
Data Synthesis with Diverse Styles for Face Recognition

via 3DMM-Guided Diffusion

Yuxi Mi1 Zhizhou Zhong1 Yuge Huang2† Qiuyang Yuan1 Xuan Zhao1 Jianqing Xu2

Shouhong Ding2 Shaoming Wang3 Rizen Guo3 Shuigeng Zhou1†

1 Fudan University 2 Youtu Lab, Tencent 3 WeChat Pay Lab33, Tencent

{yxmi20, sgzhou}@fudan.edu.cn, {zzzhong22, qyyuan23, xzhao23}@m.fudan.edu.cn

{yugehuang, joejqxu, ericshding}@tencent.com

{mangosmwang, rizenguo}@tencent.com

Abstract

Identity-preserving face synthesis aims to generate syn-

thetic face images of virtual subjects that can substitute

real-world data for training face recognition models. While

prior arts strive to create images with consistent identities

and diverse styles, they face a trade-off between them. Iden-

tifying their limitation of treating style variation as subject-

agnostic and observing that real-world persons actually

have distinct, subject-specific styles, this paper introduces

MorphFace, a diffusion-based face generator. The gen-

erator learns fine-grained facial styles, e.g., shape, pose

and expression, from the renderings of a 3D morphable

model (3DMM). It also learns identities from an off-the-

shelf recognition model. To create virtual faces, the gen-

erator is conditioned on novel identities of unlabeled syn-

thetic faces, and novel styles that are statistically sampled

from a real-world prior distribution. The sampling espe-

cially accounts for both intra-subject variation and subject

distinctiveness. A context blending strategy is employed to

enhance the generator’s responsiveness to identity and style

conditions. Extensive experiments show that MorphFace

outperforms the best prior arts in face recognition efficacy*.

1. Introduction

Face recognition (FR) is among the most successful com-

puter vision applications, where persons are identified by

model-extracted facial features. FR models are well known

for being data-hungry. Their efficacy is built upon large-

scale face image training datasets [11, 26, 92] that con-

tain rich identities and diverse styles, e.g., appearance vari-

ations in age, expression and pose. Contemporarily, open-

source face image datasets are primarily collected by crawl-

†Corresponding authors.
*Code will be available at https://github.com/Tencent/TFace/.

Figure 1. Analyses for identity consistency and style variation

across prior arts and our proposed MorphFace. Identity consis-

tency is measured by pairwise cosine similarity and style variation

by variances of DECA attributes. Intra-class and inter-class results

are represented in red and blue, respectively. Separated curves and

a larger shaded area indicate better consistency and variation. Prior

arts bear inadequacies in either (a) style variation or (b) identity re-

tention, while (c) MorphFace achieves both goals simultaneously.

ing from the web. The images are potentially enrolled with-

out the informed consent of individuals, which yields seri-

ous legal and ethical issues regarding data privacy.

Identity-preserving face synthesis (IPFS) offers a rem-

edy to the privacy issue. Its objective is to generate face im-

ages of virtual subjects and replicate the distribution of real

face images so that FR models can be trained on these syn-

thetic faces to effectively recognize real persons. Among

previous efforts, early works [5, 8, 10, 43, 63] are mainly

based on generative adversarial networks (GAN) that yet

produce face images with limited quality. Recent stud-

ies [7, 42, 58] employ diffusion models (DM) to generate

faces of massive unique subjects with fine-grained details.

The primary challenge of IPFS was to generate multiple

faces for the same person. It is recently realized by condi-

tioning a DM’s denoising on the person’s identity context.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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We examine the synthetic faces of a related prior art, IDiff-

Face [7], in Fig. 1(a). We measure the cosine similarity

between their FR-extracted embeddings and find high iden-

tity consistency within each subject. Nonetheless, these im-

ages are found analogous and lack style variation that could

help FR generalize. Recent works [42, 47] consider style

as an additional DM condition that can be uniformly sam-

pled from external sources, e.g., style banks or pre-trained

models. In Fig. 1(b), we use a DECA [21] 3DMM model to

extract style variances of images from DCFace [42] and ob-

serve more varied styles. However, we infer from the simi-

larity metric that their style control negatively impacts iden-

tity retention. We refer to this phenomenon as the trade-off

between intra-class identity consistency and style variation.

We advocate a paradigm change to create synthetic

datasets with both consistent identities and diverse styles.

