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ABSTRACT

Mainstream Test-Time Adaptation (TTA) methods for adapting vision-language
models, e.g., CLIP, typically rely on Shannon Entropy (SE) at test time to mea-
sure prediction uncertainty and inconsistency. However, since CLIP has a built-in
bias from pretraining on highly imbalanced web-crawled data, SE inevitably re-
sults in producing biased estimates of uncertainty entropy. To address this issue,
we notably find and demonstrate that Tsallis Entropy (TE), a generalized form
of SE, is naturally suited for characterizing biased distributions by introducing a
non-extensive parameter q, with the performance of SE serving as a lower bound
for TE. Building upon this, we generalize TE into Adaptive Debiasing Tsallis
Entropy (ADTE) for TTA, customizing a class-specific parameter ql derived by
normalizing the estimated label bias from continuously incoming test instances,
for each category. This adaptive approach allows ADTE to accurately select high-
confidence views and seamlessly integrate with label adjustment strategy to en-
hance adaptation, without introducing distribution-specific hyperparameter tun-
ing. Besides, our investigation reveals that both TE and ADTE can serve as direct,
advanced alternatives to SE in TTA, without any other modifications. Experimen-
tal results show that ADTE outperforms state-of-the-art methods on ImageNet and
its five variants, and achieves the highest average performance on 10 cross-domain
benchmarks, regardless of the model architecture or text prompts used. Our code
is available at https://github.com/Jinx630/ADTE.

1 INTRODUCTION

Vision-Language Models (VLMs) (Radford et al., 2021; Wu et al., 2022; Zeng et al., 2024; Wu et al.,
2025d; Li et al., 2025; Jiang et al., 2025; Yu et al., 2025; Zeng et al., 2025b), pretrained on large-scale
datasets (Sharma et al., 2018; Schuhmann et al., 2022), exhibit remarkable generalization abilities
across various downstream tasks. Despite this, they are susceptible to performance degradation when
confronted with considerable discrepancies between training and testing domains. To mitigate this,
a technology known as Test-Time Adaptation (TTA) (Shu et al., 2022; Zhu et al., 2024; Zhou et al.,
2025; Wu et al., 2025c), enables models to adapt instantaneously to diverse instance distributions
during testing, in contrast to earlier prompt learning techniques (Zhou et al., 2022; Hu et al., 2023;
Xing et al., 2024; Wu et al., 2024; Huang et al., 2024) that require complex training procedures.

Among these representative TTA works, TPT (Shu et al., 2022) and its enhancement, DiffTPT (Feng
et al., 2023), learn instance-level prompts by selecting high-confidence augmented views for each
test instance. Zero (Farina et al., 2024) simplifies the TTA process, demonstrating that the prediction
of the marginal probability distribution remains approximately invariant under entropy minimiza-
tion. ML-TTA (Wu et al., 2025c), equipped with Bound Entropy Minimization (BEM), enables the
adaptation of multi-label instances. The central idea is to select lower entropy views as the high-
confidence views, aiming to reduce uncertainty among these views, a readily demonstrable theory.
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Figure 1: (a) VLM bias, showing higher confidence and accuracy for head classes and lower confidence and
accuracy for tail classes. (b) The standard Shannon Entropy (SE)-based method is widely used in TTA. (c)
and (d) Our proposed method, which uses Tsallis Entropy (TE) and Adaptive Debiasing Tsallis Entropy (ADTE)
for selecting high-confidence views.

However, VLMs (e.g., CLIP), as discussed in research (Allingham et al., 2023; Parashar et al., 2024;
Zhu et al., 2023; 2024; Wu et al., 2025a; Ke et al., 2025), are pretrained on imbalanced web-scale
datasets, inevitably possessing inherent prediction bias. This bias causes the model to consistently
exhibit low/high confidence in the tail/head categories, leading to lower/higher accu-
racy, as shown in Figure 1 (a). For this reason, during the TTA process, the predicted probability
for a category l, denoted as p, may significantly differ from its true unbiased probability p̂ (i.e.,
|p − p̂| > 0). Methods based on Shannon Entropy (SE), defined as HSE = −

∑
l p logp, are im-

pacted because their entropy calculations rely on these potentially biased probabilities p. Moreover,
from its definition, SE fails to account for varying degrees of bias in probabilities across different
classes (i.e., head, middle, and tail classes). Instead, SE applies a uniform computation for-
mula (−p logp) across all probabilities, as shown in Figure 1 (b). As a result, in TTA methods that
rely on SE, the entropy values estimated for each augmented view are themselves biased. This bias,
in turn, affects the selection of high-confidence views from a set of augmented views.

Our first key observation is that Tsallis Entropy (TE) (Tsallis, 1988; 1998), a generalization of SE,
is well-suited for characterizing uncertainty in the presence of biased distributions. By introducing
an additional parameter q1, TE can characterize likelihoods exhibiting statistical dependence and
effectively mitigate the impact of bias. First, we demonstrate that TE is a limiting case of SE when
q → 1. On the other hand, when q < 1, TE tends to select more confident views (characterized
by higher TcrK in Definition 1), implying that the performance of SE can be regarded as a lower
bound for that of TE. In other words, there must exist an appropriate parameter q̂ such that models
using TE outperform those using SE in the selection of high-confidence views. Subsequently, we
demonstrate that when q < 1, TE can effectively alleviate the impact of inherent bias for VLMs.

However, there are two major difficulties in applying TE in TTA practice: (i) manually tuning the
optimal value of q in standard TE is impractical for various test distributions; and (ii) the optimal
parameter q̂ for each category may also differ, since each category is affected by bias differently,
as discussed earlier. Therefore, we generalize TE into Adaptive Debiasing Tsallis Entropy (ADTE)
for TTA, customizing a class-specific ql for category l, as shown in Figure 1 (d). These parameters
are derived via min–max normalization of the estimated label biases from continuously incoming
test instances. Significantly, both TE and ADTE can serve as direct, advanced alternatives to SE and
integrate seamlessly with the logit adjustment strategy to enhance adaptation performance. Experi-
ments show that, irrespective of the model architecture or text prompts employed, ADTE surpasses
the SOTAs on ImageNet and its five variants, achieving the highest average performance across 10
cross-domain benchmarks.

2 RELATED WORKS

Test-Time Adaptation (TTA). TTA methods (Shu et al., 2022; Karmanov et al., 2024; Zhu et al.,
2024; Wu et al., 2025c; Zhou et al., 2025) dynamically adjust pre-trained models using unlabeled
test data during inference, e.g., detection (Ouyang et al., 2024; Zhao, 2024; Edstedt et al., 2024;
Zhao et al., 2026) tasks. TTA has been explored in various settings, including “fully” TTA (Wang
et al., 2021; Zhao et al., 2023a), “online” TTA (Lee & Chang, 2024; Lee et al., 2024a), and “con-
tinuous” TTA (Liu et al., 2024; Song et al., 2023). TPT (Shu et al., 2022) is one of the first works

1q is called non-extensive parameter in the literature (Tsallis, 1988; 1998).
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to apply prompt tuning for adapting VLMs to previously unseen distributions. Zero (Farina et al.,
2024) demonstrates that minimizing entropy does not alter the dominant class prediction, providing
a theoretical basis for this approach. Other works have introduced new techniques: Frolic (Zhu
et al., 2024) uses label-free prompt distribution learning and bias correction, ML-TTA (Wu et al.,
2025c) employs a bound entropy minimization objective in multi-label scenarios, and BCA (Zhou
et al., 2025) leverages Bayesian principles to refine predictions as new data arrives.

Entropy-based Uncertainty Minimization in Adaptation. Entropy Minimization (EM) (Grand-
valet & Bengio, 2004; Berthelot et al., 2019; Gilo et al., 2024; Yang et al., 2024; Wan et al., 2024;
Wu et al., 2025b; Dai et al., 2025; Zeng et al., 2025a) is a common strategy for reducing prediction
uncertainty and promoting clearer decision boundaries. Early work (Grandvalet & Bengio, 2004)
used minimum entropy regularization to leverage unlabeled data, while MME (Saito et al., 2019)
and Tent (Wang et al., 2021) showed its effectiveness for adapting to varied test distributions. Re-
cently, Tsallis Entropy (TE) has emerged as an alternative with a tunable parameter q controlling
the sharpness of the entropy landscape. In domain adaptation and self-training (Lu et al., 2023; Liu
et al., 2021; Lee et al.; Zhao et al., 2023b), TE has been optimized to improve pseudo-label reliabil-
ity and robustness to noise in supervised or source-free settings, focusing on feature representation
learning. While EM minimizes standard Shannon entropy, TE offers a more flexible formulation
that may extend to online test-time adaptation.

