
Inverse distance weighting attention

Calvin McCarter
mccarter.calvin@gmail.com

Abstract

We report the effects of replacing the scaled dot-product (within softmax) attention
with the negative-log of Euclidean distance. This form of attention simplifies
to inverse distance weighting interpolation. Used in simple one hidden layer
networks and trained with vanilla cross-entropy loss on classification problems, it
tends to produce a “key” matrix containing prototypes and a “value” matrix with
corresponding logits. We also show that the resulting interpretable networks can be
augmented with manually-constructed prototypes to perform low-impact handling
of special cases.

1 Introduction

A key question in both machine learning and computational neuroscience concerns the relationship
between supervised learning (success in predictive tasks) and associative memory (forming represen-
tations for previous experiences which can be cued by similar new experiences). On the one side,
models of associative memory [Hopfield, 1982, Krotov and Hopfield, 2016] have relied on energy
functions which are explicitly designed to teach the network to form memories. On the other side,
nearest-neighbor methods for supervised learning explicitly store the training data, which are then
retrieved and weighted according to some distance metric. In contrast, standard neural networks
trained with standard supervision (or self-supervision) do not tend to have network parameters with
explicitly encoded memories. Nevertheless, popular deep learning models, such as attention-based
Transformers and diffusion models, are implicitly trained to behave similarly to associative memories
[Bricken and Pehlevan, 2021, Ambrogioni, 2023, Hoover et al., 2023].

Here, we elucidate further the connection between standard neural networks with attention and
associative memory networks, by examining the learned parameters of a single-hidden-layer network
trained via standard classification cross-entropy loss. (Notably, dense associative memory networks
[Krotov and Hopfield, 2016] can also interpreted as single-hidden-layer networks.) After modifying
the standard scaled dot-product score to the negative-log of Euclidean distance, we observe that the
trained key matrix contains explicit memories of representative inputs. This negative-log distance
score also leads to a weighting of prototypes that corresponds to Shepard’s method [Shepard, 1968]for
interpolation. We further show that adding (key, value) pairs of prototypes to trained one-hidden-layer
networks can be used to perform low-impact behavior modification.

2 Methods

2.1 Inverse distance weighting attention

The widely-adopted attention mechanism is closely related to associative memory, with (k(i)-key, v(i)-
value) lookups weighted by the softmax operator applied to similarity scores between d-dimensional
q query and keys k(i). Here we consider the classification setting with a single hidden layer, so
that each v(i) ∈ RC value vector encodes corresponding learned logits for C classes. For each ith

Associative Memory & Hopfield Networks in 2023. NeurIPS 2023 workshop.

key-value pair, the attention mechanism can be written as,

attention(q,K,V)i = softmax(score(q,k(i)))v(i),

softmax(score(q,k(i))) =
exp

(
score(q,k(i))

)∑
j exp

(
score(q,k(j))

) ,
for i ∈ {1, . . . , P} for P prototypes. Various forms of attention fall into this framework, including
cosine attention with score(q,k(i)) = cos(q,k(i)) [Graves et al., 2014], additive attention with
score(q,k(i);v,W) = v⊤W [q;k(i)] [Bahdanau et al., 2014], and scaled dot product attention with
score(q,k(i)) = q⊤k(i)/

√
d [Vaswani et al., 2017].

In this work, we consider the Euclidean distance, which is negatively related to the dot product via the
equality ∥q−k∥22 = ∥q∥22+∥k∥22−q⊤k. Despite this seemingly simple and well-known relationship,
we will see that using the Euclidean distance can produce substantially different parameters and
different behavior. This arises from the fact that, while there exist order-preserving transformations
between the Euclidean distance and the inner product, these transformations are not trivial; for each
direction, the transformation involves adding one additional dimension [Bachrach et al., 2014]. For
example, the Euclidean distance can be implemented in terms of the inner product by concatenating
the constant 1 to the query vector; and for each key vector, the squared-norm of the original key
vector.

