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Abstract

Stochastic policy gradient methods are a fundamental class of reinforcement learning
algorithms. When using these algorithms for continuous control, it is common
to parameterize the policy using a Gaussian distribution. In this paper, we show
that the policy gradient with Gaussian policies can be viewed as the gradient of a
weighted least-squares objective function. That is, policy gradient algorithms are
implicitly implementing a form of regression. Several recent works have shown that
reformulating regression problems as classification problems can improve learning.
Inspired by these works, we investigate whether replacing this implicit regression
with classification can improve the data efficiency and stability of policy learning.
We introduce a novel policy gradient surrogate objective for softmax policies over a
discretized action space. This surrogate objective uses a form of cross-entropy loss
to replace the implicit least-squares loss found in the surrogate loss for Gaussian
policies. We extend prior theoretical analysis of this loss to our policy gradient
surrogate objective and provide experiments showing that this novel loss improves
the data efficiency of stochastic policy gradient learning.

1 Introduction

Stochastic policy gradient algorithms are a fundamental class of reinforcement learning (RL) algo-
rithms. In their simplest form, the learning agent runs its current policy to collect data in the form
of state, action, and reward transitions to produce a dataset of (si, ai, Âi) where Âi is an estimate
of the advantage of taking action ai in state si. The learning agent then updates its parameterized
and differentiable stochastic policy with a step of gradient ascent on the expected cumulative reward
objective. The gradient update increases the log-likelihood of each observed action in proportion to
the advantage of that action.

Following Peters and Schaal (2007), we observe that the policy gradient update can be viewed as
implicitly optimizing a weighted supervised learning loss function. We particularly focus on the case
of continuous control with Gaussian policies, in which case we will show that the policy gradient
matches the gradient of a weighted least-squares loss function. In this sense, we say that policy
gradient algorithms are implicitly implementing (weighted) regression.

A growing body of research (discussed in Appendix C) supports the claim that reformulating
regression problems as classification problems can boost task performance in supervised regression.
Of particular relevance to this work, Imani and White (2018) introduced a form of cross-entropy loss
for regression and showed that it boosts regression accuracy compared to the commonly used squared
loss. Subsequently, Farebrother et al. (2024) adopted this histogram loss in place of the squared loss
for value-based RL algorithms and found that the approach unlocked new levels of scalability in a
wide variety of RL benchmarks. Motivated by these prior works, in this paper, we reformulate the
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implicit regression of stochastic policy gradient RL for continuous action domains as classification.
Specifically, this work aims to answer the question:

Does replacing the least-squares loss and Gaussian policies with a cross-entropy loss and softmax
policies over discretized actions improve the data efficiency of stochastic policy gradient algorithms?

In answering this question, we make the following contributions: 1) we introduce a novel policy
gradient surrogate loss that recasts the implicit regression toward continuous actions as classification
of discrete actions, 2) building on (Imani and White, 2018), we show that the loss we introduce will
have a smaller bound on the gradient norm compared to the surrogate loss for Gaussian policies,
implying that the new loss is easier to optimize, 3) we empirically investigate the use of cross-entropy
losses and softmax policies as an alternative to widely-used Gaussian policies within stochastic policy
gradient algorithms and find that our reformulation leads to increased data-efficiency, more stable
learning, and increased final performance.

2 Preliminaries

In this section, we introduce RL notation, stochastic policy gradient learning, and introduce the
histogram regression loss.

2.1 Reinforcement Learning

We formalize an RL agent’s task environment as a finite-horizon, episodic Markov decision process
(MDP) with state set S, action set A, transition function, p : S × A× S → [0, 1], reward function
r : S × A → R, discount factor γ, and initial state distribution d0 (Puterman, 2014). The agent
follows a policy, π : S ×A → [0, 1], which is a function mapping states to probability distributions
over possible actions. Given a policy and task environment, interaction begins at time t = 0 in some
initial state (s0 ∼ d0) and then proceeds with the agent selecting actions according to its policy
(at ∼ π(·|st)) and the environment responding with a reward, rt = r(st, at), and transitioning to
a next state (st+1 ∼ p(·|st, at)). Interaction continues until the agent reaches a terminal state, at
which point, the agent returns to a new initial state and the process begins again. The result of this
interaction is a trajectory, h := (s0, a0, r0, s1, ..., sT , aT , rT ).

We measure policy performance by the expected discounted return in a given MDP:

J(π) := E[
T∑

t=0
γtRt|H ∼ π]

where H = (S0, A0, R0, ...ST , AT , RT ) is a random variable representing a trajectory and H ∼ π
denotes sampling H by running π for one episode. In RL, the transition and reward functions of the
task MDP are unknown. RL algorithms are designed to collect trajectory data from the task MDP
and use this data to return a policy, π∗ ∈ arg maxπ J(π).

