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ABSTRACT

We propose the generalized Newton’s method (GeN) — a Hessian-informed ap-
proach that applies to any optimizer such as SGD and Adam, and covers the Newton-
Raphson method as a sub-case. Our method automatically and dynamically selects
the learning rate that accelerates the convergence, without the intensive tuning of
the learning rate scheduler. In practice, our method is easily implementable, since
it only requires additional forward passes with almost zero computational overhead
(in terms of training time and memory cost), if the overhead is amortized over
many iterations. We present extensive experiments on language and vision tasks
(e.g. GPT and ResNet) to showcase that GeN optimizers match the state-of-the-art
performance, which was achieved with carefully tuned learning rate schedulers.

1 INTRODUCTION

Deep learning models are trained via the gradient descent wt+1 = wt − ηtP
−1
t gt, where wt ∈ Rd

is the model parameters. The model update wt −wt+1 consists of a learning rate scheduler ηt ∈ R
that is controlled by several hyperparameters, a pre-conditioner Pt ∈ Rd×d that can depend on the
Hessian or Fisher information, and the first-order gradient gt ∈ Rd of the loss function L(wt).

Table 1: Summary of optimizers with wt+1 = wt − ηtP
−1
t gt, where H is the Hessian, F is the

Fisher information, d is the number of model parameters. We highlight that GeN can take advantage
of any pre-conditioner Pt.

Method ηt Pt dim(Pt)
Newton-Raphson =1 = H d2

BFGS Broyden (1970); Fletcher (1970); Shanno (1970), LBFGS Byrd et al. (1995) need to tune ≈ H d2

GeN (ours) = G⊤g/g⊤Hg Any 1 or d

D-adaptation Defazio & Mishchenko (2023), Prodigy Mishchenko & Defazio (2023), DoG Ivgi et al. (2023), DoWG Khaled et al. (2023) ≈ ∥w0 −w∗∥/maxG = I or
√

diag(F) 1 or d
AdaHessian Yao et al. (2021), Sophia Liu et al. (2023) need to tune ≈ diag(H) d

Shampoo Gupta et al. (2018), K-FAC Martens & Grosse (2015), Natural Gradient Amari (1998) need to tune ≈ F d

Adam Kingma & Ba (2014), AdamW Loshchilov & Hutter (2017), AdaGrad Duchi et al. (2011), AdaDelta Zeiler (2012), RMSProp Hinton et al. (2012) need to tune ≈
√

diag(F) d

SGD Robbins & Monro (1951), Heavyball Polyak (1964), NAG Nesterov (1983) need to tune = I 1

For large-scale optimization problems with millions to billions of parameters, the training can be
significantly costly. For example, large language models are trained with trillions of tokens, on
thousands of GPUs, costing millions of dollars Sharir et al. (2020); Biderman et al. (2023), and at
high carbon footprint Patterson et al. (2021); Luccioni et al. (2023); Dodge et al. (2022); Touvron
et al. (2023a): GPT-3 (175B) Brown et al. (2020), LLAMA (7∼70B) Touvron et al. (2023a;b),
Chinchilla (70B) Hoffmann et al. (2022), PaLM (540B) Chowdhery et al. (2023), and Falcon
(7∼180B) Almazrouei et al. (2023) models are trained on ⪆ 1T tokens; state-of-the-art models
require extremely long training time, measured in thousands of PetaFLOPS-days (Almazrouei
et al., 2023, Figure 2) or millions of GPU hours AI@Meta (2024). It is therefore computationally
prohibitive to instantiate a dense Pt or to tune the hyperparameters of ηt. However, the second-order
pre-conditioner and the learning rate scheduler are critical to the fast convergence.

On one hand, a Hessian-informed pre-conditioner is necessary in large-scale model training, as
SGD (using no pre-conditioning) empirically does not compete with adaptive optimizers like Adam.
However, implementing or approximating the full Hessian matrix induces O(d2) or even O(d3)
complexity, which is infeasible for large models on current generation of computing devices. In order
to compute the pre-conditioner Pt efficiently, a long list of adaptive optimizers (see Table 1 with
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diagonal Pt) have proposed to only leverage the diagonal of Pt and/or to replace the Hessian with
Fisher information, although some information in the full Hessian may be lost.

On the other hand, manually setting a learning rate scheduler requires a critical balance between the
utility (more hyperparameters the better) and the tuning effort (less hyperparameters the easier). The
simplest approach is to set a constant learning rate ηt = η (only one hyperparameter) through grid
search. However, the mini-batch gradient descent with a constant ηt may not allow the model to
converge even under the convex setting, which is easier to optimize than the non-convex setting in
deep learning. Additionally, as we see in Figure 1, small η converges slow but to better solution, and
vice versa for large η, which depicts the importance of setting the proper ηt at each iteration. That is,
tuning the learning rate scheduler is essentially selecting T (number of iterations) learning rates to
maximize the convergence speed. To accommodate this challenge, a line of schedulers (including the
linear decay, warm-up and cosine scheduler) has been proposed to control the learning rate during
the training, with a number of hyperparameters. For instance, LLAMA 65B Touvron et al. (2023a)
uses a scheduler with 3 hyperparameters: warm-up steps=2000, maximum ηt = 1.5e−4 and final
ηt = 1.5e−5. Unfortunately, most schedulers are heuristic and have their limits: they do not guarantee
fast convergence and become increasingly difficult to tune as the model and data sizes increase.

Related works This work is closely related to previous literature in learning rate schedulers
(especially the parameter-free methods), optimization with Hessian information, and deep learning
system design, which are discussed in Section 3.2 and Appendix D.

Contribution We propose GeN – a Hessian-informed approach which merges the information from
the full Hessian into the learning rate, so as to dynamically adapt to the loss landscape and accelerate
the convergence. We examine GeN on 5 criteria: automaticity, applicability, scalability, computation
efficiency, and convergence speed.

Overall, GeN is an automatic optimizer that is applicable to the general optimizers1 and work
successfully in deep learning without adding much computations. Our efficiency analysis shows
that GeN is perfectly scalable to large-scale training and as computationally efficient as existing
optimizers. We empirically demonstrate that GeN is highly performant on image classification, text
classification, natural language generation, object detection, instance segmentation, recommendation
system, and parameter-efficient training (PET).
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Figure 1: Effects of various learning rate schedulers. Left two: ResNet18 on CIFAR100 dataset,
compared with constant learning rates (additional learning rates not in the legend is marked by cyan
points). Right two: GPT2 on E2E dataset, compared with heuristic learning rate schedulers.

2 MOTIVATION

2.1 NOTATIONS

We denote the model parameters as wt ∈ Rd, where t ≤ T is the index of iterations; {xi} are
the samples, with or without labels. For any loss function, we denote L(w) := ExL(w,x) as the
generalization loss, and L̄(w) :=

∑B
i=1 L(w,xi)/B as the training loss. We denote the mini-batch

stochastic gradient as goptim
t (∇L̄) = Pt · ∇L̄ ∈ Rd, where ∇L̄(wt) := 1

B

∑
i
∂L(wt,xi)

∂wt
is the

vanilla gradient and goptim
t is the pre-conditioned gradient of any optimizer. For instance, SGD

simply gives gSGD(∇L̄) = ∇L̄; SignSGD (a special case of Adam) post-processes the gradient

1We refer to Related Works in Appendix D for comparison with other heuristic or automatic learning rates.
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as gSignSGD(∇L̄) = sign(∇L̄); gradient clipping gives gclip(∇L̄) = min{C/||∇L̄||, 1}(∇L̄) and
similarly for the projection; PET (e.g. LoRA) gives gPET(∇L̄) = m⊙∇L̄ where m is a binary mask
and ⊙ is the element-wise multiplication. We highlight that many optimization algorithms, including
but not limited to AdaGrad, Adam, Sophia, momentum, and weight decay, can also be summarized
as the post-processing of∇L̄.

