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Fig. 1: Qualitative comparisons between unguided (baseline) and perturbed-
attention-guided (PAG) diffusion samples. Without any external conditions,
e.g ., class labels or text prompts, or additional training , our PAG dramatically ele-
vates the quality of diffusion samples even in unconditional generation, where classifier-
free guidance (CFG) [14] is inapplicable. Our guidance can also enhance the baseline
performance in various downstream tasks such as ControlNet [41] with empty prompt
and inverse problems such as inpainting and deblurring [6, 30].

Abstract. Recent studies have demonstrated that diffusion models can
generate high-quality samples, but their quality heavily depends on sam-
pling guidance techniques, such as classifier guidance (CG) and classifier-
free guidance (CFG). These techniques are often not applicable in un-
conditional generation or various downstream tasks such as the solving
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inverse problems. In this paper, we propose novel sampling guidance,
called Perturbed-Attention Guidance (PAG), which improves dif-
fusion sample quality across both unconditional and conditional settings,
achieving this without requiring additional training or the integration of
external modules. PAG progressively enhances the structure of samples
throughout the denoising process by generating intermediate samples
with degraded structures and guiding the denoising process away from
these degraded samples. These degraded samples are created by substi-
tuting selected self-attention maps in the diffusion U-Net, which capture
structural information between image patches, with an identity matrix.
In both ADM and Stable Diffusion, PAG surprisingly improves sam-
ple quality in conditional and even unconditional generation. Moreover,
PAG significantly enhances baseline performance in various downstream
tasks where existing guidance methods such as CG or CFG cannot be
fully utilized, including ControlNet with empty prompts and solving in-
verse problems such as inpainting and deblurring. To the best of our
knowledge, this is the first approach to apply guidance in solving inverse
problems using diffusion models.

1 Introduction

Diffusion models [13, 27, 33, 35, 36] have gained prominence in image genera-
tion, demonstrating their capability to produce high-fidelity and diverse sam-
ples. Sampling guidance techniques, such as classifier guidance (CG) [9] and
classifier-free guidance (CFG) [14], are crucial for directing diffusion models to
generate higher-quality images. Without these techniques, as shown in Fig. 1 and
Fig. 2, diffusion models often produce lower-quality images, typically exhibiting
collapsed structures. Despite their widespread use, these guidance methods have
drawbacks: they require additional training or the integration of external mod-
ules, often reduce the diversity of the output samples, and are unavailable in
unconditional generation.

Meanwhile, unconditional generation offers significant practical advantages.
It aids in understanding the fundamental principles of data creation and its
underlying structures [5,20]. Furthermore, advancements in unconditional tech-
niques often enhance conditional generation. Importantly, it eliminates the need
for potentially costly and complex human annotations such as class labels, text,
and segmentation maps, which can be a major hurdle in tasks where accurate
labeling is difficult, such as modeling molecular structures [20]. Finally, uncon-
ditional generative models provide powerful general priors, as evidenced by their
use in solving inverse problems [6,7,17,29,30,36,39]. However, the unavailability
of CG [9] or CFG [14] can lead to sub-optimal performance.

Recognizing the importance of unconditional generation, we propose a novel
sampling guidance method called Perturbed-Attention Guidance (PAG).
PAG improves diffusion sample quality in both unconditional and conditional
settings without requiring additional training or the integration of external mod-
ules. Our approach leverages an implicit discriminator to distinguish between
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desirable and undesirable samples. By utilizing the capability of self-attention
maps in the diffusion U-Net to capture structural information [2,11,23,37,38], we
generate undesirable samples by substituting the diffusion model’s self-attention
map with an identity matrix and guide the denoising process away from these
degraded samples. These undesirable samples help steer the denoising trajectory
away from the structural collapse commonly observed in unguided generation.

Extensive experiments validate the effectiveness of our guidance method.
Applied to ADM [9], it exceptionally improves sample quality in both condi-
tional and unconditional settings. We also observe remarkable enhancements,
both qualitatively and quantitatively, when applied to the widely-used Stable
Diffusion [27]. Additionally, combining PAG with conventional guidance meth-
ods such as CFG [14] leads to further improvements. Finally, our guidance pro-
foundly enhances the performance of diffusion models in various downstream
tasks, such as inverse problems [6,30] and ControlNet [41] with empty prompts,
where the lack of conditions renders CFG [14] unusable. Notably, we have opened
new avenues for fully leveraging the generative capabilities of diffusion models
in solving inverse problems.

