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Abstract
This work investigates localised, quasi-001
symbolic inference behaviours in distribu-002
tional representation spaces by focusing on003
Explanation-based Natural Language Inference004
(NLI), where two explanations (premises) are005
provided to derive a single conclusion. We006
first establish the connection between natural007
language and symbolic inferences by character-008
ising quasi-symbolic NLI behaviours, named009
symbolic inference types. Next, we establish010
the connection between distributional and sym-011
bolic inferences by formalising the Transformer012
encoder-decoder NLI model as a rule-based013
neural NLI model - a quasi-symbolic NLI con-014
ceptual framework. We perform extensive ex-015
periments which reveal that symbolic inference016
types can enhance model training and inference017
dynamics, and deliver localised, symbolic infer-018
ence control. Based on these findings, we con-019
jecture the different inference behaviours are020
encoded as functionally separated subspaces021
in the latent parametric space, as the future022
direction to probe the composition and gener-023
alisation of symbolic inference behaviour in024
distributional representation spaces.025

1 Introduction026

Explanatory sentences (Jansen et al., 2018b) can en-027

code hierarchical, taxonomic, and causal relations028

between concepts (Gardenfors and Zenker, 2015).029

By understanding and reasoning over these con-030

cepts expressed by explanations, humans can make031

intricate decisions, which is significant in scientific,032

cognitive, and AI domains. In this work, we focus033

on the Explanation-based Natural Language Infer-034

ence (NLI) task where two explanations (premises)035

are provided to derive a single conclusion. Within036

this task, a central challenge involves achieving037

localised and (quasi-)symbolic inference behaviour.038

E.g., given the two premises: milk is a kind of liquid039

and liquids can flow, one may derive the conclu-040

sion milk can flow by localising and substituting041

the concept liquids with milk.042

ARG
substitution

Frame
conjunction

PRED 
substitution

Conditional
Frame

ARG
insertion...

neural NLI model

Premises
P1: milk is a kind of liquid
P2: liquid can flow

+
Inference types

T1: ARG-substitution

T2: Frame conjunction

Conclusion

C1: milk can flow

C2: milk is a kind of
liquid and can flow

Inference types as parametric subspaces

Figure 1: Quasi-symbolic NLI representation concep-
tual framework. Inference types can be encoded as
functional subspaces, which are separated or disentan-
gled in parametric space. Thus, by manipulating the
inference types, we can deliver localised, symbolic in-
ference control.

A key question then arises: How can we train 043

current Transformer-based NLI models to learn and 044

generalise this quasi-symbolic behaviour in the dis- 045

tributional representation space? Investigating this 046

question allows us to shorten the gap between deep 047

latent semantics and formal linguistic representa- 048

tions (Gildea and Jurafsky, 2000; Banarescu et al., 049

2013), integrating the flexibility of distributional- 050

neural models with the properties of linguistically 051

grounded representations, facilitating both inter- 052

pretability (i.e., compositionality (Dankers et al., 053

2022; Marcus, 2003)) and generative control. 054

Recent studies have demonstrated that the 055

predicate-argument structure and semantic roles 056

from explanatory sentences (Argument Structure 057

Theory - AST representations) (Jackendoff, 1992) 058

can be effectively represented, localised, and dis- 059

entangled in the latent space of transformer-based 060

models (Zhang et al., 2024a,c). A particular in- 061

stance of an AST representation is the Abstract 062

Meaning Representation (AMR) (Banarescu et al., 063

2013), which represents the relations between se- 064

mantic variables, allowing us to first establish the 065

connection between natural and symbolic language 066
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inferences. Specifically, we leverage the AMR to067

systematically characterise quasi-symbolic infer-068

ence behaviours, named symbolic inference types,069

grounded on AMR symbolic graphs. Using the070

explanation-based NLI dataset (EntailmentBank,071

Dalvi et al. (2021)), we identify ten categories of072

symbolic transformations and provide annotations073

for 5,134 premise-conclusion pairs in Section 3.074

Next, we establish the connection between distri-075

butional and symbolic inferences from the perspec-076

tive of neural representation spaces (see Section 4).077

An ideal neuro-symbolic NLI model should demon-078

strate two core representational capabilities: (i) the079

capacity to encode and to systematically apply in-080

ference rules and (ii) the ability to elicit syntactic-081

semantic features (Valentino, 2022). Motivated by082

this, we propose quasi-symbolic NLI representation083

conceptual framework over a Transformer-based084

encoder-decoder NLI architecture (Figure 1), in085

which the symbolic inference types are injected to086

guide the formation of inference behaviours within087

the latent parametric space. As for the former, ex-088

plicit supervision on inference types should align089

the model’s reasoning trajectory with target infer-090

ence behaviours. By varying different inference091

types, the model should perform rule-based infer-092

ence behaviour. With respect to the latter, we in-093

troduce a feature space (i.e., abstract sentence bot-094

tleneck) in the centre of the encoder-decoder archi-095

tecture. Ideally, this low-dimensional feature space096

encodes sufficiently abstract, high-level semantic097

representations during inference.098

We provide extensive experiments to evaluate099

both capabilities, including the training and infer-100

ence (Section 5.1), localised inference control (Sec-101

tion 5.2), and feature representation with expla-102

nation inference retrieval task (Section 5.3). Ex-103

perimental results reveal that the symbolic infer-104

ence type can assist model training, inference, and105

deliver localised inference control, indicating the106

possibility of neural NLI models to learn and gener-107

alise the inference rules in the distributional space.108

In summary, this work provides a complete ini-109

tial step in investigating the quasi-symbolic infer-110

ence over distributional semantic spaces, with the111

following contributions: (1) We first establish the112

connection between natural and symbolic language113

inferences from the perspective of linguistics by114

systematically characterising quasi-symbolic infer-115

ence behaviours, named symbolic inference types,116

grounded on the AST/AMR representations. (2)117

We establish the distributional-symbolic connec- 118

tion from the perspective of neural representation 119

space by proposing the quasi-symbolic NLI rep- 120

resentation conceptual framework where the for- 121

mation of inference behaviours is guided via our 122

symbolic inference types in the latent space. Exper- 123

imental results showed that the symbolic inference 124

type supervision can improve model training, infer- 125

ence, and localisation. (3) Based on those findings, 126

we conjecture that different inference types are 127

encoded as functional subspaces which are sepa- 128

rated or disentangled in the parametric space. We 129

quantitatively evaluate this hypothesis using Neural 130

Tangent Kernel (NTK) theory in Appendix A. 131

Interpreting and controlling the NLI process 132

from the perspective of the distributional space is a 133

largely promising approach in NLP. To our knowl- 134

edge, this is the first study to explore the quasi- 135

symbolic NLI behaviour, targetting a more univer- 136

sal NLI control and interpretation, rather than a 137

strict symbolic representation or architectural mod- 138

ification. The experimental pipelines are released1. 139

2 Related Work 140

In this section, we review the related work around 141

two topics: neuro-symbolic representations and 142

semantic control over latent spaces, to highlight 143

the current research limitation and elucidate the 144

motivation underlying our work. 145

Neuro-symbolic representations. A longstand- 146

ing goal in NLP is to blend the representational 147

strengths of neural networks with the interpretabil- 148

ity of symbolic systems to build more robust NLI 149

models. Current methods usually inject symbolic 150

behaviour through explicit symbolic representa- 151

tions, including graph (Khashabi et al., 2018; Khot 152

et al., 2017; Jansen et al., 2017; Kalouli et al., 153

2020; Thayaparan et al., 2021), linear program- 154

ming (Valentino et al., 2022b; Thayaparan et al., 155

2024), adopting iterative methods, using sparse en- 156

coding mechanisms (Valentino et al., 2020; Lin 157

et al., 2020), synthetic quasi-natural language ex- 158

pression (Clark et al., 2020; Yang and Deng, 2021; 159

Yanaka et al., 2021; Fu and Frank, 2024; Weir et al., 160

2024), symbolic-refined LLMs (Olausson et al., 161

2023; Quan et al., 2024), etc. Those studies ignore 162

the underlying neuro-symbolic behaviour in neural 163

representation space. 164

1https://anonymous.4open.science/r/Inference_
type-5E07/
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From an Explainable AI perspective, many stud-165

