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Abstract

Much work has been devoted to devising architec-
tures that build group-equivariant representations,
while invariance is often induced using simple
global pooling mechanisms. Little work has been
done on creating expressive layers that are in-
variant to given symmetries, despite the success
of permutation invariant pooling in various tasks.
In this work, we present Group Invariant Global
Pooling (GIGP), an invariant pooling layer that
is provably sufficiently expressive to represent a
large class of invariant functions. We validate
GIGP on rotated MNIST and QM9, showing im-
provements for the latter while attaining identical
results for the former. By making the pooling pro-
cess over group orbits, this invariant aggregation
method leads to improved performance, while
performing well-principled group aggregations.

1. Introduction

Incorporating equivariance into architectures is a hard prob-
lem, with much of geometric deep learning being devoted
to doing so. While architectures with specific equivari-
ances have been successful (Sanchez-Gonzalez et al., 2020),
their construction involves encoding geometric priors for
each symmetry. Much effort has been devoted to building
architectures that are equivariant to generic pre-specified
symmetries (Finzi et al., 2020).

Leveraging symmetries in deep learning has yielded state-
of-the-art results for various tasks. Scientific problems are
prime examples, as they exhibit an abundance of natural
symmetries. One architecture that was used for this is
LieConv (Finzi et al., 2020), an architecture that is equiv-
ariant to generic continuous Lie groups. Finzi et al. (2020)
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demonstrate its efficacy on tasks such as classifying rotated
images, predicting molecule’s properties, and simulating
physical systems.

However, most recent work has been devoted to the design
of equivariant layers, with few trying to build expressive
invariant layers. Invariance is often achieved through global
or mean pooling the final layer’s results, which causes a loss
of information about the data’s structure as all orbits are
treated the same. Following recent developments on invari-
ant pooling (Laptev et al., 2016a; Yang et al., 2020; Azizian
& Lelarge, 2020) and to alleviate this loss of information,
we present Group Invariant Global Pooling (GIGP), an
orbit-aware invariant pooling layer, with our contributions
being as follows:

1. We propose GIGP, group invariant global pooling, and
prove that any invariant function that fulfills certain
conditions can be expressed as a decomposition like
that of GIGP’s.

2. We use GIGP as a pooling method for LieConv and
evaluate it on rotated MNIST and QM9. GIGP’s orbit-
aware invariant pooling leads to slightly improved re-
sults on both tasks.

2. Background
2.1. Groups and Equivariance

Most natural systems can be described by features that re-
main unaltered under certain actions, known as symmetries.
This can be rigorously expressed using group theory. A
group (G, o) is a set G of elements v € G together with
a closed associative binary operation o : G X G — G, an
inverse u~! € G and the identity element e. A canonical
example is the rotation group SO(2), which denotes all
two-dimensional rotations in Euclidean space.

These abstract group elements can be represented by ma-
trices and vectors in a way that retains their structure. For
some groups each element © € G can be represented us-
ing a mapping p : G — GL(n) that associates it with an
invertible matrix p(u) € R™*™. This representation must
be a homomorphism to retain the group’s structure. This
allows expressing group elements as transformations over
R™, thus making them easier to study. For SO(2) the rep-
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Figure 1: Visualization of the standard global pooling method (left) and our proposed Group-Invariant Global Pooling
(right). Each sphere represents an orbit in SO(3). GIGP builds group-invariant representations by aggregating each orbit
separately, unlike global pooling. This leads to better-principled aggregation that is designed to respect the given symmetry.

resentation p(u) yields the well known rotation matrices
R(t) = (%t snt) for an angle t € R.

In particular, group representations allow studying how func-
tions change when transforming their inputs. An important
class is G-equivariant functions, functions where a trans-
formation in their input leads to a corresponding change in
their output. Formally, f : X — Y is G-equivariant iff

Ve e X,g€G: flpx(9)(x)) =py(9)f(x), (1)

where px, py denote different representations of the group
element. Invariance is then a special case when py = I.