2 Related Work

Diffusion models. Diffusion models (DMs) [33, 35, 36] have set a high bench-
mark in image generation, achieving remarkable results in both sample quality
and distribution estimation. DDIM [34] improves sampling speed by applying a
non-Markovian process. Latent diffusion models (LDMs) [27] operate in a com-
pressed latent space, balancing computational efficiency and synthesis quality.

Sampling guidance for diffusion models. The surge in diffusion model re-
search is largely attributed to advancements in sampling guidance techniques [9,
14]. Classifier guidance (CG) [9] increases fidelity at the expense of diversity by
adding the gradient of a pre-trained classifier. Classifier-free guidance (CFG) [14]
models an implicit classifier to achieve similar effects as CG. Self-attention guid-
ance (SAG) [15] enhances sample quality in an unconditional framework by
using adversarial blurring to obscure crucial information and then guiding the
sampling process with noise predicted from both blurred and original samples.
Additionally, various guidance methods focus on conditioning [22] or image edit-
ing [3, 10].

3 Preliminaries

Diffusion models. In diffusion models [9,13,14,36], random noise ϵ ∼ N (0, I)
is added during forward path to an image x0 to produce a noisy image xt at an
arbitrary timestep t:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (1)
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with αt = 1 − βt and ᾱt =
∏t

s=1 αs according to a variance schedule β1, ..., βt.
A denoising network ϵθ is learned to predict ϵ by optimizing an objective

L = Ex0,t,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥22

]
, (2)

for uniformly sampled t ∈ {1, ..., T}.
During sampling, the model produces denoised image xt−1 from xt at each

timestep t based on the noise estimation ϵθ(xt, t) as follows:

xt−1 =
1√
ᾱt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz, (3)

where z ∼ N (0, I) and σ2
t is set to βt. Starting with randomly sampled noise

xT ∼ N (0, I), the process is applied iteratively to generate a clean image x0.
For the sake of simplicity, throughout the remainder of this paper, we adopt the
notation ϵθ(xt) to represent ϵθ(xt, t). Note that noise estimation of the diffusion
model can be considered as ϵθ(xt) ≈ −σt∇xt

log p(xt) [9, 14, 35, 36], where p(xt)
denotes the distribution of xt.

In addition, using the reparameterization trick, it is possible to obtain the
intermediate prediction of x0 at a given timestep t as

x̂0 = (xt −
√
1− ᾱtϵθ(xt, t))/

√
ᾱt. (4)

Classifier-free guidance. To enhance the generation towards arbitrary class
label c, CG [9] introduces a new sampling distribution p̃θ(xt|c) composed with
both pθ(xt|c) and the classifier distribution pθ(c|xt), which is expressed as

p̃θ(xt|c) ∝ pθ(xt|c)pθ(c|xt)
s
, (5)

where s is the scale parameter. It turns out that sampling from this distribution
with s > 0 leads the model to generate saturated samples with high probabilities
for the input class labels, resulting in increased quality but decreased sample
diversity [9].

CG, however, has a drawback in that it requires a pretrained classifier for
noisy images of each timestep. To address this issue, CFG [14] modifies the
classifier distribution pθ(c|xt) by combining the conditional distribution pθ(xt|c)
and the unconditional distribution pθ(xt):

p̃θ(xt|c) ∝ pθ(xt|c)pθ(c|xt)
s
= pθ(xt|c)

[
pθ(xt|c)pθ(c)

pθ(xt)

]s
= pθ(xt|c)1+s

pθ(xt)
−s

. (6)

Then the score of new conditional distribution p̃θ(xt|c) would be ∇xt log p̃θ(xt|c)
= (1 + s)ϵ∗(xt, c)− sϵ∗(xt), where ϵ∗ denotes true score. By approximating this
score using conditional and unconditional score estimates, we have

ϵ̃θ(xt, c) = (1 + s)ϵθ(xt, c)− sϵθ(xt)

= ϵθ(xt, c) + s(ϵθ(xt, c)− ϵθ(xt)) = ϵθ(xt, c) + s∆t. (7)
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(b) Diffusion sampling with CFG

Fig. 2: Visualization of reverse process w/o and w/CFG [14]. To visualize
the predicted epsilon, we first convert it into x̂0 following Eq. 4. For the guidance
signal ∆t = ϵθ(xt, c) − ϵθ(xt, ϕ), we apply an absolute value function and calculate
the mean across all channels. We use the same latent and seed for both cases. (a)
Without CFG, diffusion models generate samples with collapsed structures. (b) With
CFG, diffusion models generate samples that are well-aligned to the prompt. The red
rectangles highlight the distinction between conditional (ϵθ(xt, c)) and unconditional
(ϵθ(xt, ϕ)) predictions. Without prompt, diffusion models lack guidance on what to
generate in the early stages, often leading to the omission of salient features such as
eyes and nose, and thus adding ∆t amplifies features relevant to the prompt. Here the
prompt “a corgi with flower crown” is used.