Prior works treat style as a subject-agnostic factor, applying

uniform style control across the entire dataset. However,

we observe a key divergence from reality in their approach,

as they overlook the distinctiveness of subjects. In real-

world datasets [11, 26, 92], images from different subject

classes often exhibit distinct styles. For example, individu-

als from different gender groups typically display different

facial shape variations [48]. We propose to promote subject

distinctiveness in our synthetic faces, which offers two ad-

vantages: (1) This enriches dataset variability by combin-

ing intra-class style variation with subject-specific styles,

without compromising identity consistency; (2) This helps

mitigate overfitting to potentially biased styles, allowing FR

models to focus on learning identity.

Concretely, we first present a more fine-grained and real-

istic approach to style control. We use DECA [21] 3DMM

to parameterize 3D geometry and facial appearance from an

image into attribute sets, and render them into style feature

maps. To generate synthetic faces with designated identi-

ties and styles, we employ FR-extracted identity embed-

dings and style feature maps as a DM’s context. We em-

ploy 3DMM for two reasons: (1) It effectively expresses

style in synthetic images; (2) It provides precise, fully para-

metric control over facial style by adjusting the style at-

tributes. To generate novel faces, we sample style attributes

from real-world prior distributions through a subject-aware

strategy, which explicitly accounts for both intra-class vari-

ation and subject distinctiveness. Since we incorporate both

identity and style controls during face generation, another

key challenge is the effective integration of these two con-

texts. Based on observations of the DM’s denoising pro-

cess, where styles are primarily established before identity,

we propose context blending that reweights the style and

identity contexts at appropriate denoising timesteps.

We concretize our findings into a novel IPFS genera-

tor, MorphFace, named for its ability to morph facial styles

through 3DMM renderings. Experimentally, we find that

MorphFace achieves a Pareto improvement in balancing

intra-class consistency and variation, as shown in Fig. 1(c).

It also significantly enhances FR efficacy, outperforming the

best prior methods across all test benchmarks.

This paper presents three-fold contributions:

• We present a novel IPFS generator that creates synthetic

faces with consistent identities and rich styles. It provides

fine-grained style control via 3DMM renderings.

• We propose subject-aware sampling that promotes intra-

class style variation and subject distinctiveness, and con-

text blending that enhances context expressiveness.

• We conduct extensive experiments that demonstrate the

state-of-the-art (SOTA) efficacy of our approach.

2. Related Work

Face recognition aims to match queried face images to an

enrolled database. SOTA FR is established on deep neural

networks [6, 27, 31], trained using margin-based softmax

losses [4, 18, 34, 41, 77] on large-scale datasets [11, 26,

32, 39, 92]. Despite the datasets’ vital contribution, they

often face legal and ethical disputes for being web-crawled

without consent [26]. They also exhibit quality problems

such as noisy labels and long-tail distributions [85]. FR’s

performance is measured on benchmark datasets [55, 69,

88, 89] that capture real-world variations, e.g., pose and age.

Face image synthesis is a long-standing task that has

yielded numerous impressive results. Pioneering works

use style-based GANs [35, 37, 38, 51, 56], 3D priors [17,

25, 33, 40, 51, 56, 61, 81], or semantic attribute anno-

tations [19, 70, 71, 75] to generate images with specific

facial attributes [24] or to manipulate existing reference

images [72]. Recent approaches primarily leverage diffu-

sion models [29, 65, 73] to generate subject-conditioned

images. Among these, tuning-based methods personal-

ize a pre-trained DM (e.g., Stable Diffusion [65]) on a

few images [20, 22, 68], extracted features [30, 78, 86],

or textual descriptions [23, 91] of a specific subject, to

produce images that reflect that subject’s identity. Other

methods, in contrast, train DMs typically conditioned on

subject-descriptive features [12, 50, 80] from CLIP [64],

FR-extracted identity embeddings [13, 60, 76], or them

combined [82]. These methods have promoted not only

data creation [14, 46] but also related tasks [54, 83, 84, 90].

However, they prioritize high image fidelity over the dis-

tinctiveness of subjects. They are less suitable for produc-

ing FR training data due to ambiguity in identity retention.

Face recognition with synthetic images offers benefits

in both privacy and quality for FR training [15, 16, 52].

Closest to our study, recent works aim to generate multi-

ple synthetic face images for each subject, unseen in real

datasets, to replace real images in FR training. We re-

fer to these methods as identity-preserving face synthesis.

Specifically, SynFace [63], SFace [5], SFace2 [10], ID-
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Figure 2. Pipeline of MorphFace. It uses a pair of style and identity contexts to generate faces with designated identity and diverse style.

