Under review as a conference paper at ICLR 2026

PGMPL: PROTOTYPE-GUIDED MULTI-MODAL
PROMPT LEARNING FOR VISION-LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language models (VLMs) have been widely applied to various visual tasks
due to their strong zero-shot transfer capabilities. However, their performance on
downstream tasks often remains suboptimal. While fine-tuning can improve ac-
curacy on base classes, it often compromises generalization to novel classes. To
address this challenge, we propose the Prototype-Guided Multi-modal Prompt
Learning (PGMPL), which guides representation learning through a supervi-
sory signal with intra-class summary information. Specifically, we construct a
category-level prototype for each class by aggregating multi-image features with
textual semantics. This prototype serves as a cross-modal, summarizing supervi-
sory signal, strengthening image-text alignment and enhancing the generalization
of the learned representations. To further optimize prototype and its guidance of
representation learning, we refine multi-modal representations via prompt learn-
ing and introduce bidirectional cross-attention to alleviate the image-text matching
inconsistency induced by newly inserted prompts. Extensive experiments demon-
strate the effectiveness of PGMPL, which achieves a higher overall harmonic
mean than state-of-the-art methods in zero-shot tasks across 11 datasets. Our code
is available at https://anonymous.4open.science/r/PGMPL.

1 INTRODUCTION

In recent years, vision-language models (VLMs) such as CLIP (Radford et al.l 2021)) have been
widely applied to various open-world vision tasks due to their strong zero-shot transfer capabili-
ties. Trained on large-scale image-text pairs, VLMs establish well-aligned embedding spaces across
modalities. However, they face critical challenges in adapting to downstream tasks through fine-
tuning while preserving the generalization capabilities. For instance, in few-shot fine-grained re-
trieval, it can fine-tune the model on several images of Siamese cat to improve retrieval of Siamese
cats; yet when confronted with unseen cat breeds such as Bengal, the model fails to discriminate
them, revealing overfitting and insufficiently generalizable features learned from limited samples.

Prompt learning is a lightweight approach to improve model’s representations by inserting learnable
tokens into text or image embeddings. For example, CoOp (Zhou et al., 2022c) and CoCoOp (Zhou
et al.,[2022b) insert learnable tokens into text embeddings while freezing the pretrained CLIP model,
and MaPLe (Khattak et al.,[2023)) and MMRL (Guo & Gu,|2025a)) extends this idea to images, estab-
lishing cross-modal mappings between image and text to enhance representation quality. However,
existing methods that focus mainly on text-image contrastive learning tend to overlook the learning
of generalizable visual and textual representations, leading to limited generalization in new scenar-
ios. Therefore, it is essential to develop an image encoder that can simultaneously ensure strong
image-text alignment and maintain high generalization capability for its visual representations.

To address the above issues, we propose the Prototype-Guided Multi-modal Prompt Learning
(PGMPL). Reflecting on human concept formation, a single image is often insufficient to reveal the
essential traits that define a “Siamese cat”. By observing multiple instances, we abstract the stable,
class-specific attributes, such as the short hair and blue eyes, while suppressing incidental back-
ground interference. Guided by this insight, we introduce the concept of a category-level prototype,
a summarizing supervisory signal designed to mimic this human-like abstraction process by aggre-
gating multiple images. It simultaneously maintains image-text alignment and guides the learning of
more generalizable visual representations. Specifically, during training, we construct and maintain
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a prototype for each category by using cross-attention to fuse image and text features, yielding a
stronger and modality-bridging supervisory signal to guide representation learning. Better vision-
language representations lead to more reliable prototypes, which in turn provides stronger guidance
for representation learning. To avoid the generalization drop during fine-tuning both image and
text encoders, we adopt parameter-efficient prompt learning to optimize the features. Furthermore,
we introduce an image-text interaction mechanism, to prevent prompt introduction from disrupt-
ing image-text matching consistency. This mechanism is a bidirectional cross-attention interaction
method based on batch tokens, enabling aligned information exchange between the two modalities
within the intermediate layers of encoders, thereby preserving image-text matching consistency.

We conduct extensive experiments under various settings, including base-to-novel, cross-dataset,
and cross-domain image-text matching, as well as image-cluster feature matching generalization.
Results on 11 datasets show that our method improves novel-class generalization by 0.45% and
average performance by 0.33% compared to state-of-the-art methods, while maintaining base-class
accuracy. Additionally, our accuracy on cross-dataset and cross-domain tasks remains comparable
to current state-of-the-art approaches. Under the image-cluster feature matching setting, our method
outperforms state-of-the-art methods on both base and novel classes, achieving an average improve-
ment of 1.75%, which demonstrates stronger vision feature representation capabilities. In summary,
our contributions are as follows:

(1) We propose a prototype-guided multi-modal prompt learning method PGMPL, which utilizes
a prototype with category-level summarizing information as novel supervisory signals to enforce
discriminative representation learning across seen (base) and unseen (novel) classes, significantly
boosting CLIP’s generalization ability.

(2) We introduce batch tokens with bidirectional cross-attention interaction mechanism to opti-
mize representations and enable aligned information exchange between the image and text encoder,
thereby maintaining consistent image-text matching.

(3) Extensive experiments show that our method outperforms state-of-the-art methods across various
settings on 11 datasets, which demonstrates its superior generalization and feature representation
capabilities on both base and novel classes.