2.2 Policy Gradient Reinforcement Learning

In policy gradient reinforcement learning, the agent’s policy is parameterized by a vector, θ, and the
policy is differentiable with respect to these parameters. Policy gradient RL algorithms optimize the
policy through gradient ascent over θ to maximize J(πθ). The gradient of the J(θ) with respect to θ,
or policy gradient, is typically expressed as:

∇θJ(πθ) ∝ Es∼dπθ
,a∼πθ(·|s) [Aπθ (s, a)∇θ log πθ(a|s)] ,
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where Aπθ (s, a) is the advantage of choosing action a in state s and quantifies the extra expected
reward that will be obtained when taking a instead of sampling an action from πθ in s, and
dπθ

: S → [0, 1] is the expected distribution of states that will be seen when running πθ in the task
MDP.1

2.3 Histogram Losses for Regression

Supervised regression problems are usually formulated using the least-squares loss function:

LLS(θ) := 1
m

m∑
j=1
||fθ(xj)− yj ||22,

for predictor fθ : X → Rd that maps inputs x ∈ X to labels y ∈ Rd and m is the number of training
examples. Though minimizing the squared distance to a desired target is a natural choice of the loss
function, an alternative is to discretize the label space and reformulate regression as classification
with a cross-entropy loss function. Perhaps counterintuitively, this reformulation has been shown to
be beneficial in practice (Farebrother et al., 2024) and theory (Imani et al., 2024).

In this section, we will only consider the case d = 1. Let ymin and ymax be a minimum and maximum
bound on the predicted value from fθ(x). Since classification requires a discrete label set, we
discretize the interval [ymin, ymax] uniformly into k bins and the predictor fθ(x) outputs k logits that
parameterize a softmax distribution over the k bins. Let ỹi be the center of the ith bin and p̂i(x)
be the probability of the ith bin output by fθ(x). The scalar-valued prediction for y given x is the
expected value of ỹi under p̂(x) or

∑
i ỹip̂i(x).

We train fθ using a cross-entropy loss between fθ(x) and a target distribution that is specified from
y. Following the notation of Imani and White (2018), we denote this target distribution as qy. We
then train fθ by minimizing the cross-entropy loss:

LCE(θ) := 1
m

m∑
j=1

k∑
i

qyj
(i) log p̂i(xj).

In this work, we will consider two choices for the target distribution qy. A straightforward choice is
a 1-hot distribution with the bin corresponding to y receiving probability 1. However, this choice
potentially discards information about the spatial structure and ordinality of the label space that
the least-squares loss preserves. Imani and White (2018) and Farebrother et al. (2024) found that a
histogram approximation to a Gaussian distribution with a mean of y and the standard deviation
chosen as a hyper-parameter was a better choice for this reason. Using a histogram approximation
of a Gaussian in Equation (2.3) results in a loss that Imani and White (2018) called HL-Gauss.
Optimizing HL-Gauss for input xj increases the probability of outputting the target label yj the
most while also increasing the probability of values close to yj .

3 Implicit Regression in Policy Gradient RL

We first show how policy gradient RL updates are equivalent to weighted regression updates. First,
we note that policy gradient algorithms are often implemented to maximize the surrogate loss:

Lsurr(θ) := 1
m

m∑
j=1

Aπθ
(sj , aj) log πθ(aj |sj),

1Note that in reality Equation (2.2) is not the gradient of J(πθ) but is a widely used and biased approximation of
it (Thomas, 2014; Nota and Thomas, 2020).
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where we have obtained m state-action pairs by running some policy. Assuming that the data was
collected on-policy (i.e., by running πθ) then the gradient of Lsurr(θ) is an unbiased estimator of
∇θJ(πθ) (Foerster et al., 2018). We interpret Lsurr as a weighted supervised learning loss with states
as inputs, actions as labels, and the weight on each sample given by the advantage function.

When the task MDP has continuous actions, the most common policy parameterization is a multi-
variate Gaussian where the mean and covariance are given as functions of the state that are
parameterized by θ. That is πθ(a|s) = N (a; µθ(s), Σθ(s)). For the sake of exposition, we will treat
Σθ(s) as a constant identity matrix and focus on µθ(s).2 Under a Gaussian parameterization, the
surrogate objective becomes a weighted least-squares regression problem:

arg max
θ
Lsurr(θ) = arg min

θ
LPG−LS(θ) := 1

m

m∑
j=1

Aπθ
(sj , aj)1

2 ||aj − µθ(sj)||22 + const

It can now be seen that the policy gradient surrogate loss for Gaussian policies is a weighted
least-squares problem that resembles Equation (2.3).