ies have shown that neural networks can encode166

sparse neural-symbolic concepts without explicit167

symbolic injection across areas like image embed-168

ding (Ren et al., 2022; Deng et al., 2021; Li and169

Zhang, 2023), word embedding (Ethayarajh et al.,170

2018; Allen et al., 2019; Ri et al., 2023), contex-171

tual embedding (Gurnee et al., 2023; Nanda et al.,172

2023; Li et al., 2024), and LLM interpretation (Park173

et al., 2024; Templeton et al., 2024). By under-174

standing the symbolic behaviour within neural net-175

works, their decision-making logic can be better176

interpreted and controlled (Chen et al., 2024).177

In this work, we draw on quasi-symbolic NLI178

objectives within distributional neural models, tar-179

getting better controllability and interpretability.180

Semantic control over latent spaces. Latent181

variable models, such as VAE (Kingma and182

Welling, 2013) and Diffusion (Dhariwal and183

Nichol, 2021), have shown the capability of sym-184

bolic representation, control, and interpretation185

over the distributional space, which are widely de-186

ployed in the NLP domain, such as disentangled187

representation learning (Zhang et al., 2024a) and188

style-transfer (Liu et al., 2023a; Gu et al., 2023;189

Zhang et al., 2024b). Guided by semantic anno-190

tation, such as labels (Carvalho et al., 2023) and191

classifiers (Ho and Salimans, 2022), distinct se-192

mantic features can be geometrically separated and193

composed in the latent space, enhancing localisa-194

tion and interpretability. However, this concept195

remains under-explored in the NLI domain. Thus,196

we propose the quasi-symbolic NLI representation197

conceptual framework and inference types as an198

initial step to probe the localised, quasi-symbolic199

NLI behaviour.200

In the next section, we start by defining the sym-201

bolic inference types for semantically bridging the202

natural language and symbolic inferences.203

3 Defining Symbolic Inference Types204

Valentino et al. (2021) has demonstrated that step-205

wise explanation-based NLI cannot be directly206

framed as pure logical reasoning. Explanatory207

chains, while looking plausible at first inspection,208

commonly have subtler incompleteness and consis-209

tency problems from a logical point of view. Mean-210

while, explanatory chains corresponding to defin-211

able inference patterns and symbolic operations212

can be localised over the sentence structure. Moti-213

vated by this middle ground between logical repre-214

sentations and lexico-semantic inference patterns, 215

we introduce granular inference types based on ex- 216

planatory sentences, using AMR to define the sym- 217

bolic operations involved in step-wise inference, 218

linking transformations from premises to conclu- 219

sions 2. Table 1 describes the AMR-grounded infer- 220

ence types and examples from the EntailmentBank 221

corpus. Next, we define each lexico-semantic infer- 222

ence type and the corresponding symbolic forms. 223

c/characteristic-02

s/scar
:ARG1

a/acquire-01

:ARG1-of

k/kind 
:mod

:domain

:location

:ARG1

:ARG1-of

:location

P1: a scar on the knee is a kind of scar

P2: a scar is an acquired characteristic

C: a scar on the knee is an acquired characteristic

c/characteristic-02

a/acquire-01

s/scar k/knee 

k2/knee s2/scar

s/scar

Figure 2: AMR argument substitution: the inference
behaviour is defined as subgraph substitution.

224

The substitution category refers to obtaining a 225

conclusion by replacing a predicate/argument term 226

from one premise with a predicate/argument term 227

from the other premise. Possible variations of this 228

category include (1) argument (ARG) substitution, 229

(2) predicate (PRED) substitution, and (3) frame 230

(PRED+ARG) substitution. In this category, one 231

premise is used to connect two terms which are 232

usually connected by is a kind of, is a source of, 233

etc. Conceptualising the AMR representation as 234

a graph, this can be symbolically represented as a 235

subgraph substitution operation over the premise 236

graphs, as illustrated in Figure 2. The PRED sub- 237

2Please note that AMR is not used as a representation
mechanism in the proposed architecture, but only to precisely
ground these symbolic operations within a well-defined se-
mantic representation structure.
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Original type Symbolic type Prop. Example entailment relation

Substitution

ARG substitution
(ARG-SUB) 19%

P1: a scar on the knee is a kind of scar
P2: a scar is an acquired characteristic
C: a scar on the knee is an acquired characteristic

PRED substitution
(PRED-SUB) 5%

P1: food contains nutrients and energy for living things
P2: to contain something can mean to store something
C: food stores nutrients and energy for living things

Frame substitution
(FRAME-SUB) 20%

P1: the formation of diamonds requires intense pressure
P2: the pressure is intense deep below earth ’s crust
C: the formation of diamonds occurs deep below the crust of the earth

Inference from Rule
Conditional frame

insertion/substitution
(COND-FRAME)

12%
P1: if something is renewable then that something is not a fossil
P2: fuel wood is a renewable resource
C: wood is not a fossil fuel

Further Specification
or Conjunction

ARG insertion
(ARG-INS) 18%

P1: solar energy comes from the sun
P2: solar energy is a kind of energy
P3: solar energy is a kind of energy that comes from the sun

Frame conjunction
(FRAME-CONJ) 6%

P1: photosynthesis stores energy
P2: respiration releases energy
C: photosynthesis stores energy and respiration releases energy

Infer Class
from Properties

ARG/PRED
generalisation

(ARG/PRED-GEN)
1%

P1: rock is a hard material
P2: granite is a hard material
C: granite is a kind of rock

Property Inheritance
ARG substitution

(Property Inheritance)
(ARG-SUB-PROP)

0.4%
P1: blacktop is made of asphalt concrete
P2: asphalt has a smooth surface
C: a blacktop has a smooth surface

Causal Expression Causality (IFT) 0.8%
an optical telescope requires visible light for human to use
clouds / dusts block visible light
if there is clouds or dusts, then the optical telescope cannot be used

Example-based Inference Example (EXAMPLE) 0.9%
a shelter can be used for living in by raccoons
some raccoons live in hollow logs
an example of a shelter is a raccoon living in a hollow log

Table 1: Examples of symbolic inference types, with their corresponding abbreviations provided in parentheses and
used consistently throughout the paper. The EntailmentBank utilised for this task comprises 5,134 instances, with
our annotations covering 84% of the (premises, conclusion) cases. These annotations are planned for public release.

stitution category works in a similar manner, but238

replacing a predicate term. The two predicates are239

usually linked by the following patterns: “v1 is a240

kind of v2”, “to v1 something means to v2 some-241

thing”, etc. The frame (PRED+ARG) substitution242

category combines both previous categories by re-243

placing a frame (predicate subgraph) of one of the244

premises with one from the other premise.245

The further specification or conjunction category246

allows for obtaining a conclusion by joining both247

premises. It includes (4) ARG insertion and (5)248

frame conjunction. For ARG insertion, the conclu-249

sion is obtained by connecting an argument from250

one of the premises to a frame of the other. As251

for frame conjunction/disjunction, the conclusion252

is obtained by joining the premises graphs through253

a conjunction/disjunction node (and) or (or).254

The inference from rule category from Dalvi et al.255

(2021) encompasses a specific instance of insertion256

or substitution, identified as (6) conditional frame257

insertion/substitution. In this category, a frame258

is either inserted or replaced as an argument of a259

premise, following a conditional pathway present260

in the other premise. This process is illustrated in261

Figure 6 (Appendix B). 262

The inference type infer class from properties 263

has been re-categorised as (7) ARG or PRED gen- 264

eralisation, where a new :domain relation frame 265

is created if both premise graphs differ by a single 266

predicate/argument term. (8) Property inheritance, 267

on the other hand, is a special case of ARG sub- 268

stitution, where one of the premises describes a is 269

made of relationship between the entity in the other 270

premise and its replacement. 271

Finally, (9) Causal Expression and (10) Example- 272

based Inference categories are defined according 273

to the key lexical characteristic of the conclusion, 274

as systematic AMR transformations which could 275

be applied without rephrasing the underlying ex- 276

planatory sentences could not be determined. More 277

details about the annotation procedure are provided 278

in Appendix B. 279

Thus far, we have established a connection be- 280

tween natural and symbolic language inferences 281

through the AMR graph. In the next section, we 282

aim to establish the distributional-symbolic NLI 283

connection from the point of neural representation 284

space. 285
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4 Quasi-symbolic NLI Conceptual286

Framework287

In this section, we first formalise the concept of288

Quasi-symbolic NLI3 and then map it to the practi-289

cal encoder-decoder architectures.290

4.1 Quasi-symbolic NLI Formalisation291

In this study, we formalise the concept of “quasi-292

symbolic NLI behaviour” as rule-based reasoning293

over neural representation, where discrete inference294

behaviours are implemented through differentiable295

transformations over continuous neural represen-296

tations. This is achieved by characterising and297

manipulating quasi-symbolic inference behaviours,298

denoted by π ∈ Π, where Π represents the space299

of all possible inference rules.300

The process involves three key stages: (i) Neural301

Encoding: The premises p1 and p2 are encoded into302

continuous vector representations (−→p1 and −→p2) in a303

neural space. (ii) Rule-Based Reasoning: The en-304

coded representations are transformed using a rea-305

soning function guided by the inference behaviour306

π. (iii) Neural Decoding: The resulting vector, −→c ,307

is decoded into a natural language conclusion c.308

Formally, the process can be described as follows:309

1. −→p1,−→p2 = fencode(p1, p2)

2. −→c = freason(
−→p1,−→p2;π)

3. c = fdecode(
−→c )

310

Here, fencode, freason, fdecode represent the encod-311

ing, reasoning, and decoding functions in a neural312

NLI model. The injection of π should exhibit two313

advantages:314

1. Training Dynamics: During training, explicit315

supervision on π aligns the model’s reasoning tra-316

jectory with target inference behaviours, improving317

conclusion prediction accuracy.318

2. Inference Composition: By varying π during319

inference, the model can separate the semantics of320

the premises from the inference behaviour. This321

enables localised, quasi-symbolic NLI control, al-322

lowing for flexible and interpretable reasoning.323

4.2 Quasi-symbolic NLI Representation324

We focus on encoder-decoder architectures (e.g.,325

T5) due to their inherent separation of reasoning326

3Please note that our objective is not to propose a new
neural-symbolic model architecture; rather, we aim to investi-
gate whether a standard NLI model is capable of exhibiting
quasi-symbolic NLI behaviour.

