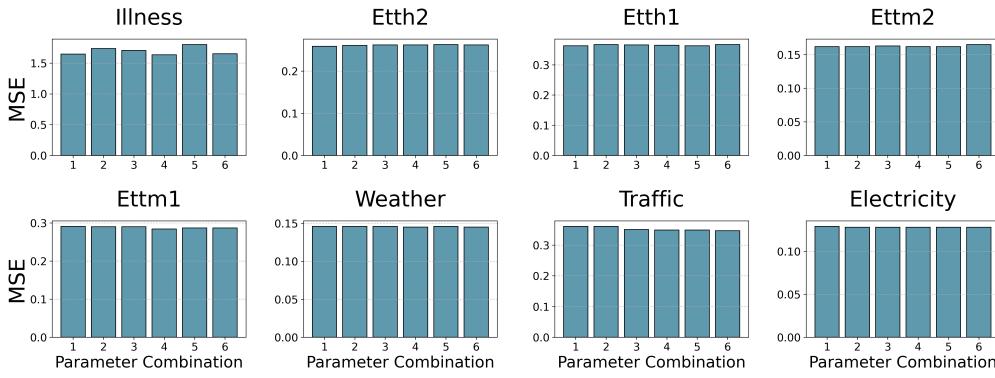


Figure 9: MSE scores for ParallelTime across six hyperparameter configurations (number of layers $L = 1, 2, 3$, patch size $P = 8, 16$).

Dataset	ETTh2			Traffic			Weather	
Horizon	MSE	MAE		MSE	MAE		MSE	MAE
96	0.263 \pm 0.0011	0.328 \pm 0.0007		0.350 \pm 0.0009	0.231 \pm 0.0000		0.146 \pm 0.0007	0.190 \pm 0.0011
192	0.323 \pm 0.0011	0.368 \pm 0.0013		0.371 \pm 0.0000	0.241 \pm 0.0005		0.191 \pm 0.0011	0.234 \pm 0.0011
336	0.313 \pm 0.0008	0.371 \pm 0.0013		0.390 \pm 0.0012	0.252 \pm 0.0011		0.244 \pm 0.0015	0.276 \pm 0.0015
720	0.404 \pm 0.0036	0.437 \pm 0.0027		0.429 \pm 0.0009	0.274 \pm 0.0004		0.324 \pm 0.0026	0.331 \pm 0.0015
Dataset	ETTm1			ETTm2			Electricity	
Horizon	MSE	MAE		MSE	MAE		MSE	MAE
96	0.289 \pm 0.0036	0.341 \pm 0.0035		0.162 \pm 0.0004	0.252 \pm 0.0004		0.128 \pm 0.0004	0.222 \pm 0.0004
192	0.330 \pm 0.0019	0.368 \pm 0.0021		0.221 \pm 0.0029	0.292 \pm 0.0016		0.147 \pm 0.0005	0.240 \pm 0.0015
336	0.361 \pm 0.0025	0.389 \pm 0.0012		0.276 \pm 0.0023	0.327 \pm 0.0011		0.164 \pm 0.0008	0.258 \pm 0.0004
720	0.436 \pm 0.0085	0.434 \pm 0.0034		0.356 \pm 0.0046	0.380 \pm 0.0022		0.197 \pm 0.0008	0.288 \pm 0.0010

Table 7: Robustness from five different random seeds.