2.2. Group Convolution

The notion of equivariance through convolutions was gener-
alized by Cohen & Welling (2016) to groups, yielding group
convolutions. This allows the definition of convolutions that
are equivariant to generic symmetries (Kondor & Trivedi,
2018), with them in this case being over functions of group
elements &k, f : G — R. It is defined as

(ks p) = [ K 0i@ae) @)

where dy(v) is the Haar measure, a measure that allows
consistently defining integrals over groups.

2.3. Lifting

As most group-equivariant architectures operate on Eu-
clidean coordinates x € R", not the group elements u € G,
one needs to convert coordinates to group elements. To do
80, a lifting method Lift(x;): x; — u;y is applied to convert
coordinates into group elements (Kondor & Trivedi, 2018),

Lift(z) = {u € G : uo = z}, 3)

where o € R" is a chosen origin that maps to the identity.
Each coordinate z; is lifted into K group elements w;j, so it
becomes non-ambiguous. For example, K = 1 for SO(2)
or K =2 for Rx SO(2).

Standard lifting can lead to a loss of information. For in-
stance, given a pair of points sampled from 2 different ro-
tation symmetric equations,! their lifted representations en-
code only the rotation angle. Finzi et al. (2020) proposed
encoding group orbits during the lifting process. Intuitively,
orbits represent a set of points that can all be reached through
group transformations from the same origin o. Formally,
a quotient space ) = X/G contains all orbits ¢ € @ of
G present in the input coordinates X C R™, which are the
information the lifting discards. To fix this, the lifting pro-
cedure is performed separately for each orbit to return pairs
(us,q;) € G x @ that contain the group element u; and the
orbit identifier g;. This ensures that no information is lost.

2.4. LieConv

To facilitate learning over Lie groups, Finzi et al. (2020)
proposed LieConv, an architecture that uses Lie theory to
perform group-equivariant convolutions over arbitrary Lie
groups. This is done by mapping the input data, expressed
as pairs of coordinates and values {(z;, f;)} =; € R", to
corresponding group elements and efficiently convolving
them. A summary of this procedure is given below.

While group convolution could be performed as per Equa-
tion 2, with the kernel k£ being an MLP, this would yield poor
results. This is because canonical neural networks perform
poorly on non-Euclidean data, requiring one to convert the
group elements to a Euclidean domain. The Lie algebra g is
one such space, where the group elements can be converted
to it using the logarithm map a = log(u).

This lifting procedure and mapping to the Lie algebra ele-
ments results in the LieConv convolution equation

B, qu) = / k(log(v™"u), gu, 4) £ (v, gu)ds(v)
vEnbhd(u) (4)

where the integral is over a neighborhood of points to ensure
locality, analogous to standard convolutions in deep learning.
As the exact integral is intractable, it is approximated using

leg. 4=2%+y?and 9 = 2% +¢°
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a Monte-Carlo estimate, thus yielding only approximate
equivariance. This assumes that the group elements are
locally distributed proportionally to the Haar measure.

Akin to standard convolutional networks, multiple layers of
LieConv are then combined to form a ResNet architecture,
with global pooling as the last layer.

3. Group Invariant Global Pooling

While the equivariant convolutions make the model respect
a symmetry, they do not assure that the model’s predictions
are invariant. Thus, it is natural to introduce a group in-
variant global pooling layer, analogous to the aggregation
functions in standard graph neural networks (GNNs). To
make invariant global predictions it is sufficient to build
invariant representations of each orbit. In this work, we
propose a general framework to generate such orbit-aware
invariant features.

We decompose a sum over the group elements v € G into
a sum over orbits ¢ € () and group elements within each

orbit u € G4:
DI =Y fu ®)

veG qeEQ ueGe

where u € G? C G such that [u,q] € G x Q, indicating
the u is observed within the orbit q. The inner sum is
invariant to the group transformations if f(u) is equivariant,
as transformed elements always stay within the same orbit.