2.2 SECOND-ORDER TAYLOR EXPANSION

In deep learning, the models are updated via the gradient descent via the optimizers:

wt+1 = wt − ηtg
optim(wt) (2.1)

Appyling the Taylor expansion on the loss and leveraging (2.1), we can derive the loss improvement
at the current iteration,

L(wt)− L(wt+1) = L(wt)− L(wt − ηtg
optim
t ) = ηtG

⊤
t g

optim
t − η2t

2
(goptim

t )⊤Htg
optim
t +O(η3t ).

(2.2)

where Gt :=
∂L
∂wt

and Ht :=
∂2L
∂w2

t
are the oracle gradient and Hessian, respectively.

In light of (2.2), we claim that employing the second-order Taylor expansion is (1) necessary, since
the first-order Taylor expansion only characterizes a linear approximation of the loss and thus fail to
characterize the loss curvature; and (2) sufficient, especially in the small learning rate regime where
large models are universally trained2. In fact, (2.2) is also used in recent works on the neural scaling
laws Kaplan et al. (2020); McCandlish et al. (2018).

We visualize the loss function in Figure 2, in which a quadratic function with respect to η is fitted by
ignoring the higher order terms,

L(wt)− L(wt − ηtg
optim
t ) ≈ ∆L(goptim

t , ηt) := ηtG
⊤
t g

optim
t − η2t

2
(goptim

t )⊤Htg
optim
t (2.3)
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Figure 2: Illustration of the second-order Taylor expansion in (2.3). Left two: ResNet18 on CIFAR100
with SGD. Right two: GPT2 on E2E with AdamW.

3 METHODOLOGY

3.1 GENERALIZED NEWTON’S METHOD

Our goal is to minimize the loss L(wt) over the domain of learning rate η ∈ R, in particular the
next-iteration loss in (2.3) . In fact, if we ming,η ∆L(g, η) over both learning rate and descent
direction, then the optimal solution is η∗t g

∗
t = H−1

t Gt and therefore wt+1 = wt −H−1
t Gt. This

recovers the vanilla Newton’s method conditioning on that Ht is invertible.

By working with the domain of η, we effectively reduce the high(d+1)-dimensional ming,η ∆L(g, η)
to a uni-variate problem minη ∆L(g, η). From (2.3), it is obvious that the optimal learning rate is

η∗GeN(g
optim
t ) = G⊤

t g
optim
t

/
(goptim

t )⊤Htg
optim
t (3.1)

2The classical convergence analysis of gradient descent also leverages the second-order Taylor expansion
L(w−ηG) ≤ L(w)+ηG⊤G+ Lη2

2
||G||2 where L is the Lipschitz smoothness of L. This quadratic function

is minimized at η = 1/L.
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Remark 3.1. The closed form of (2.3) allows us to directly derive the optimal learning rate, without
resorting to more complex methods such as back-tracking or line searches.

That is, given goptim
t (determined by the pre-conditioner Pt) and that (goptim

t )⊤Htg
optim
t > 0, our

method transforms any base optimizer to a new optimizer by

wt+1 = wt − η∗GeN,tg
optim
t = wt −

(goptim
t )⊤Gtg

optim
t

(goptim
t )⊤Htg

optim
t

(3.2)

We term the family of optimizers in (3.2) as the generalized Newton’s method (GeN), because the
vanilla Newton’s method is a sub-case by Proposition 3.3. We highlight that goptim

t can come from
any optimizer or even be random: e.g. we equip (3.2) with gSGD

t to obtain GeN-SGD from SGD, or
with gAdam

t to obtain GeN-Adam from Adam.
Remark 3.2. When the formulation of (3.2) is restricted to SGD without the pre-conditioning, this
equivalent form of GeN-SGD has also been presented in prior works like LQA (Zhu et al., 2021)
and QLABGrad (Fu & Wu, 2024) and ADLER (Balboni & Bacciu, 2023). However, without the
general goptim through pre-conditioning, such formulation does not include the Newton’s method as a
sub-case. We dedicate Appendix D.4 to highlight the similarities and differences between GeN and
these works.

Proposition 3.3. If goptim
t = H−1

t Gt, (3.2) reduces to the Newton’s method as η∗t g
optim
t = H−1

t Gt.

Another way to understand (3.2) is via the generalized right inverse3 (see Definition A.1). For the
simplicity of presentation, we drop the super-script of goptim

t from now on. We can write

(g⊤
t Ht)

−1
R = gt/g

⊤
t Htgt =⇒ η∗t gt = (g⊤

t Ht)
−1
R g⊤

t Gt (3.3)

which resembles the Newton’s update H−1
t Gt but Ht and Gt are projected along the direction of gt:

wt+1 = wt −H−1
t Gt −→ g⊤

t Htwt+1 = g⊤
t Htwt − g⊤

t Gt ←− wt+1 = wt − (g⊤
t Ht)

−1
R g⊤

t Gt

Remark 3.4. GeN-SGD is scale-invariant, as g⊤
t Gtgt

g⊤
t Htgt

does not change if gt is multiplied by a factor
of c ∈ R, i.e. gt → cgt. This indicates that GeN-SGD (but not GeN-Adam) is stable w.r.t. the
vanishing/exploding gradient and does not need the gradient clipping.

3.2 DERIVING η∗ WITHOUT BACK-PROPAGATION

To compute η∗ in (3.1) for GeN optimizers, or equivalently to compute G⊤
t gt and especially g⊤

t Htgt,
the straight-forward but inefficient approach is to compute or approximate Gt and the full Ht. For
example, Ht can be approximated iteratively by BFGS methods, although instantiating and inverting
an Rd×d matrix is prohibitively expensive for large models. More commonly, Ht is approximated by
its low-rank representation (e.g. K-FAC) or its diagonal (e.g. AdaHessian, Sophia), which is usually
combined with a replacement by the Fisher information (e.g. Adam, AdaGrad). However, these
approximations incur at least O(d) memory overhead, and may be sub-optimal in performance due to
the gap between the approximated Hessian and the full Hessian.

Alternatively, we can estimate g⊤
t Htgt via the Hessian-vector product of Htgt, without directly

accessing Ht: firstly back-propagating on L gives gt and then back-propagating on gt(wt)
⊤gt gives

Htgt. In fact, all above-mentioned methods (except BFGS and Fisher-related methods) need the
Hessian-vector product4, which is not supported in large-scale distributed learning (e.g. DeepSpeed
Rasley et al. (2020), Megatron Shoeybi et al. (2019), and FSDP FairScale authors (2021)), because
the computation graph is complicated and interferes with the communication orchestra. In summary,

3For a row vector A ∈ R1×d, its left inverse does not exist since rank(A) = 1; its right inverse is a column
vector A−1

R ∈ Rd×1 such that AA−1
R = 1.