Logit Adjustment (LA). LA (Menon et al., 2021; Li et al., 2022; Zhao et al., 2024; Xu et al., 2024;
Jia et al., 2024; Miao et al., 2024) is primarily used for long-tailed recognition and class-imbalanced
learning. It adjusts a model’s logits to compensate for biases caused by imbalanced training data.
GCL (Li et al., 2022) adds a Gaussian perturbation to logits, giving larger perturbations to tail
classes to enhance their gradient contribution. LoTNext (Xu et al., 2024) introduces graph-based and
long-tailed loss adjustments to improve spatial and temporal prediction. HTC (Jia et al., 2024) ad-
dresses the long-tail issue with candidate label set disambiguation, class distribution estimation, and
classifier weight estimation. COCL (Miao et al., 2024) combines debiased large-margin learning and
outlier-class-aware logit calibration to effectively mitigate biases. We employ the logit adjustment
to estimate the class-specific parameter ql for each category in Tsallis Entropy.

3 PRELIMINARIES

Consider the CLIP (Radford et al., 2021) model pretrained on Dtrain := {(xtrain
i ,ytrain

i ) | xtrain
i ∈

X train,ytrain
i ∈ Y train}M train

i=1 and a downstream test set Dtest := {(xtest
i ,ytest

i ) | xtest
i ∈ X test,ytest

i ∈
Y test}M test

i=1 , which may follow an arbitrary distribution. We illustrate the standard Test-Time Adap-
tation (TTA) process with Zero (Farina et al., 2024), which consists of Random view augmentation,
Confident views selection, and Confident views ensemble.

Random View Augmentation. Given a test instance xtest from Dtest and a set A of N random
augmentation functions, xtest is augmented N times to create a set of diverse views, which are
denoted as Xtest := {xtest

j | xtest
j = Aj(x

test)}Nj=1.

Confident Views Selection. In information theory, Shannon Entropy (SE, (Shannon, 1948)) is com-
monly used to quantify uncertainty2. For each view, uncertainty is measured by SE, defined as:

HSE(P(· | xtest
j )) = −

L∑
l=1

P(y = l | xtest
j ) log[P(y = l | xtest

j )], (1)

where l ∈ Y test denotes a class label, and L is the number of classes in the test set. The core of
Zero (Farina et al., 2024) lies in minimizing the marginal entropy over the prediction distributions
corresponding to the selected high-confidence augmented views (i.e., views with lower entropy) by
a ratio τ , which reduces the model’s uncertainty and prediction inconsistency across these views.
However, due to the inherent prediction bias of models like CLIP, the estimated SE values for head
or tail categories are themselves biased. This bias in SE estimation, in turn, affects the selection
of high-confidence views.

2Thermodynamic entropy, an earlier concept, is typically expressed via Boltzmann-Gibbs-Shannon entropy
HBGS = −k

∑
i pi log pi, where k is the Boltzmann constant. HBGS is mathematically identical to Shannon

Entropy, but generally less familiar to the machine learning community
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Confident Views Ensemble. Unlike TPT (Shu et al., 2022), which uses high-confidence views to
update the model’s prompts during TTA, Zero (Farina et al., 2024) simplifies the TTA process. It
argues that the updated model’s prediction remains invariant under entropy minimization, which
allows the final prediction to be obtained by directly aggregating the high-confidence views. The
model then immediately adapts to the next test instance. Due to its simplicity and effectiveness, SE
has become a standard metric for high-confidence view selection in recent TTA methods.

4 METHOD

4.1 TSALLIS ENTROPY

When multiple probability distributions are involved, Shannon entropy HSE quantifies total uncer-
tainty under the extensivity assumption, meaning that the entropy of independent parts simply adds,
i.e., HSE({A,B}) = HSE(A) + HSE(B). In the real world, such as with biased model predic-
tions, this additive property does not hold. To capture such non-extensivity, TE generalizes SE by
introducing a parameter q that characterizes the degree of non-additivity, defined as:

HTE(P(· | xtest
j )) =

1

1− q

(
L∑

l=1

P(y = l | xtest
j )q − 1

)
, (2)

where q ∈ R is the additional hyperparameter. Using TE, the total entropy can be calculated as
HTE({A,B}) = HTE(A) + HTE(B) + (1 − q)HTE(A)HTE(B), where the additional term (1 −
q)HTE(A)HTE(B) is used to characterize influence between components. We first demonstrate that
TE possesses the following crucial properties, which make SE the lower bound in performance
for TE. In other words, there exists an appropriate parameter q̂ for which models based on TE are
capable of selecting more accurate and confident views compared to those relying on SE.

▶ Top-K Cumulative Reliability:

Definition 1. VLMs like CLIP classify images by computing similarity scores between an image
and “a photo of {classes}”. For an augmented view xtest

j , the similarity with a class l is z⊤l x
test
j ,

where z⊤l denotes the textual embedding representing class l. We denote the Top-K Cumulative
Reliability TcrK as the sum of the K highest similarity scores. Mathematically, it is given by:

TcrK(xtest
j ) =

∑
l∈TK

z⊤l x
test
j , (3)

where TK is the set of indices corresponding to the K highest similarity scores. Actually, CLIP
typically achieves an extremely high Top-K (e.g., K=5 or K=10) accuracy, indicating that although
CLIP may not always predict the exact label, it is proficient at generating a candidate set that
contains the correct label.

Figure 2: Comparison between SE and TE.

▶ Shannon-Tsallis q → 1 Equivalence:

Property 1. As q → 1, TE becomes equivalent to SE:
lim
q→1

HTE(P(· | xtest
j )) = HSE(P(· | xtest

j )). (4)

See the Appendix B.1 for the detailed proof. Property 1
demonstrates that TE is a generalization of SE, as illus-
trated in Figure 2 for a case with two classes. This property
confirms that TE is consistent with the well-established
SE theory and can be used to analyze more intricate non-
extensive probability distributions by adjusting q.

▶ Higher TcrK under TE as q ↘ and Comparison with SE:

Property 2. Through experimental analysis, we find that as the parameter q decreases, the set of
high-confidence views selected by TE tends to have a higher average TcrK value (for K > 1). For
two different parameter values q1 and q2 with q1 < q2, and their corresponding selected view sets
Xq1 and Xq2 of equal size, we observe:

1

|Xq1 |
∑

x1∈Xq1

TcrK(x1) >
1

|Xq2 |
∑

x2∈Xq2

TcrK(x2). (5)
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Furthermore, there exists a particular q∗ and corresponding view set X TE
q∗ , TE outperforms SE in

this regard, with the view set selected by SE denoted as X SE:
1

|X TE
q∗ |

∑
x1∈X TE

q∗

TcrK(x1) >
1

|X SE|
∑

x2∈X SE

TcrK(x2). (6)

See the Appendix B.2 for the detailed experimental analysis. Property 2 indicates that, in contrast
to SE, TE tends to select views with higher TcrK , and the corresponding ground truth has a higher
similarity level. The core objective of TTA is to select the most confident and accurate views.

4.2 CORRECTING BIASED ENTROPY EFFECT WITH TE

With the theoretical properties of TE established, we now investigate how its additional parameter
q can mitigate the biased entropy effect observed with SE in VLMs. For a tail category, the
biased prediction p and unbiased prediction p̂ are both close to 0, with p̂ > p (based on empirical
results; this is likely due to the CLIP model being very uncertain about tail predictions, as shown
in Figure 1 (a)). This results in a biased entropy value, where (−p̂ log p̂)− (−p logp) > 0.

To analyze the effect of TE, we rewrite Equation 2 to examine the entropy value of each category:

HTE(P) =

∑L
l=1 P

q
l − 1

1− q
=

L∑
l=1

Pq
l

1− q
− 1

1− q
=

L∑
l=1

Pq
l

1− q
−C, (7)

where Pq
l := P(y = l | xtest

j )q , and C is a constant. Since the constant C does not affect the ranking
of entropy values, we can focus only on the term pq

1−q . For TE to correct the bias of SE, we require

the inequality F(p, q) = pq

1−q − (−p logp) > 0 to hold. The numerical value of F(p, q) reflects the
degree to which TE corrects the bias entropy of SE. We analyze the behavior of this function for a
tail category probability p ∈ (0, ϵ), where ϵ > 0 is a small value:

▶ (1).As q→+∞, we have limp→0+ F(p, q) = 0− and ∀q1<q2<+∞,⇒F(p, q1)<F(p, q2)<0.

▶ (2).As q→1+, we have limp→0+ F(p, q)=−∞ and ∀1<q1<q2,⇒F(p, q1)<F(p, q2)<0.