2 RELATED WORK

2.1 VISION-LANGUAGE MODELS

Vision-Language Models (VLMs), exemplified by architectures like CLIP (Radford et al., [2021)),
FILIP (Yao et al., 2021)), ALIGN (Jia et al., 2021)), LiT (Zhai et al., 2022), VILA (Lin et al., 2024),
and SigLIP (Zhai et al.|[2023;|Tschannen et al.,|2025)), establish cross-modally aligned joint embed-
ding spaces through contrastive learning on large-scale image-text datasets, demonstrating robust
zero-shot generalization performance. Due to its powerful image and text representation capabili-
ties, VLMs have been widely used in various downstream tasks, such as dense prediction (Rao et al.,
2022; Zhou et al., 2022a), action understanding (Nichol et al., 2021; Ramesh et al., 2022; Patashnik
et al., 2021), image and video captioning (Barraco et al., 2022 Mokady et al., 2021} [Tang et al.,
2021), and visual question answering (Wang et al.l [2023} |Ozdemir & Akagiindiiz, 2024). How-
ever, the massive training data requirements brings high computational costs, making task-specific
fine-tuning particularly resource-intensive. Critically, parameter updates of VLMs may lead to over-
fitting and, consequently, degrade their generalization capabilities. Therefore, how to adapt VLMs
more efficiently to specific downstream tasks remains a critical challenge.

2.2 PROMPT LEARNING

To enhance generalization while avoiding high computational costs and performance degradation
caused by fine-tuning, contemporary approaches employ prompt learning to optimize VLMs by
inserting learnable tokens into text or image embeddings. CoOp (Zhou et al., [ 2022c) utilizes learn-
able text prompts to replace hand-crafted templates, inserting trainable tokens into text embeddings.
Optimized through limited image-text pairs, it significantly enhances CLIP’s performance on base
classes. To further strengthen generalization to novel classes, CoCoOp (Zhou et al. |2022b) intro-
duces an image-conditioned dynamic prompt framework that mitigates overfitting risks in base class
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tasks. KgCoOp (Yao et al.}|2023)) employs knowledge regularization, constraining learnable prompts
using frozen CLIP’s hand-crafted prompt features to balance performance in base and novel class.
Beyond text prompt learning, MaPLe (Khattak et al.,2023) introduces learnable visual tokens in im-
age encoders, establishing cross-modal mapping with textual tokens for joint vision-language rep-
resentation optimization. ProVP (Xu et al., 2025) advances this through progressive visual prompts
that enhance inter-layer interaction, ensuring deep propagation of visual embeddings. ATPrompt (L1
et al., 2024)) innovates with a novel prompt paradigm, injecting multiple universal attribute tokens
into learnable soft prompts to strengthen alignment between image features and unknown cate-
gories. MMRL (Guo & Gu, 2025a) and MMRLA++ (Guo & Gu,2025b) construct shared multi-modal
spaces, projecting learnable space tokens into textual and visual representation spaces to facilitate
cross-modal interaction.

However, the over-emphasis on direct image-text alignment in existing methods often leads to the
neglect of learning representations within each modality, thereby limiting generalization. To address
this, we propose PGMPL, which constructs a modality-bridging prototype for each category. This
prototype acts as a superior supervisory signal that both ensures image-text alignment and guides
the model to learn more generalizable, class-discriminative representations.

3 METHOD

In this section, we first review VLMs (e.g., CLIP) and prompt learning techniques for improving
CLIP’s generalization. Then we detail the core components of our PGMPL, including learnable
batch tokens with bidirectional cross-attention interaction and prototype-guided prompt learning.

3.1 PRELIMINARIES

Consistent with prior work, we adopt CLIP (Radford et al.l 2021) as VLM, which comprises an
image encoder V and a text encoder 7. Given an image embedding v; and N class-specific text
embeddings {t; }j\;l the prediction results of CLIP are as follows:

o) = exp(sim V(i) T(ty)) /7)
Pyl Z;\f:l exp (sim (V(vi),’T(tj))/T)7

where sim(-, -) denotes inner product, and 7 is a temperature parameter.

(D

Despite CLIP’s strong zero-shot performance, fine-tuning is necessary for specific tasks. Fine-tuning
the encoders can degrade the model’s generalization capability. To address this, prompt learning is
proposed as an effective technique for enhancing the performance of CLIP. Specifically, it augments
representations by inserting learnable tokens into image and text embeddings. Given a template "a
photo of a [CLS]", tokenized as t = [t,t2,...,tx], Y learnable tokens are added to form
textembedding t’ = [t1,...,tx,c1,...,cy]. Similarly, we can obtain the image embedding v'. The
enhanced features 7 (¢') and V(v') then replace their original counterparts in Eq. ().

3.2 MOTIVATION

Existing methods focus mainly on text-image con-

trastive learning, which overlooks the learning of Taple 1: CLIP’s accuracy on base and novel
generalizable visual and textual representations, classes across 11 datasets. 7 is the number of

thereby limiting their generalization to new sce- jmages used to form the cluster feature.
narios. A more representative, modality-bridging

supervisory signal maybe the solution. Therefore,
starting from intra-class clustering representations,
we explore shared features of a category, with the 15030 53.96  52.07
expectation that the model can learn the essential 5 6570 6838 67.01
distinctions cross classes. This aspect has been

overlooked in previous research. The results in Table |1{ support our idea: aggregating multiple im-
ages from the same class (e.g., by averaging) to form a category-level cluster feature for classification
significantly outperforms using a single image as the cluster feature. This is because multi-image
aggregation extracts category-level stable factors, suppressing incidental noise and background in

n  Base Novel HM
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Figure 1: Overview of the proposed PGMPL. PGMPL consists of two main components: the first is
the gray area, which involves the construction and maintenance of the prototype. The second com-
ponent is the introduction of learnable batch tokens with a bidirectional cross-attention interaction
mechanism in the intermediate layers of the CLIP encoder.

individual images and yielding a more class-summarized representation. Based on this finding, we
introduce a novel supervisory signal (prototype) that acts as a cluster center during training. Guided
by this prototype, model can focus on shared class attributes while ignoring instance-specific noise,
thereby ensuring image-text alignment and enhancing the generalization of representations.

