
Refining Transitive and Pseudo-Transitive
Relations at Web Scale

Shuai Wang, Joe Raad, Peter Bloem, and Frank van Harmelen

Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
{shuai.wang | j.raad | p.bloem | frank.van.harmelen}@vu.nl

Abstract. The publication of knowledge graphs on the Web in the
form of RDF datasets, and the subsequent integration of such knowl-
edge graphs are both essential to the idea of Linked Open Data. Com-
bining such knowledge graphs can result in undesirable graph structures
and even in logical inconsistencies. Refinement methods that can detect
and repair such undesirable graph structures are therefore of crucial im-
portance. Existing refinement methods for knowledge graphs are often
domain-specific, are limited to single relations (e.g. owl:sameAs), or are
limited in scale. We present a challenge consisting of a number of datasets
of transitive and pseudo-transitive relations and hand-labeled gold stan-
dards, as well as baselines. We introduce an efficient web-scale knowledge
graph refinement algorithm that works for such relations. Our algorithm
analyses the graph structure, and allows the use of weighting schemes
to heuristically determine which possibly erroneous edges should be re-
moved to make the graph cycle free. When compared against general-
purpose graph algorithms that perform the same task, our algorithm re-
moves the least amount of edges to make the graph of transitive relations
cycle-free while maintaining a better precision in identifying erroneous
edges as measured against a human gold-standard.

1 Introduction

The central tenet of Linked Open Data is the publication and integration of RDF
datasets. Such integration can result in logical inconsistencies or undesirable
graph structures. For transitive relations, this can result in chains of relation
instances forming complex nested cycles involving many entities across datasets
in the corresponding graph. In practice, even logically valid cycles may have
negative consequences. For example, a cycle of rdfs:subClassOf triples in an
intended hierarchy enforces equality of all classes in the cycle, which may prevent
algorithms such as query expansion from termination. To ensure data quality,
refinement methods have been developed [13]. However, these methods often
depend on domain-specific functionalities [7], or limited to a specific relation
(e.g. owl:sameAs) [15, 18] or suffer from limited scalability [18]. Such limitations
call for the development of scalable and domain-independent algorithms.

This paper presents a new approach for detecting undesirable cycles in tran-
sitive relations. It uses graph structural characteristics and a heuristic notion

2 S. Wang et al.

of reliability of triples, without the need for any domain-dependent informa-
tion such as labels, comments and other textual information in context [7]. Our
approach (i) is independent from domain and language, (ii) has a better pre-
cision than general-purpose graph-theoretical methods and (iii) maintains good
scalability and efficiency.

Graph structure reflects logical properties and vice versa. For example, when
a relation is asymmetric, any cycle of size two in its graph violates consistency.
Similarly, for irreflexive relations any self-loop is invalid. This suggests the use of
graph-theoretic algorithms to detect logical inconsistencies. In OWL, the transi-
tivity of a relation is typically specified directly through owl:TransitiveProperty.
In this work, we extend to what we call pseudo-transitive relations: that of a sub-
property or the inverse of a (pseudo-)transitive relation and those whose intended
semantics is assumed to be both transitive and anti-symmetric, although not for-
mally asserted. In this paper, we exclude equivalence relations (e.g. owl:sameAs)
and those whose (pseudo-)transitivity are mistakenly asserted or implied on the
LOD Cloud (e.g. foaf:knows).

Besides the graph structure, another feature to be used for the refinement of
knowledge graphs that is independent from domain and language is the reliabil-
ity of triples. While there can be different heuristics, we measure reliability of
an edge by counting the number of the occurrences of this edge across datasets
of the web-scale integrated graph (see more details in Section 5.2). For small
self-sufficient datasets, this feature is not of great value because the logical foun-
dations of knowledge graphs dictate that repeated statements in datasets are
redundant. However, such feature has been shown to be useful for the ranking
of documents and entities [6] and the identification of erroneous assertions and
improvement of data quality [3] when the sources of data are present. Figure 1
is an example subgraph of skos:broader with such weights extracted from the
LOD Laundromat 2015 crawl [1]. It is more likely that dbc:Numbers is a broader
than dbc:Integers (weighting 72), while it is unlikely that dbc:Integers is a
broader concept for dbc:Numeral systems (weighting 1), showing that weights
can indicate the reliability of edges. This example also shows that the relation
between some entities can be ambiguous, making it difficult to construct a per-
fect gold standard. For example, some may believe that numbers are parts of
numerical systems while others may think the study of numbers includes the
study of numerical systems. Finally, it also indicates that the weights of edges
in the neighbourhood can have an impact on the reliability of edges.

dbc:Numeral systems

dbc:Numbers dbc:Integers

dbc:Algebraic numbers

12720 1 2

72

41

Fig. 1: An example subgraph of skos:broader with weights.

Refining Transitive and Pseudo-Transitive Relations at Web Scale 3

The hypotheses that we pursue in this paper are as follows:

H1: By taking graph structural properties (how edges are involved in complex
nested cycles) into account, we can make knowledge graphs acyclic while
removing fewer edges than graph theoretical methods.

H2: Taking the reliability of triples into account improves the accuracy for iden-
tifying erroneous edges.

This paper presents an algorithm to refine transitive and pseudo-transitive
relations for large integrated knowledge graphs at web scale by removing as few
edges as possible to obtain acyclic graphs. More specifically, the paper makes
the following contributions:

1. a new metric for the hardness of resolving cycles based on strongly connected
components.