▶ (3).As q→0+, we have limp→0+ F(p, q)=1− and ∀0<q1<q2,⇒F(p, q1)>F(p, q2)>0.

▶ (4).As q→1−, we have limp→0+ F(p, q)=+∞ and ∀q1<q2< 1,⇒F(p, q2)>F(p, q1)>0.

See the Appendix B.3 for the detailed proof. Based on Property 1 (when q → 1, TE and SE become
equivalent), conclusions (2) and (4) are not applicable. Conclusion (1) also does not meet our
requirements since F(p, q) < 0. Conclusion (3) shows that when 0 < q < 1, TE can naturally
mitigate the effect of VLM bias, with the correction magnitude increasing as q decreases.
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Figure 3: TE at different q values vs. SE; the red dashed line marks the optimal q of TE.

4.3 ADAPTIVE DEBIASING TSALLIS ENTROPY (ADTE)

A limitation of the standard TE formulation is that q is a manually-tuned hyperparameter. A value
of q > 1 can exacerbate the bias, while a value too close to 0 can overcorrect it. As shown in
Figure 3, the optimal q varies across different test distributions, making manual tuning impractical
in a streaming environment. To address this, we generalize TE into Adaptive Debiasing Tsallis
Entropy (ADTE), which customizes a class-specific parameter ql for each category l, allowing the
model to adapt to any test distribution. Building upon Equation 7, ADTE is defined as:

HADTE(P) =

L∑
l=1

Pql

l

1− ql
. (8)
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Algorithm 1 Estimating the bias b

1: Input: Estimated Ex∼P(x|l′ )[P(l|x)],
maximum number of iteration T , con-
vergence threshold ε

2: Output: Estimated b
3: all′ := Ex∼P(x|l′ )[P(l|x)]
4: p̃(0) ← [ 1

|Y test| , . . . ,
1

|Y test| ]

5: for t: 0, . . . , T − 1 do
6: p̃

(t+1)
l ←

∑
l′∈Y test p̃

(t)
l′ · all′

7: p̃(t+1) ← p̃(t+1)/∥p̃(t+1)∥1
8: if ∥p̃(t+1) − p̃(t)∥1 ≤ ε then
9: break

10: end if
11: end for
12: return − log p̃(t)

Algorithm 2 Pipeline of Adaptive Debiasing Tsallis
Entropy (ADTE) for Test-Time Adaptation (TTA)

1: Input: Estimated bias b, test input image xtest,
the number of image augmentation N , the num-
ber of selected confident views Nv

2: Output: Prediction ŷ
3: views set Xtest ← augment(xtest, num views=N)
4: Calculate P(·|xtest

j ), ∀xtest
j ∈ Xtest

5: Calculate ql for each class with Equation 13
6: Calculate HADTE(P(·|xtest

j )), ∀xtest
j ∈ Xtest with

Equation 8
7: Confident views set X̂test ← top Nv views with

the smallest HADTE values
8: P̃←aggregate({P(·|x̂test

j )| ∀x̂test
j ∈ X̂test})

9: ŷ ← argmaxl P̃(y = l|·)
10: return ŷ

Based on our analysis in Section 4.2, when 0 < q < 1, TE can alleviate the impact of bias, and
a smaller value of ql results in a greater degree of correction. The magnitude of this correction
depends directly on the prediction bias of the category. Therefore, we can deduce the relationship
between the prediction bias and the corresponding ql value for each category:

▶ Head class lH, dis[PlH , P̂lH ] > 0,PlH → 1,PlH > P̂lH

▶ Tail class lT, dis[PlT , P̂lT ] > 0,PlT → 0,PlT < P̂lT

}
⇒ −p log(p) < −p̂ log(p̂), (9)

where the term dis[a, b] represents the size of the bias between a biased prediction a and the true
unbiased prediction b. The size of this bias is inversely proportional to (−p logp) − (−p̂ log p̂),
and as dis[·, ·] increases, the information entropy (−p logp) for category l is increasingly under-
estimated, which requires a smaller ql for effective correction.

Therefore, the class-specific parameter ql can be calculated indirectly by estimating the bias for each
category. We adopt the bias estimation method from Frolic (Zhu et al., 2024) as follows. First, we
estimate the prior probability of each class, p̃l = P(l), by solving the following linear equation:

p̃l =
∑

l′∈Y test

p̃l′ · Ex∼P(x|l′ )[P(l | x)]. (10)

A memory bank with size M is maintained to store and update continuously incoming test instances
for calculating Ex∼P(x|l′ )[P(l | x)] in 10. Since true labels in Y test are not available, we use

pseudo-labels l̂(x) := argmaxl P(y = l | x) as a substitute, following the approach Frolic (Zhu
et al., 2024), i.e.:

Ex∼P(x|l′ )[P(l | x)] = 1

Nl′

∑
x|l̂(x)=l′

P(l | x), (11)

where P(l | x) is predicted by the model and Nl′ =
∑

x|l̂(x)=l′ 1. We solve for p̃l using Jacobi

iteration, with a uniform initialization p̃
(0)
l = 1

|Y test| , ∀l ∈ Y
test. The iteration is given by:

p̃
(t+1)
l =

∑
l′∈Y test

p̃
(t)

l′
· Ex∼p(x|l′ )[P(l | x)]. (12)

In each iteration, we perform L1 normalization over p̃(t) = [p̃
(t)
1 , . . . , p̃

(t)
|Y test|]

⊤ so that its L1 norm
equals 1. The iterative process terminates when the maximum number of iterations is reached or
when the convergence condition ∥p̃(t+1) − p̃(t)∥1 ≤ ε is met, where ε is the convergence threshold.

Combining this with Section 4.2, we normalize the estimated bias vector p̃ for all categories into the
interval (0, 1). A larger bias p̃l corresponds to a smaller ql. We use min-max normalization to map

6
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the bias values to the parameter range:

ql = α+ (β − α)
− log p̃l −min(p̃)

max(p̃)−min(p̃)
, (13)

where α and β define the normalization interval. After computing the class-specific parameter
ql, we plug it into Equation 8 to calculate HADTE for each augmented view, which is then used
to select high-confidence views. After obtaining the probability distributions of the selected high-
confidence views, we simply average (aggregate) these distributions to produce the final prediction.
The algorithm for estimating the bias p̃ is summarized in Algorithm 1, and the overall TTA pipeline
is summarized in Algorithm 2.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Benchmarks. Two standard benchmarks: (a) Out-of-Distribution (OOD): evaluates generaliza-
tion to distributions different from training, including ImageNet (Deng et al., 2009) and variants
(ImageNet-A (Hendrycks et al., 2019), -V2 (Recht et al., 2019), -R (Hendrycks et al., 2020), and
-K (Wang et al., 2019)); (b) Cross-Domain: classification across diverse domains—generic objects
(Caltech (Fei-Fei et al., 2005)), scenes (SUN (Xiao et al., 2010)), textures (DTD (Cimpoi et al.,
2014)), satellite images (EuroSAT (Helber et al., 2019)), actions (UCF (Soomro et al., 2012)), and
five fine-grained datasets (Pets (Parkhi et al., 2012), Cars (Krause et al., 2013), Flowers (Nilsback &
Zisserman, 2008), Food (Bossard et al., 2014), Aircraft (Maji et al., 2013)).

Implementation Details. Following (Farina et al., 2024; Zhu et al., 2024), we use pretrained CLIP
(ViT-B/16, ViT-L/14), with ViT-B/16 serving as the default model for ablation studies. For a
fair comparison, we use two types of text prompts: hand-crafted templates from methods (Shu et al.,
2022; Farina et al., 2024; Karmanov et al., 2024; Zhou et al., 2025), and text descriptions generated
by GPTs, as in CuPL (Pratt et al., 2023; Zhu et al., 2024). We do not tune any hyperparameters,
instead adopting the setup from Zero (Farina et al., 2024), with N = 64 augmented views and
a confidence-based filtering ratio of 0.1. The memory bank size for each category is set to 10.
The normalization interval for the class-specific parameter ql is [0.01, 0.9]. All experiments were
conducted on a single NVIDIA A100 GPU, with results averaged over 3 seeds.

5.2 COMPARISONS WITH STATE-OF-THE-ART

Table 1: Accuracy comparison (%) on ImageNet and its variants for CLIP ViT-B/16 and ViT-L/14.