3.3 PGMPL: PROTOTYPE-GUIDED MULTI-MODAL PROMPT LEARNING

To address the key challenges of VLMs in zero-shot tasks, we propose Prototype-Guided Multi-
modal Prompt Learning (PGMPL), as illustrated in Figure[T} Inspired by how humans form con-
cepts from multiple instances, PGMPL aggregates multi-image features per class together with tex-
tual semantics to form a stable, category-level supervisory signal (i.e., prototype) to guide better
representation learning. To obtain reliable prototypes, it is necessary to ensure the effectiveness of
features extracted by the encoders. Specifically, we insert carefully designed learnable batch tokens
into intermediate layers of encoders and perform cross-modal fusion via cross-attention, mitigat-
ing image-text mismatch that may arise from introducing new tokens. Then, we use the optimized
image patch tokens together with learnable tokens to enhance the text representation, producing
an enhanced text that is used to update the category-level prototype. The prototype further guides
image-text contrastive learning, improving the model’s generalization ability to novel classes.

3.3.1 LEARNABLE BATCH TOKENS WITH BIDIRECTIONAL CROSS-ATTENTION INTERACTION

To obtain a better prototype, we optimize the features extracted from both the image and text en-
coders. We rely on prompt learning to refine the representations instead of fine-tuning, which is
known to degrade generalization.

Learnable batch tokens. We insert learnable tokens into image and text embeddings to optimize
image and text representation. We first initialize M batch tokens B, where the first % tokens are
denoted as B M and the last % tokens are denoted as B);. For each batch, we enhance B, with
B% on both the image and text sides, which introduces a category-agnostic semantic representation
that to improve feature expressiveness for unseen classes:

Z Z
) ) 1 ) 1
mg __ mg _ L rmg tat __ txt _ L txt
By? =piBy” + (1= B1)- - E 1:B%WBM =BByp +(1-F2)- E 13%4, 2
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Figure 2: Comparison of cross-modal interaction strategies.

where 31 and (5 are hyperparameters that control the extent to which the tokens utilize batch-wise
information, and Z denotes batch size.

Motivated by the observation that features from shallow encoder layers preserve generalizable in-
formation, while deeper layers capture specific representations (Yang et al.,[2024), we insert tokens
starting from an intermediate layer K following \Guo & Gu|(2025a)), to balance the performance on
base and novel classes. Furthermore, we implement skip connections between shallow and deep
features to explicitly preserve generalizable information:

By =P3-By;+(1—03) By _r-xs, 3)
where layers [ € (K, L], and (3 is hyperparameter that controls the fusion ratio.

Bidirectional cross-attention interaction mechanism. Introducing learnable tokens into interme-
diate encoder layers disrupts the representation distributions of the two modalities and undermines
the consistency of image-text matching. Therefore, we incorporate image-text interaction during
training to mitigate this mismatch.

Existing methods exhibit significant limitations in cross-modal interaction. As shown in Figure 2}
traditional approaches (Figure |Z| (a)) lack direct inter-modal interaction, performing only simple
matching at the final feature level. Methods like MaPLe (Figure |Z| (b)) achieve only unidirectional
text-to-image mapping, failing to capture visual feedback for text representations. While shared
space methods such as MMRL (Figure 2] (c)) project features from a common representation space
to respective modality-specific spaces, their indirect interaction mechanisms result in imprecise se-
mantic alignment and compromised modality-specific information.

The common deficiency across these approaches is the absence of direct pathways between modal-
ities, leading to inadequate cross-modal semantic understanding, particularly for unseen classes.
To address this, we construct an bidirectional interaction enhancement module (Figure [2] (d)) that
enables direct token-level interaction through bidirectional cross-attention:

B'™I = B'™I 4 CrossAttn(B™9, B, B! = B! { CrossAttn(B™!, B™9), (4)
where CrossAtin(-,-) denotes cross-attention, and the first argument denotes the queries @, the

second denotes the keys K and values V. Specifically, CrossAttn(X,Y) = softmax( Q\'/Idi: )-V,

Q=X -Wg, K=Y -Wg,V =Y Wy,d, is the dimensionality of K.
This symmetric bidirectional architecture preserves modality-specific characteristics while estab-

lishing fine-grained cross-modal semantic correlations and enhancing alignment quality of vision-
language representations.

Finally, text prompts and visual prompts are formally defined as:

[Cr,u]l =Vi([Ci—1,vi-a]),l=1,..., K =1, (5)

[Cle’U%’“B}\}/[’luvl] = Vl([leluBI%J_VB}}\/I,lflavlfl}%l = K> e 7L7 (6)
[Sl;tl7El] = ﬂ([sl—lvtl—17El—1})7l = 17 . 'aK - 1; (7)

[Sl,Bt%’l, Bf\/[)latlvEl] = ﬁ([Sl—la B)i\?f?l_la B?\/[)l—latl—lvEl—l})vl = K7 e 7La (8)
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where V; and 7; are layer-/ operations of image and text encoders. C; are text class tokens at layer
l, S; and Ej are visual start and end tokens at layer [, 3%7 ; and By ; are batch tokens at layer [.