Dataset	Pred Len	MSE		MAE		Fwd FLOPs		Fwd+Bwd FLOPs		#Params	
		ParallelTime	PatchTST	ParallelTime	PatchTST	ParallelTime	PatchTST	ParallelTime	PatchTST	ParallelTime	PatchTST
ETTh1	96	0.365 (↓1.4%)	0.370	0.398 (↓0.3%)	0.399	0.325G (↓52%)	0.687G	0.976G (↓52%)	2.062G	69k (↓40%)	116k
	192	0.399 (↓3.4%)	0.413	0.415 (↓1.4%)	0.421	0.347G (↓52%)	0.731G	1.042G (↓52%)	2.194G	119k (↓44%)	214k
	336	0.385 (↓8.8%)	0.422	0.414 (↓5.0%)	0.436	0.380G (↓52%)	0.797G	1.141G (↓52%)	2.392G	192k (↓46%)	362k
	720	0.420 (↓6.0%)	0.447	0.443 (↓4.9%)	0.466	0.468G (↓51%)	0.973G	1.405G (↓51%)	2.920G	389k (↓48%)	755k
Electricity	96	0.128 (↓0.8%)	0.129	0.222	0.222	7.00G (↓47%)	13.2G	21.0G (↓47%)	39.5G	516k (↓57%)	1194k
	192	0.148 (↓5.7%)	0.157	0.241	0.240	7.02G (↓48%)	13.5G	21.1G (↓48%)	40.6G	553k (↓72%)	1981k
	336	0.163	0.163	0.258 (↓0.4%)	0.259	7.04G (↓50%)	14.1G	21.1G (↓50%)	42.2G	608k (↓81%)	3161k
	720	0.196 (↓0.5%)	0.197	0.288 (↓0.7%)	0.290	7.11G (↓54%)	15.5G	21.3G (↓54%)	46.4G	756k (↓88%)	6307k

Table 8: Comparison of ParallelTime and PatchTST on ETTh1 and Electricity datasets. The table reports MSE, MAE, forward (Fwd) FLOPs (i.e., inference FLOPs), forward and backward (Fwd+Bwd) FLOPs (i.e., training FLOPs), and the number of parameters (#Params) for different prediction lengths (Pred Len).

972
973
974
975
976
977

Dataset	ETTh1		ETTh2		ETTm1	
Horizon	MSE	MAE	MSE	MAE	MSE	MAE
96	0.366±0.0002	0.398±0.0005	0.264±0.0012	0.329±0.0007	0.286±0.0011	0.339±0.0006
192	0.400±0.0002	0.416±0.0007	0.322±0.0009	0.368±0.0005	0.329±0.0011	0.367±0.0009
336	0.386±0.0018	0.416±0.0017	0.313±0.0006	0.371±0.0007	0.364±0.0011	0.391±0.0011
720	0.422±0.0019	0.445±0.0017	0.400±0.0006	0.435±0.0005	0.425±0.0033	0.430±0.0028

985
986 Table 9: Robustness to different window sizes (32, 64, 128).
987
988
989
990
991
992
993
994
995
996

Dataset	ETTh1		ETTh2		ETTm1	
Horizon	MSE	MAE	MSE	MAE	MSE	MAE
96	0.366±0.0002	0.398±0.0005	0.264±0.0012	0.329±0.0007	0.286±0.0011	0.339±0.0006
192	0.400±0.0002	0.416±0.0007	0.322±0.0009	0.368±0.0005	0.329±0.0011	0.367±0.0009
336	0.386±0.0018	0.416±0.0017	0.313±0.0006	0.371±0.0007	0.364±0.0011	0.391±0.0011
720	0.422±0.0019	0.445±0.0017	0.400±0.0006	0.435±0.0005	0.425±0.0033	0.430±0.0028
Dataset	ETTm2		Electricity		Traffic	
Horizon	MSE	MAE	MSE	MAE	MSE	MAE
96	0.162±0.0002	0.253±0.0001	0.128±0.0002	0.222±0.0002	0.350±0.0005	0.231±0.0003
192	0.220±0.0011	0.291±0.0003	0.148±0.0003	0.241±0.0003	0.371±0.0004	0.240±0.0002
336	0.276±0.0001	0.328±0.0007	0.165±0.0008	0.259±0.0005	0.390±0.0011	0.251±0.0003
720	0.359±0.0021	0.381±0.0006	0.198±0.0006	0.289±0.0006	0.430±0.0002	0.274±0.0004
Dataset	Weather					
Horizon	MSE	MAE				
96	0.145±0.0005	0.189±0.0004				
192	0.190±0.0007	0.232±0.0006				
336	0.244±0.0024	0.274±0.0018				
720	0.325±0.0032	0.332±0.0011				

1019
1020 Table 10: Robustness to different window sizes (32, 64, and 128) reported as mean and
1021 standard deviation.
1022
1023
1024
1025