Method IN IN-V2 IN-K IN-A IN-R Average OOD Avg

CLIP [ICML 2022] 68.7 62.2 48.3 50.6 77.7 61.5 59.7
TPT [NeurIPS 2022] 68.9 63.4 47.9 54.7 77.0 62.4 60.8
TDA [CVPR 2024] 69.5 64.6 50.5 60.1 80.2 65.0 63.9
Zero [NeurIPS 2024] 70.9 65.1 50.3 64.0 80.8 66.2 65.0
Dyna [ICLR 2025] 69.6 64.7 48.2 56.2 78.2 63.4 61.8
BCA [CVPR 2025] 70.2 64.9 50.9 61.1 80.7 65.6 64.4V

iT
-B

/1
6

ADTETemplates 71.8 65.6 53.5 65.5 81.4 67.5 66.5

CuPL [ICCV 2023] 69.9 64.4 49.4 59.7 79.5 64.6 63.3
Frolic [NeurIPS 2024] 70.9 64.7 53.3 60.4 80.7 66.0 64.8
ADTECuPL 72.7 66.2 54.3 63.5 80.9 67.5 66.2

CLIP [ICML 2022] 75.9 70.2 59.7 70.9 87.9 72.9 72.2
TPT [NeurIPS 2022] 75.5 70.0 59.8 74.7 87.9 73.6 73.1
TDA [CVPR 2024] 76.3 71.5 61.3 77.9 89.8 75.4 75.1
Zero [NeurIPS 2024] 77.2 71.9 61.1 80.7 90.2 76.2 75.9
ADTETemplates 77.8 72.8 63.5 81.1 90.6 77.2 77.0V

iT
-L

/1
4

CuPL [ICCV 2023] 76.2 71.9 60.7 77.9 89.6 75.3 75.0
Frolic [NeurIPS 2024] 77.4 72.5 63.1 78.9 90.3 76.4 76.2
ADTECuPL 78.2 73.3 63.9 81.0 90.4 77.4 77.2

We compare ADTE with several state-of-the-art methods on both OOD and cross-domain bench-
marks, including CLIP (Radford et al., 2021), TPT (Shu et al., 2022), TDA (Karmanov et al., 2024),
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Zero (Farina et al., 2024), Dyna (Xiao et al., 2025), BCA (Zhou et al., 2025), CuPL (Pratt et al.,
2023) and Frolic (Zhu et al., 2024). We present results for ADTE using both types of text prompts.

Results on the OOD Benchmark. In Table 1, ADTE consistently outperforms other methods on
both ViT-B/16 and ViT-L/14 backbones, and with both template-based and text-description-
based prompts. On ImageNet-1k, ADTETemplates achieves 71.8% accuracy, 0.9% higher than
Zero. ADTECuPL reaches 72.7%, outperforming Frolic by 1.8%. For OOD datasets, ADTETemplates
surpasses state-of-the-art methods on IN-V2 (65.6% vs Zero’s 65.1%), IN-K (53.5% vs BCA’s
50.9%), IN-A (65.5% vs Zero’s 64.0%), and IN-R (81.4% vs Zero’s 80.8%). ADTECuPL also
consistently outperforms Frolic on all datasets, with a significant 3.1% lead on IN-A. For the
ViT-L/14 backbone, ADTETemplates achieves 77.2% average accuracy and 77.0% OOD average
accuracy, both 1.1% higher than Zero. Compared to Frolic, ADTECuPL shows the best performance
with 77.4% overall average and 77.2% OOD average, confirming its consistent superiority.

Table 2: Accuracy comparison (%) on 10 cross-domain datasets for CLIP ViT-B/16 and ViT-L/14.

Method

Pe
ts.

Fl
ow

.

Ai
rc

.

DT
D.

Eu
ro

.

Ca
rs

.

Fo
od

.

SU
N.

Ca
lt.

UC
F. Avg.

CLIP [ICML 2022] 88.9 70.4 24.8 44.3 47.7 65.2 86.1 62.5 92.9 66.7 64.9
TPT [NeurIPS 2022] 87.7 68.9 24.7 47.7 42.4 66.8 84.6 65.5 94.1 68.0 65.0
TDA [CVPR 2024] 88.6 71.4 23.9 47.4 58.0 67.2 86.1 67.6 94.2 70.6 67.5
Zero [NeurIPS 2024] 87.2 66.8 24.4 45.9 43.8 68.5 84.6 66.9 94.1 68.6 65.1
Dyna [ICLR 2025] 88.3 69.9 24.3 48.0 42.3 67.7 85.4 66.3 94.3 68.7 65.5
BCA [CVPR 2025] 90.4 73.1 28.6 53.5 56.6 66.8 86.0 68.4 94.7 67.6 68.6
ADTETemplates 89.7 72.6 28.9 49.5 53.8 70.9 86.3 70.4 94.8 73.1 69.0

CuPL [ICCV 2023] 92.0 73.2 27.7 54.3 52.7 66.4 86.2 68.5 94.6 70.7 68.6
Frolic [NeurIPS 2024] 92.9 74.8 31.5 56.1 58.5 69.1 87.2 70.8 95.2 75.2 71.1

V
iT

-B
/1

6

ADTECuPL 92.7 75.4 33.5 57.2 58.2 71.2 86.9 71.3 95.7 75.5 71.8

CLIP [ICML 2022] 93.5 79.3 32.4 53.0 58.0 76.8 91.0 67.5 94.8 74.2 72.0
TPT [NeurIPS 2022] 93.6 76.2 31.9 55.2 51.8 77.7 88.9 70.2 95.5 74.9 71.5
TDA [CVPR 2024] 93.5 80.5 34.7 56.7 64.1 78.3 90.9 71.5 95.9 76.6 74.2
Zero [NeurIPS 2024] 93.4 79.2 33.9 53.7 54.1 78.5 90.2 72.1 96.0 77.1 72.8
ADTETemplates 93.7 79.4 37.2 59.7 56.2 79.4 91.8 73.2 96.4 80.6 74.8

CuPL [ICCV 2023] 94.3 79.8 35.5 62.7 61.2 78.0 91.3 72.4 96.7 75.9 74.7
Frolic [NeurIPS 2024] 94.9 82.4 40.0 64.1 66.2 80.8 91.8 74.5 97.2 80.0 77.1

V
iT

-L
/1

4

ADTECuPL 94.6 83.8 40.8 65.6 65.9 81.8 91.7 74.8 97.4 80.4 77.7

Results on the Cross Domain Benchmark. Table 2 demonstrates the significant advantage of
ADTE in cross-domain image recognition. On the ViT-B/16 backbone, ADTETemplates (69.0%)
outperforms all template-based methods, while ADTECuPL (71.8%) surpasses Frolic (71.1%). Simi-
larly, on ViT-L/14, ADTETemplates (74.8%) and ADTECuPL (77.7%) both significantly outperform
their respective counterparts, TDA (74.2%) and Frolic (77.1%). ADTETemplates also ranks at or near
the top on multiple individual datasets. For instance, on ViT-B/16, it improves performance by
2.4%, 2.0%, and 2.5% on the Cars, SUN, and UCF datasets, respectively, compared to the best
competing method. On ViT-L/14, it achieves state-of-the-art results on Aircraft (37.2%, +2.5%
improvement over TDA), DTD (59.7%, +3.0% improvement over TDA), and UCF (80.6%, +3.5%
improvement over Zero).

5.3 ABLATION STUDIES

We evaluate the contributions of our proposed components, ADTE and Logit Adjustment (LA),
through an ablation study. All experiments in this section are conducted on both ViT-B/16 and
ViT-L/14 architectures, with results shown in Table 3.

Effectiveness of ADTE. Removing ADTE leads to a notable performance decline across all met-
rics compared to the full ADTETemplates model. For ViT-B/16, accuracy drops by 1.1% on
IN-Variants, 0.7% on IN, and 2.1% on the 10-datasets. For ViT-L/14, accuracy decreases by
0.7%, 0.5%, and 1.6% on the same benchmarks. The performance drop is most significant on the
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Table 3: Accuracy (%) of different models on 10-datasets, including ImageNet and its five variant datasets.

ViT-B/16 ViT-L/14Module IN-Variants IN 10-datasets IN-Variants IN 10-datasets

▲ ADTETemplates 66.5 71.8 69.0 77.0 77.8 74.8

△ w/o ADTE 65.4 71.1 66.9 76.3 77.3 73.2
△ w/o Logit Adjustment (LA) 66.1 71.6 68.8 76.7 77.6 74.1

△ w/o ADTE and LA 65.0 70.9 65.1 75.9 77.2 72.8

10-datasets (−2.1% and −1.6%), indicating that ADTE is particularly effective at enhancing the
model’s generalization across diverse cross-domain tasks.