Furthermore, because Euclidean distance measures dissimilarity, it needs to be massaged into use as
a similarity score. In particular, we desire a scoring function that simultaneously (1) achieves good
accuracy when trained using a standard supervised classification loss, and (2) learns keys that are
prototypes of the original data. We begin by noting that these are not simultaneously achieved using
the negative distance, using it within the Gaussian kernel, and using its inverse, as defined below,
respectively:

scoreneg(q,k) =− ∥q − k∥22 (negative (squared) Euclidean distance) (1)

scoreGauss(q,k;σ) = exp(−∥q − k∥22/σ2) (Gaussian kernel Euclidean distance) (2)

scoreinv(q,k; p, ϵ) =
1

ϵ+ ∥q − k∥p2
. (inverse Euclidean distance) (3)

The ϵ > 0 parameter prevents division by zero, while the power parameter p > 0 controls how
strongly the influence of a key falls away with its distance from the query. However, we observe
that, when used in concert with cross-entropy classification loss and backpropagation to compute
gradients, we fail to achieve both desiderata on even simple problems. Notably, while the inverse
distance score leads to better classification accuracy than the other scoring functions on the Two
Moons classification problem, we witnessed “clumping” of wasted prototypes that are not pushed
away from each other, so long as they are not too close to training examples of the wrong class.
This appears to be caused by a vanishing gradients problem, as the inverse function flattens out for
large-distance inputs.

To address the distant vanishing gradients problem with inverse distance, we replace the inverse
function with the negative-log function, whose derivative vanishes more slowly as its argument goes
to positive infinity:

scoreneglog(q,k; p, ϵ) =− log
(
ϵ+ ∥q − k∥p2

)
(negative log Euclidean distance). (4)

Used within the softmax operation, this simplifies to the following:

attentionIDW (q,K,V)i =

1
ϵ+∥q−k(i)∥p

2∑
j

1
ϵ+∥q−k(j)∥p

2

v(i). (5)

We dub this inverse distance weighting (IDW) attention, as it coincides with the IDW function
employed by Shepard [1968] for numerical interpolation of irregularly-spaced points. When ϵ →
0, p → ∞, the IDW weighting function approaches the Voronoi diagram [Shepard, 1968], making
this equivalent to a 1-nearest-key classifier. When p = 2, ϵ = 1, IDW attention has similarities that
come from the Student t-distribution with one degree of freedom, the same similarity metric used for
t-SNE [Van der Maaten and Hinton, 2008] embeddings. We will choose small ϵ < 1, which has also
been shown to succeed for t-SNE visualization [Kobak et al., 2019].

2

0 1 2 3 4 5
distance

0.0

0.5

1.0

we
ig

ht

Neg Dist (p = 2)
Gaussian Dist (p = 2)
Inv Dist (p = 2, = 10 3)
IDW (p = 2, = 10 3)

Figure 1: We depict the weight given to an example
as a function of its distance. Because the weights of
the two prototypes sum to 1, all scoring functions
give a weight of 0.5 when the distance is 1.

We illustrate the different distance-based atten-
tion scores in Figure 1. We depict the weight
given to one of two keys as a function of its dis-
tance, when the distance of the second key is
1. Only inverse distance softmax and negative-
log softmax (i.e. IDW) functions give attention
approaching 1 as the key approaches the query.
Meanwhile, only IDW avoids the vanishing gra-
dient problem for both near and far distances.

2.2 Low-impact “special case”
handling with (key, value) augmentation

In real-world settings, it is frequently the case
that machine learning models need to incorpo-
rate special behavior for certain inputs. Han-
dling such special cases would typically require
explicit handling via code that is run either be-
fore or after model inference, or via modified
model training / fine-tuning. However, if a model is represented in terms of prototypes that exist in
the same space as inputs, behavior for special cases can be controlled transparently. This is especially
easy for IDW, because the influence of a prototype decays sharply with distance, so long as ϵ is
sufficiently small. Consider an input q for which we want to predict class c ∈ {1, . . . , C}. If this is
not already the case, then argmaxσ(d)V ̸= c, where

σ(d)i =

(
ϵ+ dp

i

)−1∑
j

[
(ϵ+ dp

j)
−1

] , (6)

and di is the Euclidean distance from q to the ith prototype. We change the behavior by adding new
prototype with k′ := q and v′ := ηec. We make η as small as possible while still fixing the model’s
behavior for the given input, thus minimizing behavior disruption for the rest of the input space. This
is accomplished by choosing

η :=
(
1 + ϵ

∑
j

1

ϵ+ dp
j

)[(
max
k ̸=c

σ([d; ϵ])1:PV:,k

)
− σ([d; ϵ])1:PV:,c

]
. (7)

3 Experiments

3.1 Two Moons synthetic data

We first train and depict single-hidden-layer networks on the standard Two Moons classification
setting, shown in Figure 2. In addition to the various distance-based attention mechanisms, we also
show the results for fully-connected with ReLU nonlinearity, as well as scaled-dot-product attention.
For each method, we independently train 3 networks with 2, 16, and 128 prototypes (which is the
same as the number of hidden activations). Only for IDW do the keys roughly recapitulate the input
data distribution. Given that this is the sort of problem where nearest-neighbor perform well, it is also
unsurprising that IDW has good performance, with the best test accuracy for 16 and 128 prototypes.
We also show results for low-impact special case handling with IDW on Two Moons in Figure 3.
We see that, for each of the IDW networks, modifying the behavior for an input barely changes its
behavior, regardless of the desired label of that input (either class label 0 or 1).