2. a generic scalable approach for the refinement of (pseudo-)transitive relations
using an SMT solver by exploiting Strongly Connected Components.

3. an evaluation that shows how taking into account the reliability of triples
can improve the precision of the graph refinement algorithm.

4. a dataset of several widely used (pseudo-)transitive relations with their reli-
ability weights.

5. a new gold standard of thousands of manually annotated triples to be used
in the evaluation and comparison of graph refinement algorithms.

This paper is structured as follows: Section 2 and 3 discuss related work and
present preliminaries. Section 4 describes the dataset and analyses its complexity.
Section 5 presents our approach for refining (pseudo-)transitive relations. Section
6 presents the implementation details, our gold standard, and the conducted
evaluation. Section 7 discusses the results and concludes the paper.

2 Related Work

2.1 Knowledge Graph Refinement Methods

According to Paulheim’s survey [13], there are two main goals for knowledge
graph refinement methods: completing the knowledge graph with missing knowl-
edge, and correcting asserted information. This work falls into the latter category
of approaches, as we aim at refining transitive and pseudo-transitive relations by
removing edges that lead to unwanted cycles and are potentially erroneous. The
closest predecessor of our work is the approach by [18], introduced for refining
edges of rdfs:subClassOf by exhaustively listing simple cycles1 and removing
minimal edges so that the resulting graph is cycle free. However, this approach
faces a combinatorial explosion when listing all simple cycles of large nested
clusters, and therefore cannot be applied on some relations we study in this

1 A simple cycle is a cycle in which the only repeated vertices are the first and last
vertices.

4 S. Wang et al.

work. Sun et al. [17] propose similar strategies for removing edges causing cy-
cles in graph. However, this approach requires inferring a graph hierarchy (e.g.
using a Bayesian skill rating system), and has been only tested on synthetic
datasets and the Wikipedia category graph. Another recent approach that tar-
gets the refinement of categorical and list information is introduced by [7]. To
our best understanding, this graph-based refinement approach relies on exter-
nal information of hypernyms, and applies only to English DBpedia categories
and lists. Moreover, and similarly to the work presented in [5], these approaches
assume the existence of a hierarchy and takes advantage of pre-defined roots.
In this work, we show that such hierarchies are frequently violated in the Web,
therefore the applicability of such approaches becomes limited in such context.
Finally, the graph-based approach presented in this work is similar to other ap-
proaches that have also exploited the graph structure for detecting and removing
different types erroneous edges at the scale of the Web, such as type [14] and
identity links [15].

2.2 General MWFAS Algorithms

In this section we discuss general-purpose graph algorithms for making graphs
cycle-free. When restricting to a single relation, the problem of resolving cycles
is identical to finding the Maximum Weighted Directed Acyclic Subgraph (MW-
DAS).2 Historically, the removed edges are also called arcs and form a feedback
arc set (FAS). Therefore, the problem is equivalent to Minimum Weighted Feed-
back Arc Set (MWFAS), and we will use these names for the rest of the paper.
The MWFAS problem is APX-hard. Despite the hard limit on its approxima-
bility, there are polynomial-time approximation algorithms. The following sum-
marises some algorithms that scale to at least tens of millions of edges according
to [16] where more details are presented.

The underlying idea of the KwikSort(KS) algorithm is to sort vertices on
the number of back arcs induced, and removing the edges with many induced
back arcs. The algorithm runs at O(n log n) when assuming that arc member-
ship can be tested in constant time. In our experiments we used an optimised
implementation that uses O(n log n) additional space. Since KS takes a random
initial ordering, we take the best result of 200 runs.

The Greedy(GRD) algorithm greedily appends all “sink-like” vertices at
the end of a sequence s and inserts the “source-like” vertices at the front of s.
The implementation in [16] uses bins [12] for the selection of vertices in each
iteration. The bins distinguish nodes with only outgoing edges, nodes without
outgoing edges, and nodes with both in- and outgoing edges. Each node falls
in one of these bins. By using s as a linear arrangement and picking all the
feedback arcs, it minimize the number of arcs with different orientation. GRD
runs in time O(m+n) and uses O(m+n) space. It has a guarantee of removing

2 Note that the resulting graph may not be a spanning tree but a set of directed acyclic
graphs (DAGs). Therefore this problem cannot be solved by minimum spanning tree
algorithms.

Refining Transitive and Pseudo-Transitive Relations at Web Scale 5

no more than 1
2 |E| −

1
6 |V | edges but experiments from [16] observed that the

size of FAS is drastically smaller than this worst-case bound.
For a graph G, the BergerShor(BS) algorithm begins with a random per-

mutation over the vertices V . It then processes each vertex by comparing its
in-degree and out-degree. If a vertex has more incoming arcs than outgoing
ones, the incoming ones are removed and added to a set E′ while the outgoing
arcs are removed and discarded. The collected arcs E′ form an acyclic graph G′

(its counterpart is the set of arcs removed). The algorithm runs in time O(m+n)
and [16] show that the algorithm far out-performs this worst-case bound.

Finally, we can adopt a depth-first traversal(DFS) algorithm and remove
all arcs that form a cycle during the search to ensure that the resulting graph is
acyclic. Its runtime complexity is O(m+ n). The algorithm does not make any
intelligent decision nor minimize the resulting size of FAS.