Style is extracted using DECA 3DMM to provides fine-grained, entirely parametric control. To sample virtual faces, unlabeled synthetic

images are used as subject reference, and style is sampled statistically for real-world prior distribution.

Net [43] and ExFaceGAN [8] use varied GAN architec-

tures [19, 36] in subject-conditioned settings, while USyn-

thFace [9] uses unlabeled images to improve FR training.

DigiFace [1] utilizes a 3D parametric model to produce dis-

tinctive yet less realistic faces. IDiff-Face [7], DCFace [42],

Arc2Face [58], CemiFace [74] and ID3 [47] are diffusion-

based latest works. Most of them [42, 47, 58, 74] explicitly

promote style variations during DM’s sampling process to

improve FR generalization. This paper outperforms them

largely by offering more precise and realistic style control.

3. Proposed Approach

Overview. We introduce MorphFace, a face generator that

produces synthetic face images with consistent identities

and varied styles. Our approach is fueled by a latent diffu-

sion model (LDM) [65]. To preserve identity, we condition

the LDM on FR-extracted identity embeddings. To vary

styles, while prior arts have employed style banks [42], sim-

ilarity metrics [74], and attribute predicates [47] to coarsely

promote style variation, they are unable to control specific

style attributes. In contrast, we use 3DMM renderings as

the LDM’s style contexts. We gain more precise control

over style since the renderings provide entirely parametric

style descriptions.

To generate unseen face images, we are required to sam-

ple novel identities and style contexts. For identity, we ob-

tain reference images of virtual subjects using unlabeled

faces from an additional pre-trained DM. For style, we sam-

ple 3DMM style attributes in a manner that considers both

intra-class style variation and subject distinctiveness, to bet-

ter mimic real-world style variations. This also differenti-

ates our approach from prior arts [42, 47, 74] which typi-

cally apply uniform style control. Experimentally, we find

our subject-aware style sampling significantly enhances FR

efficacy. We further augment the style and identity contexts

during the LDM’s certain denoising phases to improve their

expressiveness. Figure 2 illustrates our pipeline.

3.1. Preliminary

Latent diffusion models [65] are generative models trained

to predict the latent representations z of input images x via

a gradual denoising process. Let ϕe, ϕd be a pair of pre-

trained encoder and decoder. The image x is mapped into

a latent space as z=ϕe(x), then is corrupted by variance-

controlled Gaussian noise ϵ over 0≤t≤T timesteps,

zt =
√
ᾱtz0 +

√
1− ᾱtϵ, (1)

where z0 stands for the clean latent representation, αi is

from a linear variance schedule, and ᾱt =
∏t

i=1 αi. In

the denoising process, the model attempts to recover zt−1

iteratively through following transition,

zt−1 =
1√
αt

(

zt −
1− αt√
1− ᾱt

ϵθ(zt, t, c)

)

+
√
1− αtϵ,

(2)

where c is a context condition such as identity or style. The

image is recovered as x=ϕd(z0). The transition is param-

eterized by a noise estimator ϵθ (e.g., U-Net [66]) trained

with the minimization of an l2 objective,

L = Ezt,t,ϵ∼N (0,1)

[

∥ϵ− ϵθ(zt, t, c)∥22
]

. (3)

3D morphable face models [2] are parametric models that

represent faces in a compact latent space. Among them,

FLAME [48] uses linear blend skinning to create a 3D

mesh of vertices that describes facial geometry, includ-

ing shape, pose, and expression. DECA [21] incorporates

FLAME with additional encoders to further provide facial
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Figure 3. Sample 3DMM feature maps (here, Lambertian render-

ings) and their synthetic images. Sec. 3.2: Precise style control

and more fine-grained detail can be observed in generated images.

Sec. 3.3: Sampling subject-aware styles create renderings and im-

ages with subjective distinctiveness (e.g., illumination).

appearance descriptions, including texture and illumination,

through Lambertian reflectance and spherical harmonics

lighting. It produces a set of numerical parameters that de-

terminantly model them as style attributes, which can be

rendered into feature maps such as surface normals, albedo,

and Lambertian rendering. We use DECA, wlog., as our

3DMM foundation model. For further details, we refer the

reader to the latest 3DMM survey paper [49].

3.2. 3DMM­Guided Face Synthesis

LDM is by design capable of unlabeled face generation. We

first condition an LDM G on identity embeddings to let it

generate faces of specific subjects. Concretely, let X de-

note the real face image dataset on which we train the LDM.