Contribution of Logit Adjustment. LA adjusts the model logits by using bias estimation (Zhu
et al., 2024). The experiments show that removing LA also decreases performance, but this decline
is generally smaller than removing ADTE. For ViT-B/16, the accuracy drops are 0.4%, 0.2%,
and 0.2%, while ViT-L/14 experiences decreases of 0.3%, 0.2%, and 0.7%. Both ADTE and LA
contribute positively to the model’s accuracy. Furthermore, LA can be seamlessly integrated with
ADTE to boost performance without adding extra computational cost.

5.4 FURTHER ANALYSIS

Table 4: Results for SE, TE, and ADTE.

Module IN IN-V2 IN-K IN-A IN-R
LA-SE 70.7 64.1 52.3 64.0 80.2
SE-LA 71.0 64.3 52.5 64.1 80.3
TE-LA (q=0.5) 71.6 65.2 53.0 64.8 80.7
ADTE 71.8 65.6 53.5 65.5 81.4

Comparison Among SE, TE, and ADTE. Table 4
compares the performance of ADTE, SE, and TE, all
with logit adjustment (LA). ADTE demonstrates the
highest performance. This highlights ADTE’s distinct
advantages in tasks that rely on entropy information.

Table 5: Computational cost and effect of different intervals.

Interval IN IN-V2 IN-K IN-A IN-R Avg

[0.1, 0.9] 71.7 65.5 53.4 65.2 81.3 67.4
[0.01,0.9] 71.8 65.6 53.5 65.5 81.4 67.5
[0.001, 0.9] 71.8 65.6 53.6 65.6 81.2 67.5
[0.0001, 0.9] 71.7 65.5 53.6 65.6 81.2 67.5

Metric TPT Zero ADTE

Time[s] 0.57±0.01 0.06±0.01 0.07±0.01
Mem[GB] 17.66 1.40 1.46

Figure 4: Different number of views.
Normalization Intervals and Computational Cost.
Table 5 shows the performance ADTE using different
normalization intervals. As the lower bound of the interval decreases from 0.1 to 0.0001, perfor-
mance generally improves and then stabilizes. This demonstrates that ADTE is effective when the
class-specific parameter is less than 1 and that the method is robust as it does not require precise pa-
rameter tuning; as long as the lower bound is sufficiently small, excellent performance is achieved.
Furthermore, ADTE adds only a negligible computational cost compared to Zero, primarily for the
bias estimation step.

Number of Augmented Views. Figure 4 shows that increasing views (N ) improves performance
until convergence. And more views help ADTE select more confident views, boosting accuracy.

Memory Bank Size. We systematically evaluated the impact of varying memory bank sizes on
ADTE’s performance on ImageNet-1k, with quantitative results presented in Table 6.

Table 6: Impact of memory bank size on performance (%).

Size 1 2 5 10 20 30 40
ADTE 71.71 71.73 71.74 71.83 71.81 71.85 71.86

The results show that the memory bank size has a minimal impact on ADTE’s performance: with a
size of 1, the model already achieves 71.71% accuracy. As the size increases to 10, the accuracy
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stabilizes around 71.83%. Further expansion to 40 yields only marginal fluctuations (71.86%). A
small number of high-confidence samples is sufficient to support reliable adaptive adjustments.

Note that 71.71% accuracy achieved with size 1 does not mean the memory bank can be removed.
To see this, consider 200 categories, using a memory bank size of 1 yields 200 samples in total. The
statistical information used to calculate bias for a specific category is derived not only from its own
sample but from all 200 pseudo-labeled samples in the bank.

Improvements on tail Categories. To further validate ADTE’s effectiveness on tail classes,
we conducted quantitative experiments on tail categories in ImageNet-1k. We selected the last 10
tail classes in ImageNet-1k and compared the performance between CLIP and ADTE.

Table 7: Performance improvement on representative tail classes.

Class Index 670 193 981 157 533 168 316 106 50 156

Accuracy (CLIP) 17.4 16.7 16.1 15.0 14.5 12.5 11.5 0.00 0.00 0.00
Confidence (CLIP) 0.01 0.11 0.05 0.18 0.09 0.13 0.15 0.09 0.13 0.19

Accuracy (ADTE) 16.7 33.3 33.3 38.5 25.0 59.4 35.0 32.2 41.7 56.5
Confidence (ADTE) 0.16 0.31 0.28 0.35 0.24 0.44 0.33 0.25 0.34 0.47

As shown in Table 7, ADTE achieves significant improvements in both accuracy and confidence for
these categories. For instance, classes that originally had zero accuracy show enhanced accuracy
ranging from 32.2% to 56.5% under ADTE, while confidence scores simultaneously increase. This
directly validates ADTE’s effectiveness in improving tail class performance.

Table 8: Comparative analysis between head and tail classes.

Module Head (avg pred) Head (avg entropy) Tail (avg pred) Tail (avg entropy)

CLIP 0.6687 5.2956 0.1466 5.2972
ADTE 0.8112 3.2156 0.3638 3.3761

Table 8 presents results of prediction confidence and entropy values for head classes (top 50) and tail
classes (bottom 50). The results demonstrate that ADTE not only enhances the average prediction
confidence for tail classes (from 0.1466 to 0.3638) but also reduces prediction uncertainty by
decreasing the entropy value (from 5.2972 to 3.3761). These improvements indicate that the model
achieves more definitive and reliable predictions for tail categories.

Table 9: Results with different normalizations.

Normalization IN IN-V2 IN-K IN-A IN-R
Z-Score 71.8 65.9 53.5 65.5 81.3
Decimal Scaling 72.0 65.8 53.5 65.7 81.3
Sigmoid 72.0 66.1 53.5 65.4 81.2
Min-Max 71.8 65.6 53.5 65.5 81.4

Effect of Different Normalization Functions. As
shown in Table 9, ADTE’s performance is not highly
dependent on a specific normalization function. While
some methods may offer minor advantages on certain
datasets, no single method is universally optimal. This
demonstrates the robustness of our approach.

6 CONCLUSION AND LIMITATION

Conclusion. This paper introduces a novel Test-Time Adaptation (TTA) approach called Adaptive
Debiasing Tsallis Entropy (ADTE), which is designed to handle the inherent prediction biases in
Vision-Language Models (VLMs). We show that Shannon Entropy can be considered a special
case of Tsallis Entropy, and that its performance serves as a lower bound. By generalizing Tsallis
Entropy with class-specific parameters ql tailored for each category l, ADTE effectively reduces the
biases encountered during TTA. Our experimental results demonstrate that ADTE outperforms state-
of-the-art methods across multiple datasets, proving its robustness and effectiveness in improving
the adaptation performance of VLMs.

Limitation. Due to the specific nature of its design, ADTE is highly effective in scenarios with
significant prediction bias. However, its advantages may be less apparent in scenarios where the
model has almost no biased predictions.
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Appendix for Adaptive Debiasing Tsallis Entropy for Test-Time Adaptation

A ADDITIONAL EXPERIMENTS

Detailed Analysis of Estimated Bias Statistics. We conduct a statistical analysis of prediction bias
on ImageNet variants and cross-domain datasets to explore the correlation between performance
gains and the degree of bias. Table 10 shows results on five ImageNet variants.

Table 10: Bias statistical analysis of ImageNet variant datasets.

Dataset (Classes) IN-A (200) IN-R (200) IN-K (1000) IN-V (1000) IN-I (1000)

Variance 0.9527 0.7650 1.5858 1.1603 1.0833
Std Dev 0.9621 0.8747 1.2953 1.0772 1.0408

Acc (CLIP) 50.6 77.7 48.3 62.2 68.7
Acc (ADTE) 65.5 81.4 53.5 65.6 71.8
Gain 14.9 4.7 5.2 3.4 3.1

As shown in Table 10, datasets with larger bias variance and standard deviation (e.g., IN-A and
IN-K) correspond to a greater disparity in bias between head and tail classes. Consequently,
the performance gains of ADTE are higher on these datasets (14.9% and 5.2%). This indicates that
ADTE is particularly effective in scenarios with prominent biases, which also explains the variation
in performance improvements across different datasets.

For the cross-domain benchmark, we analyzed the average prediction accuracy and confidence
across different percentile intervals. As shown in Tables 11 and 12, all cross-domain datasets exhibit
significant long-tail distribution characteristics and CLIP demonstrates pronounced prediction bias
across them. These results validate the universality of CLIP’s prediction bias.

Table 11: Quantitative analysis of prediction bias on cross-domain datasets (Part 1). The values in each cell
represent (Accuracy, Confidence).