3 Preliminaries

A knowledge graph is a directed and labelled graph G = 〈V,E,ΣE , lE〉, where
V is the set of vertices (nodes), E ⊆ V × V the set of relations (edges), and ΣE
is the set of edge labels. lE : E → 2ΣE is a function that assigns to each edge
in E a set of labels belonging to ΣE . For a specific relation R ∈ ΣE , we denote
GR = 〈VR, ER〉 the edge-induced subgraph that only includes those edges whose
labels are R, with VR ⊆ V and ER ⊆ E. In the case of weighted graphs, we
introduce an additional weight function fw : E → N that assigns to each edge a
weight. In Section 5.2, we describe how these weights are calculated.

A walk in a graph GR is a sequence of vertices v0, v1, . . . , vn, with the edge
(vi, vi+1) ∈ ER. A walk is a path if no edge is repeated. A path between two
vertices is shortest if the number of vertices on the path is minimal. A path is
a cycle if it is closed, i.e. v0 = vn. Apart from reflexive relations, the smallest
possible cycle involves two vertices. We denote the set of such size-two cycles
by EC2 for later convenience. A graph without the corresponding edges of EC2

(and vertices if left as singletons) is denoted G′ = G\EC2.
A Strongly Connected Component (SCC) of GR is a subgraph where any two

of its vertices can be reached by a path (i.e. the subgraph is strongly connected)
and is maximal for this property: no additional edges or vertices can be included
in the subgraph without breaking strong connectivity.3 The collection of all SCCs
forms a new graph GSCC , and the set of SCCs of G is denoted κ(G). In this
paper, the process of removing edges in an SCC to make it acyclic is referred to
as resolving cycles, and graphs with no cycles are referred to as DAGs (directed
acyclic graphs). In our datasets, there is often one SCC that is significantly larger
(with the most vertices and edges) than others among all the SCCs of a graph.
We refer to it as GB when discussing its properties.

Figure 2 presents an example of a graph G with its introduced variants:
GSCC , G′, and G′SCC . Note that cycles of size two are not necessarily SCCs of

3 All SCCs in this paper are assumed to have more than one node.

6 S. Wang et al.

1 2 3

4 5 6

7 8 9

10 11 12

4

7

5 6

8 9

2 3

4

1 2 3

5 6

7 8 9

10 11 12

2 3

6

Fig. 2: An example graph and its variants (from left: G, GSCC , G′, G′SCC).

size two as they can be nested into other cycles and form a bigger SCC (e.g.
size-two cycle between node 5 and 6).

There are efficient algorithms for computing the SCCs of a graph such as
Tarjan, which take linear time O(|V |+|E|) assuming constant time for retrieving
edges [9]. It is useful to observe that cycles in a graph G can never span across
multiple SCCs (since if there were any such cycle, the SCCs involved would
form a bigger SCC, which contradicts its maximality w.r.t. strong connectivity).
Therefore, since cycles in G are always contained inside a single SCC, and since
the collection of all SCCs of G form a partition of the vertices of G, we can safely
divide-and-conquer the process of resolving cycles in G across all SCCs of G. This
allow us to focus the cycle resolution locally in comparison with inefficiently and
exhaustively listing all simple cycles as in [18].

4 Pseudo-Transitive Relations in the LOD Cloud

4.1 Dataset

In this work, we use the LOD-a-lot dataset [4] as a representative copy of the
LOD Cloud. This compressed data file of 28 billion unique triples is the re-
sult of the integration of over 650K datasets that are crawled and cleaned by
the LOD Laundromat in 2015 [1]. In the LOD-a-lot dataset, there are 2,486
relations explicitly stated as owl:TransitiveProperty, used in more than 776
million triples (2.7% of all triples). When the semantics of rdfs:subPropertyOf
and owl:inverseOf is exploited, the number of (pseudo-)transitive relations in-
creases to 8,687 relations, used in around 5.5 billion unique triples (19.5% of the
triples). Our manual examination shows that a number of these properties are
incorrectly asserted or inferred, such as the widely used foaf:knows relation.

For transitive relations, graph characteristics can reflect the logical proper-
ties, and vice versa. For instance, irreflexive and antisymmetric relations such
as iwwem:dependsOn allow for no cycle anywhere in the graph. We consider
skos:broader a pseudo-transitive relation, as it was not designed to be a tran-
sitive property despite being a subproperty of skos:broaderTransitive, which
is typed owl:TransitiveProperty [10]. Unless otherwise specified, we assume

Refining Transitive and Pseudo-Transitive Relations at Web Scale 7

that the graph of relations such as rdfs:subClassOf and geo:parentFeature

should be cycle-free despite the logical validity of cycles. Our maual examina-
tion also found that many relations are defined together with their inverse (e.g.
skos:broader and skos:narrower). There can also be a relation like that of
equivalence (e.g. owl:sameAs, rdfs:equivalentClassOf). This paper exam-
ines a selection of 10 relations (see e.g. Figure 3 and Table 1). These are popular
relations, all of them directly typed as owl:TransitiveProperty with over 100k
triples. We exclude the few that actually represent equivalence relations, or whose
biggest SCC has less than 10 vertices unless its inverse is to be studied.