We extract its images’ identity embeddings via a pretrained

FR model [4] F as cid=F(x), and incorporate cid into the

LDM’s training process, Eq. (3), as context through cross-

attention. Notably, this approach is conceptually similar to

IDiff-Face [7]. Figure 1(a) has shown that such generated

faces bear insufficiency in intra-class style variation. We

consider this as a baseline to compare with following ap-

proach.

We further condition the LDM on 3DMM renderings to

promote style variation. 3DMM provides fully parametric

descriptions for multiple attributes of facial styles, includ-

ing shape, expression, pose, texture and illumination. This

enables us to precisely control the style of specific face im-

ages based on 3DMM’s parameters, an unachieved goal of

prior arts [42, 47, 74].

Specifically, given input images x, we employ an open-

source DECA [21] 3DMM model M to infer their style at-

tributes, p=M(x). The style attributes are 100,50,9,50,27-

dim numerical parameters with human-interpretable mean-

ings for image-wise shape, expression, pose, texture and il-

lumination, respectively. We can concatenate them into a

236-dim vector. Using Lambertian reflectance as part of

DECA’s integration, we render three feature maps m en-

tirely parameterized by style attributes p—surface normals,

albedo, and Lambertian rendering. The parametric nature

will facilitate the sampling of novel styles, illustrated later

in Sec. 3.3. From Fig. 2, we find that the feature maps pro-

vide pixel-aligned style descriptions of the input images yet

(a) Insufficient Variation (b) Insufficient Consistency (c) Variation + Distinctiveness

Figure 4. Illustration of style distribution. Regions represent real-

world style distributions and diamonds represent samples. (a) In-

sufficient style variation impairs FR generality. (b) Uniformly

sampling styles yields a “mixed” distribution that obscure iden-

tity consistency. (c) In our proposed approach, style and identity

are both promoted by considering the distinctiveness of subjects.

are absence of facial details. We use them to condition

the LDM to produce real-looking faces: We concatenate

m along channels and pass them through a simple encoder

E trained end-to-end with the LDM to obtain style embed-

dings csty=E(m), and optimize the LDM using both iden-

tity and style embeddings as contexts,

L = Ezt,t,ϵ∼N (0,1)

[

∥ϵ− ϵθ(zt, t, cid, csty)∥22
]

. (4)

To demonstrate our generator’s context control, Fig. 3

shows sample synthetic images based on their 3DMM ren-

derings. These images are of high quality and effectively

preserve the renderings’ style. Unlike prior works, our ap-

proach provides explicit, image-wise style control.

We further distinguish our approach from two close prior

arts: DigiFace [1] also employs 3DMM for IPFS. However,

it directly outputs coarse 3DMM renderings as face images,

whereas we incorporate the LDM to generate more realistic

faces. DiffusionRig [20] performs face editing that includes

3DMM as style control. It yet requires burdened subject-

wise fine-tuning, and its identity retention is easily nullified

upon changing style. It is hence less suitable for IPFS.

3.3. Synthetic Face Generation

We discuss how to sample novel identities and styles for

synthetic face image generation using our trained LDM.

Novel identities. We employ an unconditional DM Gid to

produce unlabeled face images. To improve the images’

diversity, we filter them by a cosine similarity threshold of

0.3 on their FR-extracted identity embeddings [4] and by

image quality assessed via SDD-FIQA [57]. We use the

cleaned images as references for novel subject classes.

Novel styles. Since the feature maps m are entirely parame-

terized by style attributes p, we can produce novel styles by

sampling new style attributes p′. To mimic real-world style

variations, we propose to sample p′ statistically from the

prior style distribution of LDM training dataset. Formally,

let P=M(X) be the style attribute set of X, and D(P) be

its distribution. The general form of sampling p′ is as
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p′ ∈ P′, P′ ∼ D(P). (5)

We note that D(P) can be approximated as a multiplicative

Gaussian distribution, i.e., D(P)∼N (µ,Σ), where µ and

Σ represent the mean and covariance matrix of P. This

approximation is grounded by the nature of 3DMM [2] and

prior studies’ findings [3, 59], and is empirically validated.

We leave further discussion to the supplementary material.

Equation (5) does not specify how each p′ is sampled

from P′. Prior arts [42, 47, 74] mainly offer uniform sam-

pling, i.e., providing subject-agnostic style context to each

synthetic image. Similarly, we can uniformly sample styles

by rewriting Eq. (5) as p′∼N (µ,Σ). However, in Sec. 4.3,

we find this means yields suboptimal FR efficacy.