3.3.2 PROTOTYPE GUIDANCE

We introduce category-level summarizing prototypes to both strengthen cross-modal alignment and
significantly improve inter-class feature discriminability. We use the above-mentioned methods to
optimize and extract image and text features. Based on the obtained image and text features, we
employ cross-attention that takes the class-specific text feature as the query and the image feature as
the key and value to dynamically enhance the text feature. Then, we use the enhanced text feature
to update the prototype p, for each class through a momentum mechanism as follows:

Py =7 Py + (1 —7) CrossAttn (t,, P) )

where t,, is the text embedding, P is the patch embeddings of images and batch tokens, and 7y is a
momentum coefficient controlling the update rate of prototypes.

Training Phrase. We introduce a dual-objective optimization strategy. Beyond standard vision-
language feature alignment, we use prototypes to guide better representation learning, encourag-
ing intra-class compactness and inter-class separation by clustering features around their category-
specific prototypes. The logits s can be computed as:

"9 = an - S fimgs frat) + (1= 1) - sim( fimg, Dy), (10)
Sbamh =qQq - Sim(fbatcha ftact) + (1 - 041) : Sim(.fbatchapy)7 (1D

where fi;; denotes the text feature, f;,,, denotes the image feature, and fyq¢cn denotes the batch
token feature, including B% and Bj. sim(-,-) denotes inner product. The corresponding loss is

then computed using cross-entropy loss:

Lég=— Z Ytrue 108 (W) ,w € {img, batch}. (12)

N
ey j=1 &xp(s7/7)

To ensure the original generalization ability of CLIP, we impose feature-level regularization:

£reg =D (fimga Z%Lglp) +D (ftwt» tszlP) (13)
where D(-, -) is the cosine distance, and f¢Z!" are features from the frozen CLIP encoder.
The final loss can be computed as follows:

»Ctotal = Q9 - ,CZ«nE‘? + (]. — CEQ) . »ngvlédl + A »Creg (14)

Inference Phrase. It should be noted that prototypes are used only
during training to guide better clustering of representations; they !

are not used at inference. And our inference strategy differentiates 1 %2 PO m;"g) ©0-a) ”gy foaten) 1
between base and novel classes as illustrated in Figure [} For base |

classes, we compute ensemble logits as a weighted sum of image- .- ___f=——==g=—===1____ I
text and batch-text scores, where both fi,,,4 and fyqicn are compared
against the text features fy,: Image Feature — P(Y|fimg) :

p<y|fimgafbatch) :a2'p(y‘fimg)+(1_a2)'p(y‘fbatch)7 (15) ! For Novel Classes !

For Base Classes

Image Feature Batch Feature

For novel classes, we use only image features f;,,  to preserve gen- Figure 3: Inference on base
eralization following |(Guo & Gu| (2025a) (i.e. ag = 1). The final and novel classes.
prediction is obtained via y = arg maxy p (Y| fimg, foateh)-

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate on 11 standard vision datasets: ImageNet (Deng et al., 2009), Cal-
tech101 (Fei-Fei et al., [2004), OxfordPets (Parkhi et al., 2012), StanfordCars (Krause et al., [2013)),
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Table 2: Comparison with state-of-the-art methods on base-to-novel generalization across 11
datasets. The best result are in bold, and the second best result are underlined.

Average ImageNet Caltech101 OxfordPets
Base Novel HM Base Novel HM  Base Novel HM Base Novel HM
CLIP 69.49 7430 71.82 7240 68.10 70.18 97.20 9420 95.68 9130 97.10 94.11
CoOp 8223 6794 7441 7633 6773 71.77 9823 93.10 9560 94.47 9557 95.02

CoCoOp 80.63 7247 7633 76.00 7057 73.18 9773 9330 9546 9493 97.80 96.34
KgCoOp 81.18 7345 77.12 7587 69.83 7272 97.83 9447 96.12 9488 97.60 96.22
MaPLe 81.88 7492 7825 76.77 7050 73.50 97.87 9547 96.66 9547 98.00 96.72
ProVP 84.70 71.81 77.72 75.88 67.93 71.69 9877 9421 96.44 95.04 97.11 96.06
MMRL 8556 76.56 80.81 77.90 71.20 7440 9890 9430 96.55 95.67 97.50 96.58
MMRL++ 8536 77.62 8131 77.67 71.53 7447 9870 9403 9631 95.10 96.87 9598
ATPrompt 83.66 71.40 77.05 77.00 69.20 72.89 98.17 9383 9595 9587 97.73 96.79
PGMPL 85.55 78.07 81.64 7753 7170 7450 9893 9443 96.63 9593 97.60 96.76

StanfordCars Flowers102 Food101 FGVCAircraft
Base Novel HM Base Novel HM Base Novel HM Base Novel HM
CLIP 63.70 7490 68.85 71.70 77.40 7444 90.00 91.20 90.60 27.60 3590 31.21
CoOp 75.63 6937 7236 97.60 6743 79.76 89.20 87.47 8833 38.10 28.00 32.28

CoCoOp 70.80 7243 71.61 9503 7090 81.21 9057 91.13 90.85 36.00 32.53 34.18
KgCoOp 72772 7478 73774 9487 7459 8352 9047 91.70 91.08 3730 33.57 3534
MaPLe 7220 74775 7345 9577 74.07 8353 90.73 92.17 9144 3653 3527 35.89
ProVP 79.40 68.67 73.65 98.07 69.88 8l1.61 90.29 91.05 90.67 4560 3129 37.11
MMRL 81.20 7470 77.81 9890 76.87 8650 90.60 91.50 91.05 45.60 37.03 40.87
MMRL++ 81.23 75.03 78.01 98.13 77.33 8650 9047 91.63 91.05 4643 3857 42.14
ATPrompt 7733 7243 7480 97.60 69.33 81.07 89.83 90.80 90.31 39.93 2490 30.67
PGMPL 82.13 7573 78.80 9847 7697 8640 89.87 9197 9091 4620 38.83 42.20