and decoding phases, which naturally accommo- 327

dates quasi-symbolic reasoning. However, this 328

framework can also be adapted into decoder-only 329

architecture, where the rules are captured, such 330

as through in-context learning (Liu et al., 2024). 331

From a representational perspective, we propose 332

the concepts of latent rule space and feature space 333

to align with the function of the neuro-symbolic 334

NLI model. 335

Latent rule space. The latent rule space refers 336

to the functional parameter space (i.e., models’ 337

weights), which captures the structured, rule-based 338

reasoning behaviours π ∈ Π. We further propose 339

that rule-based reasoning is primarily materialised 340

in the encoder of the encoder-decoder NLI model: 341

Proposition: The inference behaviour is instan- 342

tiated at the encoder and can be controlled by the 343

injection of the associated inference type labels. 344

Due to the page limitation, we provide a formal 345

proof, illustration, and evaluation in Appendix A. 346

Latent feature space. The latent feature space 347

refers to the input or output embedding space. To 348

evaluate the feature representation capability, we 349

next describe the methodological framework be- 350

hind the construction of the abstract sentence rep- 351

resentation within T5 (named T5 bottleneck). 352

As for the encoder’s final layer output embed- 353

ding, we compute dimension-wise mean pooling 354

over token embeddings, followed by a multi-layer 355

perceptron to obtain sentence embeddings. As 356

for the decoder’s input embedding, we reconstruct 357

token embeddings via linear projection, feeding 358

them into the decoder’s cross-attention mechanism. 359

Here, we only describe the optimal setup. We pro- 360

vide a systematic way to choose the best setup in 361

the Appendix C. 362

5 Empirical Analysis 363

The experiment addresses three key questions: Sec- 364

tion 5.1: (i) Do symbolic inference types enhance 365

model training and inference performance? Sec- 366

tion 5.2: (ii) Can these inference types be used for 367

prescriptive inference control? Section 5.3: (iii) 368

Does the incorporation of a sentence bottleneck 369

contribute to improved feature representation? All 370

experimental details are provided in Appendix C. 371

5.1 Training and Inference Evaluation 372

Firstly, we evaluate (i) if symbolic inference types 373

enhance model training and inference performance. 374
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We consider three mechanisms to conditionally in-375

ject the symbolic inference types into the latent376

space, which are described below, where p1, p2,377

and con are the premises and conclusion, respec-378

tively, and </s> is a special token for sentence sep-379

aration: i. The inference type as the prefix for380

the premises at the Encoder: the inference type is381

[type] </s> p1 </s> p2 ii. The inference type as382

the prefix for the conclusion in the Decoder: </s>383

the inference type is [type]. con iii. The inference384

type at the end of the conclusion in the Decoder:385

</s> con. the inference type is [type].386

Training dynamics. We first evaluate generative387

performance after training based on three metrics:388

BLEURT (Sellam et al., 2020), BLEU (Papineni389

et al., 2002), and cosine similarity against sen-390

tenceT5 (Ni et al., 2021). By comparing the pre-391

dicted and golden conclusions, we can fairly evalu-392

ate the accuracy of the NLI performance. For the393

baseline, we choose the T5, GPT2 (Radford et al.,394

2019), Qwen2.5 (Qwen et al., 2025), Llama3.2395

(Grattafiori et al., 2024), our T5 bottleneck and Op-396

timus (Li et al., 2020) with 768 latent dimensions397

as testbed. The performances are measured from398

the Entailment test set.399

As illustrated in Table 2, across all baseline mod-400

els, incorporating inference types into the encoder401

consistently results in improved performance as402

measured by BLEU, Cosine, and BLEURT metrics,403

indicating the inference behaviour is instantiated at404

the encoder (Proposition) (finding1). This finding405

also suggests that during training, explicit super-406

vision on inference types aligns the model’s rea-407

soning trajectory with target inference behaviours,408

improving conclusion prediction accuracy (find-409

ing2). A similar observation is reflected in the test410

loss curve shown in Figure 10.411

Furthermore, previous studies have revealed that412

the LLM evaluation can be consistent with the re-413

sults obtained by expert human evaluation (Chiang414

and Lee, 2023; Liu et al., 2023b; Wang et al., 2023;415

Huang et al., 2023). Thus, we also conduct a quan-416

titative analysis to measure whether the generated417

conclusion contradicts the premises through LLM418

evaluators, including ChatGPT4o as the baseline419

and GPT4o-mini for comparison. Table 3 indicates420

that EP can consistently result in improved LLM421

agreement scores. A qualitative evaluation based422

on the manual check is presented in appendix D423

(Tables 14 and 15).424

Baseline INJ BLEU Cosine BLEURT
seq2seqLM: encoder-decoder architecture

T5
original
(small)

DE 0.55 0.96 0.30
DP 0.59 0.96 0.34
EP 0.65 0.97 0.45
NO 0.54 0.96 0.22

T5
original
(base)

DE 0.46 0.96 0.23
DP 0.53 0.96 0.25
EP 0.61 0.97 0.39
NO 0.57 0.96 0.33

T5
original
(large)

DE 0.60 0.97 0.46
DP 0.64 0.97 0.44
EP 0.67 0.97 0.50
NO 0.57 0.96 0.31

CausalLM: decoder only architecture

GPT2(xl) DP 0.28 0.91 -0.90
NO 0.27 0.90 -0.97

Qwen2.5(0.5B) DP 0.65 0.97 0.48
NO 0.63 0.97 0.45

Llama3.2(1B) DP 0.63 0.97 0.46
NO 0.60 0.96 0.42

seq2seqLM with sentence bottleneck

T5
bottleneck

(base)

DE 0.35 0.91 -0.15
DP 0.39 0.91 -0.13
EP 0.42 0.92 -0.07
NO 0.35 0.91 -0.20

Optimus
(BERT-GPT2)

DE 0.26 0.80 -1.11
DP 0.25 0.79 -1.14
EP 0.09 0.74 -1.17
NO 0.07 0.74 -1.20

Table 2: Quantitative evaluation on testset, where best
results are highlighted in bold. Specification for ab-
breviation. INJ: ways for injecting the information of
inference types into the model, it includes DE: decoder
end, DP: decoder prefix, EP: encoder prefix, NO: no
inference type.

Baseline INJ ChatGPT4o GPT4o-mini

T5
original
(large)

DE 0.85 0.83
DP 0.86 0.83
EP 0.91 0.85
NO 0.84 0.82

Table 3: Agreement scores for the quantitative analysis
using LLMs on the test set. We also provide a qualitative
manual evaluation in appendix D (Tables 14 and 15),
with the prompt being provided in Table 17.

In-context learning. Next, we quantitatively 425

evaluate the symbolic inference types within in- 426

context learning (ICL) in contemporary large lan- 427

guage models (LLMs). As illustrated in Table 4, 428

prompting with inference types can improve the 429

performance of ICL in both seq2seq and causal 430

LLMs. Besides, within the context of causal LLMs, 431

an increase in few-shot examples4, improves the 432

performance. This finding indicates that our in- 433

ference types can be generalised across various 434

4We randomly sample the examples with the same infer-
ence type as the current test example from the training set. We
perform ten times and calculate the average for each metric.
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checkpoints and architectures, ultimately enhanc-435

ing the reasoning capabilities of LLMs (finding3).436

Baseline INJ Num BLEU Cosine BLEURT
Seq2seqLLM: encoder-decoder architecture

CoT-T5 (11b)
(Kim et al., 2023)

Yes 10 0.51 0.97 0.39
Yes 5 0.51 0.97 0.39
Yes 0 0.50 0.97 0.36
NO 0 0.46 0.96 0.31

Flan-T5 (xxl)

Yes 10 0.51 0.97 0.41
Yes 5 0.53 0.97 0.43
Yes 0 0.50 0.96 0.37
NO 0 0.48 0.96 0.36

CausalLLM: decoder only architecture

GPT-3.5-turbo-0125

Yes 10 0.52 0.96 0.40
Yes 5 0.48 0.96 0.35
Yes 0 0.46 0.96 0.31
NO 0 0.42 0.96 0.33

GPT-4-0613

Yes 10 0.53 0.97 0.50
Yes 5 0.52 0.97 0.47
Yes 0 0.52 0.97 0.50
NO 0 0.47 0.96 0.40

llama3-70b-8192

Yes 10 0.54 0.97 0.54
Yes 5 0.52 0.97 0.52
Yes 0 0.51 0.97 0.47
NO 0 0.44 0.96 0.40

Table 4: ICL evaluation of test cases, where worst re-
sults are highlighted in bold. The prompt is “performing
natural language inference [where the inference type is
type, description], [p1; p2; c]×num. p1, p2, what is the
conclusion?". num is the number of examples. The
description is based on the definition of inference types
in Section 3.