The connection between policy optimization and supervised learning has been previously made by
Peters and Schaal (2007); Peng et al. (2019); Abdolmaleki et al. (2018) in the context of formulating
policy optimization with KL-divergence constraints. Under the formulation in these past works,
policy optimization can also be cast as weighted regression. The key difference between these works
and ours is that the KL-divergence constraint results in the weighting function being exp( 1

τ Aπθ
(s, a))

rather than Aπθ
(s, a).3

4 Replacing Implicit Regression with Classification

Empirical evidence in supervised learning and RL suggests there is an empirical benefit to refor-
mulating regression problems as classification problems. Our goal in this work is to understand if
this benefit translates to policy gradient learning if we reformulate the implicit regression in policy
gradient methods as classification. Toward this understanding, we first describe how we can represent
continuous action policies as policies over discrete actions and then introduce a new policy gradient
surrogate objective for training these policies.

4.1 Policy Representation

To recast regression as classification we first need to parameterize the policy we are learning as a
distribution over a finite set Z where each continuous a ∈ A maps to an element of z ∈ Z. The naive
way to accomplish this mapping is to discretize the continuous space using a multi-dimensional grid
with k bins along each dimension. The grid representation is useful in that it can learn policies in
which different action dimensions are correlated. The downside of this representation is that the
number of discrete actions will be exponential in the native action space dimensionality.

To make discrete action policies tractable, we make the simplifying assumption that each action
dimension is selected independently of the others. This assumption is reasonable as it is already
standard practice when using Gaussian policies to use a diagonal covariance matrix. Thus, in
comparison to such Gaussian policies, the policy representation that we introduce is only limited in
terms of the granularity of the discretization. This simplification means that after discretization,
each dimension has k bins and the policy network only needs to output kd values instead of kd. The

2In our experiments, we will learn a state-independent covariance matrix when considering Gaussian policies. A
non-identity covariance matrix means that the policy gradient method is implicitly implementing heteroscedastic
regression.

3We informally experimented with using the exponentiated advantage at the start of our investigation. We found
that the non-exponentiated advantage tended to give better results and had fewer hyper-parameters to tune.
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limitation of this assumption is that the space of possible distributions over actions that the policy
can represent is now limited. In applications where d is small, it may be preferable to keep the added
expressivity or to investigate alternative factorizations over the action dimensions.

Formally, we learn a policy that outputs d softmax distributions where each distribution is over a
finite set Zl for l ∈ {1, ..., d}. We map each continuous value in [amin, amax] to an element of Zl.
In this work, we use a uniform discretization with k bins and let c := amax−amin

k be the width of
each bin. The elements of Zl form an ordered set where the ith element, zi

l , represents the range
[amin + c · (i− 1), amin + c · i] for i ∈ {1, ...k}. Let ai

l be the center of this range.

We denote πθ
l(·|s) as the policy distribution over action dimension l. To sample from this policy

representation, we first sample zi
l ∼ πθ

l(·|s) for each dimension l. We then return the associated ai
l

as the value of the action for that dimension.4

4.2 Policy Gradient Learning as Classification

Now, to replace the implicit regression in Equation (3) with classification, we replace the least-squares
portion of LPG−LS with a cross-entropy loss. By doing so, we obtain the loss function:

LPG−CE(θ) := 1
m

m∑
j=1

Aπθ
(sj , aj)

d∑
l=1

k∑
i=1

qaj,l
(i) log π(ãi

l|s),

where qal
is a target probability distribution over action dimension l that is defined in terms of the

sampled action aj,l. We consider two choices for the target distribution: the 1-hot distribution that
places all probability mass on the observed action and a histogram approximation to a Gaussian
distribution centered at dimension l of action a. We call these two instantiations of our new loss
HL-1-Hot, and HL-Gauss, respectively. For the latter, the standard deviation, σ, of the approximated
Gaussian is a method hyper-parameter; we follow Farebrother et al. (2024) by tuning η := σ

c .

4.3 Bound on Gradient Norm

Imani and White (2018) found that stable gradients were a potential benefit of the HL-Gauss loss
compared to either a 1-hot cross-entropy loss or a least-squares loss for regression. Here, increased
stability means that the norm of the loss gradient has a smaller upper bound compared to the
gradient of LPG−LS. Imani and White (2018) attribute the utility of a small gradient norm to prior
theoretical work showing that a loss with small Lipschitz constant provides an improved upper bound
on generalization performance in supervised-learning. We extend this analysis to our loss.