4Estimating the diagonal Hessian needs the Hutchinson method and Hessian-vector product, where
1
K

∑
k≤K vk ⊙ Hvk → diag(H) as K → ∞ for vk ∼ N(0, I). Because the precision of these meth-

ods relies on computing vk ⊙ Hvk for K rounds, the training is very slow as the cost is K times that of a
standard back-propagation, say K = 20 in Sophia and K = 100 in PyHessian.
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existing methods suffer from two constraints: they have to either approximate Ht and sacrifice the
performance, or to rely on the Hessian-vector product and sacrifice the efficiency and scalability.

In stark contrast, we can overcome these constraints by using multiple additional forward passes to
efficiently compute G⊤

t gt and g⊤
t Htgt without accessing Gt and Ht, which is universally easy-to-

implement because the forward pass is a fundamental operation in any deep learning system. To be
specific, we apply gradient descent with different learning rates and derive the quadratic function in
(2.3). Our approach can be viewed as an extension of LQA (Zhu et al., 2021), but allowing more
flexibility while enhancing the stability and speed of convergence (see Algorithm 1 and Remark 3.5).
As an extension, our method can use more forward passes to fit a higher-order polynomial than the
second-order one in (2.3).

3.3 ALGORITHM

We now present a quadratic curve fitting approach to estimate the optimal learning rate η∗GeN in (3.1):

η∗(Γ) = b∗/A∗ where A∗, b∗ = argmin
A∈R,b∈R

∑
η∈Γ

∣∣∣∣L(wt − ηgoptim
t )− L(wt) + bη −A

η2

2

∣∣∣∣2 . (3.4)

in which Γ is a set of learning rates, e.g. Γ = {−ηt−1, 0, ηt−1} in Algorithm 1, and the objective
function leverages the Taylor expansion in (2.3). Therefore, we obtain

G⊤
t g

optim
t ≈ b∗ and (goptim

t )⊤Htg
optim
t ≈ A∗ =⇒ η∗ ≈ η∗GeN.

In fact, a mathematical equivalence can be established between this curve fitting and the finite
difference (see Appendix A.3). Especially, for 3-point Γ = {−ηt−1, 0, ηt−1}, the finite difference
approach from Zhu et al. (2021) gives an estimate that is equal to (3.4):

η∗LQA(Γ) =
ηt−1

2

L+ − L−

L+ − 2L0 + L−
where L± := L(wt ± ηt−1g

optim
t ) (3.5)

However, on one hand, (3.5) is not generalizable as it takes different forms whenever Γ changes (see
an example of η∗LQA({0, η, 2η}) in Appendix A.3). On the other hand, the formulation is complicated
when Γ takes more than 3 points (see an example of 5 points in (A.2)), while (3.4) easily extends to
any number of points as demonstrated in Figure 2.

In practice, we leverage the curve fitting to implement (3.2) via an efficient algorithm in Algorithm 1.

Algorithm 1 Generalized Newton’s optimizers (GeN), e.g. γ = 0.9,Φ = 8

1: for t ∈ 1, · · · , T do
2: Compute loss L0 = L(wt) by the standard forward pass
3: Compute gradient goptim

t (wt) by the back-propagation on L0

4: if t mod Φ == 0: then
5: Compute L± = L(wt ± ηt−1g

optim
t ) by two forward passes

6: Fit the quadratic function via (3.4): {−ηt−1, 0, ηt−1} → {L−, L0, L+}
7: Extract A∗, b∗ from the quadratic function and derive η∗ = b∗/A∗

8: if A∗ > 0, b∗ > 0 then
9: Update the learning rate ηt = γηt−1 + (1− γ)η∗

10: Update wt+1 = wt − ηtgt

Remark 3.5. We discuss the flexible designs of Algorithm 1 and extend the discussion in Appendix C.

• In line 3, GeN can operate on goptim
t from any base optimizers such as SGD, AdamW and PET.

• In line 4, setting a large Φ significantly amortizes the computational overhead (see Section 4.1,
where GeN optimizers are almost as fast as the base optimizers).

• In line 5, the forward passes are cheaper than line 2, in that they do not store the activation tensors
and save the memory which translates to faster training. In addition, we can use more forward
passes to fit (2.3), incurring more computation cost but reducing the variance in estimation of η∗.
Notice that the additional computation can be easily amortized through Φ.

5
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• In line 6, we highlight that {−ηt−1, 0, ηt−1} is symmetric and auto-regressive, without introducing
a new hyperparameter. The choice is justified in Appendix A.3.

• Algorithm 1 is an approximation to the GeN method in (3.2), since (3.4) approximates ηGeN in
(3.1). We also give Algorithm 2 that implements GeN exactly as described in Section 3.2.

3.4 ERROR ANALYSIS FOR OPTIMAL LEARNING RATE

We now analyze the estimation error of η∗ in (3.4), with batch size B and mini-batch loss L̄(wt).
The estimation error consists of the sub-sampling error by using the mini-batch, and the precision
error from fitting (2.3). We note that the analysis is based on the closed form of η∗, which is available
to us through η∗LQA in (3.5).

Proposition 3.6. The estimation error of η∗ in (3.1) by mini-batch losses (L̄0, L̄+, L̄−) is Op(
1√
B
)+

O(η2t−1) where B is batch size and ηt−1 is the learning rate from the previous iteration.

Empirically, the sub-sampling error Op(
1√
B
) is dominant, compare to the precision error O(η2). As

a consequence, we advocate to apply GeN optimizers with large batch size for the best performance.
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Figure 3: Convergence of ResNet18 on CIFAR10, optimized by GeN-SGD with various batch sizes.

4 EFFICIENCY AND SCALABILITY ANALYSIS

In this section, we show that GeN optimizers are as computationally efficient and scalable (in terms of
the utility and the system design) as their base optimizers. We train CIFAR10 Krizhevsky et al. (2009)
on ResNet 18, 34, 50, 152 He et al. (2016) and ViT tiny, small, base and large Dosovitskiy et al.
(2020). For fine tuning, we use the pretrained models from the PyTorch Image Models framework
Wightman (2019).

For the utility, we observe on CIFAR10 that GeN optimizers work well with different model sizes
across different architectures.
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Figure 4: Convergence of GeN-SGD (upper panel) and GeN-AdamW (lower panel) on CIFAR10
with various model architectures and sizes.
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For efficiency and system-wise scalability, we focus on the additional forward passes in Algorithm 1,
especially in the scenarios such as parameter-efficient training (PET) and distributed learning. Our
default setting is full-parameter training (including mixed precision training), Φ = 1, and on single
GPU (no communication cost among devices).

To set the stage, GeN optimizers clearly have the same peak memory cost as the base optimizers,
as the latter also uses the forward pass. Hence it suffices to count the additional time complexity
introduced by GeN. In the default setting, we can write

absolute speed:
{

Base 1/(F +B + C)

GeN 1/(F +B + C + 2
ΦF )

relative speed of GeN:
F +B + C

F +B + C + 2
ΦF

where F is the time complexity of the forward pass, in terms of float-point operations, B is that of
the back-propagation, and C is other costs including the communication and the data loading, which
are minimal on single GPU. Given that in full-parameter training, B ≈ 2F 5, GeN optimizers are
roughly 60% as fast as the base optimizers.