437

5.2 Quasi-symbolic NLI Evaluation438

Secondly, we evaluate (ii) if these inference types439

can be used for prescriptive inference control.440

Qualitative evaluation. We qualitatively evalu-441

ate the quasi-symbolic NLI behaviour on the gener-442

ation of conclusions by systematically intervening443

on the inference type prior to the encoder. As illus-444

trated in Table 5, we can observe that the associated445

linguistic properties of the conclusion can be con-446

trolled consistently with the inference type modifi-447

cations and this inference control is independent of448

the semantics of premises, which indicates that the449

representation mechanisms can improve inference450

control with regard to symbolic/lexico-semantic451

properties (finding4). For example, when the type452

is ARG substitution (ARG-SUB), the model can453

generate the blacktop is made of a smooth surface454

by replacing the argument asphalt concrete with455

smooth surface. The conclusions are changed to as-456

phalt and blacktop have the same surface when the457

inference type is the conjunction (FRAME-CONJ).458

Additional examples are provided in Table 16.459

P1: blacktop is made of asphalt concrete
P2: asphalt has a smooth surface

ARG-SUB: the blacktop is made of smooth
surface
ARG-SUB-PROP: blacktop has a smooth surface
ARG/PRED-GEN: a blacktop is a kind of asphalt
ARG-INS: asphalt concrete blacktop has a smooth
surface
FRAME-CON: asphalt and blacktop have the same
surface
IFT: if the asphalt has a smooth surface then the
blacktop will have a smooth surface

Table 5: Controllable generation over original T5 (base)
(ARG-SUB: argument substitution, ARG/PRED-GEN:
argument/predicate generalisation. ARG-SUB-PROP:
property inheritance. ARG-INS: argument insertion,
FRAME-CON: frame conjunction, IFT: casual expres-
sion.). The example of the T5 bottleneck is provided in
Table 12 (Appendix D).

Quantitative analysis. Next, we perform an au- 460

tomated quantitative analysis using LLMs, includ- 461

ing ChatGPT4o and GPT4o-mini. For each pair of 462

premises in the EntailmentBank test set, we apply 463

various inference types to generate a diverse set of 464

conclusions using the fine-tuned T5 (base) model. 465

We then assess the resulting (premises, conclusion, 466

inference type) tuples based on two criteria: (i) 467

whether the generated conclusion contradicts the 468

premises, and (ii) whether the (premises, conclu- 469

sion) pair is consistent with the specified inference 470

type. Utilising the prompt detailed in Table 17 (Ap- 471

pendix D), we report the model agreement score 472

for each criterion. As illustrated in Table 6, the T5 473

(base) model with controlled symbolic inference 474

types achieves consistency and alignment scores 475

exceeding 60% for both evaluated dimensions.

Evaluators consistency alignment
ChatGPT4o 0.67 0.63
GPT4o-mini 0.65 0.62

Table 6: Automated quantitative analysis scores.
476

5.3 Latent Feature Space Evaluation 477

Finally, we evaluate (iii) whether the incorpora- 478

tion of feature space (i.e., abstract sentence bot- 479

tleneck) contributes to improved feature, concept 480

representation in the NLI task. We especially select 481

the VAE baselines due to their analogous encoder- 482

bottleneck-decoder architecture, wherein the com- 483

pressed sentence bottleneck captures high-level, 484
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generalised semantics (concepts) (Mercatali and485

Freitas, 2021; Zhang et al., 2024a). This structural486

similarity is essential for facilitating human-like487

inference and cognition (LCM team, 2024).488

Explanation-based NLI. We first evaluate the489

NLI performance of different baselines on the En-490

tailment test set. A more effective feature space491

can enhance generation performance (Zhang et al.,492

2024c). Consequently, the same generation-related493

metrics can be applied to evaluate the quality of the494

feature space.495

The baseline includes the state-of-the-art Trans-496

former VAE model: Optimus (Li et al., 2020) and497

Della (Hu et al., 2022) with two different sentence498

dimensions (32 and 768). Table 7 illustrates that499

the T5 bottleneck can outperform all baselines500

on generation-related metrics, indicating better ab-501

stract sentence representations are learned to guide502

the decoding process.503

Baseline BLEU Cosine BLEURT
Optimus(32) 0.07 0.74 -1.20
Optimus(768) 0.08 0.74 -1.21
DELLA(32) 0.08 0.85 -1.23
DELLA(768) 0.09 0.87 -1.09
T5 bottleneck 0.35 0.91 -0.20

Table 7: Comparison of different baselines on Entail-
mentBank testset, T5 bottleneck has 768 dimensions.

Explanation inference retrieval. We next eval-504

uate the abstract sentence embedding using as an505

associated explanation retrieval task (explanation-506

regeneration - i.e. retrieving the associated explana-507

tory facts relevant to a claim) (Valentino et al.,508

2022a). Given a question-and-answer pair, it re-509

constructs the entailment tree by searching the ex-510

planations from a fact bank (i.e., WorldTree (Jansen511

et al., 2018a)) in an iterative fashion using a dense512

sentence encoder. In this framework, we can re-513

place the sentence embeddings with the proposed514

T5 bottleneck baseline to evaluate its abstract sen-515

tence embeddings. We compare the T5 bottleneck516

with abstract sentence representation baselines: Op-517

timus and five LSTM VAEs, and evaluate them via518

mean average precision (MAP). As illustrated in519

Table 8, the T5 bottleneck outperforms all base-520

lines, indicating that it can deliver a better abstract521

representation of explanatory sentences and entail-522

ment relations in a retrieval setting (finding5).523

depth t=1 t=2 t=3 t=4
DAE(Vincent et al., 2008) 30.27 31.74 30.65 30.74

AAE(Makhzani et al., 2015) 29.13 30.47 29.33 29.14
LAAE(Rubenstein et al., 2018) 19.13 20.86 18.32 18.01

DAAE(Shen et al., 2020) 13.16 15.42 14.30 13.97
β-VAE(Higgins et al., 2016) 10.03 10.07 10.05 10.05

Optimus(768) 28.21 29.35 28.35 28.27
T5 bottleneck(768) 34.47 35.28 34.50 34.47

Table 8: Explanatory inference retrieval task where t
represents the depth of entailment tree.

Visualisation. Finally, we visualise the sentence 524

space to evaluate whether inference rules exhibit 525

separability within the latent space. We jointly train 526

the latent space with a linear classifier to predict 527

the inference type categories. As shown in Fig- 528

ure 3, our results indicate that inference types can 529

be partially clustered and separated within this la- 530

tent space, suggesting the feasibility of rule-based 531

learning through appropriate optimisation strate- 532

gies (Xie et al., 2025) or architectural designs, such 533

as disentangling rules from lexical semantics.

Figure 3: PCA visualisation: inference types cluster and
separation, where left: EP, right: NO.

534

6 Conclusion 535

This study serves as a foundational step in explor- 536

ing the quasi-symbolic NLI behaviour within distri- 537

butional semantic spaces. We establish the connec- 538

tion between natural and symbolic language infer- 539

ences by characterising quasi-symbolic inference 540

behaviours based on AMR graphs. Then, we pro- 541

pose the quasi-symbolic NLI representation frame- 542

work. Experimental results reveal that integrating 543

symbolic inference types enhances training dynam- 544

ics, inference precision, and explanation retrieval, 545

suggesting the potential for neuro-symbolic NLI. 546

Based on these findings, we hypothesise that dis- 547

tinct inference types can be represented as sepa- 548

rated functional subspaces within the parametric 549

space. In future research, we will further examine 550

this hypothesis over different reasoning tasks, such 551

as math reasoning, targetting an explainable and 552

controllable neuro-symbolic NLI model. 553
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Limitations554

Automatic NLI evaluation. In the domain of555

LLM automatic evaluation, the prevailing strategy556

is to select the most advanced LLM as the auto-557

matic evaluator (Chiang and Lee, 2023; Liu et al.,558

2023b; Wang et al., 2023; Huang et al., 2023). We559

perform a quantitative analysis of the inference560

consistency in the deductive reasoning process of561

LLMs, such as ChatGPT-4o. However, this as-562

sessment may be unreliable due to the inherent563

limitations of LLMs in logical reasoning. Human564

evaluation presents a potential alternative, yet the565

rigorous design of a protocol to systematically ver-566

ify the logicality of NLI remains an under-explored567

area in this field. Although we perform a qualitative568

manual check for LLM evaluation in Table 14 and569

15, this assessment is not systematic or rigorously570

structured. A promising direction for improving571

automatic NLI evaluation is the integration of sym-572

bolic theorem provers with LLMs.573

Mechanism analysis. This study empirically ex-574

plores quasi-symbolic inference behaviours within575

distributional semantic spaces. Our findings in-576

dicate that symbolic inference types can enhance577

model training, facilitate inference processes, and578

enable localised inference control. We hypothe-579

sise that quasi-symbolic inference behaviour arises580

from the geometrical separation of inference types581

within the parametric space and provide a quanti-582

tative evaluation in Appendix A. Future research583

will further evaluate this hypothesis from different584

geometric perspectives, such as latent arithmetic,585

disentanglement, etc., with the target of better com-586

position, arithmetic, generalisation, and interpreta-587

tion in the neuro-symbolic NLI domain.588
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A Latent Rule Space Hypothesis: Formal1144