4.2 Strongly Connected Components Analysis

To get a sense of how difficult it is to make graphs cycle-free, we introduce in this
section a number of metrics. We may turn to standard metrics for the degree of
transitivity of a graph, such as the transitivity index T (the number of actual
triangles in a graphs as a fraction of the number of all possible triangles), the
average clustering index C (the average over the local clustering coefficients of
all vertices, where a local clustering coefficient of a vertex is the actual number of
edges in the direct neighbourhood of the vertex divided by the possible number
of such edges), or the global reaching centrality (GRC) [11]. These measures can
be useful for the understanding of graph-theoretical properties. However, our
analysis shows that none of T , C or GRC manage to capture the size of SCCs or
the hardness of cycle-resolution. Thus they cannot be used as a measure for cycle
resolving. We therefore introduce new quantitative measures based on SCCs.

When examining the SCCs of the LOD-a-lot knowledge graph regarding pop-
ular relations, we observe two facts: 1) cycles of size two are very common across
the graphs. When not nested into other cycles, they are SCCs with two nodes
(SCCs of size two), which is the most common type of SCC. This suggests the
ambiguity in definition and semantics of the relation; 2) there often exist a very
big SCC that covers a majority of nodes involved in the SCCs. This is very
different from synthetic models typically used in the evaluation of MWFAS al-
gorithms. The following are measures on how much the SCCs are due to size-two
cycles, and other complex nested cycles.

Alpha measure. Let α be the number of edges in cycles of size two divided
by the number of all edges in its SCCs α = fα(G) = |EC2|/|ESCC |. By
definition, fα(G) = fα(GSCC). This gives the fraction of edges that can be
determined locally if given additional information (e.g. the reliability on each
edge).

Beta measure. Remove all the cycles of size two from G and obtain G′ =
G\EC2. The corresponding SCCs of G′ form a graph G′SCC . Let β be the
number of edges in G′SCC divided by the number of all edges in GSCC :
β = |E′SCC |/|ESCC |. Similarly, we have fβ(G) = fβ(GSCC). This measures
the proportion of edges to make decisions on if all edges in size-two cycles are
not involved in any SCC. In other words, it gives a measure of the fraction
of edges in more complex nested cases.

8 S. Wang et al.

Fig. 3: The Alpha-Beta measures of representative relations

For the graph G in Figure 2, α = 0.5 and β = 0.25. As for its biggest SCC,
α = 0.4 and β = 0.3. Figure 3 reports on the α and β values for the 10 selected
relations in Table 1. The figure on the left illustrates the alpha-beta measure.
In general, the greater α is, the more size-two cycles there are. The smaller β
is, the more likely it is to resolve the cycles by simply making decisions on the
edges of cycles of size two (e.g. skos:narrower has β = 0). On the other hand,
skos:broader and dbo:previousWork are examples with more complex cycles
nesting into each other. An observation is that the tangent of a line crossing
the origin and each point can indicate the hardness. This inspires the following
definition.

Gamma measure : For an SCC G, the minimum fraction of decisions to be
made to make G cycle-free can be captured by α+ β. Note that an SCC G
gets harder when its β is greater, or α is smaller. This can be captured by
β/α or β − α. To avoid cases where α = 0 and to make γ a term between 0
and 1, we use the latter and define γ = fγ(G) = (α+ β)(1− α+ β)/2. This
gives a measure of the hardness to make an SCC cycle-free.

Delta measure : Note that using the Gamma measure, we can then estimate
the effort required to make each of a graph’s SCCs cycle-free. For a graph
G in general, δ = fδ(G) =

∑
s∈κ(G) fγ(s) ∗ |E|. It is a sum over the γ value

multiplied by the number of edges of each of its SCCs.

Table 1 presents key information of the graphs of the 10 selected relations,
together with the values of our metrics. For some graphs, a big proportion of
the edges in SCCs are solely from its biggest SCC. The δ entries indicate that
big graphs are not necessarily harder to resolve which is not captured by graph-
theoretical measures. For example, the graph of skos:narrower is very big but
has only 48 triples involved in cycles, making its δ value very small. These new
measures provide a quantitative evaluation on the hardness of cycle resolving,
help to study the nature of its complexity, and serve as references for the design
of algorithms, choice of parameters as well as the sampling of data.

Refining Transitive and Pseudo-Transitive Relations at Web Scale 9

Table 1: Popular transitive and pseudo-transitive relations and their measures

Relation (R)
GR SCCs of GR GB

R (the biggest SCC)

|ER| |VR| |ESCC
R | |V SCC

R | |κ(GR)| δ |EB
R | |V B

R | γ δ
skos:broader 11.8m 5.7m 356.9k 82.0k 6.7k 238.4k 277.0k 43.7k 0.6 188.1k
rdfs:subClassOf 4.4m 3.6m 1.4k 837 196 961.05 780 301 0.9 730.4
dbo:isPartOf 1.0m 408.3k 4.7k 3.8k 1.5k 312.8 60 29 1.0 60.0
skos:narrower 817.1k 737.3k 48 24 7 0.9 16 5 0.0 0.4
dbo:previousWork 551.2k 550.1k 10.6k 8.4k 1.5k 8.0k 710 469 0.9 639.2
dbo:subsequentWork 511.0k 527.5k 15.7k 11.9k 1.8k 10.8k 2.2k 1.5k 0.7 1.6k
dbo:successor 440.7k 417.3k 60.2k 38.0k 5.8k 36.2k 12.5k 5.9k 0.6 8.4k
dbo:predecessor 358.2k 348.1k 40.0k 25.8k 4.2k 22.9k 4.8k 2.4k 0.6 3.2k
dbo:parent 105.8k 97.0k 9.7k 4.3k 921 1.9k 1.5k 979 0.9 1.4k
sioc:parent of 101.2k 46.6k 6.3k 2.1k 334 1.7k 4.3k 1.1k 0.3 1.5k