4.1 LAZY LEARNING RATE UPDATE

One simple trick to accelerate GeN is to update the learning rate every Φ iterations for Φ > 1, so the
additional computation is amortized. For instance, GeN achieves 86% relative speed at Φ = 4 and
> 92% relative speed at Φ ≥ 8. Empirically, applying Φ has insignificant effect on the convergence.
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Figure 5: Convergence of ResNet18 on CIFAR10, optimized by GeN-SGD with various Φ.

In the PET setting, most parameters are frozen whose gradients are not computed. Hence B ≈ F and
the relative speed of GeN becomes 1

1+1/Φ , e.g. 50% at Φ = 1 and 89% at Φ = 8. That is, GeN has
slightly lower relative speed than the full-parameter training, but enjoys a higher absolute speed.

4.2 COMMUNICATION IN DISTRIBUTED LEARNING

For large-scale optimization, the distributed learning with multiple devices is necessary but chal-
lenging, in that (1) the communication orchestra is complicated, and (2) the communication cost is
significant (C ≫ 0). These two challenges determine if and how well an optimizer scales under a
distributed solution. For data-parallel solutions such as Distributed Data Parallel and ZERO1/2 Rajb-
handari et al. (2020), the communication orchestra is relatively simple so that many Hessian-related
optimizers are executable. For model-parallel and pipeline-parallel solutions such as ZERO3 and
FSDP, each forward pass requires the communication of model parameters, and GeN indeed adds
a significant amount of communication volume. Nevertheless, applying the lazy learning rate can
essentially reduce the communication overhead to a negligible level.

5 EXPERIMENTS ON SYNTHETIC DATA

To compare GeN and different optimizers deterministically in the synthetic setting, we experiment
on 2-dimensional functions and carefully select an optimal learning rate for each optimizer (see the
details in Appendix B.1).

In Figure 6, we test on the Rosenbrock function, which is non-convex and has a unique minimum
at (1, 1) that lies in a narrow valley. The left two plots show the trajectory of our GeN-SGD and its

5Forward pass takes 1 unit of time. Back-propagation consists of two sub-processes – output gradient and
parameter gradient, each taking 1 unit of time. See the complexity analysis in Table 1 of Bu et al. (2022).
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Figure 6: Optimizing over the Rosenbrock (non-convex) function. Plots 1&3: losses over iterations
optimized by different optimizers. Plots 2&4: 2D visualization of the optimization trajectories at
40-th iteration (Plot 2) and the 180-th iteration (Plot 4).

convergence speed, which significantly outperforms other optimizers. The right two plots show the
one-to-one comparison between the base optimizers (dashed curves) and their GeN variants (solid
curves), from which the acceleration by GeN is observed universally.

In Figure 7, we test on the Beale function, which is convex and has a unique minimum at (3, 0.5),
and observe the same advantage of GeN.
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Figure 7: Optimizing over the Beale (convex) function. Plots 1&3: losses over iterations optimized
by different optimizers. Plots 2&4: 2D visualization of the optimization trajectories at 60-th iteration
(Plot 2) and the 40-th iteration (Plot 4).

6 EXPERIMENTS ON REAL DATA

In this section, we test GeN on real datasets across image classification, text classification, natural
language generation, object detection and instance segmentation. We additionally experiment on
image generation and recommendation system in Appendix B, where all training details can be found.
Our experiments cover end-to-end training as well as fine-tuning, and include PET methods such as
LoRA Hu et al. (2021) and BitFit Zaken et al. (2022).

6.1 IMAGE CLASSIFICATION

We apply variants of SGD on ResNet50 and AdamW on ViT, by training on computer vision datasets
with various sizes (e.g. Places365 has ≈ 2 million images) and difficulty (ranging from 30% to
98% accuracy). In Table 2 and Figure 8, GeN optimizers consistently achieve high accuracy when
compared with heuristic learning rate schedulers (i.e. constant, linear and cosine decay) as well as
automatic optimizers like Prodigy and D-Adaptation6.

6.2 NATURAL LANGUAGE PROCESSING

We compare GeN-AdamW with a variety of learning rate schedulers on natural language generation
(NLG) and natural language understanding (NLU).

For NLG experiments, we train GPT2 Radford et al. (2019) model with LoRA on the E2E dataset
Novikova et al. (2017). We measure the quality of the generated texts by the perplexity (the
exponential of loss), BLEU Papineni et al. (2002), ROUGE-L Lin (2004), METEOR Banerjee &
Lavie (2005), NIST Doddington (2002), and CIDEr Vedantam et al. (2015). We use Hu et al. (2021)

6We have observed that D-Adaptation SGD diverges for all datasets when the weight decay of 5e-4 is used.
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Table 2: Test accuracy of ResNet (optimized by SGD) and ViT (optimized by AdamW) on various
image classification datasets.

dataset CIFAR10 CIFAR100 Food101 GTSRB SVHN Places365 INat2021
reference Krizhevsky et al. (2009) Bossard et al. (2014) Houben et al. (2013) Netzer et al. (2011) Zhou et al. (2014) ina (2021)
epochs 5 5 5 5 5 5 10

ResNet50

GeN-SGD 96.76 84.77 82.43 97.96 97.02 54.24 44.57
SGD(constant) 95.91 81.64 74.24 95.20 95.08 51.09 33.80

SGD(linear decay) 95.52 81.67 75.14 95.33 95.34 50.95 30.69
SGD(cosine decay) 95.82 80.71 76.39 95.20 95.27 51.15 31.10

Prodigy 95.17 80.39 80.74 97.80 96.23 50.33 33.77
D-adapt SGD 95.20 80.95 80.50 97.38 95.32 47.24 38.00

ViT-base

GeN-AdamW 98.68 92.62 90.48 99.06 97.14 59.80 66.28
AdamW(constant) 97.49 89.23 88.44 98.54 96.65 58.28 65.62

AdamW(linear decay) 98.48 92.60 90.54 98.74 97.08 58.52 65.43
AdamW(cosine decay) 98.73 92.71 90.46 98.77 97.16 58.19 67.04

Prodigy 98.92 92.49 90.42 98.88 97.13 57.24 62.61
D-adapt AdamW 97.56 88.11 89.45 99.04 96.77 56.19 66.52
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Figure 8: Convergence of ViT on INat2021 dataset, optimized by variants of AdamW.

as the baseline, which trains for 5 epochs with linearly decaying learning rate. In Figure 1 and Table 3,
GeN is consistently performant and outperforms the baseline over multiple metrics. Somewhat
surprisingly, the learning rate of GeN continues to go up even if we extend the training to 20 epochs
in Figure 9, which is not captured by previous heuristic learning rate schedulers.
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Figure 9: Loss and learning rate dur-
ing GPT2 training.

Table 3: Test performance of GPT2 on E2E dataset (higher
the better).

BLEU ROGUE NIST METEOR CIDER
GeN 67.30 67.09 8.6508 0.4407 2.2810

linear decay 66.85 67.78 8.4438 0.4375 2.2561
cosine decay 66.59 67.35 8.4511 0.4290 2.2553

constant 65.95 66.69 8.3982 0.4462 2.1697
inverse sqrt(1/

√
t) 65.10 66.19 8.1274 0.4047 2.1001

inverse (1/t) 64.43 65.95 8.0447 0.4010 2.0792

For NLU experiments, we evaluate RoBERTa-base Liu et al. (2019) on the GLUE Wang et al. (2018)
benchmark with LoRA, BitFit and full-parameter training (FT).