Proof and Evaluation1145

Proposition (Latent Rule Space Hypothesis)1146

LetM be a Transformer-based encoder-decoder1147

model parameterised by θ = (θenc, θreason, θdec).1148

Suppose the model performs inference condi-1149

tioned on a set of symbolic inference types Π =1150

{π1, π2, . . . , πn}. Then, under supervised training1151

with inference-type annotations, the encoder param-1152

eters θenc induce a parametric structure in which1153

each symbolic inference type πi corresponds to a1154

distinct subspace Sπi ⊆ RD of the encoder repre-1155

sentation space.1156

∀πi, πj ∈ Π, πi ̸= πj ⇒ Sπi ∩ Sπj ≈ ∅ (1)1157

Formal Proof1158

Step 1: formal setup. Let fencode be the encoder1159

function such that:1160

fencode : (p1, p2, π) 7→ z(p1,p2,π) ∈ Z ⊆ RD (2)1161

where p1, p2 are the input premises, π ∈ Π is1162

the symbolic inference type, and Z is the latent1163

representation space of dimension D. The training1164

objective is to minimise the expected loss:1165

L(θenc) = E(p1,p2,π,c)∼D [− log pθ(c | p1, p2, π)]
(3)1166

where c is the conclusion.1167

Step 2: NTK interpretation of inference-type1168

subspaces. Each symbolic inference type π is ex-1169

plicitly embedded as part of the model input, for1170

example, as a token prefix (EP). As a result, the1171

model effectively learns a function fθ(x, π), where1172

x = (p1, p2) are the premises and π is the sym-1173

bolic inference type. The function fθ thus jointly1174

depends on both the content of the premises and the1175

nature of the symbolic operation to be performed.1176

Within the Neural Tangent Kernel (NTK) frame-1177

work, the similarity between two input examples of1178

the same inference type π is captured by the NTK1179

as follows:1180

Θπ(x, x
′) = ∇θfθ(x, π)

⊤∇θfθ(x
′, π) (4)1181

where ∇θfθ(x, π) denotes the gradient of the1182

model output with respect to its parameters, eval-1183

uated at the input (x, π). This kernel quantifies1184

how a parameter update from one input-output pair1185

would affect another pair, conditioned on the shared1186

inference type.1187

According to NTK theory (Jacot et al., 2018), 1188

in the infinite-width limit, the evolution of the 1189

model’s predictions under gradient descent train- 1190

ing can be described by a linear kernel regression 1191

in the RKHS (Reproducing Kernel Hilbert Space) 1192

associated with Θπ. Specifically, the prediction at 1193

time t, ft(x, π), evolves as: 1194

ft(x, π) = f0(x, π)−Θπ(x, ·) [Θπ + λI]−1 (f0−c)
(5) 1195

where f0(x, π) is the model’s output at initialisa- 1196

tion for each training input, λ is a regularisation 1197

parameter, and c is the vector of ground truth con- 1198

clusions. 1199

Crucially, this formulation implies that each sym- 1200

bolic inference type π induces a distinct kernel Θπ, 1201

which in turn defines a unique RKHSHπ—that is, 1202

a function space within which the model’s solutions 1203

for inference-type π reside. As the symbolic type 1204

π is varied, the structure of the kernel and the cor- 1205

responding function space changes, reflecting the 1206

distinct reasoning behaviours or transformations as- 1207

sociated with different inference operations. Thus, 1208

the model encodes different symbolic inference 1209

patterns in distinct, kernel-induced subspaces. 1210

Step 3: Disjointness via kernel independence. 1211

For two different inference types, πi ̸= πj , we 1212

examine the relationship between their correspond- 1213

ing neural tangent kernels (NTKs), Θπi and Θπj . 1214

Specifically, we are interested in the interaction 1215

between the parameter gradients induced by inputs 1216

associated with different inference types. 1217

Consider two data points x and x′, possibly cor- 1218

responding to different premise pairs. The NTK 1219

entry for each type is: 1220

Θπi(x, x
′) = ∇θfθ(x, πi)

⊤∇θfθ(x
′, πi) (6) 1221

and 1222

Θπj (x, x
′) = ∇θfθ(x, πj)

⊤∇θfθ(x
′, πj) (7) 1223

When considering cross-type similarities, we are 1224

interested in the inner product between the gradi- 1225

ents for different types: 1226

Gij(x, x
′) := ⟨∇θfθ(x, πi),∇θfθ(x

′, πj)⟩ (8) 1227

If the symbolic inference types πi and πj encode 1228

fundamentally different reasoning operations (e.g., 1229

ARG-SUB vs. PRED-SUB), the gradients with 1230

respect to θ for inputs labeled with πi and those 1231
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Figure 4: Quantitative measuring the separability between different inference-type subspaces in T5 (small) where
left: NO, right: EP. We can observe that when injecting inference-type categories into the model during training,
the diagonal values exhibit higher values, indicating the inference-type subspaces can be better separated in the
parameter space.

labeled with πj will tend to point in different direc-1232

tions in parameter space. This is because each type1233

imposes a distinct task or transformation pattern on1234

the model, causing it to utilise different portions of1235

its capacity.1236

Under idealised training, where the data for each1237

type is sufficiently distinct and the network has1238

enough capacity, the gradients for one type will1239

have minimal overlap with those of the other. This1240

can be formalised by observing that:1241

⟨∇θfθ(x, πi),∇θfθ(x
′, πj)⟩ ≈ 0 for πi ̸= πj

(9)1242

This property implies that the parameter updates1243

driven by examples from different inference types1244

are approximately orthogonal, meaning that train-1245

ing on one type will not interfere with or alter the1246

function learned for the other type. In the language1247

of NTK and kernel regression, this corresponds to1248

the induced RKHS for each type, Hπi and Hπj ,1249

being approximately disjoint:1250

Hπi ∩Hπj ≈ ∅ (10)1251

Quantitative evaluation. Therefore, by measur-1252

ing the cosine similarity between gradient vec-1253

tors associated with different inference types, we1254

can quantify the separability between different1255

inference-type subspaces in the T5 (small) model,1256

comparing settings without (left: NO) and with1257

(right: EP) the injection of inference-type cate-1258

gories during training. As shown in Figure 4, the1259

diagonal values are notably higher in the EP condi-1260

tion, suggesting that incorporating inference-type1261

information during training enhances the separation 1262

of inference-type subspaces in the model’s parame- 1263

ter space. Thus, NTK theory supports the empirical 1264

observation that symbolic inference types induce 1265

separated, controllable latent subspaces. 1266

Corollary (Controllability). Therefore, given 1267

that each inference type πi induces a distinct RKHS 1268

Hπi , the inference function becomes selectively 1269

controllable: 1270

π 7→ freason(z(p1,p2,π)) (11) 1271

Hence, manipulating π explicitly prescribes the 1272

symbolic reasoning pattern applied during infer- 1273

ence, as we evaluated in Section 5.2. More con- 1274

trolled examples are provided in Table 16. 1275

Feature space separation. EachHπ (the RKHS 1276

induced by the NTK for type π) maps to a region of 1277

output space. IfHπi ∩Hπj ≈ ∅, the downstream 1278

classifier will operate on disjoint regions of the 1279

feature space, as visualised in Figure 3. 1280

B Annotation Details 1281

Annotation procedure. Annotation was per- 1282

formed manually for 5134 entailment triples (two 1283

premises, one conclusion) from the Entailment- 1284

Bank (Dalvi et al., 2021), according to Algorithm 1285

1. Graph subset relations and root matching are re- 1286

laxed for non-argument (:ARG*, op*) edges, mean- 1287

ing relations such as :manner or :time can be ig- 1288

nored for this purpose. Two independent annota- 1289

tors with post-graduate level backgrounds in Com- 1290

putational Linguistics were used in this process, 1291
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on a consensus-based annotation scheme where a1292

first annotator defined the transformations and a1293

second annotator verified and refined the annota-1294

tion scheme, in two iterations. The annotation of1295

the AMR graph is based on an off-the-shelf parser1296

(Damonte et al., 2017). The descriptions for each1297

inference type category are as follows:1298

ARG-SUB (Figure 2): the conclusion is ob-1299

tained by replacing one argument with another ar-1300

gument.1301

PRED-SUB: the conclusion is obtained by re-1302

placing one verb with another verb.1303

FRAME-SUB: the conclusion is obtained by1304

replacing a frame of one of the premises with one1305

from the other premise.1306

COND-FRAM (Figure 6): the conclusion is1307

obtained according to the conditional premise with1308

keyword “if".1309

ARG-INS (Figure 5): the conclusion is ob-1310

tained by connecting an argument from one of the1311

premises to a frame of the other.1312

FRAME-CONJ: the conclusion is obtained by1313

using connectives to connect two premises.1314

ARG/PRED-GEN (Figure 7): a new :domain1315

relation frame is created in the conclusion if1316

both premise graphs differ by a single predi-1317

cate/argument term.1318

ARG-SUB-PROP (Figure 8): one of the1319

premises describes a “is made of ” relationship be-1320

tween the entity in the other premise and its re-1321

placement.1322

IFT: the conclusion should be a conditional sen-1323

tence.1324

EXAMPLE: the conclusion should contain the1325

keyword “example".

P1: energy comes from food P2: healing requires energy

C: energy for healing comes from food

c/come-01

e/energy 
:ARG1

f/food

:ARG3 r/require-01

h/heal-01
:ARG0

e/energy

:ARG1

e/energy
:ARG1

f/food
:ARG2

h/heal-01 :purpose

c/come-03

Figure 5: AMR argument insertion (ARG-INS).
1326

P1: inventing paper allows paper to be used

P2: if something is allowed to be used then the use of that 
something might increase

C: inventing paper might increase the use of paper

a/allow-01

ii/invent-01
:ARG0

u/use-01

:ARG1

p/paper 
:ARG1

:ARG1
p2/paper 

p/possible-01

ii/increase-01
:ARG1

:condition

u/use-01 
:ARG1

s/something

:ARG1

:ARG1 

:ARG1

u2/use-01 
a/allow-01

:ARG1

ii2/invent-01
:ARG0

:ARG1

p2/paper 
:ARG1

:ARG1

ii/increase-01p/possible-01

u/use-01 p3/paper 

Figure 6: AMR conditional frame insertion (COND-
FRAME).