3.2 MNIST data

We next trained networks on MNIST with 20 prototypes. The test accuracies are provided in Table
1. The IDW network had a test accuracy of 88%. While the IDW model had worse accuracy than
the FC-Relu and scaled dot-product models, it had substantially better test accuracy than the other
Euclidean distance-based forms of attention. Furthermore, among all the methods, only IDW has key
parameters resembling digits, as depicted in Figure 4.

3

50%
(50%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params

86%
(85%)

FC Relu

86%
(85%)

84%
(85%) 84%

(85%)

Scaled Dot Softmax

82%
(82%)

86%
(90%)

94%
(90%)

Neg Dist Softmax

95%
(92%)

82%
(82%)

82%
(82%)

Gaussian Dist Softmax (p= 2)

82%
(82%)

81%
(78%)

98%
(95%)

Inv Dist Softmax (p= 2, = 10−3)

98%
(95%)

87%
(88%)

100%
(98%)

IDW (p= 2, = 10−3)

100%
(98%)

50%
(50%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params

86%
(85%)

FC Relu

86%
(85%)

84%
(85%) 84%

(85%)

Scaled Dot Softmax

82%
(82%)

86%
(90%)

94%
(90%)

Neg Dist Softmax

95%
(92%)

82%
(82%)

82%
(82%)

Gaussian Dist Softmax (p= 2)

82%
(82%)

81%
(78%)

98%
(95%)

Inv Dist Softmax (p= 2, = 10−3)

98%
(95%)

87%
(88%)

100%
(98%)

IDW (p= 2, = 10−3)

100%
(98%)

Figure 2: Results for Two Moons classification. For each method, we depict the training data, the
test data, as well as the 2D parameters of the first weight matrix. We also show the train (and test)
accuracy. For each method, there are 3 subplots, corresponding to 2, 16, and 128 prototypes.

88% 72%
(90% 68%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params
Params

100% 100%
(98% 98%)

100% 100%
(98% 98%)

88% 82%
(90% 80%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

88% 51%
(90% 52%)

100% 99%
(98% 95%)

100% 100%
(98% 98%)

88% 77%
(90% 72%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

88% 88%
(90% 88%)

100% 100%
(98% 98%)

100% 100%
(98% 98%)

88% 88%
(90% 90%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

Figure 3: Low-impact behavior modification. In each subplot, we depict the desired label of the
“special case” input with a large green “0” or “1”. We also show the before→after train (and test)
accuracy.

4

FC Relu

Scaled Dot Softmax

Neg Dist Softmax (p = 2)

Gaussian Dist Softmax (p = 2)

Inv Dist Softmax (p = 2, ϵ = 10−3)

IDW (p = 2, ϵ = 10−3)

Figure 4: Learned keys after training single-hidden layer networks on MNIST. Keys are sorted by the
argmax of their corresponding values.

5

In Table 1, we compare the accuracy of all methods on MNIST with 20 prototypes. We see that IDW
performs worse than FC Relu and scaled dot-product attention, but performs better than the other
distance-based forms of attention.

Table 1: Comparison of test accuracy on MNIST dataset.

Method Test Accuracy

FC Relu 95.99%
Scaled Dot Softmax 93.15%
Neg Dist Softmax 83.63%
Gaussian Dist Softmax (p = 2) 11.35%
Inv Dist Softmax (p = 2, ϵ = 10−3) 11.35%
IDW (p = 2, ϵ = 10−3) 88.20%

The Appendix contains further details on experimental setup and further analysis on the effects of
hyperparameters. Code is available at https://github.com/calvinmccarter/idw-attention.

4 Conclusions

We have reported how a specific form of distance-based attention leads to formation of prototypes
in a single-hidden-layer network trained with vanilla cross-entropy loss. It remains to be seen what
theoretical and practical implications this phenomena has for deep networks, as well as for elucidating
the set of sufficient and necessary conditions for formation of associative memories.

6

https://github.com/calvinmccarter/idw-attention

References
Luca Ambrogioni. In search of dispersed memories: Generative diffusion models are associative

memory networks. arXiv preprint arXiv:2309.17290, 2023.

Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam Koenigstein, Nir Nice,
and Ulrich Paquet. Speeding up the xbox recommender system using a euclidean transformation
for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender systems,
pages 257–264, 2014.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Trenton Bricken and Cengiz Pehlevan. Attention approximates sparse distributed memory. Advances
in Neural Information Processing Systems, 34:15301–15315, 2021.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Benjamin Hoover, Hendrik Strobelt, Dmitry Krotov, Judy Hoffman, Zsolt Kira, and Duen Horng
Chau. Memory in plain sight: A survey of the uncanny resemblances between diffusion models
and associative memories, 2023.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Dmitry Kobak, George Linderman, Stefan Steinerberger, Yuval Kluger, and Philipp Berens. Heavy-
tailed kernels reveal a finer cluster structure in t-sne visualisations. In Joint European Conference
on Machine Learning and Knowledge Discovery in Databases, pages 124–139. Springer, 2019.

Dmitry Krotov and John J Hopfield. Dense associative memory for pattern recognition. Advances in
neural information processing systems, 29, 2016.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. arXiv
preprint arXiv:1904.09237, 2019.

Donald Shepard. A two-dimensional interpolation function for irregularly-spaced data. In Proceedings
of the 1968 23rd ACM national conference, pages 517–524, 1968.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

7

A Appendix

A.1 Details on experimental setup

For Two Moons problem, we generated 100 training examples and 20 test examples. We trained
models with a batch size of 10, a learning rate 0.01, 25 epochs, and the AMSGrad [Reddi et al., 2019]
variant of Adam [Kingma and Ba, 2014] with cosine annealing [Loshchilov and Hutter, 2016]. We
randomly initialized the keys being normally distributed with mean set to the corresponding mean of
those pixels in the training data, and standard deviation as 0.1 times the observed standard deviation
in the training data. We initialized the values to all-0s.

On MNIST, we used a batch size of 4, a learning rate of 0.001, 50 epochs, and the AMSGrad [Reddi
et al., 2019] variant of Adam [Kingma and Ba, 2014] with cosine annealing [Loshchilov and Hutter,
2016]. No data augmentions were used. As before, we used IDW with p = 2, ϵ = 1e − 3, and
initialized keys and values as described above for Two Moons.

A.1.1 Effect of power and ϵ parameters on Two Moons

In Figure 5 we show results for a variety of settings of p and ϵ. Interestingly, we observe that p = 1
damages accuracy, while p >>> 2 retains accuracy but damages the formation of prototypes.

A.2 More experiments on low-impact special case handling for Two Moons

In Figure 6, we depict the results for other special cases. We see that as long as there were 16 or more
prototypes, handling special cases did not damage network performance, even when the special case
had desired behavior very different from the surrounding samples.

8

50%
(50%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params

86%
(85%)

FC Relu

86%
(85%)

84%
(85%) 84%

(85%)

Scaled Dot Softmax

82%
(82%)

86%
(90%)

94%
(90%)

Neg Dist Softmax

95%
(92%)

82%
(82%)

82%
(82%)

Gaussian Dist Softmax (p= 2)

82%
(82%)

81%
(78%)

98%
(95%)

Inv Dist Softmax (p= 2, = 10−3)

98%
(95%)

87%
(88%)

100%
(98%)

IDW (p= 2, = 10−3)

100%
(98%)

84%
(82%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params

84%
(82%)

IDW (p= 2, = 1)

84%
(82%)

83%
(82%)

98%
(98%)

IDW (p= 1, = 10−3)

92%
(90%)

87%
(82%)

100%
(100%)

IDW (p= 4, = 10−3)

100%
(100%)

88%
(85%)

100%
(100%)

IDW (p= 16, = 10−3)

100%
(100%)

Figure 5: Results for various choices of IDW parameter settings on the Two Moons dataset.

9

88% 72%
(90% 68%)

Train, Predicted 0
Train, Predicted 1
Test, Predicted 0
Test, Predicted 1
Params
Params

100% 100%
(98% 98%)

100% 100%
(98% 98%)

88% 82%
(90% 80%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

88% 51%
(90% 52%)

100% 99%
(98% 95%)

100% 100%
(98% 98%)

88% 77%
(90% 72%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

88% 88%
(90% 88%)

100% 100%
(98% 98%)

100% 100%
(98% 98%)

88% 88%
(90% 90%)

100% 100%
(98% 100%)

100% 100%
(98% 98%)

Figure 6: Results for other special cases, using IDW special case behavior modification.

10

	Introduction
	Methods
	Inverse distance weighting attention
	Low-impact ``special case'' handling with (key, value) augmentation

	Experiments
	Two Moons synthetic data
	MNIST data

	Conclusions
	Appendix
	Details on experimental setup
	Effect of power and parameters on Two Moons

	More experiments on low-impact special case handling for Two Moons