Table 4: Test performance of RoBERTa model with different methods on the GLUE benchmark
(higher the better). Blue numbers are results in published papers, produced by heuristic learning
rate schedulers in Hu et al. (2021) (linear warm-up and linear decay). Red numbers are results of
GeN optimizers. We report the overall (matched and mismatched) accuracy for MNLI, Matthew’s
correlation for CoLA, F1 score for MRPC and QQP, and accuracy for other tasks.

Trainable
param MNLI SST-2 MRPC CoLA QNLI QQP RTE

LoRA 0.3M 87.5|86.7 95.1|94.3 90.8|92.1 63.4|63.7 93.3|92.3 85.3|86.9 86.6|79.1
BitFit 0.1M 85.0|85.1 93.7|94.3 92.0|92.3 61.8|62.5 91.3|91.5 84.2|84.3 77.8|78.0
FT 125.0M 86.7|86.8 94.2|94.7 92.5|92.3 61.1|64.8 92.3|91.9 88.0|88.4 77.4|80.5

6.3 OBJECT DETECTION & INSTANCE SEGMENTATION

We train a Mask R-CNN He et al. (2017) with SGD on the Penn-Fudan dataset Wang et al. (2007),
following the official Pytorch tutorial which uses a linearly warm-up then constant learning rate.
The loss L(w) is the sum of 5 losses from the classification and the localization in different model
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components. To be specific, the losses are classifier loss, bounding box regression loss in object
detection, mask loss, objectness loss, and Region Proposal Network (RPN) bounding box regression
loss. The model is built on ResNet50 and pre-trained on the COCO dataset Lin et al. (2014). We
measure the precision in Table 5, based on the Intersection over Union (IoU).
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Figure 10: Loss and learning rate during
Mask R-CNN training.

Table 5: Average precision of Mask R-CNN (higher the
better). AP_s/m/l means small/medium/large instances,
and AP is the average over all instances.

Object detection
AP APs APm APl

GeN 0.805±0.038 0.452±0.002 0.624±0.082 0.813±0.032

manual 0.802±0.025 0.368±0.013 0.586±0.079 0.819±0.017

Instance segmentation
GeN 0.771±0.019 0.432±0.010 0.518±0.104 0.781±0.015

manual 0.768±0.022 0.388±0.029 0.455±0.092 0.783±0.020

7 DISCUSSION

In this work, we propose the GeN optimizers as a generally applicable and efficient approach towards
the second-order optimization that is automatic and performant. Specifically, GeN is applicable to
any future pre-conditioner that improves the convergence. However, additional work is needed to
further our understanding of GeN. We remark that the learning rate in GeN is locally optimal but
less is known about the global convergence speed. Looking forward, we expect the optimization
algorithm to combine the second-order pre-conditioner (beyond AdaHessian and Sophia) and the
second-order learning rate (i.e. GeN).
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A PRELIMINARIES AND PROOFS

A.1 FINITE DIFFERENCE METHOD

The finite difference method can be used to approximate high-order derivatives of a scalar f(w). We
denote ∆ as one unit of difference.

We start with the first-order finite difference for df
dw and two points. There are three popular methods:

the forward, the backward, and the central difference:
Forward f(w+∆)−f(w)

∆

Backward f(w)−f(w−∆)
∆

Central f(w+∆)−f(w−∆)
2∆

The precision of forward and backward difference is O(∆), and that of central difference is O(∆2).

We can approximate higher-order derivatives, such as the second-order d2f
dw2 , with more points (say

three). 
Forward f(w+2∆)−2f(w+∆)+f(w)

∆2

Backward f(w)−2f(w−∆)+f(w−2∆)
∆2

Central f(w+∆)−2f(w)+f(w−∆)
∆2

The precision of forward and backward difference is O(∆), and that of central difference is O(∆2).
Generally speaking, we can use (k + 1) points to approximate the k-th order derivatives at O(∆2)
with the central difference.

The precision can be improved with more points for the same derivative, say for df
dw ,

Forward − 1
2 f(w+2∆)+2f(w+∆)− 3

2 f(w)

∆

Backward
3
2 f(w)−2f(w−∆)+ 1

2 f(w−2∆)

∆

Central − 1
12 f(w+2∆)+ 2

3 f(w+∆)− 2
3 f(w−∆)+ 1

2
2
3 f(w−2∆)

∆

Compared with the two-point difference, using three points improves the precision of forward
difference from O(∆) to O(∆2); using four points improves the precision of central difference from
O(∆2) to O(∆4).

A.2 GENERALIZED INVERSE

Definition A.1. Any matrix A ∈ Rm×n has at least one generalized inverse A−1
G ∈ Rn×m such

that AA−1
G A = A. The generalized right inverse and left inverse are sub-cases of the generalized

inverses: if A−1
R satisfies AA−1

R = Im and rank(A) = m, then A−1
R is the right inverse of A;

similarly, if A−1
L A = In and rank(A) = n, then A−1

L is the left inverse of A.

A.3 EQUIVALENCE BETWEEN FINITE DIFFERENCE AND POLYNOMIAL FITTING

Proof. Consider fitting the quadratic function:

L+ := L0 + ηG⊤g +
η2

2
g⊤Hg

L− := L0 − ηG⊤g +
η2

2
g⊤Hg

Then G⊤g = L+−L−
2η ,g⊤Hg = L+−2L0+L−

η2 , which is the equivalent to applying the second-order
central finite difference method for both terms.

Hence, using the symmetric learning rates (0, η,−η), the optimal learning rate is estimated as
η∗ = η

2
L+−L−

L+−2L0+L−
with O(η2) error.
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If we instead fit another quadratic function using (0, η, 2η), then

L+2 := L0 + 2ηG⊤g + 2η2g⊤Hg

L+ := L0 + ηG⊤g +
η2

2
g⊤Hg

Then G⊤g = L+2−4L++3L0

−2η ,g⊤Hg = L+2−2L++L0

η2 , which is the equivalent to applying the
second-order forward difference to G⊤g and the first-order forward difference to g⊤Hg.

Hence, using the non-symmetric learning rates (0, η, 2η), the optimal learning rate is estimated as
η
2
4L+−L+2−3L0

L+2−2L++L0
with O(η) error.

A.4 ESTIMATION ERROR OF η∗

Proof of Proposition 3.6. We omit the subscript t for simplicity of presentation. Assume samples xi

are independently and identically distributed, then by central limit theorem,

L̄± =
1

B

∑
i

L(w ± ηg,xi) = L± +Op(
1√
B
).

Hence the mini-batch approximation

η

2

L̄+ − L̄−

L̄+ − 2L̄0 + L̄−
=

η

2

L+ − L− +Op(
1√
B
)

L+ − 2L0 + L− +Op(
1√
B
)
=

η

2

L+ − L−

L+ − 2L0 + L−
+Op(

1√
B
)

Next, the finite difference method has a precision of O(η2). Hence, the overall estimation error of η∗
is Op(

1√
B
) +O(η2).