For conciseness, we will only consider the case that d = 1. Define our loss at a given state-action pair
to be LPG−HL(θ, s, a) := Aπθ

(s, a)
∑k

i=1 qa,i log p̂i(s).
Proposition 1. Let µϕ(s) be the feature representation of s at the penultimate layer of the policy
network. Assume that the policy’s logits are l-Lipschitz, i.e ∥w⊤

j µϕ(s)∥ ≤ l with respect to ϕ. Then,
we have that:

∥∇θLPG−CE(θ, s, a)∥ ≤ ∥Aπθ
(s, a)∥

(
k∑

i=1
|qa,i − πθ(ai|s)| (l + ∥µϕ(s)∥)

)

See Appendix A for the proof. In comparison to Imani et al. (2024), we see that the bound on the
gradient norm at any state-action pair is multiplied by the magnitude of the advantage which is
expected as LPG−CE is equal to LCE multiplied by the advantage. Following their argument, we can
also expect the gradient of LPG−LS to have a greater upper bound on its norm, particularly when the
range of the action-space is large.

4We choose to deterministically return the center of the range for simplicity but alternative choices could be made.
For instance, we could uniformly sample from the range.
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5 Empirical Analysis

We next conduct an empirical study designed to answer the question, “does replacing the implicit
regression of the policy gradient surrogate loss with a cross-entropy loss increase the data efficiency
of stochastic policy gradient methods?"

5.1 Empirical Set-up

To investigate these questions, we run learning trials in the Reacher, HalfCheetah, and Ant domains
(Towers et al., 2023). Please refer to Appendix B.1 for detailed descriptions of each environment.

For simplicity, we use a stochastic actor-critic algorithm as the base policy gradient algorithm (Sutton
and Barto, 2018). We use n-step returns to estimate the advantage function, the Adam optimizer
(Kingma and Ba, 2015), and clip gradients during training. For advantage estimation, we fit a
state-dependent value function using an MSE loss with observed returns as targets.

Our primary point of comparison is between Gaussian policies with the standard policy gradient
surrogate loss, softmax policies with the HL-Gauss loss, and softmax policies with the 1-hot cross-
entropy loss. We refer the reader to Appendix B.2 for training details of all the algorithms such
hyperparameters, batch sizes, policy architectures, etc. The default hyper-parameters for each
method are chosen using a sweep; the sensitivity of each method is discussed in Appendix B.3. We
generally find that the cross-entropy losses are more robust to hyper-parameters (Appendix B.4 gives
performance profiles for each method across all hyper-parameters tested).

5.2 Empirical Results

In general, we find that recasting the regression loss as a cross-entropy loss significantly boosts
learning efficiency. In almost all instances, we observe that agents that minimize a cross-entropy loss
learn faster and achieve a higher return at the end of the training period.

(a) Reacher (d = 2) (b) HalfCheetah (d = 6) (c) Ant (d = 8)

Figure 1: Highest undiscounted training returns achieved by each algorithm as a function of environment
interaction steps after a hyperparameter sweep. SM is a softmax policy and HL is the histogram loss. Results
are the mean averaged over 20 trials and the shaded region represents the 95% confidence interval. Higher is
better.

We have found that the cross-entropy-based policy gradient surrogate loss that we introduced in this
work generally leads to more data-efficient policy gradient learning across the continuous control
domains where we evaluated it. Results showed that performance improved even as the action-
space dimensionality increased which shows the viability of simply selecting each action dimension
independently. These results suggest that reformulating the weighted regression found in policy
gradient learning for Gaussian policies as weighted classification for softmax policies can be an
effective strategy in continuous control RL applications.
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We found that the performance difference between the HL-1-Hot and HL-Gauss surrogate losses was
often small and the ordering of the methods changed across domains. This result was somewhat
surprising to us as HL-1-Hot discards spatial information about the action-space when reinforcing
actions whereas HL-Gauss makes use of this information through the Gaussian target distribution.
We do find in some cases that HL-1-Hot may be more prone to find local optima (i.e., it converges to a
discretized action that is adjacent to the optimal discretized action), however, the loss in performance
from these cases is small in the benchmarks we considered.

Perhaps the principle limitation of the HL-Gauss loss is the need to discretize the action space so
that a softmax policy can be used. The result is that the true deterministic, optimal policy may
not be representable, e.g., if the optimal action in some state is not a bin center. The degree of this
limitation depends upon the properties of a domain and how necessary it is for the policy to output
precise actions for acceptable performance. In our experiments, we did not observe adverse effects
from discretizing the action-space. This result could be because the domains we considered do not
require precise control for high returns. It could also indicate that learning with Gaussian policies is
sufficiently slow that we never reach the point where their improved representation power becomes
useful. Further small-scale studies on carefully designed toy problems could help understand when
discretization is not a viable strategy.