5 Algorithms

5.1 Algorithms for Cycle Resolving

We aim to design an algorithm that deals with knowledge graphs of (pseudo-)
transitive relations that (i) does not rely on a ranking of nodes; (ii) captures
the transitivity of relations; (iii) is capable of handling the complex structure
resulted from large amount of nested cycles (graphs with high γ values); (iv)
is as conservative as possible in removing edges when resolving the cycles; and
(v) is extendable to capture other logical and graph properties. The following
section presents our algorithm with an evaluation.

We present Algorithm 1 as a general purpose cycle-resolving method for
refinement. The algorithm exploits off-the-shelve technology for SMT solvers
(Satisfiability Modulo Theories) [2]. The algorithm does not deal with reflexive
edges as they can be processed trivially and in linear time. There are three
main steps in the algorithm. We first compute the SCCs of the input graph
(line 3). Then, we perform partitioning over big SCCs to a given bound b1 (line
4). This is due to the limit of SMT solvers’ capability to handle large amount
of clauses. Finally, we sample some cycles and repeatedly call an SMT solver
to identify edges to be removed (line 5-17). In the following, we discuss the
strategies adopted to deploy it at web scale.

Strategies for Graph Partition. The graph partition problem is well-studied
in graph theory. The minimum k-cut problem requires finding a set of edges
whose removal partitions the graph to at least k connected components. There
exist efficient algorithms and open-source implementations. However, our ex-
periments show that breaking an SCC s into k partitions directly results in a
significant amount of edges being removed, whereas our goal is to be as conser-
vative as possible in our repair strategy. For reducing the amount of edges to be
removed, our Strategy P1 partitions the graph into two subgraphs and then
computes the SCCs. This process is repeated until each of the resulting SCCs
are within the size bound b1. For weighted graphs (see the next section for how
weights are computed), we can adopt a Strategy P2 by first removing the edges
with the lower weights in size-two cycles, and then use Strategy P1.

10 S. Wang et al.

Algorithm 1: General-purpose algorithm for cycle resolving

1 Input: a graph G with no reflexive edges, its weight function fw (optional), a
bound b1 for the number of maximum nodes for each SCC, and a bound b2
for the number of hard clauses.

Result: a cycle-free graph H and a set of edges removed A.
2 Initiate A as an empty set;
3 Compute the set of SCCs as S;
4 Follow a graph partitioning strategy and reduce the size of S to bound b1 as

S′ with removed edges collected and added to A;
5 while S′ is not empty do
6 Initiate S′′ as an empty set;
7 foreach s ∈ S′ do
8 Follow a sampling strategy, and obtain cycles C from s with |C| < b2;
9 Initiate an SMT solver o;

10 Introduce to o a set P of propositional variable pe for each edge e of s;
11 Encode cycles in C as hard constraints in o;
12 Add to o a clause of each variable pe ∈ P as a soft constraint with

weight fw(e) if fw is present, otherwise 1;
13 Run the solver o for optimal solution and decode the output model m;
14 From the model m, collect the edges E to remove and let A := A ∪ E;
15 Obtain a graph s′ from s with E removed;
16 Compute the SCCs N of s′ and update S′′ := S′′ ∪N ;

17 S′ := S′′;

18 Remove edges A from G and obtain H.

Strategies for Cycle Sampling. The bottleneck for the earlier work in [18]
was the combinatorial explosion when exhaustively listing all cycles of a graph.
We therefore focus on sampling an amount of cycles in each iteration that bal-
ances the tradeoff between representative capacity and redundancy. Strategy
S1 focuses on the edges: choose a random edge (s, t) in an SCC, then compute
the shortest path from (t, s). This forms a cycle. In total we collect b2 such
cycles. As an alternative strategy, we can adopt the Strategy S2 that selects
two nodes randomly and computes the shortest path from one to the other, and
back.

Resolving Cycles with an SMT solver. This section gives details of the
interaction with the SMT solver (line 9 and 13 in the algorithm). The SMT
solver is used for two purposes: to satisfy all hard constraints and to satisfy the
maximal amount of soft constraints.4 The use of an SMT solver makes it possible
to easily extend the current algorithm to weighted cases. In each iteration, for
every s ∈ S′, we introduce a propositional variable pe for each edge e. When there
is a cycle v1,vk, we add a hard clause [¬p(v1,v2)∨ . . .∨¬p(vk−1,vk)∨¬p(vk,v1)]
to the SMT solver (accumulated in conjunction). The clause is satisfied when at

4 A sub-optimal result is returned when an SMT solver reaches timeout.

Refining Transitive and Pseudo-Transitive Relations at Web Scale 11

least one of the pi,j is assigned False in the returned model of the solver, which
indicates the removal of the edge (i, j). To keep the maximal amount of edges,
we add a soft clause [pe] for each edge e. The SMT solver performs a constrained
optimisation process within a bounded time. The result of this is a near-optimal
solution with the least amount of propositional variables set to False. From the
model, we can retrieve edges to be removed to resolve all the encoded cycles. We
repeat this process until all the SCCs are resolved and return the DAG and the
removed edges. This approach can be easily extended to weighted cases, with
the weight for each soft clause as the reliability for each edge.