Figure 7: AMR argument generalisation (ARG-GEN).

Unknown (UNK) category. In this work, our 1327

annotation occupies 84% based on the Entailment- 1328

Bank corpus. As for other unknown categories, we 1329

do not further specify them, as they either require 1330

knowledge outside of the scope of the premises or 1331

do not have a consistent symbolic transformation 1332

expression. An additional subtype called premise 1333

copy was included for the cases where the conclu- 1334

sion has the same graph as one of the premises. 1335
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P1: blacktop is made of asphalt concrete

P2: asphalt has a smooth surface

C: a blacktop has a smooth surface

:ARG0

:ARG1

:ARG1-of

m/make-01

b/blacktop
:ARG1

c/concrete

:ARG2

a/asphalt:mod

h/have-03

a/asphalt
:ARG0

s/surface

:ARG1

s2/smooth-04
:ARG1-of

s/surface

b/blacktop

s2/smooth-04

h/have-03

Figure 8: AMR argument substitution (property inheri-
tance) (ARG-SUB-PROP).

C Experimental Details1336

C.1 Dataset1337

Table 9 describes the statistical information of1338

the corpus used in the experiment. For experi-1339

ments: Section 5.1, 5.2, and 5.3, the Entailment-1340

Bank dataset is split into train 60%, valid 20%,1341

and test 20% sets. For the explanation inference1342

retrieval task in Section 5.3, we follow the same1343

experimental setup provided online. 5

Corpus Num data. Avg. length
WorldTree (Jansen et al., 2018a) 11430 8.65

EntailmentBank (Dalvi et al., 2021) 5134 10.35

Table 9: Statistics from explanations datasets.
WorldTree is used in the Explanation Inference Retrieval
task.

1344

C.2 T5 Bottleneck Architecture1345

Figure 9 shows the architecture of the T5 bottle-1346

neck for learning latent sentence space. It includes1347

5https://github.com/ai-systems/hybrid_
autoregressive_inference

two stages: sentence embedding and decoder con- 1348

nection. The sentence embedding aims to trans- 1349

form token embeddings into a sentence (single) 1350

embedding. Decoder connection aims to connect 1351

the encoder and decoder. 1352

Latent sentence space: While designing the sen- 1353

tence bottleneck, we compare the four most fre- 1354

quently used mechanisms to transform token em- 1355

beddings into sentence embeddings: 1356

(1) Mean pooling: calculating the mean of 1357

each dimension on all token embeddings and feed- 1358

ing the resulting vector into a multi-layer per- 1359

ceptron to obtain the sentence embedding. (2) 1360

multi-layer perceptron (MLP): applying an MLP 1361

to reduce the dimensionality of token embed- 1362

dings, and the resulting embeddings are con- 1363

catenated to form a single sentence embedding: 1364

z = concat
[
MLP1(x1); ...;MLPT (xT )

]
where 1365

MLPi(xi) represents the i-th neural network for 1366

input representation of token xi, z is the latent 1367

sentence representation, and T is the maximum to- 1368

ken length for a sentence. (3) multi-head attention: 1369

feeding each token embedding into the multi-head 1370

attention and considering the first output embed- 1371

ding as the sentence embedding (Montero et al., 1372

2021): z = MultiHead
(
XW q, XW k, XW v

)
[0] 1373

where X = [x1, ..., xT ] and W q, W k, and W v are 1374

the weights for learning q, k, v embeddings in self- 1375

attention, respectively. (4) Sentence T5: re-loading 1376

the pre-trained sentence T5 (S-T5, Ni et al. (2021)). 1377

Conditional generation: Next, we consider four 1378

strategies to inject sentence embeddings into the 1379

decoder. (1) Cross-attention input embedding (CA 1380

Input): reconstructing the token embeddings from 1381

a sentence representation and directly feeding them 1382

into the cross-attention layers of the decoder: Ŷ = 1383

MultiHead
(
YW q,MLP(z)W k,MLP(z)W v

)
1384

where Ŷ is the reconstruction of decoder input 1385

sequence Y = [y1, ..., yK ]. (2) Cross-attention 1386

KV embedding (CA KV): instead of recon- 1387

structing the token embeddings, it consists of 1388

directly learning the Key and Value (Hu et al., 1389

2022; Li et al., 2020), which is formalised as 1390

Ŷ = MultiHead
(
YW q,MLPk(z),MLPv(z)

)
, 1391

where MLPk and MLPv are neural layers for 1392

learning k v embeddings. (3) Non-cross-attention 1393

input connection (NCA Input): reconstructing 1394

the token embeddings and element-wisely adding 1395

them with the input embeddings of the decoder 1396

(Fang et al., 2021). (4) Non-cross-attention 1397
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output connection (NCA Output): adding the1398

reconstructed token embeddings to the output1399

embedding of the decoder.1400

Train: architecture

Decoder Connection
CA

Input
CA
KV

NCA
Input

NCA
Output

Sentence
Embedding

Pooling 1.41 1.44 1.86 2.42
MLP 1.71 1.94 2.09 2.62
MHA 1.51 2.24 2.31 3.03
S-T5 1.24 1.42 1.81 2.22

Table 10: Comparison of different setups on test loss
via cross-entropy (CA: cross-attention, NCA: non-cross-
attention), bottom: comparison of different baselines on
EntailmentBank testset.

Encoder

input
Embedding

position

token

...
token

token

input
Embedding

position

linear

(1) cross-
attention

(2) non-cross-
attention token

(1) add to output

token
(1) input of cross attention

K, V
(2) K, V

sentence

(1) pooling

(2) MLP

(3) MHA

(4) sentence T5 (Google)

Stage 1: sentence embedding Stage 2: decoder connection

bottleneck

k v
cross

attention

TYPE: ARG/PRED-GEN
P1: blacktop is made of asphalt
P2: asphalt has smooth surface 

(2) add to input

c: blacktop has smooth surface 

Figure 9: The architectural configuration of T5 bottle-
neck, it consists of two stages: sentence embedding and
decoder connection.

C.3 Implementation Details1401

Hyper-parameters. 1. Size of Sentence Repre-1402

sentation: in this work, we consider 768 as the size1403

of the sentence embedding. Usually, the perfor-1404

mance of the model improves as the size increases.1405

2. Multi-head Attention (MHA): in the experiment,1406

MHA consists of 8 layers, each layer containing 121407

heads. The dimensions of Query, Key, and Value1408

are 64 in each head. The dimension of token em-1409

bedding is 768. Training hyperparameters are: 3.1410

For all models, the max epoch: 40, learning rate:1411

5e-5. During fine-tuning the T5 bottleneck, we1412

first freeze the pre-trained parameters in the first1413

epoch and fine-tune all parameters for the remain-1414

ing epochs. 4. All models are trained on a single1415

A6000 GPU device.1416

Baselines. In the experiment, we implement five1417

LSTM-based autoencoders, including denoising1418

AE (Vincent et al. (2008), DAE), β-VAE (Hig-1419

gins et al., 2016), adversarial AE (Makhzani et al.1420

(2015), AAE), label adversarial AE (Rubenstein1421

et al. (2018), LAAE), and denoising adversarial1422

0 1 2 3 4 5 6 7 8 9 1011121314151617181920212223242526272829
Epoch

0.6

0.8

1.0

1.2

1.4

Lo
ss

T5(base): Test Loss Curve
Encoder Prefix (EP)
No injection (NO)

Figure 10: The test loss curve indicates that EP facili-
tates better convergence, indicating the supervision on
inference types aligns the model’s reasoning trajectory
with target inference behaviours, improving conclusion
prediction accuracy.

autoencoder (Shen et al. (2020), DAAE). Their im- 1423

plementation relies on the open-source codebase 1424

available at the URL 6. As for transformer-based 1425

VAEs, we implement Optimus (Li et al., 2020)7 1426

and Della (Hu et al., 2022)8. All baseline models 1427

undergo training and evaluation with the hyper- 1428

parameters provided by their respective sources. 1429

A latent dimension of 768 is specified to ensure a 1430

uniform and equitable comparative analysis. 1431

Metrics. To evaluate the generated conclusions 1432

against the reference conclusions, we employ 1433

BLEU scores for 1- to 3-gram overlaps and report 1434

the average score. Additionally, to assess seman- 1435

tic similarity, we calculate the cosine similarity 1436

between the generated and reference conclusions 1437

by encoding both using the pretrained Sentence-T5 1438

model9 and computing the cosine similarity of their 1439

resulting embeddings. 1440

D Complementary Results 1441

Ablation studies. We remove the inference types 1442

from the dataset and evaluate the T5 model per- 1443

formance using the same metrics. In this case, we 1444

can compare the model performance trained with 1445

or without that inference type. From Table 11, we 1446

can observe that the baselines (T5 small and base) 1447

6https://github.com/shentianxiao/
text-autoencoders

7https://github.com/ChunyuanLI/Optimus
8https://github.com/OpenVLG/DELLA
9https://huggingface.co/sentence-transformers/

sentence-t5-base
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achieve higher BLEU and BLEURT scores with-1448

out the data with ARG-INS, COND-FRAME, and1449

UNK inference type, respectively. This result indi-1450

cates that the T5 cannot generalize well over those1451

inference types. Also, removing the UNK infer-1452

ence type from data can achieve lower loss and1453

PPL, which indicates that it has a negative impact1454

on model training.