6 Conclusion

This paper has studied the degree to which stochastic policy gradient algorithms can be improved
for continuous action domains by replacing an implicit least-squares loss term with a cross-entropy
loss term in the policy gradient surrogate objective. We first derived the connection between the
policy gradient for Gaussian policies and a certain weighted least-squares optimization problem. We
then introduced a novel loss function that replaces the implicit weighted regression loss for Gaussian
policies with a weighted cross-entropy loss for softmax policies. We showed theoretically that this loss
enjoys a smaller bound on gradient norms and then showed empirically that this novel loss improves
the data efficiency of a prototypical stochastic actor-critic method for continuous control.
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A Proof of Proposition 1

Proposition 1. Let µϕ(s) be the feature representation of s at the penultimate layer of the policy
network. Assume that the policy’s logits are l-Lipschitz, i.e ∥w⊤

j µϕ(s)∥ ≤ l with respect to ϕ. Then,
we have that:

∥∇θLPG−CE(θ, s, a)∥ ≤ ∥Aπθ
(s, a)∥

(
k∑

i=1
|qa,i − πθ(ai|s)| (l + ∥µϕ(s)∥)

)

Proof. The proof for this proposition follows largely from Imani and White (2018) with the key
difference being that the advantage estimate for a given state action pair is weighted by Aπ(s, a).
However, we list out the proof for completeness for the reader.

Let us represent θ = [ϕ, w]T where ϕ is network parameters up to and including the penul-
timate layer and w = {wi}k

i=1 represent the parameters of the policy belonging to the last layer.
The unnormalized softmax logit for the ith bin is given as bi = eµθ(s)T wi . Then ∀j ̸= i and
j ∈ {1, 2, . . . k},

∂

∂bi
πθ(aj |s) = ∂

∂bi

ej∑k
l=1 el

= − ej(∑k
l=1 el

)2 ei = −πθ(aj |s)πθ(ai|s)

Similarly, for j = i, we can write,

∂

∂bi
πθ(aj |s) = ei∑k

l=1 el

− ei(∑k
l=1 el

)2 ei = πθ(ai|s) [1− πθ(ai|s)]

Using the above expressions we can compute the partial derivative of the histogram loss without the
advantage weighting:

∂

∂bi

k∑
j=1

qal,j log πθ(aj |s) =
k∑

j=1,j ̸=i

qal,j

πθ(ai|s)πθ(aj |s)πθ(ai|s) + qal,i

πθ(ai|s)πθ(ai|s)) [1− πθ(ai|s)]

= qal,i − πθ(ai|s)
k∑

j=1,j ̸=i

qal,j − qal,iπθ(ai|s)

= qal,i − πθ(ai|s)

By applying the chain rule, we can use the above to show that,∥∥∥∥∥∥∇ϕ

 k∑
j=1

qal,j log πθ(aj |s)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

j=1

∂

∂bj
(qal,j log πθ(aj |s)) ∂bj

∂ϕ

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑

j=1
(qal,j − πθ(aj |s))∇ϕw⊤

j µθ(s))

∥∥∥∥∥∥
(a)
≤

k∑
j=1
∥qal,j − πθ(aj |s)∥ l,
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where (a) follows by the assumption that ∥∇ϕw⊤
j µϕ(s)∥ ≤ l.∥∥∥∥∥∥∇wi

 k∑
j=1

qal,j log πθ(aj |s)

∥∥∥∥∥∥ =

∥∥∥∥∥∥
k∑

j=1

∂

∂bj
(qal,j log πθ(aj |s)) ∂bj

∂wi

∥∥∥∥∥∥
=

∥∥∥∥∥∥
k∑

j=1
(qal,j − πθ(aj |s)) ∂

∂wi
w⊤

j µϕ(s))

∥∥∥∥∥∥
(b)
≤ ∥qal,i − πθ(ai|s)∥ ∥µϕ(s)∥

Now, the gradient of the histogram loss, ∥∇LPG−CE(θ, s, a)∥, can be expressed as,∥∥∥∥∥∥∇θAπθ
(s, a)

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥ ≤ ∥Aπθ
(s, a)∥

k∑
j=1

∥∥∥∥∥∥∇wi

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥
+ ∥Aπθ

(s, a)∥

∥∥∥∥∥∥∇ϕ

 k∑
j=1

qal,j log pal,j

∥∥∥∥∥∥
(c)
≤ ∥Aπθ

(s, a)∥

 k∑
j=1
|qal,j − πθ(aj |s)|(∥µθ(s)∥+ l)


Here (c) follows directly by adding inequalities (a) and (b). The full gradient that we use is actually
an expectation over ∇LPG−CE(θ, s, a) under the state-action distribution of the current policy. We
thus upper bound the full gradient as:

∥Es∼dπθ
,a∼πθ(·|s) [∇LPG−CE(θ, s, a)] ∥ ≤ Es∼dπθ

,a∼πθ(·|s)

[
∥Aπ(s, a)∥

(
k∑

i=1

|qal (i) − πθ(ai|s)|(∥µθ(s)∥ + l)

)]

≤ max
(s,a)∈S×A

{
∥Aπ(s, a)∥

(
k∑

i=1

|qal (i) − πθ(ai|s)|(∥µθ(s)∥ + l)

)}

B Empirical Details

In this section, we provide additional details about the experiments that were deferred from the main
section.