We propose an improved strategy to better replicate real-

world style variations by considering both intra-class style

variation and style distinctiveness of subjects. Intra-class

style variation imposes a seeming dilemma: Its insuffi-

ciency may impair FR generality [7], yet its excessiveness

also reduces FR efficacy since this may obscure the reten-

tion of identities [42], as illustrated in Fig. 4.

While prior works advocate uniform style variations, our

key observation from real-world datasets [26, 85, 92] re-

veals that each subject actually exhibits style distinctiveness

that should be considered. For instance, women and men

often possess different facial shapes [48]; A juvenile may

have more youthful photos enrolled in a dataset than an el-

derly individual, creating age-related distinctions. We be-

lieve that such subject-specific distinctiveness plays a cru-

cial role in dataset quality: It enhances dataset variability

with less negative impacts on identity consistency, and helps

FR models mitigate potential overfitting on biased styles.

We propose subject-aware style sampling, concretized

from Eq. (5), based on the observation. To address subject

distinctiveness, we first sample class-wise distribution from

the style attribute set P′. Then, we sample image style from

its class distribution to allow intra-class variation. Formally,

let P′=
⋃m

i=1 P
′
i be a division of P′, where m is the number

of unique subjects. We sample {P′
i}i∈[m] as

P′
i ∼ N (µi,Σi),

m
∑

i=1

γiN (µi,Σi) = N (µ,Σ), (6)

where
∑

i γi=1 if each class contains an equal number of

images. Each class’s µi and Σi vary by real-world distri-

butions of class means and covariances. We then sample p′

from class-wise distribution,

p′ ∈ P′
i, p′ ∼ N (µi,Σi). (7)

Additionally, we find that using facial geometry similar

to the subject’s reference image can improve identity con-

sistency. It is achieved by replacing the intra-class mean µi

LF Style                                                                                        HF Identity

𝒙𝑻 … 𝒙𝒕𝟎+𝟏 𝒙𝒕𝟎 𝒙𝒕𝟎−𝟏 … 𝒙𝟎
Figure 5. During denoising, LF styles (e.g., pose and shape) are

earlier established than HF identity details by the nature of DM.

We augment style and identity contexts before and after a shifting

timestep t0 via CFG, respectively, to improve their expressiveness.

of facial shape attributes with the reference image’s ground

truth. In Fig. 3, we produce feature maps that vary ade-

quately within each subject and more significantly across

subjects, better reflecting real-world scenarios.

3.4. Context Blending

As G is conditioned on both identity and style contexts, we

discuss their effective integration. We empirically find that

the guidance of cid and csty can slightly contradict each

other during image generation, due to the inherent tension

between identity and style. To demonstrate, later in Sec. 4.4,

we separately strengthen cid or csty via classifier-free guid-

ance [28] (CFG), an inference-time method for context aug-

mentation, and find the generated images exhibit reduced

style variation and identity consistency, respectively.

To improve the contexts’ expressiveness, we investi-

gate DM’s denoising process from a frequency perspec-

tive. DMs are known to favor specific frequency compo-

nents at certain denoising timesteps: Low-frequency (LF)

components are emphasized in early timesteps, while high-

frequency (HF) details are progressively refined [62, 67].

In our generator, identity and style contexts align with HF

and LF features, respectively: Prior works indicate that fa-

cial identity cid is largely captured with HF details [53, 79],

while csty mainly consists coarse LF features from 3DMM

rendering. As shown in Fig. 5, step-wise denoising reveals

that styles (e.g., pose and illumination) are established very

early, while facial identity emerges in later steps.

Based on the observation, we propose context blending

to enhance the guidance of either context at its appropri-

ate denoising timesteps. Specifically, we strengthen csty
in earlier timesteps and cid in later timesteps to improve

the LDM’s responsiveness to these contexts. Formally, dur-

ing training, we first probabilistically replace cid and csty
with learnable empty contexts c∅id and c∅sty; during infer-

ence time, we employ CFG for context augmentation. We

rewrite Eq. (2) in CFG-form as

zt−1 =
1√
αt

(

zt −
1− αt√
1− ᾱt

ϵcfg

)

+
√
1− αtϵ, (8)

where ϵcfg is weighted by w as

ϵcfg = (1 + w)ϵθ(zt, t, cid, csty)− wϵt. (9)
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Method Venue Volume (IDs × imgs) LFW CFP-FP AgeDB CPLFW CALFW Avg.