In practice, ϵθ(xt, c) and ϵθ(xt) are parameterized by a single neural network,
which is jointly trained for both conditional and unconditional generation by
assigning a null token ϕ as the class label for the unconditional model, such
that ϵθ(xt) ≈ ϵθ(xt, ϕ). The guidance signal ∆t = ϵθ(xt, c) − ϵθ(xt, ϕ) acts as
the gradient of the implicit classifier, producing images that closely adhere to
condition c. In Fig. 2, we visualize ∆t across timesteps and explain its role in
enhancing sample quality. A more detailed exploration of CFG’s workings is
available in the Appendix E.2.

4 PAG: Perturbed-Attention Guidance

4.1 Self-rectifying sampling with implicit discriminator

Recently, it has been shown that the sampling guidance of diffusion models can
be generalized as the gradient of the energy function, for instance, which can be
a negative class probability of classifier [9], negative CLIP similarity score [24],
any type of time-independent energy [3], the distance between extracted signal
such as pose and edges and reference signal [22] or any energy function which
takes the noisy sample [10].

In this work, we introduce an implicit discriminator denoted D that differ-
entiates desirable samples following real data distribution from undesirable ones
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during the diffusion process. Similar to CFG [14] where the implicit classifier
guides samples to be more closely aligned with the given class label, the implicit
discriminator D guides samples towards the desirable distribution and away from
the undesirable distribution. By applying Bayes’ rule, we first define the implicit
discriminator as

D(xt) =
p(y|xt)

p(ŷ|xt)
=

p(y)p(xt|y)
p(ŷ)p(xt|ŷ)

, (8)

where y and ŷ denote the imaginary labels for desirable sample and undesirable
sample, respectively.

Then similar to WGAN [1, 40], we set the generator loss of the implicit dis-
criminator as our energy function, LG , and compute its derivative as

∇xtLG = ∇xt [−log D(xt)]

= ∇xt

[
−log

p(y)p(xt|y)
p(ŷ)p(xt|ŷ)

]
= ∇xt

[
−log

p(xt|y)
p(xt|ŷ)

]
= −∇xt(log p(xt|y)− log p(xt|ŷ)). (9)

Then, using Eq. 9, we define a new diffusion sampling such that

ϵ̃θ(xt) = ϵθ(xt) + sσt∇xt
LG

= ϵθ(xt)− sσt∇xt
(log p(xt|y)− log p(xt|ŷ))

= ϵθ(xt) + s(ϵθ(xt)− ϵ̂θ(xt)) = ϵθ(xt) + s∆̂t. (10)

Since diffusion models already learned the desired distribution, we use the pre-
trained score estimation network ϵθ(xt) as an approximation of −σt∇xt

log p(xt|y).
For the score with undesirable label ŷ, we approximate it by perturbing the for-
ward pass of pretrained network which we denote ϵ̂θ(xt). Note that ϵ̂θ(xt) can
embody any form of perturbation during the epsilon prediction process, includ-
ing perturbations applied to the input [15] or internal representations, or both.
Connections to CFG. The formulation in Eq. 10 resembles CFG [14]. In-
deed, it is noteworthy that CFG can be considered a particular instance within
our broader formulation. First, Eq. 10 can also be defined in class-conditional
diffusion models such that

ϵ̃θ(xt, c) = ϵθ(xt, c) + s(ϵθ(xt, c)− ϵ̂θ(xt, c)). (11)

In CFG, ϵ̂θ(xt, c) is implemented by dropping the class label, resulting in ϵθ(xt, ϕ),
which in our terminology can be described as a perturbed forward pass. In this
paper, we extend the concept of the perturbed forward pass to be more applicable
even to the unconditional diffusion models.