B.1 Environment Details

In this section, we provide details of the evaluated environments.

1. Continuous Bandit: This domain has a single state and the reward is an unknown quadratic
function of a d-dimensional action. The range for possible actions in each dimension is
[amin, amax].

2. Linear quadratic regulator: LQR is a fundamental control problem in control theory.
In this domain, the transition dynamics are a linear function of the state and action with
Gaussian noise added. The reward is a quadratic function of the state and action. The
action space is 2 dimensional where each dimension is bounded between [−1, 1].
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3. Continous Mountain Car: In this domain, a toy car attempts to reach the top of a
mountain. The action space is 1 dimensional and is bounded between [−1, 1].

4. Continuous Acrobot: In this domain, an agent attempts to swing itself above a certain
height. The action space is 1 dimensional.

5. Reacher: In this domain, a robotic arm tries to reach a goal location. The action space is 2
dimensional and each dimension is bounded between [−1, 1].

6. HalfCheetah: In this domain, a cheetah-like robotic agent attempts to run as fast as
possible. The action space is 6 dimensional and each dimension is bounded between [−1, 1].

7. Ant: In this domain, an ant-like robotic agent attempts to run as fast as possible. The
action space is 8 dimensional and each dimension is bounded between [−1, 1].

B.2 Training Details

For the continous bandit environment, all the algorithms (Gaussian regression, softmax + 1-hot,
softmax + HL-Gauss) used a linear policy, used a batch size of 5, and all used a value function
baseline. Each algorithm was trained for 2000 interaction steps and the policy was evaluated every
interaction step. We tuned the following hyperparameters. For all algorithms, we swept over the
following values for the learning rate: {10−2, 5 · 10−2, 10−1, 1}. For the two classification methods,
we swept over the following number of bins: {50, 100, 200}. For softmax + HL-Gauss, we swept over
the following width multipliers: {0.1, 0.25, 0.5, 0.75, 1}.

For all the other environments, all the algorithms used the default neural network policy in sta-
blebaseline3 (Raffin et al., 2021), used a batch size of 20, and all used a value function baseline.
On LQR, Continuous MountainCar, Reacher, and Acrobot, all algorithms were trained for 500K
interaction steps and the policy was evaluated every 500 steps. On the HalfCheetah and Ant domain,
all algorithms were trained for 1M interaction steps and the policy was evaluated every 1000K
steps. For all these domains and algorithms, we swept over the following learning rate values:
{10−4, 3 ·10−4, 7 ·10−4, 10−3}. For the two classification methods, we swept over the following number
of bins: {50, 100, 200}. For softmax + HL-Gauss, we swept over the following width multipliers:
{0.01, 0.05, 0.1, 0.25, 0.5, 0.75}.

For all algorithms, our hyperparameter sweep is based on picking the hyperparameter combination
that led to the highest average undiscounted return (averaged across all trials) on the final step.

B.3 Hyperparameter Sensitivity Experiments

In this section, we show the sensitivity of the softmax + HL-Gauss algorithm when varying the
learning rate, number of bins (k), and width mutliplier (η). From Figure 2, we find that softmax +
HL-Gauss is sensitive to the learning rate, and performance can widely differ based on the value of
the learning rate. It is also sensitive to η, which determines the standard deviation of the histogram
Gaussian distribution, where if the standard deviation is too large (larger η), performance tends to
degrade, which is expected since the agent has a challenging time to converge to the optimal actions.
The method is quite robust to number of bins (k), where performance is generally stable across all k
values.

With regards to the baselines, we see in Figure 3 and Figure 4 that the Gaussian regression method
and softmax with 1-hot histogram loss are also sensitive to the learning rates. And softmax 1-hot is
similarly robust to number of bins as softmax + HL-Gauss.
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(a) Acrobot: Learning rate (b) Acrobot: k (c) Acrobot: η

(d) MountainCar: Learning rate (e) MountainCar: k (f) MountainCar: η

(g) Ant: Learning rate (h) Ant: k (i) Ant: η

(j) HalfCheetah: Learning rate (k) HalfCheetah: k (l) HalfCheetah: η

Figure 2: Hyperparameter sensitivity of softmax + HL-Gauss. Undiscounted training returns achieved
by softmax + HL-Gauss as a function of environment interaction steps for different hyperparameters.
Results are averaged over 20 trials and the shaded region represents the 95% confidence interval.
Higher is better.