Class Percentile Flower102 DTD Pets Cars UCF101

0%-10% (1.0, 0.85) (0.98, 0.82) (1.0, 0.95) (0.99, 0.88) (1.0, 0.95)
10%-20% (1.0, 0.91) (0.86, 0.67) (0.99, 0.96) (0.94, 0.81) (0.98, 0.86)
20%-30% (0.98, 0.86) (0.74, 0.59) (0.98, 0.93) (0.89, 0.71) (0.94, 0.80)
30%-40% (0.93, 0.82) (0.54, 0.32) (0.96, 0.87) (0.82, 0.65) (0.90, 0.74)
40%-50% (0.87, 0.69) (0.42, 0.29) (0.95, 0.87) (0.73, 0.51) (0.82, 0.63)
50%-60% (0.81, 0.63) (0.34, 0.23) (0.93, 0.80) (0.64, 0.44) (0.72, 0.55)
60%-70% (0.62, 0.45) (0.22, 0.16) (0.90, 0.81) (0.56, 0.38) (0.57, 0.41)
70%-80% (0.50, 0.35) (0.07, 0.08) (0.81, 0.67) (0.42, 0.34) (0.32, 0.27)
80%-90% (0.12, 0.14) (0.01, 0.04) (0.63, 0.52) (0.21, 0.22) (0.19, 0.19)
90%-100% (0.00, 0.01) (0.00, 0.03) (0.00, 0.00) (0.06, 0.11) (0.06, 0.08)

Table 12: Quantitative analysis of prediction bias on cross-domain datasets (Part 2). The values in each cell
represent (Accuracy, Confidence).

Class Percentile Caltech101 Food101 SUN397 Aircraft Eurosat

0%-10% (1.0, 0.96) (0.96, 0.93) (0.96, 0.84) (0.86, 0.66) (0.82, 0.51)
10%-20% (1.0, 0.96) (0.94, 0.87) (0.90, 0.75) (0.53, 0.24) (0.77, 0.63)
20%-30% (1.0, 0.97) (0.93, 0.84) (0.85, 0.69) (0.37, 0.14) (0.76, 0.57)
30%-40% (1.0, 0.97) (0.91, 0.85) (0.79, 0.60) (0.24, 0.12) (0.72, 0.43)
40%-50% (1.0, 0.96) (0.89, 0.82) (0.72, 0.52) (0.17, 0.12) (0.47, 0.35)
50%-60% (0.98, 0.90) (0.87, 0.79) (0.64, 0.47) (0.10, 0.12) (0.29, 0.32)
60%-70% (0.93, 0.87) (0.85, 0.76) (0.56, 0.39) (0.07, 0.07) (0.15, 0.24)
70%-80% (0.88, 0.79) (0.82, 0.72) (0.47, 0.32) (0.04, 0.07) (0.14, 0.13)
80%-90% (0.81, 0.72) (0.76, 0.65) (0.32, 0.24) (0.00, 0.04) (0.00, 0.08)
90%-100% (0.49, 0.42) (0.64, 0.54) (0.12, 0.12) (0.00, 0.03) (0.00, 0.04)
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Correlation between TcrK and Prediction Accuracy. We examine the correlation between TcrK
and prediction accuracy on ImageNet-A to validate the reliability of TcrK as an intermediate eval-
uation metric.

Table 13: Correlation between TcrK and accuracy on ImageNet-A.

Value of q Tcr1 Tcr3 Tcr5 Tcr10 Tcr20 Accuracy

0.01 29.3069 27.0006 25.9538 24.6061 23.7410 63.48
0.1 29.3283 26.9548 25.9067 24.5704 23.7164 63.45
0.5 29.3293 26.8951 25.8540 24.5383 23.6985 63.24
0.9 29.3189 26.8414 25.8114 24.5162 23.6892 62.80
1.1 29.3043 26.8000 25.7808 24.5020 23.6841 62.58
1.5 29.2820 26.7511 25.7460 24.4864 23.6785 62.68
2.0 29.2682 26.7257 25.7291 24.4798 23.6771 60.95

As shown in Table 13, when keeping K constant while decreasing q, both TcrK and accuracy
demonstrate an increasing trend. This suggests that TcrK and accuracy can be considered approx-
imately equivalent metrics, as the former evaluates model performance through prediction confi-
dence, while the latter directly measures performance via top-1 prediction correctness.

Integration with DEYO Method. We further investigate the modularity of ADTE by integrating it
with DEYO (Lee et al., 2024b). By simply replacing the Softmax Entropy used in DEYO with our
ADTE while keeping all other parameters and pretrained weights unchanged, we achieve significant
performance improvements. Table 14 demonstrates that the modified method obtains a 2.26% boost

Table 14: Integration with DEYO method on ColoredMNIST.

Method Avg Acc (%) Worst-Group Acc (%) Time (s)

DEYO 78.24 67.39 0.073
DEYO + ADTE 79.29 69.65 0.074

in Worst-Group Accuracy with almost no additional computational overhead.

Estimated Bias Stability. We tracked the changes in the estimated bias’s mean and variance as the
size of the memory bank increases, with results presented in Table 15. As the size of the memory

Table 15: Stability of estimated bias over memory bank size on ImageNet-1k.

Size 1 2 5 10 20 30 40

Mean -5.2248 -4.3044 -4.2567 -3.8658 -3.9067 -3.8224 -3.8825
Variance 2.2897 2.0415 1.7100 1.5247 1.4618 1.4537 1.4752

bank increases, the variance of the estimated biases gradually decreases. When the size reaches 10,
both the mean and the variance tend to stabilize, indicating that only 10 samples per category are
needed to reach a stable bias estimation. This trend is consistent with the results of the performance
experiment, where the performance also stabilizes around the size of 10. ADTE can quickly converge
to a reliable bias estimation during the test without relying on an excessively large memory bank.

Experiments on Corrupted Datasets (ImageNet-C, CIFAR-10-C, CIFAR-100-C). To further
demonstrate the effectiveness of CGPO, we conducted experiments on ImageNet-C, CIFAR-10-C,
and CIFAR-100-C datasets (Hendrycks & Dietterich, 2019). For ImageNet-C, we randomly select
3 representative corruption families (Defocus Blur, Glass Blur, Motion Blur). For CIFAR-10-C and
CIFAR-100-C, we evaluated the models on 7 diverse corruption types, covering blur, noise, and
geometric distortions.

As shown in Tables 16, 17 and 18, across all datasets and nearly all corruption types, ADTE consis-
tently outperforms both the original CLIP and SE. Importantly, (1) SE often degrades performance
compared to the CLIP model, especially under severe blur and noise; (2) ADTE remains stable
and delivers consistent improvements, demonstrating stronger robustness even in settings where SE
becomes unreliable.
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Table 16: Accuracy (%) on ImageNet-C across severity levels (1–5).
Model defocus blur glass blur motion blur

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

CLIP-ViT/B-16 58.78 53.82 43.36 34.42 26.12 56.47 48.27 26.75 20.88 16.96 62.51 56.91 47.46 34.37 26.55
SE 58.62 54.06 43.15 34.35 26.39 55.74 46.98 26.34 19.87 15.56 62.69 57.18 46.41 33.87 25.31
ADTE 59.43 54.89 44.05 35.06 26.95 57.56 48.52 27.58 21.65 17.84 63.83 58.23 48.22 34.54 27.06

Table 17: Average Accuracy (%) on CIFAR-10-C.
Model brightness elastic transform gaussian blur impulse noise motion blur shot noise speckle noise

CLIP-ViT/B-16 90.94 84.33 90.54 87.94 87.33 84.73 85.01
SE 89.86 83.71 88.92 86.88 86.98 84.39 84.86
ADTE 91.32 84.86 89.96 88.43 87.65 85.56 85.42

Table 18: Average Accuracy (%) on CIFAR-100-C.
Model brightness elastic transform gaussian blur impulse noise motion blur shot noise speckle noise

CLIP-ViT/B-16 68.29 57.83 68.05 62.46 62.17 57.27 57.66
SE 67.92 58.05 66.56 61.78 61.32 57.01 56.22
ADTE 68.80 59.32 67.68 62.65 61.98 57.56 57.43

Consistent gains in 3 datasets and most corruption severities indicate the generalization ability of
ADTE, reinforcing our main claim: ADTE provides a more robust correction mechanism than SE
under distribution shifts, even when SE partially or completely fails

Analysis of Pseudo-Label Noise Effects on Class-Wise Bias Estimation. To directly measure the
effect of noisy pseudo-labels, we conducted controlled experiments in which we manually inject
pseudo-label noise on the ImageNet- A dataset. Specifically, for each sample, with probability
p ∈ {20%, 40%, 60%, 80%, 100%}, the true label is replaced by a random incorrect label. This
allows us to isolate the impact of degraded pseudo-label quality under varying noise intensities.