CASIA (real) 0.49M (10.5K × 47) 99.38 96.91 94.50 89.78 93.35 94.79

SynFace ICCV 21 0.5M (10K × 50) 91.93 75.03 61.63 70.43 74.73 74.75

SFace IJCB 22 0.6M (10K × 60) 91.87 73.86 71.68 77.93 73.20 77.71

DigiFace WACV 23 0.5M (10K × 50) 95.40 87.40 76.97 78.87 78.62 83.45

IDnet CVPR 23 0.5M (10K × 50) 84.83 70.43 63.58 67.35 71.50 71.54

DCFace CVPR 23 0.5M (10K × 50) 98.55 85.33 89.70 82.62 91.60 89.56

IDiff-Face ICCV 23 0.5M (10K × 50) 98.00 85.47 86.43 80.45 90.65 88.20

ExFaceGAN IJCB 23 0.5M (10K × 50) 93.50 73.84 78.92 71.60 82.98 80.17

SFace2 BIOM 24 0.6M (10K × 60) 94.62 76.24 74.37 81.57 72.18 79.80

Arc2Face ECCV 24 0.5M (10K × 50) 98.81 91.87 90.18 85.16 92.63 91.73

ID3 NeurIPS 24 0.5M (10K × 50) 97.68 86.84 91.00 82.77 90.73 89.80

CemiFace NeurIPS 24 0.5M (10K × 50) 99.03 91.06 91.33 87.65 92.42 92.30

MorphFace (ours) 0.5M (10K × 50) 99.25 94.11 91.80 88.73 92.73 93.32

DigiFace WACV 23 1.2M (10K × 72, 100K × 5) 96.17 89.81 81.10 82.23 82.55 86.37

DCFace CVPR 23 1.2M (20K × 50, 40K × 5) 98.58 88.61 90.07 85.07 92.82 91.21

Arc2Face ECCV 24 1.2M (20K × 50, 40K × 5) 98.92 94.58 92.45 86.45 93.33 93.15

MorphFace (ours) 1.2M (24K × 50) 99.35 94.77 93.27 90.07 93.40 94.17

Table 1. Comparsion with SOTAs by FR recognition accuracy. Our proposed MorphFace outperforms SOTAs on all benchmarks.

We choose a time-varying ϵt as ϵθ(zt, t, cid, c
∅
sty) for t ∈

(t0, T ] to augment style, and as ϵθ(zt, t, c
∅
id, csty) for t ∈

[0, t0] to augment identity, where t0 is a “shifting” timestep.

Section 4.4 shows that context blending improves identity

consistency and style variation, and enhances FR efficacy.

4. Experiments

4.1. Experimental Setup

Datasets. We train our LDM G on CASIA-WebFace [85],

a dataset that consists of 490k quality-varying face images

from 10575 identities. We benchmark our FR model Fsyn

on 5 widely used test datasets, LFW [45], CFP-FP [69],

AgeDB [55], CPLFW [88], and CALFW [89]. CFP-FP and

CPLFW are designed to measure the FR in cross-pose varia-

tions, and AgeDB and CALFW are for cross-age variations.

4.2. Comparison with SOTAs

Recognition accuracy. We generate synthetic datasets us-

ing trained G. We synthesize 2 data volumes: 0.5M/1.2M

face images from 10K/24K subjects with 50 images for each

subject. We train an IR-50 FR model Fsyn on our syn-

thetic datasets and compare IPFS SOTAs [5, 7, 8, 10, 42,

43, 47, 58, 63, 74] discussed in Sec. 2. We benchmark them

on 5 widely used test datasets by FR recognition accuracy

in Tab. 1. Note that some SOTAs may have larger datasets

for the generator [58], larger FR backbones [74], and real-

world reference images [42] that could benefit their results.

We highlight several key points: (1) MorphFace outper-

forms all SOTAs on all test datasets for both 0.5M/1.2M
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Figure 6. Image visualization for MorphFace and SOTAs. Our

approach produces faces with intra-class variation and subject dis-

tinctiveness of style. It better replicates real-world style variations.

volumes. Notably, we outperform the best SOTA for 2.24

on CFP-FP, 1.08 on CPLFW, and 1.02 on average. As CFP-

FP and CPLFW are both pose-varying datasets, this sug-

gests MorphFace could be especially beneficial for cross-

pose settings. (2) Our average result of 0.5M outperforms

the 1.2M results of SOTAs, demonstrating our approach’s

high capability. (3) Our 1.2M result achieves on-par per-

formance on CPLFW and CALFW with the real-world CA-

SIA [85]. (4) DM-based methods [7, 42, 47, 58, 74] all ex-
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(a) Intra-class

(b) Dataset

Figure 7. Comparison among 5 methods by consistency and varia-

tion metrics. Circle colors and sizes depict FR accuracy. (a) Mor-

phFace outperforms SOTAs in consistency and variation trade-off.