SUN397 DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM Base Novel HM
CLIP 69.40 75.60 72.37 5320 60.70 56.70 57.00 63.80 6021 7090 7840 74.46
CoOp 81.13 69.27 7473 79.37 4880 60.44 89.73 58.57 70.88 84.70 62.07 71.64

CoCoOp 79.40 7620 7777 7697 5427 63.66 8737 6477 7439 82.10 7327 7743
KgCoOp 80.47 76.80 7859 79.01 5652 6590 8631 61.72 7197 8323 7633 79.63
MaPLe 80.90 78.00 79.42 80.00 5830 67.45 9127 69.70 79.04 8320 77.93 80.48
ProVP 80.66 74.87 77.66 82.64 5753 6784 9744 6374 77.07 87.88 73.64 80.13
MMRL 8297 79.20 81.04 8570 65.63 7433 9573 75.60 8448 88.03 78.67 83.09
MMRL++ 8293 79.50 81.18 85.10 66.03 74.36 95.60 83.73 89.27 87.63 79.53 83.38
ATPrompt  81.67 7633 7891 81.67 5137 63.07 9583 6423 7691 8533 7527 7998
PGMPL 82.67 79.67 81.14 8537 6633 74.66 96.87 86.27 9126 87.03 79.30 82.99

Flowers102 (Nilsback & Zisserman, [2008)), Food101 (Bossard et al.l 2014), FGVCAircraft (Maji
et al.l |2013), SUN397 (Xiao et al., 2010), DTD (Cimpo1 et al., 2014), EuroSAT (Helber et al.,
2019), and UCF101 (Soomro et al., 2012)), which includes generic object recognition, fine-grained
classification, scene understanding, remote sensing and human action recognition. We alse test the
cross-domain effect of our method on ImageNetV2 (Recht et al., |2019), ImageNet-Sketch (Wang
et al.| 2019), ImageNet-A (Hendrycks et al.} 2021b) and ImageNet-R (Hendrycks et al.| [2021a)).

Implementation Details. The implementation details can be found in Appendix

Evaluation. For image-text classification, we test base-to-novel, cross-dataset and cross-domain
generalization, then record the accuracy on the base/novel classes, and their harmonic mean (HM).
We also introduce an image-cluster feature classification as a new evaluation, directly assessing
whether the prototype-guided visual representations exhibit improved clustering.

4.2 BASE-TO-NOVEL GENERALIZATION

We compare our method with the zero-shot baseline CLIP, as well as prompt learning methods,
including CoOp (Zhou et al 2022c), CoCoOp (Zhou et al., 2022b), KgCoOp (Yao et al.| [2023),
MaPLe (Khattak et al.| 2023)), ProVP (Xu et al.,|2025)), MMRL (Guo & Gu,[2025a), MMRL++ (Guo
& Gu, [2025b), and ATPrompt (L1 et al., [2024)).
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Table 3: Comparison with state-of-the-art methods MMRL and MMRL++ on image-cluster feature
classification evaluation across 11 datasets.

Average ImageNet Caltech101 OxfordPets
Base Novel HM Base Novel HM  Base Novel HM Base Novel HM
CLIP 65.70 68.38 67.01 51.38 4995 50.65 9480 89.09 91.86 67.99 69.33 68.65

MMRL 70.64 71.60 71.12 55.31 53.14 5420 95.00 9096 9294 82.15 79.06 80.58
MMRL++ 69.92 7053 70.22 5526 5320 5421 9484 8899 91.82 7795 69.13 73.28
PGMPL 72.41 7334 7287 58.17 5538 56.74 9586 92.04 9391 84.81 80.98 82.85

StanfordCars Flowers102 Food101 FGVCAircraft
Base Novel HM Base Novel HM Base Novel HM Base Novel HM
CLIP 50.33 62.51 5576 89.22 88.99 89.10 74.02 78.07 7599 28.57 37.64 32.48

MMRL 5522 65.02 59.72 9220 9090 91.55 7532 7887 77.05 31.68 4140 3589
MMRL++ 55.03 64.50 59.39 90.68 91.12 9090 74.43 78.01 76.18 3254 42.64 3691
PGMPL 58.18 68.04 62.72 9320 91.89 9254 77.36 8130 79.28 3347 4271 37.53

SUN397 DTD EuroSAT UCF101
Base Novel HM Base Novel HM Base Novel HM Base Novel HM
CLIP 60.87 6447 62.62 56.55 5921 5785 8247 86.07 8423 6649 6685 66.67

MMRL 63.81 66.63 65.19 6435 6245 6339 94.02 9134 92.66 67.99 67.85 6792
MMRL++ 63.70 66.81 65.22 6257 61.56 62.06 9398 91.82 92.89 68.10 68.00 68.05
PGMPL 66.64 69.50 68.04 65.68 64.73 6520 9413 90.72 9239 69.02 69.45 69.23

Table 2] compares the base-to-novel generalization performance of our PGMPL with other state-of-
the-art methods across 11 datasets. On average, our method achieves an HM of 81.64%, surpassing
the state-of-the-art method MMRL++ by 0.33%. Specifically, PGMPL improves accuracy on novel
classes by 0.45% over MMRLA++, and is 0.19% higher on base classes, remaining comparable to the
best MMRL. These results indicate that PGMPL effectively enhances adaptation to unseen classes
while maintaining high accuracy on base classes. Beyond the average metrics, PGMPL'’s effective-
ness is validated on multiple individual datasets. On 9 datasets, our approach either outperforms or is
comparable to the current state-of-the-art methods, demonstrating its effectiveness and universality.