Table 19: ImageNet-A Accuracy (%).
Model Zero-shot True Label Pseudo Label 20% Noise 40% Noise 60% Noise 80% Noise 100% Noise

CLIP-ViT-B/16 50.6 – – – – – – –

SE 64.0 – – – – – – –

ADTE – 65.9 65.5 65.9 65.8 65.6 65.4 64.6

The results are shown in Table 19. We observe 3 important trends: (1) When using the true label
to estimate bias, ADTE presents the best performance compared with results under pseudo-label
noise; (2) ADTE remains extremely stable under moderate and even severe noise levels: accuracy
stays within a very narrow band (65.9 → 65.4) even as pseudo-label corruption increases to 80%;
(3) Even with 100% incorrect pseudo-labels, ADTE still outperforms SE (64.6 vs. 64.0).

This aligns precisely with our theoretical analysis in Sections 4.1 and 4.2: SE is a strict lower bound
of TE, and TE is a strict lower bound of ADTE, since SE corresponds to the special case where all
category-wise parameters ql are identical. Therefore, ADTE can never perform worse than SE, even
under extreme pseudo-label noise.

Overall, ADTE is robust to pseudo-label errors, noise-insensitive, and maintains reliable perfor-
mance even under worst-case degradation, making it practical for real-world deployment where
pseudo-labels are inevitably imperfect.

Performance under Low-Bias Scenarios. To quantify the performance gap between ADTE and
SE/TE under low-bias conditions, we conducted experiments on ImageNet-1k under progressively
lower bias conditions. Specifically, we sort ImageNet-1k classes by their prediction-bias magnitude
and randomly construct 5 subsets:

• s1: highest inter-class bias (200 most biased classes)

• s2: ...

• s5: lowest bias (200 least biased classes)
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This setup directly evaluates ADTE, TE, and SE in increasingly unbiased distributions. The results
in Table 20 show that: (1) ADTE consistently outperforms SE and TE at all bias levels; (2) The
advantage grows as the bias becomes larger; (3) Even in nearly unbiased settings, ADTE still yields
notable gains. This quantitatively validates ADTE’s applicability limit and supports the theoretical
claim of lower-bound.

Table 20: ImageNet-A accuracy (%) across progressively lower bias conditions.
Model s1 s2 s3 s4 s5

CLIP-ViT/B-16 69.5 58.8 52.3 74.2 76.3
SE 70.4 60.3 53.1 75.9 77.8
ADTE 73.8 62.3 55.2 77.1 78.5

Continual or Gradual Domain-Shift Scenarios. To evaluate ADTE under realistic evolving dis-
tributions, we conducted new experiments by mixing five ImageNet variants, i.e., ImageNet-1k,
ImageNet-A, ImageNet-V, ImageNet-K, and ImageNet-R, in a fully randomized interleaved stream.
This simulates an online TTA scenario where the domain changes unpredictably from sample to
sample, making it one of the most challenging continual shift settings.

Table 21: Accuracy (%) on randomized, mixed five ImageNet variants.
Model ImageNet-1k ImageNet-A ImageNet-V ImageNet-K ImageNet-R

ADTE 71.8 65.5 65.6 53.5 81.4
ADTE random 72.0 65.8 65.4 53.5 81.2

The results in Table 21 demonstrate: (1) ADTE consistently outperforms SE and the CLIP baseline
in all domains; (2) No signs of instability or degradation, even when the domain identity changes
every few samples; (3) Memory-based bias estimation remains effective because only a small class-
wise bank is maintained, which is naturally robust to cross-domain mixing.

Evaluating ADTE’s Applicability Unimodal ImageNet Models and CLIP Successors like
SigLIP. To verify the effectiveness of ADTE on models other than CLIP, we first conducted addi-
tional experiments on the ImageNet-A dataset on unimodal ImageNet-pretrained models, following
the MEMO (Zhang et al., 2022) test-time adaptation benchmark. As shown in Table 22, ADTE con-
sistently improves performance on ResNext-101, outperforming standard TTA and other adaptation
techniques. The results demonstrate that ADTE is not tied to multimodal encoders, and it remains
effective on purely vision-based architectures.

Table 22: ImageNet-A Error (%).
Method Error(%) Method Error(%)

ResNext-101 (baseline) 90.0 WSL 54.9

+ TTA 83.2 + TTA 49.1

+ Single-point BN 88.8 + Single-point BN 58.9

+ MEMO 84.3 + MEMO 43.2

+ ADTE 81.5 + ADTE 41.1

Next, we conduct evaluations on five generalization models of CLIP. As shown in Table 23, across
all models, including SigLIP and SigLIP2, ADTE provides consistent improvements, confirming its
robustness and wide applicability.

The above experiments confirm: (1) ADTE generalizes across architectures (unimodal or multi-
modal); (2) ADTE generalizes across training regimes (contrastive → sigmoid loss); (3) ADTE
adapts robustly, even for models with stronger native calibration, such as SigLIP2.

Confidence Intervals or Significance Tests.. To verify whether the improvements are statistically
or practically meaningful, we add more runs to get the confidence intervals of accuracy. Table 24
demonstrates the statistical relevance of our improvements.

19



Published as a conference paper at ICLR 2026

Table 23: ImageNet-1k Accuracy (%) on Generalization Models with ADTE.
Model ImageNet-1k Acc. (%) +ADTE

CLIP 68.7 71.8
OpenCLIP 70.2 73.5
EVA-CLIP 74.7 77.4
SigLIP 76.2 78.9
SigLIP2 78.2 80.1

Table 24: Accuracy (%) 95% confidence interval of the results in Table 3.
Model ImageNet-1k ImageNet-A ImageNet-V ImageNet-K ImageNet-R

CLIP-ViT/B-16 68.7 50.6 62.2 48.3 77.7
SE 70.9 64.0 65.1 50.3 80.8
ADTE 71.8 65.5 65.6 53.5 81.4
ADTE 95% con. int. 71.78± 0.44 65.72± 0.50 65.67± 0.17 53.59± 0.25 81.28± 0.25

B PROOF

B.1 PROOF OF PROPERTY 1

▶ Shannon-Tsallis q → 1 Equivalence:

Property 1. As q → 1, Tsallis Entropy becomes equivalent to Shannon Entropy, i.e.,

lim
q→1

HTE(P(· | xtest
j )) = HSE(P(· | xtest

j )). (14)

Proof. For Tsallis entropy, we have:

HTE(P(· | xtest
j )) =

1

1− q

(
L∑

l=1

P(y = l | xtest
j )q − 1

)
=

1

1− q

(
L∑

l=1

P(y = l | xtest
j )q −

L∑
l=1

P(y = l | xtest
j )

)

=

L∑
l=1

P(y = l | xtest
j )

(
P(y = l | xtest

j )q−1 − 1

1− q

)
.

(15)

The limitation limq→1 only applies to the terms containing q. Thus:

lim
q→1

HTE(P(· | xtest
j )) =

L∑
l=1

P(y = l | xtest
j )

(
lim
q→1

P(y = l | xtest
j )q−1 − 1

1− q

)
. (16)

We use L’Hopital’s rule to solve the limit in the expression:

lim
q→1

P(y = l | xtest
j )q−1 − 1

1− q
= lim

γ→0

P(y = l | xtest
j )γ − 1

−γ
= lim

γ→0

P(y = l | xtest
j )γ logP(y = l | xtest

j )

−1

=
1× logP(y = l | xtest

j )

−1
= − logP(y = l | xtest

j ),

(17)

where the second equality uses L’Hopital’s rule. Substituting the above into Equation 16, we have:

lim
q→1

HTE(P(· | xtest
j )) =

L∑
l=1

P(y = l | xtest
j )
(
− logP(y = l | xtest

j )
)

=−
L∑

l=1

P(y = l | xtest
j ) logP(y = l | xtest

j )

=HSE(P(· | xtest
j )).