B.4 Performance Profiles

In this section, we report the performance profiles of each algorithm across all trials and hyperpa-
rameters. These plots illustrate what fraction of the total runs of an algorithm led to a return of
greater than τ . In general, we find that the classification losses have a higher fraction of the runs
that achieve a high return than the regression loss.
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(a) Acrobot: Learning rate (b) Acrobot: k (c) MountainCar: Learn-
ing rate

(d) MountainCar: k

(e) Ant: Learning rate (f) Ant: k (g) HalfCheetah: Learning
rate

(h) HalfCheetah: k

Figure 3: Hyperparameter sensitivity of softmax + HL-1-hot. Undiscounted training returns achieved
by softmax + HL-Gauss as a function of environment interaction steps for different hyperparameters.
Results are averaged over 20 trials and the shaded region represents the 95% confidence interval.
Higher is better.

(a) Acrobot: Learning rate (b) MountainCar: Learning rate

(c) Ant: Learning rate (d) HalfCheetah: Learning rate

Figure 4: Hyperparameter sensitivity of the Gaussion regression method. Undiscounted training
returns achieved by softmax + HL-Gauss as a function of environment interaction steps for different
hyperparameters. Results are averaged over 20 trials and the shaded region represents the 95%
confidence interval. Higher is better.

B.5 Evaluation Returns

In this section, we report (Figure 6) the undiscounted return achieved by the deterministic policy as
a function of environment interaction steps.
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(a) Bandit (d = 2) (b) Acrobot (d = 1) (c) Mountain Car (d = 1)

(d) Reacher (d = 2) (e) HalfCheetah (d = 6) (f) Ant (d = 8)

Figure 5: Performance profiles of all the algorithms across all 20 trials and hyperparameter combina-
tions.. SM is a softmax policy and HL is the histogram loss. Higher is better. For each domain, we
also give the action-dimensionality, d.

(a) Bandit (b) LQR (c) Acrobot (d) Reacher

(e) Mountain Car (f) Ant (g) HalfCheetah

Figure 6: Highest undiscounted evaluation returns achieved by each algorithm as a function of
environment interaction steps after a hyperparameter sweep. Results are averaged over 20 trials and
the shaded region represents the 95% confidence interval. Higher is better. The optimal return can
be computed exactly in the Bandit and LQR settings.

B.6 Remaining Training Return Result

Due to space limitations, we include the training returns achieved in Acrobot in this section.
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(a) Acrobot (d = 1)

Figure 7: Highest undiscounted training returns achieved by each algorithm as a function of
environment interaction steps after a hyperparameter sweep. SM is a softmax policy and HL is the
histogram loss. Results are the mean averaged over 20 trials and the shaded region represents the
95% confidence interval. Higher is better.

B.7 Sensitivity to Advantage Noise and Action Dimensionality

This subsection examines the sensitivity of different methods to noise in the advantage function
estimate as well as the dimensionality of the agent’s action space. We use the stateless continuous
bandit domain for these experiments and keep all hyper-parameters fixed at their default values
that were tuned for the experiments in the preceding subsection. In this domain, the reward is
r(a)← 25− 1

d (a−5)2 +ϵ where ϵ ∼ N (0, σ) and the default values of d and σ are 2 and 1 respectively.
To determine sensitivity to advantage noise and dimensionality, we independently vary the standard
deviation, σ, of the reward received following each action and the dimensionality respectively.

(a) Reward Noise (b) Dimensionality (c) Gaussian Initialization (d) Gaussian Exploration

Figure 8: Environment sensitivity and exploration ablation studies. Error bars give a 95% confidence
interval over 50 trials. For the sensitivity experiments, we report area under the curve where higher
indicates faster and more stable learning, though it may hide nuance in the final performance.

Figure 8a shows that HL-Gauss is generally more insensitive to reward noise whereas Gaussian
policies are strongly affected by it. Figure 8b shows that HL-Gauss is generally less sensitive to
the dimensionality of the action space. Gaussian policies are strongly affected by action space
dimensionality.

B.8 Exploration vs Optimization

The use of histogram losses for policy gradient learning is qualitatively different than past studies
because the softmax representation does not just affect policy optimization but also affects the data
distribution of the learning agent. This observation motivates our second empirical question on
disentangling the benefits of exploration from ease of optimization.

To answer our question, we use the Bandit domain and repeat our main experiment under two
additional conditions.
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1. Init Gaussian. We initialize softmax policies to approximate the same initial Gaussian
distribution that Gaussian policies use.

2. Gaussian Exploration At each iteration, we transform the softmax policy into a Gaussian
policy and sample actions from this policy for exploration. To compute the Gaussian
exploration policy, we compute the mean and variance of bin centers under the softmax
distribution. This mean and variance then parameterize the Gaussian exploration distribution.