4.3 IMAGE-CLUSTER FEATURE CLASSIFICATION EVALUATION

We further aggregate the features of five given images to form a cluster feature, which is then
matched against images, and compare the results with CLIP and state-of-the-art methods to ver-
ify that prototype guidance leads the model to learn better visual representations. As shown in
Table 3] our method achieves the best accuracy on 10 datasets, with the average HM exceeding the
best prior method by 1.75%; accuracy improves by 1.77% on base classes and by 1.74% on novel
classes. In this setting, PGMPL shows a larger advantage over state-of-the-art methods, indicating
that prototype guidance enhances visual representations; in turn, the improved visual features fur-
ther boost image-text matching performance, as shown in Table 2] We also use t-SNE plots to show
the distribution of visual representations for some datasets in Appendix

We find that accuracy is limited on certain datasets in the base-to-novel generalization. For instance,
on Flowers101, image-text matching achieves only 76.97% on novel class in Table 2] whereas
image-cluster feature matching raises it to 91.89% (+14.92%) in Table |3| This indicates that text-
based matching can be a performance bottleneck in some scenarios, while class-level visual cluster
features can capture fine-grained semantics that text prompts struggle to express, thereby providing
more discriminative representations. These observations also demonstrate the necessity of introduc-
ing a class-level summarizing prototype as a supervisory signal to improve model’s generalization.

4.4 CROSS-DATASET AND CROSS-DOMAIN EVALUATION

Table [ shows the performance of models trained on ImageNet and transferred to other datasets,
covering both cross-dataset and cross-domain settings. Our method achieves an average accuracy of
65.41%, comparable to the state-of-the-art method MMRL. However, in the base-to-novel general-
ization experiment, MMRL’s HM is lower than ours by 0.83% (see Table[2). Moreover, the previous
best method, MMRL++, is lower than ours by 0.09% on the cross-dataset and cross-domain evalu-
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Table 4: Comparison with state-of-the-art methods on cross-dataset and cross-domain evaluation
across 11 datasets.

Source Target
E - g
L 5 g & £ 3 =z %2 T % %
Z £ 2 g 2 B 5 Z B £ B z z 2z 2z 3§
g < o] < 2 <) = ) &= = S E £ = = =
= O [aw © [ = < 17 A m =) = = = = <

CLIP 66.70 92.90 89.10 65.30 71.30 86.10 24.80 62.60 44.50 47.50 66.80 60.80 46.10 47.80 74.00 62.83
CoOp 71.50 93.43 89.10 63.43 69.40 85.37 18.13 64.47 41.10 41.40 66.67 64.13 48.17 50.23 76.03 62.22
CoCoOp  71.13 94.47 90.60 65.33 71.57 86.10 22.63 67.17 45.23 46.93 68.73 64.33 48.87 50.97 76.53 64.25
KgCoOp 70.60 93.67 90.00 65.63 70.33 86.40 23.13 66.37 46.43 43.43 68.27 63.83 48.57 50.47 76.70 63.80
MaPLe 70.60 93.93 90.90 65.47 71.23 86.13 23.47 67.10 45.60 46.90 67.40 63.97 48.77 50.83 76.93 64.19
ProVP 75.88 92.51 89.11 61.81 64.55 82.74 23.24 63.58 43.62 41.70 66.05 61.26 45.29 43.50 72.92 60.85
MMRL 72.03 94.53 91.67 66.03 72.77 86.40 26.23 67.43 46.43 53.10 68.77 64.67 49.17 50.93 77.60 65.41
MMRL++ 71.87 94.57 91.37 66.33 73.20 86.70 25.90 67.67 45.80 51.90 69.00 64.40 49.20 50.87 77.63 65.32
ATPrompt 70.80 93.97 89.90 63.00 69.40 86.07 22.43 65.23 42.23 46.13 65.67 64.20 48.10 50.57 76.50 63.10

PGMPL 71.13 94.80 91.70 66.37 72.37 86.50 26.40 67.60 46.57 53.87 68.50 64.60 48.87 50.17 77.37 65.41

ation. Across the 14 datasets, we obtain state-of-the-art results on 6 and second-best on 3, demon-
strating stable transferability and achieving the best average performance across different domains.

4.5 ABLATION STUDY

Module ablations. We conduct ablations on differ-

ent modules in Table [5]to verify the contribution of Table 5: Ablation on different modules.
each component. Specifically, “w/o batch token” re-
moves in-batch aggregation and retains only basic
learnable tokens for prompt learning; “w/o cross-
attention” inserts learnable tokens into the image and ~ W/0 cross-attention 8570 76.67  80.93
text branches independently without cross-modal in- W/ batch tokens —85.4176.60 8077
teraction; “w/o prototype” trains with the standard W/%gﬂgg be gggg ;g(z); g(l)gi
image-text contrastive loss only. i ’ :

Variants Base Novel HM

We observe that adding cross-attention slightly re-

duces performance on base classes but substantially improves novel performance by 1.40%, indi-
cating that cross-attention effectively enhances feature generalization. We also compare with other
cross-modal interaction strategies in Appendix [A.2.1] further demonstrating the effectiveness of our
bidirectional cross-attention interaction mechanism. In addition, our design of batch token not only
adds learnable tokens but also aggregates in-batch information, effectively improving the quality
of representation. Finally, introducing the prototype further boosts performance on both base and
novel classes, suggesting that a modality-bridging and category-level supervisory signal strengthens
generalization and discriminability of representations.