5.2 Weights

Due to the logical foundation of knowledge graphs, repetition of statements is
ignored because of the idempotency of the conjuction operator: (φ ∧ φ) ↔ φ.
Nevertheless, we believe that there is an important signal to be gained: the oc-
currence of the same triple in multiple knowledge graphs is an informal signal
that multiple information providers have expressed support for. Thus, the chance
that a statement is erroneous decreases with the number of knowledge graphs in-
cluding this statement. Our algorithm takes the two kinds of weights for soft con-
straints (Algorithm 1, line 12). Counted Weights: the simplest way to obtain
the weight of a triple is to count the number of occurrences across the graphs. The
LOD-a-lot file consists of 650k datasets (graphs), making it feasible to compute
such weights for popular relations; Inferred Weights: inspired by the obser-
vation and analysis in Section 4.1, we take advantage of the logical redundancy
between implied properties to compute weights. If a triple (A rdfs:subClassOf

B) is present in the integrated graph, and there is also an equivalence relation (A

owl:equivalentClass B) or (B owl:equivalentClass A), then we make its
weight 2 (i.e. we give more credence to (A rdfs:subClassOf B), otherwise 1).
For skos:broader, we can take advantage of its inverse relation skos:narrower.
If together with the triple (A skos:broader B) the triple (B skos:narrower

A) exists in the dataset, then we assign weight 2 to the triple (A skos:broader

B), otherwise 1. While counted weights always exist, inferred weights are more
restricted and less common and requires some manual examination. Still, we
experiment different weighting scheme for the sake of comparison in evaluation.

6 Experiments and Evaluation

6.1 Implementation and Parameter Settings

We implemented our algorithm5 in Python. We adopt the Python binding of
METIS6, a graph partitioning package based on the multilevel partitioning

5 https://github.com/shuaiwangvu/Refining-Transitive-Relations
6 https://github.com/inducer/pymetis

12 S. Wang et al.

paradigm providing quick and high-quality partitioning. We use Z37 as SMT
solver [2], and the networkx package8 for the handling of graphs and SCCs.

Based on some trial-and-error experience, in the following experiments we set
b1 = 15, 000 (i.e. maximum size of an SCC before requiring graph partitioning),
and apply Strategy P1 with k = 2. To balance the trade-off between efficiency
against accuracy, we obtain b2 = 3, 000 clauses at most and set the time limit
for the SMT solver to 10 seconds for each SCC. All experiments were conducted
on a 2.2 GHz Quad-Core i7 laptop with a 16GB memory running Mac OS. All
reflexive edges were eliminated in preprocessing.

6.2 Gold Standard

For evaluating hypothesis H2, we annotated a number of statements from the two
most frequent (pseudo-)transitive relations (rdfs:subClassOf and skos:broader,
according to Table 1). For each relation, we have two gold standards. In the
first gold standard G1, we randomly pick 500 edges from ESCCR . The second
gold standard separates SCCs of two nodes (G2-a, 200 edges) from the rest
(G2-b, 500 edges). When sampling G2-b, we first assign a number on each
SCC according to their δ-value and then sample the amount of edges assigned
to each SCC randomly, thus providing an evaluation set for edges in complex
nested cases. There are 1,199 unique edges in the gold standard of skos:broader
with a total of 632 (52%) annotated ‘remain’ in contrast to 401 (33%) ‘remove’.
This analysis suggests that its under-specified definition caused confusion and
subsequently resulted in a complex faulty graph structure. The great proportion
of unknown entries for rdfs:subClassOf is discussed in Section 7.2. The anno-
tation process was conducted using the platform ANNit9. These gold standard
datasets are online10 together with detailed criteria, analysis and limitations. Its
consistency was validated manually and by a Python script.

6.3 Efficiency Evaluation

In this section, we compare our refinement algorithm against other MWFAS
algorithms. Table 2 presents the results of the number of edges removed for
ten subgraphs of LOD-a-lot, both overall and within the SCCs. The highlighted
cells show that our approach removes fewer edges during refinement. The result
supports our Hypothesis H1. Both approaches are fast: general-purpose MWFAS
algorithms take 2-12 seconds except KS, which may take up to 1 minute. Our
algorithm takes 8-115 seconds except for skos:broader, which can take up to 8
minutes. Details of benchmarks are included in the repository of gold standard.
The results in Table 2 are the best records of three runs. Finally, the results are
validated to be free from SCCs except singletons.