A.5 DERIVATION OF η∗

We give the derivation of (3.4), given {−ηt−1, 0, ηt−1} and {L−, L0, L+}. We aim to minimize
(2.3): ignoring the superscript in goptim

t ,

min
η

L(wt − ηgt) or equivalently min
η

L(wt − ηgt)− L(wt).

By second-order Taylor expansion, we get

min
η

L(wt − ηgt)− L(wt) ≈ min
η

η2

2
g⊤
t Htgt − ηG⊤

t gt

which requires the knowledge of two coefficients g⊤
t Htgt and G⊤

t gt.

Using curve fitting, we estimate the coefficients g⊤
t Htgt,G

⊤
t gt ≈ A∗, b∗ by

A∗, b∗ = argmin
A,b

∑
η∈{−ηt−1,0,ηt−1}

∣∣∣∣(L(wt − ηgt)− L(wt))− (A
η2

2
− bη)

∣∣∣∣2 (A.1)

The same result can be derived with finite difference as in (3.4) (though not through an optimization
problem), through the numerical analysis as demonstrated in Appendix A.3.

Finally, we can write η∗ = b∗/A∗ ≈ G⊤
t gt/g

⊤
t Htgt, where the error is controlled to small values

by Proposition 3.6.

As an important extension, we can use more points (say {−2ηt−1,−ηt−1, 0, ηt−1, 2ηt−1}) to derive
η∗. This usually gives a slightly more stable convergence, almost the same accuracy, but more
computational overhead.

Using curve fitting, we easily extend to

g⊤
t Htgt,G

⊤
t gt ≈ argmin

A,b

∑
η∈{−2ηt−1,−ηt−1,0,ηt−1,2ηt−1}

∣∣∣∣(L(wt − ηgt)− L(wt))− (A
η2

2
− bη)

∣∣∣∣2
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Using finite difference, the derivation is more complicated than (3.4),

η∗ ≈ η ·
− 1

12L+2 +
2
3L+ − 2

3L− + 1
12L−2

− 1
12L+2 +

4
3L+ − 5

2L0 +
4
3L− − 1

12L−2

(A.2)

where L±2 = L(wt±2ηt−1gt). We refer to https://en.wikipedia.org/wiki/Finite_
difference_coefficient for the table of finite difference coefficients.

B MORE ON EXPERIMENTS

B.1 SYNTHETIC DATA

In Section 5, we carefully select the best learning rate for each optimizer, through a exponential grid
search from {10−k, 2 ∗ 10−k, 5 ∗ 10−k} for k = 5, 4, ..., 0. For each optimizer, we train with each
learning rate for 1000 iterations and choose the one with smallest objective value.

The Rosenbrock function, also known to as the Valley or Banana function is a classic test problem.
We take its two-dimensional case:

f(x1, x2) = 100(x2 − x2
1)

2 + (1− x1)
2.

The Beale is a convex function with the following expression:

f(x1, x2) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1x
3
2)

2.

B.2 IMAGE CLASSIFICATION

For image classification problems, we use models that are pre-trained on ImageNet and can be loaded
from torchvision and timm libraries. We resize all images to 224x224 and normalize the pixel
values to [-1,1]. In what follows, all ResNets are trained with SGD with 0.9 momentum and 5e-4
weight decay, and ViT is trained with AdamW using default hyperparameters in Pytorch.

B.2.1 CIFAR

CIFAR10 and CIFAR100 are standard tiny image datasets that we have used as the test-bed. Our
default hyperparameters for Figure 1, Figure 2, Figure 3, Figure 4, Figure 5 are: B = 500, Φ = 4,
SGD learning rate=1e-2, AdamW learning rate=1e-4, unless one of the hyperparameters are varied
for the ablation study.

B.2.2 SECTION 6.1

We use B = 500, SGD learning rate=0.1 and AdamW learning rate=1e-4 for all datasets. Notice that
D-adapt SGD diverges on all datasets so we have to remove the 5e-4 weight decay for this optimizer
only. For Places365 and INat2021, we use Φ = 20; for other datasets, because they are much smaller
in sample size, we use Φ = 4.

B.3 NATURAL LANGUAGE PROCESSING

All transformers (RoBERTa, GPT2) are trained with AdamW using default hyperparameters in
Pytorch.

B.3.1 NLG

In Figure 1, Figure 2, Figure 9 and Table 3, we follow the codebase of Hu et al. (2021) and use
B = 256, sequence length 128, η0 = 1e−3, and 5 epochs. While applying, we set Φ = 4.

B.3.2 NLU

The results of full-parameter training and BitFit training are from Table 2 of Zaken et al. (2022) and
those of LoRA are from Table 2 of Hu et al. (2021). However, since LoRA didn’t report the F1 score
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Batch size Initial learning rate
for FT # of epochs Eval metrics

MRPC 128 2e-5 10 F1
SST2 128 1e-6 10 acc.
MNLI 128 1e-6 5 (1 for FT) matched acc.&mismatched acc.
CoLA 128 2e-5 10 Matthews corr.
QNLI 128 2e-5 10 acc.
QQP 256 2e-5 5 F1
RTE 128 2e-5 60 acc.

Table 6: Hyper-parameters and evaluation metrics for training GLUE datasets with GeN.

of MRPC and QQP, we run LoRA under our settings (i.e., the same batch size and number of epochs)
for a fair comparison. The table below records our hyper-parameters for training with GeN.

While applying GeN, we set Φ = 8 for all tasks. For hyperparameters that were not mentioned in
Table 6, we followed Table 9 of Hu et al. (2021).

B.4 IMAGE GENERATION

We apply GeN-Adam to pre-train a deep convolutional generative adversarial network (DCGAN)
Radford et al. (2015), following the official Pytorch tutorial, which uses a constant learning rate, with
a batch size 128 and training for 5 epochs. The training uses CelebA Liu et al. (2015), a real dataset
of > 200000 face images. We qualitatively compare the fake generated images with the real ones,

Figure 11: Left: learning rate of GeN-Adam over the iterations. Right: losses of the components in
DCGAN, where D is the discriminator and G is the generator.

which demonstrates the effectiveness of our optimization that can be further improved with longer
training. We believe this showcases the potential applicability of GeN to the vision generation, e.g.
audio/music generation and diffusion models.

B.5 RECOMMENDATION SYSTEM

We apply GeN-Adam to BERT Devlin et al. (2018) model for recommendation system, following
the setting in Sun et al. (2019), with a batch size 1024 and training for 100 epochs. We train on
MovieLens-1m dataset, containing 1 million user-rating pairs. The performance is measured by the
recall and Normalized Discounted Cumulative Gain (NDCG, related to the precision). The baseline is
a constant learning rate given by the codebase. We observe that GeN outperforms the state-of-the-art
setting (batch size 128) but needs a larger batch size to converge stably.

batch size Recall@1 Recall@5 Recall@10 Recall@20 NDCG@1 NDCG@5 NDCG@10 NDCG@20
GeN 1024 0.405 0.720 0.821 0.900 0.405 0.575 0.607 0.627

Constant 1024 0.374 0.693 0.796 0.883 0.374 0.546 0.580 0.602
Constant 128 0.397 0.718 0.820 0.895 0.397 0.570 0.603 0.622

Table 7: Performance of top K recommendations (Recall@5 means the recall of K = 5).
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Figure 12: Side-by-side comparison of images, which is comparable to the quality here.
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Figure 13: Convergence of GeN-Adam and Adam with constant learning rates.