Remove T5 BLEU BLEURT Cosine Loss ↓ PPL ↓
FRAME-

SUB
small 0.50 0.19 0.95 0.95 2.58
base 0.60 0.33 0.96 0.72 1.95

ARG-INS
small 0.54 0.27 0.95 0.82 2.22
base 0.63 0.46 0.97 0.64 1.73

FRAME-
CONJ

small 0.53 0.26 0.96 0.84 2.28
base 0.60 0.35 0.96 0.65 1.76

COND-
FRAME

small 0.55 0.25 0.96 0.88 2.39
base 0.59 0.36 0.96 0.69 1.87

UNK
small 0.55 0.23 0.95 0.53 1.44
base 0.62 0.40 0.96 0.58 1.57

No small 0.54 0.22 0.96 0.69 2.22
No base 0.57 0.33 0.96 0.61 1.65

Table 11: Ablation study over inference type (No: no
inference types are removed).

1455

More controllable inference examples. We pro-1456

vide more controlled examples based on both the1457

Original T5 and T5 bottleneck in Table 12, 13, and1458

16. All examples reveal that the inference type1459

can provide quasi-symbolic inference control to1460

language models.

Quasi-symbolic NLI control

P1: a pumpkin contains seeds
P2: fruit contains seeds

Original T5:
ARG-INS: a fruit in a pumpkin contains seeds
FRAME-CONJ: a pumpkin and fruit both contains
seeds
FRAME-SUB: fruit is a kind of pumpkin

T5 bottleneck:
ARG-INS: fruit is a part of pumpkin that contains
seeds
FRAME-CONJ: a fruit contains seeds
FRAME-SUB: a pumpkin is a kind of plant

Table 12: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).

1461

Qualitative evaluation for LLM evaluators.1462

We conduct a qualitative evaluation through manual1463

inspection. However, this assessment is not system-1464

atic or rigorously structured as we discussed in the1465

Quasi-symbolic NLI control

P1: eating something has a negative impact on
that something
P2: some animals eat cacti
ARG-INS: some animals have a negative impact on
cacti by eating cacti
PRED-SUB: some animals may have a negative
impact on cacti
FRAME-SUB: eating cacti has a negative impact on
that cacti

ARG-INS: some animals have a negative impact on
cacti by eating cacti
PRED-SUB: animals have a negative impact on cacti
FRAME-SUB: eating cacti has a negative impact on
that cacti

Table 13: Controlled generation. original T5(base) (top)
and T5 bottleneck (bottom).

Limitations section. Tables 14 and 15 present ex- 1466

amples with discrepancies in scores between Chat- 1467

GPT4o and GPT4o-mini, as well as a compari- 1468

son of predictions between encoder prefix injection 1469

(EP) and the absence of inference-type injection 1470

(NO), respectively. 1471

From both tables, we observe that ChatGPT4o 1472

tends to be more accurate than GPT4o-mini and 1473

that EP outperforms NO in generating correct pre- 1474

dictions. 1475
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Premises Prediction(NO) Golden ChatGPT4o GPT4o-
mini

Human Check

p1: the metal on the roof of a
car is in contact with air

the car roof contains water vapor
and oxygen

the metal on the roof of a car
is in contact with oxygen and
water vapor

0 1 0 (invalid predi-
cate “contains”)

p2: air contains oxygen and wa-
ter vapor
p1: friction occurs when the
student is rubbing his hands to-
gether

rubbing your hands together
causes the temperature of the ob-
ject to increase

friction causes the temperature
of student’s hands to increase

1 0 1 (replacing
“friction” with
“rubbing hands
together”)

p2: friction causes the tempera-
ture of an object to increase
p1: a caterpillar is a kind of in-
sect

metamorphosis is when a cater-
pillar changes from an immature
form to an adult form

an example of metamorphosis is
when a caterpillar changes from
an immature form to an adult
form

1 0 1 (replacing
“insect” with
“metamorpho-
sis”)

p2: metamorphosis is when an
insect changes from an imma-
ture form to an adult form
p1: an increase in water has a
positive impact on alligators

a flood has a positive impact on
alligators

a flood has a positive impact on
alligators

1 0 1 (exact match)

p2: a flood is caused by an in-
crease in water
p1: predators eat prey predators catching prey requires

catching prey
predators must catch prey to eat
prey

0 1 0 (fail to do
substitution be-
tween “eating”
and “catching”)

p2: eating prey requires catch-
ing prey
p1: a leaf uses chlorophyll to
produce carbohydrates

a leaf uses chlorophyll to pro-
duce sugars

a leaf uses chlorophyll to pro-
duce sugar

0 1 1 (valid infer-
ence)

p2: carbohydrates are made of
sugars
p1: salt is a kind of pure sub-
stance

salt and pepper are kinds of sub-
stances

salt and pepper are two sub-
stances

1 0 1 (valid con-
junction both
“salt” and “pep-
per”)

p2: pepper is a kind of substance
p1: some bacteria are good for
humans by helping digestion

some bacteria help digestion by
breaking down food

some bacteria are good for hu-
mans by helping to break down
food

0 1 0 (without
“good for hu-
man”)

p2: digestion is when stomach
acid breaks down food
p1: a doorbell is a kind of elec-
tric device

closing a doorbell causes the
doorbell to function

an electric circuit causes a door-
bell to function

0 1 0 (incorrect
replacing “elec-
tric circuit”
with “door-
bell”)

p2: closing an electric circuit
causes an electrical device to
function
p1: burning something is a kind
of action

burning something is required
for something to occur

if something occurs by burn-
ing something else, then burning
that something else is required
for that something to occur

1 0 1 (valid in-
ference by
replacing “ac-
tion” with
“burning some-
thing”)

p2: if something occurs by per-
forming an action, then that ac-
tion is required for that some-
thing to occur
p1: echolocation can be used for
hunting prey

bats must emit sound in order to
hunt prey

bats must emit sound in order to
hunt their prey

1 0 1 (valid in-
ference by
replacing
“echolocate”
with “hunting
prey”)

p2: bats must emit sound in or-
der to echolocate
p1: different solids will have the
same physical properties

one solid will form a mixture different solids that are com-
bined will become a mixture

1 0 0 (incorrect
“one solid”)

p2: an mixture is formed by two
or more substances combined to-
gether physically

Table 14: Qualitative evaluation for examples with discrepancies in scores between ChatGPT4o and GPT4o-mini
(NO: no inference type injection, 0: invalid, 1: valid). We can observe that the ChatGPT4o tends to be more accurate
than GPT4o-mini by human check.
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Premises Prediction(NO) Prediction(EP) Golden ChatGPT4o Human Check
p1: the metal on the roof of
a car is in contact with air

the car roof contains water
vapor and oxygen

the car roof is in contact
with oxygen and water va-
por

the metal on the roof of a
car is in contact with oxygen
and water vapor

NO:0, EP:1 NO:0, EP:1

p2: air contains oxygen and
water vapor
p1: a beak is used for catch-
ing food by some birds

ads are used for eating by
birds to catch food

a beak is used for eating by
some birds

a beak is used for eating
food by some birds

NO:0, EP:1 NO:0, EP:1

p2: eating food requires
catching food
p1: predators must catch
prey to eat prey

animals must catch and eat
prey

animals must catch prey to
eat prey

some animals must catch
prey to eat

NO:0, EP:1 NO:0, EP:1

p2: a predator is a kind of
animal
p1: an adaptation is a kind
of change

an adaptation is something
a living thing responds to a
change in an environment

adaptation is when a living
thing responds to a change
in an environment

an adaptation is a kind of
change in response to a
change in an environment

NO:0, EP:1 NO:0, EP:0

p2: adapting is when a
living thing responds to a
change in an environment
p1: a doorbell is a kind of
electric device

closing a doorbell causes the
doorbell to function

closing an electric circuit
causes a doorbell to function

an electric circuit causes a
doorbell to function

NO:0, EP:1 NO:0, EP:1

p2: closing an electric cir-
cuit causes an electrical de-
vice to function
p1: green plants are made of
plant cells

a producer is made of plant
cells

producers are made of plant
cells

producers are made of plant
cells

NO:1, EP:0 NO:1, EP:1

p2: green plants are a kind
of producer
p1: the iron nail has rusted iron nails rusting is when

the iron nails chemically re-
act with water and oxygen
to form iron nail

the iron nail has rusted a chemical reaction has hap-
pened on the iron nail

NO:0, EP:1 NO:0, EP:0

p2: rusting is when iron
chemically reacts with wa-
ter and oxygen
p1: wood burns wood burns when intro-

duced to wood
wood chips burn wood chips burn NO:0, EP:1 NO:0, EP:1

p2: wood chips are made of
wood
p1: some bacteria are good
for humans by helping di-
gestion

some bacteria help digestion
by breaking down food

some bacteria are good for
humans by helping diges-
tion by breaking down food

some bacteria are good for
humans by helping to break
down food

NO:0, EP:1 NO:0, EP:1

p2: digestion is when stom-
ach acid breaks down food
p1: a lung is a kind of or-
gan for directly breathing in
gasses

a lung is an organ directly
for directly breathing in
smoke

a lung is a kind of organ for
directly breathing in smoke

lungs can be used for di-
rectly breathing in smoke

NO:0, EP:0 NO:1, EP:1

p2: smoke is a kind of gas
p1: the hot egg will decrease
in temperature

the hot egg and cold water
will increase in temperature

the hot egg will decrease in
temperature and the cold wa-
ter will increase in tempera-
ture

the water will increase in
temperature and the egg will
decrease in temperature

NO:0, EP:1 NO:0, EP:1

p2: the cold water will in-
crease in temperature
p1: plant reproduction re-
quires pollinating animals
for pollination

plants reproduction requires
bees that carry pollen

a bee can help plant repro-
duction by carrying pollen

a bee can help on pollina-
tion in plant reproduction by
carry pollen

NO:0, EP:1 NO:0, EP:1

p2: a bee can help on polli-
nation by carrying pollen
p1: a leaf uses chlorophyll
to produce carbohydrates

a leaf uses chlorophyll to
produce sugars

a leaf uses chlorophyll to
produce sugar

a leaf uses chlorophyll to
produce sugar

NO:1, EP:1 NO:1, EP:1

p2: carbohydrates are made
of sugars

Table 15: Qualitative evaluation for prediction through EP and NO (NO: no inference type, EP: encoder prefix), we
can observe that EP outperforms NO in generating correct predictions.
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Premises Inference Type T5 original
P1: a pumpkin contains seeds ARG-INS a fruit in a pumpkin contains seeds
P2: fruit contains seeds FRAME-CONJ a pumpkin and fruit both contain seeds