More ablations. Additional ablations on learnable tokens interaction strategies, the number of batch
tokens, and different parameters are provided in Appendix

5 CONCLUSION

We propose a novel prompt learning method PGMPL, which improves the generalization ability
of VLMs in zero-shot scenarios. We introduce a modality-bridging and category-level prototype
to guide representation learning, aiming to enhance CLIP’s generalization to unseen classes. To
improve representation quality, we insert batch tokens into intermediate encoder layers, and employ
bidirectional cross-attention to mitigate the image-text misalignment caused by the inserted batch
tokens. We then update per-class prototypes based on the learned feature and use them as supervision
and guidance to further optimize image-text matching. Extensive experiments demonstrate that our
method surpasses current state-of-the-art approaches on base-to-novel image-text and image-cluster
feature matching tasks, and achieves comparable results in cross-dataset and cross-domain settings,
showcasing its potential for zero-shot learning applications.
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A APPENDIX

A.1 EXPERIMENT SETUP

A.1.1 MORE IMPLEMENTATION DETAILS

We utilize a frozen ViT-B/16 CLIP backbone (Radford et al.| 2021), training only learnable tokens
and auxiliary modules as shown in Figure [I] All experiments follow a 16-shots setting, where 16
images per base class are sampled for training.

We employ the AdamW optimizer with a learning rate of 1073, The number of batch token is
M = 10, and we insert learnable tokens starting from the sixth layer of the encoder (K = 6).
Regarding the design of batch token, we set different batch size Z and aggregation weights 3
and j3; for batch tokens across datasets, as shown in Appendix[A.2.3] Then, we set the shallow-deep
encoder information fusion weight 33 to 0.5. For loss weights, the prototype guidance coefficient cy
is set to 0.7 on ImageNet and 0.5 for other datasets, while the cross-entropy term weight o = 0.7.
The regularization weight ) is also set per dataset following MMRL (Guo & Gul [2025a)). Finally,
the momentum update coefficient for prototypes is v = 0.9.

For the base to novel generalization and image-cluster feature classification evaluation experiments,
the epoch for ImageNet is set to 5, and for other datasets, it is set to 10. For other experiments,
the epoch is set to 1. All methods are trained and tested under identical conditions, with metrics
averaged over three independent trials on a single NVIDIA L20 GPU.

A.2 EXPERIMENTS
A.2.1 DETAILED RESULTS OF ABLATION ANALYSIS ON LEARNABLE TOKENS INTERACTION

We compare different cross-modal interac-
tion strategies in Table @ “Text to image”  Table 6: Ablation study on interaction strategies across
maps tokens unidirectionally from the 1] datasets.

text embedding to the image embedding;
“shared space” first defines shared tokens

. Interaction strategies Base Novel HM
and then maps them to the image and text -
embedding separately; ‘“cross-attention” text to 1mage 85.63 7589  80.46
uses bidirectional cross-attention for direct shared space 85.67 76.47  80.80

cross-modal interaction, corresponding to cross-attention (PGMPL)  85.55 78.07 81.64

Figure [2](b)-(d).

Using text-to-image mapping directly for cross-modal interaction can introduce bias, thereby weak-
ening generalization to novel classes. Although the shared space approach achieves the best perfor-
mance on base classes, this indirect interaction by projecting learnable tokens to the two branches
separately still lacks sufficient generalization, resulting in poorer performance on novel classes.
In contrast, the bidirectional cross-attention mechanism enables more direct cross-modal interac-
tion, effectively alleviates image-text misalignment, and captures finer-grained semantic correspon-
dences, thereby substantially improving zero-shot generalization.

A.2.2 DETAILED RESULTS ON ALL 11 DATASETS OF ABLATION ANALYSIS ON THE
NUMBER OF BATCH TOKENS

We conduct an ablation on the number of learnable tokens, varying it in {4, 6, 8,10, 12,14}, and
compare our method with the current state-of-the-art method MMRLA++, in terms of base, novel,
and harmonic-mean (HM) accuracy, as shown in Figure [}

For our PGMPL, as the number of tokens increases from 4 to 10, both novel and HM steadily im-
prove and peak at 10 tokens (Novel = 78.07%, HM = 81.64%). When tokens > 10, accuracy
decreases slightly but remains clearly higher than MMRL++. For MMRL++, the curves are almost
flat when tokens < 10, indicating little benefit from adding more tokens; when tokens > 10, perfor-
mance degrades. For example, at 12 tokens, the novel accuracy of MMRL++ is 1.31% lower than
ours. Overall, the two methods are similar on base classes, while our gains mainly lie in generaliza-
tion to novel classes, resulting in a higher HM and validating the effectiveness of our approach.

13
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86 Ablation Results on the Number of Batch Tokens

Method
Base MMRL++
84 « Novel MMRL++
HM MMRL++
Base ours
Novel ours

HM ours

]
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4 6 8 10 12 14
The Number of Batch Tokens

Figure 4: Ablation results on the number of batch tokens.

Table 7: Ablation study on batch size across 11 datasets. All results are reported in terms of HM.

Z ImNet Caltech Pets Cars Flowers Food Aircraft SUN397 DTD EuroSAT UCF

4 7441  96.52 96.17 7871 8627 90.77 41.85 81.05 74.19 87.67 82.93
8 7432 9637 9620 7842 8634 90.84 41.63 80.99  74.66 90.87 82.91
1
3

74.41 9622  96.58 78.46  86.03 90.87 41.69 80.92  73.87 88.53 82:93
7429 9647 96.64 78.07 8621  90.79  39.65 8094  73.48 84.40 81.94

\Se)

Table 8: Ablation study on 31 and 35 across 11 datasets.