4.2 Perturbing self-attention of U-Net diffusion model

In our framework, the perturbation strategies to implement ϵ̂θ(xt) can be ar-
bitrarily chosen. However, perturbing the input image or the condition directly
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Fig. 3: Visualization of sampling process w/o and w/ PAG. To visualize pre-
dicted epsilon, we first convert it into x̂0 following Eq. 4. For the guidance signal
∆̂t = ϵθ(xt) − ϵ̂θ(xt), we apply an absolute value function and calculate the mean
across all channels. We use the same latent and seed for both cases. (a) Without guid-
ance, diffusion models generate samples with collapsed structures. (b) With our PAG,
diffusion models generate improved samples. The red rectangles highlight the distinc-
tion between the original (ϵθ(xt)) and perturbed (ϵ̂θ(xt)) predictions. With perturbed
self-attention, the diffusion model lacks an understanding of the global structure, of-
ten leading to the omission of salient features such as eyes, nose, and tongue. Adding
∆̂t thus enhances features that can only be accurately rendered with global structure
information.

can cause the out-of-distribution problem, lead the diffusion model to create
incorrect guidance signals, and steer the diffusion sampling toward the erro-
neous direction. To overcome this, CFG [14] explicitly trains an unconditional
model. In addition, SAG [15] employs partial blurring to minimize deviation, but
without careful selection of hyperparameters, it often deviates from the desired
trajectory. This behavior is illustrated in Appendix E.4.

On the other hand, some studies have explored manipulating cross-attention
and self-attention maps of the diffusion models for various tasks [4,11,18,26,32].
They show that modifying the attention maps has minimal impact on the model’s
ability to generate plausible outputs. We target the self-attention mechanism to
design a perturbation strategy applicable to both conditional and unconditional
models.

Another criterion for selecting perturbations involves determining which as-
pects of the samples should be improved during the sampling process. As il-
lustrated in the top row of Fig. 1 and Fig. 2, images generated by diffusion
models without guidance often exhibit collapsed structures. To address this, the
desired guidance should steer the denoising trajectory away from the sample
exhibiting a collapsed structure, akin to how the null prompt in CFG is em-
ployed to strengthen class conditioning. Recently, several studies [2,11,23,37,38]
demonstrate that the attention map contains structural information or semantic
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Fig. 4: Conceptual comparison between CFG [14] and PAG. CFG [14] employs
jointly trained unconditional model as the undesirable path, whereas PAG utilizes
perturbed self-attention for the same purpose. At corresponds to the self-attention map
Softmax(QtK

T
t /
√
d). In PAG, we perturb this by replacing with an identity matrix I.

correspondence between patches. Thus, perturbing the self-attention map can
generate a sample with a collapsed structure. We visualize the perturbed ep-
silon prediction in Fig. 3 in the same manner as in Fig. 2. Notably, within the
red box in Fig. 3 (b), it can be seen that the generated samples have collapsed
structures compared to the original prediction, while preserving the overall ap-
pearance of the original sample, attributable to the attention map’s robustness
to manipulation.
Perturbed self-attention. Recent studies [2, 11, 37, 38] have shown that the
self-attention module in diffusion U-Net [28] has two paths that have different
roles, the query-key similarities for structure and values for appearance. Specif-
ically, in the self-attention module, we compute the query Qt ∈ R(h×w)×d, key
Kt ∈ R(h×w)×d, value Vt ∈ R(h×w)×d at timestep t, where h, w, and d refer to
the height, width, and channel dimensions, respectively. The resulting output
from this module is defined by:

SA(Qt,Kt, Vt) = Softmax

(
QtK

T
t√
d

)
︸ ︷︷ ︸

structure

appearance︷︸︸︷
Vt = AtVt, (12)

where the structure part is commonly referred to as the self-attention map.
Motivated by this insight, we focus on perturbing only the self-attention map

to minimize excessive deviation from the original sample. This perspective can
also be understood from the viewpoint of addressing out-of-distribution (OOD)
issues for neural network inputs. Directly perturbing the appearance component
Vt may cause the subsequent multilayer perceptron (MLP) to encounter inputs
that it has not previously seen. This leads to OOD issues for MLP, resulting in
significantly distorted samples. We will discuss this further in the experiments.