7 https://github.com/Z3Prover/z3
8 https://networkx.github.io
9 https://github.com/shuaiwangvu/ANNit

10 https://zenodo.org/record/4610000

Refining Transitive and Pseudo-Transitive Relations at Web Scale 13

Table 2: The number of removed edges (with best results highlighted)

Method sk
os
:b
ro
ad
er

rd
fs
:s
ub
Cl
as
sO
f

db
o:
is
Pa
rt
Of

sk
os
:n
ar
ro
we
r

db
o:
pr
ev
io
us
Wo
rk

db
o:
su
bs
eq
ue
nt
Wo
rk

db
o:
su
cc
es
so
r

db
o:
pr
ed
ec
es
so
r

db
o:
pa
re
nt

si
oc
:p
ar
en
t
of

BS
Overall 1.1m 4.3m 18.8k 57.7k 113.4k 107.1k 85.5k 67.8k 16.9k 6,568
SCCs 327.0k 1,160 3,291 33 7,542 11.1k 43.7k 28.9k 7,282 6,026

GRD
Overall 493.1k 25.3k 2,175 3,462 11.9k 12.4k 24.8k 17.2k 5,270 1,867
SCCs 356.9k 430 2,153 20 2,555 3,776 17,679 11.8k 3,937 1,639

KS
Overall 5.9m 219.2k 459.3k 405.9k 267.6k 253.5k 218.1k 176.4k 52.4k 46.9k
SCCs 177.1k 716 2,331 21 5,381 7,917 29.9k 19.9k 4,860 2,593

DFS 125.6k 529 2,286 21 2,309 3,558 17.0k 11.4k 3,943 1,913
P1S1-unweighted 114.8k 330 2,143 22 1,953 2,952 13.3k 9,053 3,988 1,278
P1S2-unweighted 144.0k 360 2,169 22 2,161 3,253 20.1k 10.1k 4,151 2,681

6.4 Accuracy Evaluation

As for Hypothesis H2, we evaluate our algorithm’s unweighted version against
the two weighted versions (counted and inferred weights), as well as the MW-
FAS algorithms. Table 3 presents the precision (p) and recall (r) as well as the
number of removed edges (|A|) for skos:broader and rdfs:subClassOf. Each
entry represents the average of three runs. Taking weights into account (espe-
cially counted weights) has a positive impact on precision while maintaining
a similar recall. Our approach achieves the best precision among all methods
while removing the least amount of edges. As for rdfs:subClassOf, the impact
on precision can be positive but unstable due to the limits to be discussed in the
next section. Overall, this evaluation gives positive support to our Hypothesis
H2 and further enhances our conclusion for Hypothesis H1.

Table 3: Number of removed edges |A|, precision p, and recall r for refinement

Method

skos:broader rdfs:subclass

|A| G1 G2-a G2-b |A| G1 G2-a G2-b
p r p r p r p r p r p r

BS 1.1m 0.32 0.85 0.68 0.72 0.31 0.91 4.3m 0.40 0.74 0.40 0.67 0.54 0.79
GRD 493.1k 0.42 0.22 0.71 0.50 0.40 0.26 25.3k 0.42 0.40 0.35 0.45 0.57 0.21
KS 5.9m 0.33 0.52 0.74 0.53 0.28 0.46 2.1m 0.38 0.43 0.43 0.55 0.54 0.53
DFS 125.6k 0.35 0.37 0.68 0.49 0.34 0.34 529 0.43 0.42 0.49 0.63 0.55 0.29
P1S1-unweighted 114.8k 0.32 0.26 0.73 0.52 0.30 0.28 330 0.50 0.51 0.45 0.57 0.40 0.11
P1S2-unweighted 142.6k 0.32 0.35 0.73 0.52 0.31 0.37 350 0.49 0.44 0.45 0.57 0.58 0.15
P1S1-inferred 115.0k 0.31 0.25 0.73 0.52 0.30 0.28 330 0.50 0.51 0.45 0.57 0.40 0.11
P1S2-inferred 143.8k 0.33 0.38 0.73 0.52 0.30 0.36 354 0.49 0.46 0.45 0.57 0.60 0.14
P2S1-inferred 114.8k 0.31 0.25 0.73 0.50 0.30 0.29 330 0.50 0.51 0.45 0.57 0.40 0.11
P2S2-inferred 142.7k 0.33 0.35 0.73 0.52 0.31 0.37 356 0.50 0.47 0.45 0.57 0.58 0.15
P1S1-counted 95.4k 0.40 0.33 0.78 0.55 0.34 0.26 335 0.53 0.49 0.45 0.57 0.67 0.16
P1S2-counted 98.3k 0.42 0.38 0.78 0.55 0.34 0.28 354 0.51 0.45 0.45 0.57 0.70 0.20
P2S1-counted 93.4k 0.43 0.32 0.78 0.55 0.34 0.26 335 0.53 0.49 0.45 0.57 0.67 0.16
P2S2-counted 94.6k 0.44 0.35 0.78 0.55 0.32 0.24 357 0.50 0.45 0.45 0.57 0.66 0.17

14 S. Wang et al.

7 Discussion and Future Work

7.1 Summary

This paper presented a new algorithm for the refinement of transitive and pseudo-
transitive relations in very large knowledge graphs. We employed an SMT solver
in implementation and evaluated on 10 datasets and validated our Hypothesis
H1. As a proof-of-concept, we extended our work to weighted knowledge graphs
and evaluated on our gold standard. The results provided positive support for
our Hypothesis H2 and we also showed that taking weights into account during
refinement has a good potential.

7.2 Discussion

The graph of rdfs:subClassOf has 4.4 million triples, of which 1.4k are in
SCCs. Only 17 triples have inferred weights greater than 1, while 292 triples
have such counted weights. The skos:broader graph has 11.8 million triples, of
which 265.9k are among SCCs. There are only 39 triples with inferred weights of 2
compared to 284.6k for counted cases. It is clear that far fewer triples are assigned
inferred weights than counted weights, making it a less general weighting scheme.
Table 3 shows that inferred weights have no significant impact on the results due
to their small number. The following focuses on counted weights.