C MORE ON THE DESIGN OF ALGORITHM 1

C.1 TWO MODES OF FORWARD PASS

As we discussed in Section 3.3, there are two modes of forward pass: with or without the activation.
If the forward pass is followed by the back-propagation, then it must store the activation in each layer.
The activation is RBTd where B is the batch size (say 256), T is the sequence length (say 2048 for
LLAMA) or pixels (say 224×224 for ImageNet), and d is the input dimension of one layer (say 768
for a transformer block). In practice, the activation is very expensive to store and could take up 95%
of the total memory cost (see Jain et al. (2020) Figure 3).

On the other hand, the forward pass can be activation-free if we only do inference, not the training.
In Pytorch, this is enabled by with torch.no_grad(). We can leverage the saved memory to
use larger batch size and thus accelerate the computation, further reducing the GeN overhead.

C.2 CHOICE OF FINITE DIFFERENCE

We extend our discussion on fitting the quadratic function. In general, we can learn g⊤Hg and G⊤g
by fitting any collection of finite differences, say {ξi}, to the corresponding losses {L(wt − ξigt)}.
For instance, we can use more than 3 points or use non-symmetric sequences like (0, ξ, 2ξ) →
(L(wt), L(wt − ξgt), L(wt − 2ξgt)).

We recommend to use the symmetric sequences like {−2ξ,−ξ, 0, ξ, 2ξ} for better precision (c.f.
Appendix A.3). Nevertheless, this introduces a hyperparameter ξ and much churn to tune it, as is
the case in zero-th order optimization Malladi et al. (2023). Therefore we use the symmetric and
auto-regressive sequences that employ the previous learning rates: (−2ηt−1,−ηt−1, 0, ηt−1, 2ηt−1).
Lastly, to reduce the computation overhead, we use the fact that any quadratic function is uniquely
determined by the three points. Therefore, we can use (−ηt−1, 0, ηt−1) as the shortest sequence that
is both symmetric and auto-regressive.
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C.3 SMOOTHING

In Algorithm 1, we propose to use the smoothing (e.g. setting γ = 0.9) as a standard technique in
the deep learning optimization. Note the smoothing is also known as the momentum. For example,
Nesterov accelerated gradient and SGD both use the smoothing on the gradients; Adam and Sophia
additionally use smoothing on the pre-conditioner. We empirically confirm that the smoothing helps
stabilize the training in all our experiments.

C.4 INITIAL LEARNING RATE

GeN optimizer and existing parameter-free methods such as D-adaptation Defazio & Mishchenko
(2023) and DoG Ivgi et al. (2023) still need someone hyperparameters. To be specific, D-adaptation
needs an initial D estimate and a growth rate ≈ 1 if the training is unstable; DoG needs to carefully
select rϵ to compute the initial distance: too large values could make DoG diverge, while too small
values cannot optimize the model. In our case, GeN only needs one hyperparameter – the initial
learning rate η0, which can be determined with nearly zero effort of manual tuning. We now introduce
two methods to set η0.

C.4.1 AUTOMATIC CORRECTION

Empirically, GeN optimizers have the capability to automatically correct the learning rate if η0 is set
too large or too small. We test a wide range of learning rates, with the largest one being 1000× larger
than the smallest, all resulting in similar final performance. This capability allows the practitioners to
start the training with a highly robust choice of η0.
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Figure 14: Convergence of ResNet18 on CIFAR10, optimized by GeN-SGD with B = 200.

In Figure 14, smaller η0 (say ≤ 0.1) quickly catches up at an exponential speed then stabilizes,
whereas larger η0 tends to decay from the beginning of training. We recommend setting η0 with small
values, to avoid risking the possibility of loss divergence.

C.4.2 AUTOMATIC SEARCH

Alternatively, we can search the η0 automatically at the first iteration. The computation overhead is
negligible since it will be amortized over a large number of iterations. In practice, we observe that an
exponential grid search ranging from 10−6 ∼ 102 can quickly give an accurate estimate of η0. Our
experiment in the same setting as Figure 14 selects η0 = 0.008, close to the red curve.

C.5 EXACT ALGORITHM FOR GEN

We give an algorithm that computes (3.2) precisely using higher order differentiation.
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Algorithm 2 Generalized Newton’s optimizers with higher order differentiation (GeN-HOD)

1: for t ∈ 1, · · · , T do
2: Compute loss L(wt) by the standard forward pass
3: Compute vanilla gradient gt by the first-order back-propagation from L(wt) ∈ R
4: Compute modified gradient goptim

t (wt)

5: Compute the Hessian-vector product Htg
optim
t by the second-order back-propagation from

g⊤
t g

optim
t ∈ R

6: Derive G⊤
t g

optim
t and (goptim

t )⊤Htg
optim
t by multiplication

7: Derive the optimal learning rate ηt =
G⊤

t goptim
t

(goptim
t )⊤Htg

optim
t

by (3.1)
8: Update wt+1 = wt − ηtgt

C.6 GEN ON PRE-TRAINING

Following https://github.com/kuangliu/pytorch-cifar.git, we experimented on
CIFAR10 training from scratch on ResNet18. We replace SGD with AdamW at learning rate 1e-3
but the rest settings are the same as in the repository. We use Φ = 4 for GeN. For D-adaptation, we
use their AdamW version for a fair comparison.
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Figure 15: CIFAR10 pre-training on ResNet18 for 15 epochs.

D RELATED WORKS

D.1 HEURISTIC LEARNING RATE SCHEDULER

A proper learning rate is important for fast convergence. There is a long line of work making efforts
to search the best hyper-parameter, especially the learning rate. In general, the learning rate should
decay to 0 as the training iteration increases. This is due to the mini-batch sampling which does not
guarantee that SGD converges even in the convex setting. As a consequence of this theoretical insight,
different learning rate schedulers have been devised, albeit usually based on the empirical evidence.

type scheduler ηt form HP # HP reference

Heuristic

Constant c0 c0 1 Raffel et al. (2020)
Cosine decay c0(1 + cos (tπ/T ))/2 c0 1 Loshchilov & Hutter (2016); Radford et al. (2021)

Stepwise ck if Tk−1 < t < Tk {ck, Tk}k≤K 2K + 1 —
Linear decay c0(1− t/T ) c0 1 Smith (2015)

Polynomial decay c0/t or c0/
√
t c0 1 —

Exponential decay c0 exp(−pt) c0, p 2 —
WarmpUp cmin +

(
t(c0−cmin)

pT

)
c0, cmin, p 3 Goyal et al. (2017)

Table 8: Learning rate schedulers for training with T iterations. HP means hyperparameter.

In deep learning, state-of-the-art performance is usually obtained by a multi-hyparameter scheduler:
for instance, LLAMA Touvron et al. (2023a) combines linear WarmUp and cosine decay (not
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decaying to 0 but to a minimum value); ResNet He et al. (2016) uses the stepwise scheduler (starting
at η = 0.1 and decay by 10 times at 32k and 48k iterations) with 5 hyperparameters. While tuning
multiple hyperparameters may be feasible for some models, it is generally expensive for large models
(say over 1B parameters).