We can now use this decomposition to obtain an aggregation
method that uses an MLP @ to build invariant representa-
tions of orbits. We call this group invariant global pooling
(GIGP), defined as

GIGR(,G) = C' Y w,® ( > fw), q> ©)

qeEQ ueG1

where w, are learnable parameters and @ is a neural network.
C'is a constant that can be tuned to make GIGP, for example,
initialized as a standard pooling layer. w, are used to weigh
orbits according to their relevance.

As most architectures use a global mean-pooling aggrega-
tion layer, ® and C are initialized so that GIGP before
training performs global mean-pooling. This was found to
improve results in practice. Moreover, to allow soft invari-
ance, nearby orbits are aggregated together based on their
distance from the main orbit ¢q. This allows the application
of GIGP to sparse data, such as point clouds and molecules.

Finally, we prove GIGP’s expressivity by showing that any
invariant continuous function has an identical decomposi-
tion to GIGP preceded by an equivariant network and fol-
lowed by an MLP. To prove it, we generalize the Deep Sets

proof by Zaheer et al. (2017) from permutation invariant
operations to arbitrary non-homogeneous groups. The proof
and exact theorem are given in Appendix A.

Theorem 3.1. (Sufficient Expressivity of GIGP, Informal)
Let f : X — F be some invariant function that takes a
set of group elements as input. Then, there exist functions

P, &, such that f(X) = p(3geq O weq (2)))-

For simplicity, GIGP was used without an appended net-
work, thereby setting p to be proportional to the identity.
Understanding when this form is also sufficient is left for
future work.

4. Experiments

All experiments were run on 16GB Nvidia Tesla P100 GPUs.
The rotMNIST/QM9 models took on average 4/16 hours
respectively to train for 500 epochs. For both architectures
the hyperparameters given in Finzi et al. (2020) were used,
which are a learning rate of 0.003, a batch size of 32, and a
limit on each point’s neighborhood to 32 nearest neighbors
for rotMNIST and batch size of 75 and neighborhood of 100
for QMO. Hyperparameter tuning was not performed and
is left for future work. SO(n) was used as the symmetry
group for both models, being the simplest non-homogeneous
symmetry both exhibit. The models are implemented in
PyTorch. The results are shown in Table 1.

4.1. Rotated Images

‘We use the rotMNIST dataset, which contains rotated im-
ages of digits from the popular image recognition MNIST
task. These images are invariant under the rotation group
SO(2). We use the original splits of 10k for training, 2k for
validation, and 50k for the test set.

To test GIGP, we evaluate it on LieConv, replacing its global
mean pooling layer. Using the original hyperparameters and
training procedure, we achieve comparable results, as shown
in Table 1. We believe this result on rotMNIST, a saturated
task, validates that our method is not only as expressive as
standard pooling, but does not impair training.

4.2. Molecules

We also evaluate our proposed pooling method on the QM9
molecular property task. The dataset contains molecules
as 3D coordinates of atoms and their respective atomic
charges. The coordinates have no canonical origin, there-
fore they are E/(3) equivariant and well-performing models
must use that geometric prior. To incorporate SO(3) sym-
metry, all molecules were re-centered. We report results
on the Homo task of predicting the energy of the highest
occupied orbital. The dataset contains 100k molecules in
the train set, 10% in the test set and the remaining ones in
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Table 1: Results when appending GIGP to LieConv on various tasks. rotMNIST has an SO(2) symmetry while pre-processed
QM9 has SO(3). QM9 had only a single run because of resource constraints.

rotMNIST QM9 egonmo
Training Error ~ Test Error  Train MAE  Test MAE
% % meV meV
LieConv + Simple Global Pooling ~ 0.05£0.05  1.42+£0.13 4.8 30.6
LieConv + GIGP 0.03 £ 0.05 1.38 £ 0.07 4.7 29.4

the validation set. As shown in Table 1, the resulting GIGP
results are slightly better than those attained using normal
global pooling. These results are promising, as they were
achieved with no hyperparameter tuning.