(18)

Therefore, we prove Property 1.
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Figure 5: Average TcrK values for different q of TE and SE on ImageNet-1K and its variant datasets.
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B.2 EXPERIMENTAL ANALYSIS OF PROPERTY 2

▶ Higher TcrK under TE as q ↘ and Comparison with SE:

Property 2. Through experimental analysis, we find that as the parameter q decreases, the set of
high-confidence views selected by TE tends to have a higher average TcrK value (for K > 1). For
two different parameter values q1 and q2 with q1 < q2, and their corresponding selected view sets
Xq1 and Xq2 of equal size, we observe:

1

|Xq1 |
∑

x1∈Xq1

TcrK(x1) >
1

|Xq2 |
∑

x2∈Xq2

TcrK(x2). (19)

Furthermore, there exists a particular q∗ and corresponding view set X TE
q∗ , TE outperforms SE in

this regard, with the view set selected by SE denoted as X SE:

1

|X TE
q∗ |

∑
x1∈X TE

q∗

TcrK(x1) >
1

|X SE|
∑

x2∈X SE

TcrK(x2). (20)

Experimental analysis. Equation 19 describes that when K > 1, as the parameter q of TE decreases,
the selected confidence views exhibit higher average TcrK values. For example, in Figure 5 of
ImageNet-1k and its five variants, as the q value decreases from 10 to 0.001, except for Tcr(K = 1),
all other Tcr values show a gradually increasing trend. This implies that the lower the q value, the
more the TE tends to select views with higher similarity scores.

As shown in Figure 5, when the q value of TE is relatively large, the Tcr value of TE is generally
smaller than that of SE. As the q value decreases, the Tcr value of TE gradually exceeds that of SE.
This further indicates that SE is a special case of TE, and appropriate selection of q values can make
TE exhibit better performance than SE.

B.3 PROOF OF CONCLUSIONS 4.2

Let p ∈ (0, ϵ), where ϵ ensures the probability of p of tail category being close to zero, and we
have the following conclusions:

▶ (1) As q→∞, we have limp→0+ F(p, q) = 0−, and F(p, q1)<F(p, q2) < 0, ∀q1<q2<∞.

Proof. a. Find the limit of the function F(p, q) = pq

1−q + p logp as q → +∞ and p→ 0+.

First term: pq

1−q → 0− as q → +∞ and p→ 0+.

Second term: p logp→ 0− by L’Hospital’s rule: limp→0+
logp
1/p = limp→0+(−p) = 0−

Conclusion:
lim

q→+∞
p→0+

F(p, q) = 0− + 0− = 0− (21)

b. Compare the magnitudes of F(p, q1), F(p, q2), and 0 as q1 < q2 → +∞ and p→ 0+.

Sign analysis: For p ∈ (0, ϵ) and q > 1:

F(p, q) =
pq

1− q︸ ︷︷ ︸
<0

+p logp︸ ︷︷ ︸
<0

< 0 (22)

Monotonicity: Fix p ∈ (0, ϵ). The derivative of G(q) = pq

1−q :

G′(q) =
pq[1 + (1− q) logp]

(1− q)2
> 0 for q → +∞ (23)
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Thus G(q) is increasing. For q1 < q2:

G(q1) < G(q2) =⇒ F(p, q1) < F(p, q2) < 0 (24)

▶ (2) As q→1+, we have limp→0+ F(p, q)=−∞, and F(p, q1)<F(p, q2)<0, ∀1<q1<q2.

Proof. a. Find the limit of the function F(p, q) = pq

1−q + p logp as q → 1+ and p→ 0+.

Consider the limit of the entire functionF(p, q): Since there are two variables
approaching their limits, the path of the limit may affect the result. We consider the iterated limits:

① First, fix q > 1 and let p → 0+. At this time, we have the limp→0+ F(p, q) =

limp→0+

(
pq

1−q + p logp
)

. Since q > 1 is fixed, limp→0+
pq

1−q = 0q

1−q = 0−, and we have already

found that limp→0+ p logp = 0−. So, limp→0+ F(p, q) = 0− +0− = 0−. Then, let q → 1+, then
limq→1+(0

−) = 0−.

② Next, fix p ∈ (0, ϵ) and let q → 1+. For limq→1+ F(p, q) =

limq→1+

(
pq

1−q + p logp
)

. When q → 1+, 1 − q → 0−, pq → p, so limq→1+
pq

1−q = p
0− = −∞

(because p > 0), and for a fixed p ∈ (0, ϵ), p logp is a fixed negative value. So,
limq→1+ F(p, q) = −∞+ p logp = −∞. Then, let p→ 0+, then limp→0+(−∞) = −∞.

Since the results of the two iterative limits are different (one is 0 and the other is −∞), strictly
speaking, the existence of the simultaneous limit depends on the relative rates at which p and q − 1
approach 0. However, in this work, the probability of the tail category is usually a very small
decimal, but it will not approach 0+ infinitely, and we give priority to the case of q → 1+. Therefore,
limq→1+ F(p, q) = −∞+ p logp = −∞. Therefore, we determine the limit value to be −∞.

b. Compare the magnitudes of F(p, q1), F(p, q2), and 0 as q1 < q2 → 1+ and p→ 0+.

This part of the proof is the same as part b of Conclusion (1).

▶ (3) As q→0+, we have limp→0+ F(p, q)=1−, and F(p, q1)>F(p, q2)>0, ∀0<q1<q2.

Proof. a. Find the limit of the function F(p, q) = pq

1−q + p logp as q → 1+ and p→ 0+.

In this condition, both p and q approach 0 simultaneously. This is a limit problem for a two-variable
function. We need to examine path dependence.

Consider different paths (p, q)→ (0+, 0+):

① First: Iterated limit with q → 0+ first, then p→ 0+.

lim
q→0+

F(p, q) = lim
q→0+

[
pq

1− q
+ p logp

]
= 1− + p logp. (25)

Thus,
lim

p→0+

(
1− + p logp

)
= 1−. (26)

② Next: Iterated limit with p → 0+ first, then q → 0+. For fixed q ∈
(0, 1):

lim
p→0+

F(p, q) = lim
p→0+

[
pq

1− q
+ p logp

]
= 0. (27)

Therefore,
lim

q→0+
(0) = 0. (28)

In this work, p represents the probability of a category, which may be a very small decimal, but it
will not approach 0 infinitely. Path 2 can be ignored. Thus, we determine the limit value to be
1−.
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b. Compare the magnitudes of F(p, q1), F(p, q2), and 0 as q1 < q2 → 0+ and p→ 0+.

Sign Analysis: As p→ 0+, p logp→ 0−. For positivity:

F(p, q) > 0 ⇐⇒ pq

1− q
> −p logp ⇐⇒ pq−1

1− q
> | logp|. (29)

As q → 0+, q−1 ≈ −1 and 1− q ≈ 1. The inequality simplifies to: 1
p > | logp|. Since 1

p diverges
faster than | logp| as p→ 0+, F(p, q) > 0 for sufficiently small p. Thus:

F(p, q1) > 0 and F(p, q2) > 0. (30)

Monotonicity in q: Fix p. The derivative w.r.t. q is:

G′(q) =
pq[1 + (1− q) logp]

(1− q)2
. (31)

For p→ 0+, logp→ −∞. Since 1− q ≈ 1, the numerator is negative, implying G′(q) < 0. Thus,
F(p, q) is decreasing in q. For q1 < q2:

0 < F(p, q2) < F(p, q1). (32)

▶ (4) As q→1−, we have limp→0+ F(p, q) = +∞, and F(p, q2)>F(p, q1)>0, ∀q1<q2< 1.

Proof. a. Find the limit of the function F(p, q) = pq

1−q + p logp as q → 1− and p→ 0+.

Compute the iterated limits:

① For fixed q ∈ (0, 1):

lim
p→0+

F(p, q) = lim
p→0+

[
pq

1− q
+ p logp

]
= 0+ + 0− = 0+. (33)

Thus,
lim

q→1−

(
0+
)
= 0+. (34)

② For fixed p ∈ (0, ϵ):

lim
q→1−

F(p, q) = lim
q→1−

[
pq

1− q
+ p logp

]
= +∞+ p logp = +∞. (35)

In this work, the probability of the tail category is usually a very small decimal, but it will not
approach 0+ infinitely, and we give priority to the case of q → 1−. Therefore, limq→1− F(p, q) =
+∞. Therefore, we determine the limit value to be +∞.

b. Compare the magnitudes of F(p, q1), F(p, q2), and 0 as q1 < q2 → 1− and p→ 0+.

Sign analysis: Identical to part sign analysis of Conclusion (3).

Comparing F(p, q1) and F(p, q2): Compute the partial derivative:

∂F

∂q
=

pq

1− q

[
logp+

1

1− q

]
. (36)

Since pq

1−q > 0, the sign of ∂F
∂q depends on

[
logp+ 1

1−q

]
. As q → 1−, 1

1−q → +∞ dominates
logp→ −∞. For example:

p = 0.01 =⇒ logp ≈ −4.6; q = 0.999 =⇒ 1

1− q
= 1000 =⇒ logp+

1

1− q
> 0.

Thus, F(p, q) increases with q near q = 1. For q1 < q2 → 1−, we have:

0 < F(p, q1) < F(p, q2). (37)
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