D.2 AUTOMATIC LEARNING RATE

A number of automatic or parameter-free learning rate methods have attempted to dynamically adjust
the learning rate throughout the training. D-adaptation Defazio & Mishchenko (2023) and Prodigy
Mishchenko & Defazio (2023) both improve on AdaGrad by characterizing ||w0 −w∗||, where w∗
is the global minimum. However, this motivation is not well-defined in deep learning as the minimum
is not unique. In fact, for all our computer vision experiments, D-adapt SGD with even a small
magnitude of weight decay diverges. Also Prodigy only implements to Adam, hence not future-proof
for more advanced algorithms such as Sophia.

DoG Ivgi et al. (2023) and DoWG Khaled et al. (2023) are parameter-free dynamic SGD scheduler
with convergence guarantees for stochastic convex optimization. Additionally, these methods only
work for SGD but not for the adaptive optimizers like Adam, and the algorithms requires to store
the past iterates (because the output is the weighted

∑
t ctwt in Equation 2 of Ivgi et al. (2023) and

Theorem 1 of Khaled et al. (2023), instead of the last iterate wT ). As the authors admit in their
Github: ‘DoG must be combined with iterate averaging’, which adds to the memory cost that may be
unacceptable for large models. In practice, we have observed these methods to be very unstable and
inaccurate, e.g. on toy tasks like fine-tuning CIFAR10/100.

D.3 SECOND-ORDER METHODS

There is a long list of second-order or quasi-second-order methods in the optimization literature,
including but not limited to stochastic Newton methods Byrd et al. (2016); Wang et al. (2017); Lucchi
et al. (2015); Schraudolph et al. (2007), sketching methods Yuan et al. (2022); Luo et al. (2016) and
diagonal Hessian methods in Section 3.2. We notice these methods are difficult to implement in
distributed learning at large scale, because the Hessian information (or Hessian-vector product) is
generally not supported by auto-differentiation or too expensive to store for large models.

D.4 PRIOR WORKS SIMILAR TO GEN

We elaborate multiple prior works that also present GeN-SGD in (3.1) and leverage the second-
order Taylor approximation in (2.3). However, these methods are limited to goptim = gSGD and
not generalize to pre-conditioned gradients like in AdamW. As a consequence, the role of pre-
conditioning of gradient is under-investigated, and the connection to the generalized inverse in (3.3)
and to Newton’s method in Proposition 3.3 is lacking.

Importantly, a missing piece in these works is to validate the second-order Taylor approximation of
L(w − ηg). Our empirical visualization in Figure 2 serves as a necessary validation, without which
the method and algorithms are not justified in the first place7.

Experiment-wise, prior works are focused on computer vision and convolutional neural networks,
whereas we have extensively tested various model architectures (transformers, GAN, recommendation
systems) over many tasks like language modeling.

LQA The closest work to ours is LQA Zhu et al. (2021) which proposes (3.5).

At the method level, this method (termed LQA-SGD) is equivalent to GeN-SGD but it is not extended
to general optimizers: in their Figure 1-4, where the red curves in each figure are exactly the
same, LQA-SGD is compared to SGD, SGD-momentum, and Adam; but there is no LQA-Adam.
Additionally, the convergence speed of LQA-SGD (or GeN-SGD) is missing, whereas we provide an
analysis under the convex Lipschitz regime in Appendix E.

7In fact, Figure 1 in Fu & Wu (2024) contradicts their own motivation in Equation (4), which is the Taylor
expansion at η = 0, since there is no quadratic curve between η ∈ [0, α].
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At the algorithm level, LQA relies on estimating the losses at {L(w − ηg), L(w), L(w + ηg)}:

η∗LQA =
η

2

L(w + ηg)− L(w − ηg)

L(w + ηg)− 2L(w) + L(w − ηg)

This fixed choice of learning rates gives a closed form but could limit the general applicability
when one considers other learning rates (see our discussion below (3.5)). The estimation error of
LQA was not analyzed. In contrast, our Proposition 3.6 indicates the benefit of a large batch size
which is empirically verified in Figure 3. Additionally, we adopt critical techniques in Remark 3.5
like smoothing and lazy frequency, in order to stabilize the training and enhance the computational
efficiency, which are not presented in LQA.

QLABGrad While LQA and GeN requires 2 extra forward passes, QLABGrad Fu & Wu (2024)
only requires 1 extra forward passes by restricting to SGD.

η∗QLABGrad =
η2

2

∥∇L∥2

L(w − ηg)− L(w) + η∥∇L∥2
.

QLABGrad provides a convergence analysis in terms of the gradient norm, i.e. ||∇Lt|| → 0, whereas
our convergence analysis in Appendix E is in terms of Lt → 0.

ADLER ADLER Balboni & Bacciu (2023) uses Hessian-vector product to compute Htgt (viewed
as a sub-case of Algorithm 2). We note that Hessian-vector product is not only slow, but also not
supported yet in distributed learning systems. Nevertheless, ADLER indeed implements (3.2) without
approximating η∗GeN, whereas the estimation error must be considered for other algorithms since
η∗LQA ≈ η∗GeN ≈ η∗QLABGrad.

E CONVERGENCE ANALYSIS OF GEN

We provide the convergence analysis of GeN for multiple dimension, given that the 1-dimensional
GeN is equivalent to the classic Newton-Raphson method. We work with the convex and Lipschitz
conditions, the same conditions on which Prodigy and D-adaptation are proven to converge. We note
that, similar to the proof of Newton’s method, we also need to bound the third order derivative and
GeN can enjoy the quadratic convergence rate.

Theorem 1. For convex and G-Lipschitz loss L, assuming H(x) ̸= 0∀x (i.e. no completely flat
point), then GeN-GD in (3.2) with g ≡ G gives

∥wt+1 −w∗∥ ≤ M∥wt −w∗∥2

and
Lt − L∗ ≤ G∥wt −w∗∥ ≤ GM2t−1∥w0 −w∗∥2

t

where w∗ is the minimum of L, M = supx ||κ(x)|| · supx 1/||H(x)||, and κ is the third order
derivative of L. Furthermore, if M||w0 − w∗|| < 1, then we have the quadratic convergence
wt → w∗ as t→∞.

Proof. Denote et = wt −w∗, then

wt+1 = wt −
GG⊤G

G⊤HG

∣∣∣
wt

=⇒ et+1 = et −
GG⊤G

G⊤HG

∣∣∣
et+w∗

Taylor expansion on the gradient at wt leads to

G(w∗) = G(wt)−H(wt)et + κ(ξt)[et]et

where G(w∗) = 0 ∈ Rd and κ(ξt) = ∇3L(ξt) = ∇H(ξt) ∈ Rd×d×d is the third-order remainder.
We have denoted the directional derivative κ(x)[et] = limh→0

H(x+het)−H(x)
h ∈ Rd×d.

Left-multiplying by G⊤
t = G(wt)

⊤ gives

G⊤
t Htet −G⊤

t Gt = G⊤
t κ(ξt)[et]et
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Multiplying the generalized inverse (G⊤
t Ht)

−1 gives

et+1 = et −
GtG

⊤
t Gt

G⊤
t HtGt

=
GtG

⊤
t κ(ξt)[et]et

G⊤
t HtGt

.

By the matrix norm inequality, we obtain

||et+1|| ≤ M||et||2

i.e. the quadratic convergence in the parameter space. Furthermore, the Lipschitz condition allows
the quadratic convergence in the loss space.
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