Figure 8c and Figure 8d show learning curves under Init Gaussian and Gaussian Exploration
respectively. Both cross-entropy methods perform slightly worse with the Gaussian initialization
suggesting that these methods have wider initial exploration in our base setting. With Gaussian Ex-
ploration, we observe that Gaussian and HL-Gauss learn at a similar rate for the first approximately
200 time-steps, however, whereas Gaussian becomes unstable, HL-Gauss smoothly converges close
to the optimal action. We understand this result to indicate that 1) gains in the base experiment
setting can be partially ascribed to improved initial exploration as the gains vanish when exploration
is controlled, and 2) the HL-Gauss loss also increases stability which helps learning beyond just
exploration benefits. Finally, we observe that HL-1-Hot lags slightly behind other methods but
actually converges closer to optimal than it does with softmax exploration. We suspect that this
result is due to the fact that the Gaussian exploration adds information about how close different
actions are to one another.

B.9 Assets and Software

We implement REINFORCE with the three loss functions using the stabelebaselines-3 framework
(Raffin et al., 2021), which uses pytorch for auto-differentiation (Paszke et al., 2019). The HL-Gauss
code was built upon the code by Farebrother et al. (2024). All the environments were implemented
within the gymnasium framework (Towers et al., 2023). We use the rlliable code for plotting (Agarwal
et al., 2021).

B.10 Hardware For Experiments

For all experiments, we used the following compute infrastructure:

• Distributed cluster on HTCondor framework

• Intel(R) Xeon(R) CPU E5-2470 0 @ 2.30GHz

• RAM: 5GB

• Disk space: 5GB

C Related Work

Several related ideas to the contributions of our paper have been previously explored in the literature.

Policy Search as Supervised Learning We have shown how stochastic policy gradient algorithms
with Gaussian policy representations can be viewed as implicitly solving a regression problem. A
number of prior works have tried to recast RL as supervised learning. Peters and Schaal (2007)
derive the reward-weighted regression algorithm in order to cast policy search in continuous control
spaces as a weighted regression problem. Recent works such as MPO (Abdolmaleki et al., 2018),
advantage-weighted regression (Peng et al., 2019), and advantage-weighted actor-critic (Nair et al.,
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2021) use similar derivations to develop policy search methods that implicitly solve least-squares
optimization problems when using Gaussian policies. An alternative approach to RL as SL is
upside-down RL that proposes to learn a policy π(s, g) by regressing state-return pairs to the action
taken in state s before ultimately receiving return g. The optimal action for state s is then predicted
as π(s, g⋆) (Schmidhuber, 2020). Upside-down RL is also the basis for the decision-transformer
approach to offline and online RL (Chen et al., 2021). Our study is complementary to these prior
works in its focus on recasting implicit regression as classification in policy search.

Recasting Regression as Classification In the supervised learning literature, several works
have studied the empirical and theoretical benefits of replacing the least-squares regression loss
with a cross-entropy classification loss. Our approach most closely follows the approach of Imani
and White (2018); Imani et al. (2024) due to our use of the HL-Gauss loss as a means to preserve
the spatial structure of the action space. Zhang et al. (2023) found that the cross-entropy loss
encouraged better representations in regression problems and Pintea et al. (2023) found that casting
regression as classification helped with class imbalances. While these findings are focused on the
supervised-learning case and 1-hot cross-entropy losses, it would be interesting to see whether similar
benefits can be found in policy gradient learning. Lastly, we note that a number of applied works,
primarily in computer vision, have found classification formulations of regression to give superior
empirical performance (Cao et al., 2018; Kendall et al., 2017; Li et al., 2022; Rothe et al., 2015, e.g.,).
The policy gradient learning setting is quite different from supervised learning as the function we are
learning also directly determines the data distribution being learned over.

Alternatives to Gaussian Policies in Continuous Action Domains In order to recast
continuous action policy gradient learning as a classification problem, we discretized each dimension
of the action-space and learned softmax policies over each dimension. As mentioned in the introduction,
naive discretization can lead to an exponentially sized action space that would make it intractable
to represent the policy. One prior work has addressed this increase in the size of the action space
by sequentially selecting the discretized action for each dimension (Metz et al., 2019). Though
Metz et al. (2019) introduced this approach to enable q-learning (Watkins and Dayan, 1992) in
continuous action domains, it would be interesting to consider new policy parameterizations based
on this approach that could be trained with classification losses. Alternative policy distributions
such as truncated Gaussians (Fujita and Maeda, 2018), Beta distributions (Chou et al., 2017),
and non-parametric distributions Tessler et al. (2019) have also been explored as alternatives to
the Gaussian representation. Continuous actions can be directly sampled from these distributions
and it would be interesting to investigate if our findings pertain in some form to these alternative
representations.
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