Figure 4 plots the frequency distribution of counted weights for both datasets.
It shows a power law distribution for the weights of skos:broader, implying
that some relation instances have been stated repeatedly across the web. This
justifies the use of frequency of triples as a heuristic for reliability. In comparison,
rdfs:subClassOf is less popular and its frequency distribution is less clear and
thus less reliable for decision making.

Fig. 4: The frequency distribution of counted weights in SCCs

Refining Transitive and Pseudo-Transitive Relations at Web Scale 15

Finally, the unstable result of rdfs:subClassOf is mostly due to the biggest
SCC which has 780 edges, amounting to 52% of all the edges in SCCs. All these
edges come from a single big faulty dataset, and are all annotated ‘unknown’.
This explains the big variance for precision and recall as in Table 3.

7.3 Limitations and Future Work

For Algorithm 1, at least one edge in each size-two cycle is removed. The al-
gorithm can be further extended with some preprocessing where some size-two
cycles are to be maintained by mapping both nodes to the same node in the
corresponding homomorphic graphs.

Graph partition is an imprecise step in the algorithm. For example, among
the 121.2k edges removed in the case of skos:broader, around 99.6k were iden-
tified during the graph partitioning step, amounting to 82.2%. Future work may
optimise the parameters to balance the trade-off between accuracy and efficiency.

Figure 4 shows that the frequency distribution of skos:broader follows a
power-law distribution. It can mislead the algorithm when an edge with a great
weight is actually erroneous. Different weighting scheme can be explored such as
that in [8]. Another possible way to improve the accuracy of weights and reduce
the number of ties of weights in size-two cycles is by taking the reliability or
centrality of sources into account as in [3] for example. General-purpose MWFAS
algorithms can be adapted to their weighted cases for future evaluation.

Our recall is limited due to the small amount of edges removed. In Section
6.4, we restricted to these two relations due to their popularity and the great
effort required for manual annotation. We plan to extend the gold standard to
relations with different alpha-beta measures.

References

[1] W. Beek et al. “LOD laundromat: a uniform way of publishing other peo-
ple’s dirty data”. In: ISWC. Springer. 2014, pp. 213–228.

[2] N. Bjørner. “Engineering theories with Z3”. In: Asian Symposium on Pro-
gramming Languages and Systems. Springer. 2011, pp. 4–16.

[3] P. A. Bonatti et al. “Robust and scalable Linked Data reasoning incorpo-
rating provenance and trust annotations”. In: Journal of Web Semantics
9.2 (2011). Provenance in the Semantic Web, pp. 165–201. issn: 1570-8268.

[4] J. Fernández et al. “LOD-a-lot”. In: ISWC. Springer. 2017, pp. 75–83.
[5] M. Fossati, D. Kontokostas, and J. Lehmann. “Unsupervised learning of an

extensive and usable taxonomy for DBpedia”. In: International Conference
on Semantic Systems. 2015, pp. 177–184.

[6] A. Harth, Sheila Kinsella, and S. Decker. “Using Naming Authority to
Rank Data and Ontologies for Web Search”. In: ISWC. 2009.

[7] N. Heist and H. Paulheim. “Entity extraction from Wikipedia list pages”.
In: ESWC. 2020, pp. 327–342.

16 S. Wang et al.

[8] S. Hertling and H. Paulheim. “WebIsALOD: providing hypernymy re-
lations extracted from the web as linked open data”. In: ISWC. 2017,
pp. 111–119.

[9] D. Hsu et al. “A Comparative Study of Algorithm for Computing Strongly
Connected Components”. In: 15th IEEE International Conference on De-
pendable, Autonomic and Secure Computing DASC (2017), pp. 431–437.

[10] A. Miles and Sean Bechhofer. “SKOS simple knowledge organization sys-
tem reference”. In: W3C recommendation (2009).

[11] E. Mones, Lilla Vicsek, and Tamás Vicsek. “Hierarchy measure for complex
networks”. In: PloS one 7.3 (2012), e33799.

[12] H. Öncü, Maher A.N. Agi, and Jérémy Guérin. “A fast and effective heuris-
tic for smoothing workloads on assembly lines: algorithm design and ex-
perimental analysis”. In: Computers & Operations Research 115 (2020).

[13] H. Paulheim. “Knowledge graph refinement: A survey of approaches and
evaluation methods”. In: Semantic web 8.3 (2017), pp. 489–508.

[14] H. Paulheim and Christian Bizer. “Improving the quality of linked data
using statistical distributions”. In: International Journal on Semantic Web
and Information Systems (IJSWIS) 10.2 (2014), pp. 63–86.

[15] J. Raad et al. “Constructing and Cleaning Identity Graphs in the LOD
Cloud”. In: Data Intelligence 2.3 (2020), pp. 323–352.

[16] M. Simpson, V. Srinivasan, and A. Thomo. “Efficient computation of feed-
back arc set at web-scale”. In: VLDB 10.3 (2016), pp. 133–144.

[17] J. Sun et al. “Breaking cycles in noisy hierarchies”. In: Proceedings of the
2017 ACM on Web Science Conference. 2017, pp. 151–160.

[18] S. Wang et al. “SUBMASSIVE: Resolving subclass cycles in very large
knowledge graphs”. In: Workshop on Large Scale RDF Analytics. 2020.