(b) It promotes both consistency and datasets’ overall variability.

hibit quite satisfactory FR efficacy, which may be attributed

to better generations of identity-reflecting HF facial details.

Visualization. We compare CASIA, several SOTAs that re-

leased their datasets, and MorphFace. In Fig. 6, we sample

8 images of 2 subjects from each dataset. We highlight:

(1) SFace [5] preserves less consistent identities; (2) Digi-

Face [1] directly uses 3DMM renderings as images, produc-

ing less realistic faces. It yet better represents accessories

(e.g., glasses); (3) IDiff-Face [7] lacks intra-class variation,

producing mainly frontal faces; (4) DCFace [42] largely

promotes style variation. However, some attributes (e.g.,

expression) are replicated across its subjects, suggesting

less distinctiveness and overfitting to biased styles. It also

occasionally creates artifacts (e.g., gender transition) due

to degraded identity consistency; (5) MorphFace promotes

intra-class style variations including expression, pose, age

and illumination, and also creates more distinctive subjects.

It better mimics the style variations of real-world datasets.

Consistency vs. Variation. We quantitatively investi-

gate the balance between intra-class identity consistency

and style variation. We calculate the extended Improved

Recall [44] (eIR) metric from [42] on intra-class images

to measure style variation. It captures the sparseness of

style space manifolds where larger eIR stands for more di-

verse styles. We measure identity consistency by the av-

erage cosine similarity between identity embedding pairs.

In Fig. 7(a), we compare the similarity and eIR among Mor-

phFace and SOTAs [1, 5, 7, 42], where the FR accuracy is

depicted by the color and size of circles. We observe a clear

trade-off between consistency and variation. While SOTAs

either prioritize identity or style, our approach seeks a bal-

Insufficient

Uncontrolled

Insufficient

Replicated

Excessive

Uniform

Moderate

Proposed

Figure 8. Sample synthetic faces from 4 different style sampling

strategies. While others provide insufficiently or excessively var-

ied styles, our proposed approach offers moderate style variation.

Strategy eIR cos-sim FR Avg.

(a)

Style

Uncontrolled 0.475 0.41 91.59

Replicated 0.178 0.61 82.60

Uniform 0.720 0.33 92.41

Proposed 0.642 0.45 93.32

(b)

Context

W/o blending 0.608 0.37 93.11

W/ identity 0.575 0.51 92.75

W/ style 0.687 0.35 92.83

W/ blending 0.642 0.45 93.32

Table 2. Analyses of identity consistency, style variation and FR

efficacy for style sampling and context blending strategies.

ance that improves FR efficacy.

Consistency & Dataset variability. Dataset’s overall vari-

ability is a combined effort of intra-class variation and

subject distinctiveness. By promoting distinctiveness, we

can improve variability with less impact on consistency.

In Fig. 7(b), we measure variability by dataset-wise eIR.

MorphFace manages to create both consistent identities and

diverse styles from a dataset perspective. This explains its

better performance as both factors are vital for FR efficacy.

4.3. Effect of Style Sampling Strategy
How does the style sampling strategy affect identity con-

sistency, style variation, and FR efficacy? We compare 4

settings: (1) Uncontrolled, which we condition the genera-

tor G solely on cid, similar to [7]; (2) Replicated, which we

reuse the style feature maps of the reference image, instead

of sampling novel styles; (3) Uniform, which we sample

styles uniformly like [42] as p′∼N (µ,Σ); (4) Proposed,

our subject-aware style sampling discussed in Sec. 3.3.

Visualization. Figure 8 shows sample synthetic images

based on the same reference image from 4 settings. We ob-

serve: (1) Uncontrolling yields insufficient style variation;

(2) Replicating the reference image’s style results in even

less variation as the style is negatively controlled by the

same csty; (3) Though uniform sampling promotes more

diverse styles, its variation is sometimes excessive for the

same subject and could affect identity retention; (4) Our

subject-aware setting offers moderate style variation.