5. Conclusion

We presented GIGP, an expressive pooling layer that is
invariant to generic symmetries. It builds group-invariant
representations of all elements on the same orbits, leading
to pooling operation that is better aligned with the task
at hand. This mechanism addresses the lack of invariant
pooling methods for group-equivariant architectures. We
proved GIGP is sufficiently expressive to model a large
class of invariant functions and demonstrated it yields slight
improvements on a popular image and molecular datasets.
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A. Proof of GIGP Expressivity

Theorem A.1. Let f : FX — R be some function that is invariant to a group’s action, so¥g € G : f(gx) = f(x). Here F’
is some set representing the possible values given to each group element. Thus, assuming:

1. X, F are countable.

2. There are a finite number of orbits.

Given these assumptions, there exist functions p, ¢, such that f(X) = p(3_,cq P> e, ¥(2)]), where with some abuse
of notation we denote the value given to each group element over the domain with the group element directly.

Proof: The proof goes as follows. We shall show that there exists ¢ such that ) q ¥ (x) is group invariant and constitutes an
invertible function from FX to a countable set. Afterwards we’ll show that there exists a function ¢ such that > 4€Q o(h(q))
is an invertible function from Q" to a countable set. Finally, we’ll show that we can construct a function p such that

FXT) = p(geq O veq ¥(@)))-

Step 1: As F is a countable domain, we have that 3¢ : ¢(x) is an invertible mapping to N. Because X is countable each
orbit has countably many elements. Thus, one can define L(x) := ln(pc(x)), where p; denotes the i-th prime. Note that this
constitutes a one-to-one correspondence between sets {z } ¢, and logarithms of numbers as each number has a unique prime
representation and > - L(z) = In(] [, ¢, Pe(x))- Thus, we have shown that there exists a function ¢ (2) := In(pc(s)) that
is an invertible mapping between F'X and a countable set, specifically In(N). This is trivially group invariant as the action
of the group simply permutes the set.

Step 2: We denote an arbitrary function from an orbit to the real numbers as h : ) — R. We want to show that there exists a
function ¢ such that 3 ., #(h(g)) is invertible from QY, all the multisets of the form {{h(q)}},cq to N. As there is a
finite number of orbits, one can use a similar construction to the previous step - h(g) can be treated as a natural number (for
example, calculating exp(h(q)) if following the previous construction) and define ¢(n) := In(p,,).

Step 3. Let g(X) := quQ ¢[erq ¥ (z)]. This is an invertible group-invariant function from F to In(N). Thus, setting

p = f o g~! completes the proof. O

B. Related Work

Group-Equivariant Convolution Cohen & Welling (2016) generalized the notion of architecture equivariance to arbitrary
groups. Later works extended this by using irreducible group representations to perform convolution with respect to various
continuous groups and their discrete subgroups (Cohen & Welling, 2017; Weiler & Cesa, 2019; Geiger & Smidt, 2022).

However, there is a lack of work that attempts to generate architectures equivariant to any symmetry group. Ravanbakhsh
et al. (2017) achieve equivariance to any finite group by sharing weights over orbits. Finzi et al. (2020) present LieConv,
which is equivariant to arbitrary Lie groups and scales well to larger datasets.

Group Invariant Pooling Laptev et al. (2016b) introduce transformation-invariant pooling for CNNs. Cohen & Welling
(2016) propose coset pooling that is equivariant to any discrete group. ? propose scale-invariant pooling in CNNs.
van der Ouderaa et al. (2022) obtain G-invariant global pooling for non-stationary kernels. Xu et al. (2021) propose group
equivariant/invariant subsampling for discrete groups. However, there is no work that implements group invariant global
pooling for arbitrary groups. We attempt to fill this gap.