#1 P2 ImNet Caltech Pets Cars Flowers Food Aircraft SUN397 DTD EuroSAT UCF

00 0.0 7433 9637 9648 78.63 86.12 90.85 41.89 81.03 74.39 88.91 82.76
04 04 7440 9656 96.66 78.67 8635 90.90 41.81 81.15 74.57 91.13 82.94
04 05 7438 9656 96.71 7855 86.34  90.89  41.99 81.06  74.66 91.26 82.85
04 06 7438 96.63 9673 78.67 8632 9090 41.88 81.11 74.43 91.17 82.86
05 04 7442 9653 9651 7878 86.40  90.87  42.05 81.14  74.62 90.56 82.99
05 05 7441 96.52  96.64 78.71 86.34  90.87  41.85 81.05 74.66 90.87 82.93
05 06 7436 9659 96.76 78.69 8629 90.89  42.20 81.09 74.36 90.83 82.97
06 04 7438 9648 9645 7876 86.28 90.87 41.86 81.11 74.50 89.60 82.99
06 05 7445 9646 9655 7880 8627 90.87 41.89 81.12 74.66 89.40 82.97
06 06 7443 9646 96.61 7879 8632 9091 4201 81.02 7422 89.40 83.01
1.0 1.0 7431 96.51 9640 78.73 8568 90.82  42.05 81.12  73.65 83.74 82.82

A.2.3 DETAILED RESULTS ON ALL 11 DATASETS OF ABLATION ANALYSIS ON DIFFERENT
PARAMETERS

We initialize the batch size Z for each dataset to 8, set 51 = B2 = (3 = 0.5, @y = 0.5, and
ag = 0.7, and then perform ablation studies on these parameters.

Ablation analysis on batch size Z. Since token compu-

tation is batch-dependent, and larger batch sizes incorpo-  Taple 9: Ablation study on 35 across 11
rate more intra-batch information during token optimiza- atasets.

tion, we conduct an ablation study on batch size Z. To

analyze how this impacts performance across datasets, we

K Bas Novel HM
evaluate batch sizes of 4, 8, 16, and 32. As shown in Ta- 6—3 ase ove
ble[7] the optimal batch size varies per dataset, reflecting 00 8540 77.38  81.20

03 8546 77.57 81.32

0.5 8554 78.07 81.63
Ablation analysis on 3; and . We next perform ab- 0.7 8548 77.43 81.26
lation studies on 3; and 32, which govern the fusion of 1.0 8547 76770 80.85
randomly initialized tokens with intra-batch information

in both vision and text modalities. Specifically, 51 con-

trols the weight of batch-level features in image-side token optimization, while 32 controls the same
for text-side. Due to modality differences, the optimal parameters can differ across modalities. To

differences in their utilization of batch-level information.
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Table 10: Ablation study on 1 across 11 datasets.

(a) Average Performance on ImageNet. (b) Average Performance across 11 datasets.
Qi Base Novel HM ay Base Novel HM
0.0 3027 4193 35.16 0.0 27.57 33.52 30.26
03 7743 7073 73.93 0.3 85.60 7740 81.29
0.5 77.50 71.63 7445 0.5 8555 78.07 81.64
0.7 7753 7170 74.50 0.7 8539 77.51 81.26
1.0 7747 71.63 7444 1.0 8524 76.28 80.51

systematically explore the relationship between them, we conduct joint ablation studies within the
range [0.4, 0.6] and select the best-performing configurations for each dataset. The results are sum-
marized in Table

Ablation analysis on 55. We further conduct ablation studies on (3, which controls the integra-
tion of information between the shallow and deep layers of the encoder. Lower 33 indicates greater
utilization of the generalized features of shallow layers. By evaluating the 33 settings of 0.0, 0.3,
0.5, 0.7, and 1.0, we identify the optimal balance between shallow and deep token information.
As shown in Table [9] the best performance is achieved at 33 = 0.5, demonstrating that a syner-
gistic combination of both shallow generalization and deep specialization is critical to balance the
performance of model on base and novel classes.

Ablation analysis on «;. We conduct ablation studies on «a;, the weighting coefficient for pro-
totype guidance during training. Lower a; values correspond to stronger prototype influence. For
ImageNet, ablation results (Table[T0|(a)) show that a; = 0.7 achieves the best generalization perfor-
mance. We then fix a; = 0.7 for ImageNet and perform ablation studies on other datasets (Table [I0]
(b)), ultimately adopting iy = 0.5 for other datasets.

Ablation analysis on as. Ablation analysis on as. We perform ablation studies on s, which
controls the dependency ratio between image features and batch token features. Lower aiy values
indicate higher emphasis on batch token features. As shown in Table[TT] we evaluate a5 values of
0.0, 0.3, 0.5, 0.7, and 1.0, and select ay = 0.7 as the final parameter configuration.

A.3 VISUALIZATION

We visualize the t-SNE distributions of image embedding

on EuroSAT, Caltechl01, OxfordPets, and Flowers101 Taple 11: Ablation study on ao across
datasets, comparing against the state-of-the-art MMRL++ ] datasets.

method. As shown in Figure [5] our approach demon-

strates better intra-class compactness and higher inter- o> Base Novel HM

class separability in different image recognition tasks, —
indicating that prototype-guided representation learning 0.0 8333 7403 7840

Lo Lo g 03 84.03 76.75 80.23
produces more discriminative features. 05 8474 7754 8098

0.7 85.55 78.07 81.64
A.4 LLM USAGE STATEMENT 1.0 83.52 76.25 79.72

During the preparation of this manuscript, we utilized

LLM as a writing assistance tool for language polishing. All suggestions from the LLM were crit-
ically reviewed, edited, and revised by the authors to ensure the final text accurately reflects our
research. The authors take full responsibility for all content presented in this paper.
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Figure 5: The t-SNE distributions of image embedding on EuroSAT, Caltech101, OxfordPets, and
Flowers101 datasets.
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