Quantitative analysis. In Tab. 2(a), we present results on
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Figure 9. Effects of context blending. It produces images with (a)

higher frequency variances and (b) better quality and details.

eIR, cosine similarity, and average FR accuracy. The low

eIR of uncontrolled settings suggests insufficient style vari-

ation. We observe a significant trade-off between replicated

and uniform settings, which both yield suboptimal perfor-

mance. The subject-aware setting offers the best FR effi-

cacy due to balanced consistency and variation.

4.4. Effect of Context Blending

How does context blending affect performance? We demon-

strate that it mutually benefits intra-class identity consis-

tency and style variation. We compare 4 settings: (1) With-

out blending, where the generator’s denoising is not ad-

justed with CFG; (2) With identity, where CFG is ap-

plied only to the identity context during [0, t0] timesteps; (3)

With style, where CFG only promotes style during (t0, T ];
(4) With blending, our advocated setting.

Quantitative analysis. Comparisons of eIR, cosine simi-

larity, and FR efficacy are shown in Tab. 2(b). We observe:

(1) Context blending improves both eIR and cosine similar-

ity, suggesting our approach’s effectiveness; (2) Applying

CFG to just one context results in either degraded eIR or

cosine similarity, and both settings perform slightly worse

than without blending, revealing the inherent trade-off be-

tween consistency and variation.

Frequency analysis. We further inspect the frequency

components of synthetic images. We convert images into

the frequency domain using the fast Fourier transform

(FFT) and partition the spectrum into components with dif-

ferent frequencies. Figure 9(a) shows the dataset-average

variances of components. Our proposed setting achieves

both higher LF and HF variances compared to without

blending, suggesting (though not definitively) more infor-

mative styles and identities, respectively.

Visualization. We compare synthetic images with and

without blending in Fig. 9(b). We find better diversity (by

learned perceptual image patch similarity, LPIPS [87]) and

more facial details (e.g., wrinkles) in with-blending images.

4.5. Privacy Analysis

The primary purpose of IPFS is to create unseen faces that

address privacy concerns in real-world datasets. Our gener-

ator, G, is trained on CASIA-WebFace [85], raising the nat-

ural question of how similar our synthetic faces are to those

in CASIA. High similarity could lead to privacy breaches.

Figure 10. Privacy analyses. (a) Inter-dataset similarity is far lower

than the intra-dataset similarities of CASIA and synthetic faces.

(b) Synthetic faces are dissimilar to their closest CASIA matches.

Source CFP-FP AgeDB CPLFW CALFW

Real-world 94.79 92.37 89.73 92.82

Learned 91.61 91.52 85.97 92.32

Proposed 94.11 91.80 88.73 92.73

Table 3. Performance on alternative sources of style attributes.

Identity similarity. CASIA and our synthetic dataset con-

sist of 10.5K and 10K subjects, respectively. We sample one

image from each subject and compare the pairwise similar-

ity between subjects from the two datasets. In Fig. 10(a), we

compare the inter-dataset similarity with intra-class similar-

ities within each dataset. Both CASIA and our dataset show

good intra-class similarities (i.e., 0.52 and 0.45). However,

the similarity between them is relatively low (i.e., 0.24).

This suggests that our synthetic faces represent virtual sub-

jects, not directly from the training dataset.

Visualization. In Fig. 10(b), we show sample images from

our dataset alongside their closest matches from CASIA.

The visual dissimilarity further demonstrates the privacy-

preserving nature of our synthetic dataset.

4.6. Ablation Studies

Alternative sources of style attributes. We proposed us-

ing statistically sampled style attributes. We further com-

pare it with (1) Real-world attributes sampled from CA-

SIA, which represent the theoretical upper-bound perfor-

mance of our style control; (2) Learned attributes, where

we train a VAE on P to predict P′. From Tab. 3, we infer

that: (1) Real-world attributes achieve better performance

(partly due to its nature as G’s training data), suggesting

potential for future improvements. We note this setting is

aligned with [42] that uses a real style bank; (2) Model-

learned attributes perform less well, as they fail to capture

the vital statistical details and subject distinctiveness.

5. Conclusion

We have presented MorphFace, a diffusion-based generator

that synthesizes faces with both consistent ideneities and di-

verse styles. Its advancements are three-fold: (1) Achieving

fine-grained, parametric control of facial styles; (2) Creat-

ing more realistic style varations that promotes FR efficacy;

(3) Enhancing expressiveness of identity and style contexts.
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