IFT if a pumpkin contains fruit then the fruit may contain seeds
EXAMPLE fruit is an example of pumpkins being sown
ARG/PRED-GEN a pumpkin is a kind of fruit
ARG-SUB fruit can contain pumpkin seeds
UNK a pumpkin can contain seeds
FRAME-SUB fruit is a kind of pumpkin

P1: sunlight is a kind of solar en-
ergy

ARG-INS solar energy is a kind of resource for plants that uses water

P2: water and sunlight are re-
sources for plants

FRAME-CONJ water and sunlight are resources for plants and are kinds of solar
energy

UNK the resources for plants include water and solar energy
ARG-SUB water and solar energy are resources for plants

P1: to move something can mean
to transfer something

ARG-SUB flowing can mean to transfer energy

P2: flowing is a kind of movement
for energy

INF if something flows, then that energy will flow

FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of energy to another entity
ARG/PRED-GEN transferring energy with flowing can be seen as transferring energy

P1: if a pot is exposed to a stove
then that pot may become hot

COND-FRAME the pot will become hot

P2: the pot is exposed to a stove EXAMPLE an example of hot pot is a pot exposed to a stove
P1: eating something has a nega-
tive impact on that something

FRAME-SUB eating cacti has a negative impact on that cacti

P2: some animals eat cacti PRED-SUB some animals may have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by eating cacti
EXAMPLE cooking cacti is an example of a negative impact on a cactus
INF if a cactus has a negative impact on an animal, that cactus could

be devoured
P1: seeing requires light ARG-SUB reading requires light
P2: reading requires seeing ARG-INS light is a kind of requirement for reading

INF if light is moving then reading may be taken
EXAMPLE a light bulb will be used for reading
UNK light will help you read

Premises Inference Type T5 bottleneck
P1: a pumpkin contains seeds ARG-INS fruit is part of a pumpkin that contains seeds
P2: fruit contains seeds FRAME-CONJ a fruit contains seeds

FRAME-SUB a pumpkin is a kind of plant
P1: sunlight is a kind of solar en-
ergy

ARG-INS water is a kind of resource that is used by plants for growth

P2: water and sunlight are re-
sources for plants

FRAME-CONJ plants and water are resources that require water and energy

ARG-SUB plants use water and sunlight to produce energy
P1: to move something can mean
to transfer something

ARG-SUB flowing can mean to transfer energy

P2: flowing is a kind of movement
for energy

INF if something flows, then that energy will flow

FRAME-CONJ moving can transfer energy and mean flowing
ARG-INS flowing can be a kind of transfer of something
ARG/PRED-GEN transferring energy with flowing can be seen as transferring energy

P1: if a pot is exposed to a stove
then that pot may become hot

COND-FRAME the pot may become hot

P2: the pot is exposed to a stove ARG/PRED-GEN the pot may be a source of heat
P1: eating something has a nega-
tive impact on that something

FRAME-SUB eating cacti has a negative impact on that cacti

P2: some animals eat cacti PRED-SUB animals have a negative impact on cacti
ARG-INS some animals have a negative impact on cacti by eating cacti

P1: seeing requires light ARG-SUB reading requires light
P2: reading requires seeing FRAME-CONJ reading and feeling can both be used

INF if something is visible then that something will be seen

Table 16: controllable NLI via inference type (Top: original T5, bottom: T5 bottleneck).
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Algorithm 1 Annotation procedure
1: Find premise Px most similar to the conclusion C, Px̄ being the other premise.
2: Gx,x̄,C ← AMR graph of Px, Px̄, C, respectively.
3: # - - - - - - - - - - - - - - - - - - - common ARG-SUB, PRED-SUB - - - - - - - - - - - - - - - - - - - - - - - - - -
4: if Gx = Gc or Gx̄ = Gc then
5: type = PREM -COPY # Comment: no reasoning happen.
6: else if Px and C differ by one word w then # Comment: common ARG(PRED)-SUB.
7: if w is a verb then
8: type = PRED-SUB
9: else

10: type = ARG-SUB
11: end if
12: else
13: # - - - - - - - - - - - - - - - - - COND-FRAME, FRAME-SUB, ARG-SUB-PROP - - - - - - - - - - - - - -
14: Get AMR graphs G1, G2, Gc for P1, P2 and C respectively. Px → Gx.
15: if ∃ :ARG*(x, a) ∈ C and a ∈ Px̄ then
16: if ∃ :condition(root(Gx), root(Gx̄)) then
17: # Comment: see Figure 6, two root nodes are connected by :condition edge
18: type = COND-FRAME
19: else if root(a) is a noun then
20: if root(Gx̄) = “make-01” and ∃ :ARG*(root(Gx̄), a) then
21: # Comment: “make” as a trigger to classify ARG-SUB and property inheritance.
22: type = ARG-SUB-PROP
23: else
24: type = ARG-SUB # ARG-SUB that was not caught by the simpler rule on line 10,

due to Px differing from C by more than a single word
25: end if
26: else
27: type = FRAME-SUB
28: end if
29: # - - - - - - - - - - - - - - - - - - - Further-specification and Conjunction - - - - - - - - - - - - - - - - - - - - - - -
30: else if Gx ⊂ Gc and Gx̄ ⊂ GC then
31: type = FRAME-CONJ
32: else if ∃x, y :domain(root(Gx), x) and :domain(root(Gx̄, y) and :op*(“and”, x) ∈ Gc and

:op*(“and”, y) ∈ Gc then # Comment: using connectives ‘and’ to connect two premises
33: type = FRAME-CONJ
34: else if Gx ⊂ Gc then
35: d← Gc −Gx

36: if root(d) is a noun then
37: type = ARG-INS # Comment: inserting an argument.
38: else
39: type = FRAME-INS # Comment: inserting a phase (also annotated as ARG-INS).
40: end if
41: # - - - - - - - - - - - - - - - - - - - - ARG/PRED-GEN and Others - - - - - - - - - - - - - - - - - - - - - - - - - - -
42: else if ∃ :domain(root(Gc), y) and (root(Gc) ∈ Gx and y ∈ Gx̄) or (root(Gc) ∈ Gx̄ and y ∈ Gx)

then
43: type = ARG/PRED-GEN
44: else
45: type = UNK
46: end if
47: end if
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Prompts for automatic evaluation

Consistency:
You are a scoring expert in natural language reasoning. Given two premises and a conclusion, your goal is to evaluate
whether the conclusion violates the premises. During your inference process, please only consider the information from
the premises.
you can directly give your score (0 or 1) based on the following criteria:
0: the conclusion violates the premises.
1: the conclusion doesn’t violate the premises.

The output format is just the score. You don’t need to analyse the reasoning process.

Alignment:
You are a scoring expert. Given two premises, a conclusion, and an inference type, your goal is to evaluate whether the
(premises, conclusion) pair is aligned with the inference type.

The following is the description of 10 inference types:
1. ARG-SUB: the conclusion is obtained by replacing one argument with another argument.
2. PRED-SUB: the conclusion is obtained by replacing one verb with another verb.
3. FRAME-SUB: the conclusion is obtained by replacing a frame of one of the premises with one from the other
premise.
4. COND-FRAM: the conclusion is obtained according to the conditional premise with keyword “if”.
5. ARG-INS: the conclusion is obtained by connecting an argument from one of the premises to a frame of the other.
6. FRAME-CONJ: the conclusion is obtained by using connectives to connect two premises.
7. ARG/PRED-GEN: a new “:domain” relation frame is created in the conclusion if both premise graphs differ by a
single predicate/argument term.
8. ARG-SUB-PROP: one of the premises describes a “is made of” relationship between the entity in the other premise
and its replacement.
9. IFT: the conclusion should be a conditional sentence.
10. EXAMPLE: the conclusion should contain the keyword “example”.

When evaluating, some premises might not be able to deduce more than one conclusions. You can ignore
those cases.

Finally, you can directly give your score (0 or 1) based on the following criteria:
0: the (premises, conclusion) pair is not aligned with the inference type.
1: the (premises, conclusion) pair is aligned with the inference type.

The output format is just the score. You don’t need to analyse the reasoning process.

Table 17: Empirically designed prompt for automatically evaluating the controllability in Section 5.2.
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