However, a linear combination of value features, such as using an identity
matrix as a self-attention map that maintains the value of each element, is more
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likely to remain within the domain than direct perturbations to Vt. Therefore, we
only perturb the structural component, At = Softmax(QtK

T
t /

√
d) ∈ Rhw×hw,

to eliminate the structural information while preserving the appearance infor-
mation. This simple approach of replacing the selected self-attention map with
an identity matrix I ∈ Rhw×hw can be defined as

PSA(Qt,Kt, Vt) = IVt = Vt, (13)

where we call perturbed self-attention (PSA). More ablation studies on perturb-
ing a self-attention map can be found in the Appendix D.2.

Algorithm 1 Sampling with PAG
Model(xt),Model′(xt) :
Diffusion model with self-attention and
perturbed self-attention (PSA), respectively.
s: guidance scale,Σt: variance
xT ∼ N (0, I)
for t in T, T − 1, ..., 1 do

ϵt ←Model(xt), ϵ̂t ←Model′(xt)
ϵ̃t ← ϵt + s(ϵt − ϵ̂t) ▷ Eq. 10
xt−1 ∼ N ( 1√

αt
(xt − 1−αt√

1−αt
ϵ̃t), Σt)▷ Eq. 3

end for
return x0

By using SA and PSA mod-
ule, we implement ϵθ(xt) and
ϵ̂θ(xt), respectively. Fig. 4 il-
lustrates the overall pipeline of
our method, dubbed Perturbed-
Attention Guidance (PAG). The
input image xt is fed into ϵθ(·)
and ϵ̂θ(·) and the output of the
two networks are linearly com-
bined to get the final noise pre-
diction ϵ̃θ(xt) as in Eq. 10. The
pseudo-code is provided in Alg. 1.

4.3 Analysis on PAG

In this section, we explore why our guidance method is effective. Fig. 3 shows
the sampling process using PAG, with each row (except the last) depicting x̂0 at
each timestep using the original epsilon prediction ϵθ(xt), the perturbed epsilon
prediction ϵ̂θ(xt), and the guided epsilon ϵ̃θ(xt). The last row in (b) shows the
guidance signal ∆̂t = ϵθ(xt) − ϵ̂θ(xt). This figure highlights how our guidance
term provides semantic cues. The red rectangle in Fig. 3 shows that the perturbed
prediction (row 3 in (b)) misses key features like eyes, nose, and tongue due to a
lack of global structure understanding. The difference ∆̂t focuses on these missing
features (row 4 in (b)). Adding ∆̂t to the original prediction ϵθ(xt) strengthens
the sample’s structure, as shown in the first row of (b) in Fig. 3.

More analysis is in Appendix E.2 and E.3. We also visualize CFG [14] in
Stable Diffusion in Fig. 2, showing how CFG uses an undesirable sampling path
in the unconditional generation to enhance class conditioning. We also discuss
the theoretical explanation for why replacing the attention map with an identity
matrix is highly effective in Appendix E.1, drawing on the recent connection
between the transformer’s self-attention and Hopfield networks.

5 Experiments

5.1 Experimental and Implementation Details

Our work utilizes pretrained models, including ADM [9], Stable Diffusion 1.5 [27],
and SDXL [25]. We accessed all necessary weights from their publicly available
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Table 1: Quantitative results on ADM [9]. The best values are in bold.

Model Guidance FID ↓ IS ↑ Precision ↑ Recall ↑

ImageNet 256×256
Unconditional

✗ 26.21 39.70 0.61 0.63
SAG 20.08 45.56 0.68 0.59
PAG 16.23 88.53 0.82 0.51

ImageNet 256×256
Conditional

✗ 10.94 100.98 0.69 0.63
SAG 9.41 104.79 0.70 0.62
PAG 6.32 338.02 0.51 0.82
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Fig. 5: Unconditional generation samples w/o and w/ PAG. Figures display
sampled images from Stable Diffusion [27]. Each set of images shows sampling without
(Top) and with (Bottom) PAG. Samples guided by PAG appear high perceptual
quality and demonstrate semantically coherent structures.

repositories and used the same evaluation metrics as in ADM [9]. For additional
experimental details, please refer to Appendix A.

5.2 Pixel-Level Diffusion Models

With pretrained ADM [9], we generates 50K samples on ImageNet [8] 256×256
to evaluate metrics. In Table 1, we compare ADM [9] with SAG [15] and PAG
in both conditional and unconditional generation. Table 1 shows that ADM [9]
with PAG outperforms the others with large margin in FID [12], IS [31]. The
contrastive patterns of Improved Recall and Precision [19] in unconditional and
conditional generation in Table 1 are attributed to the trade-off between fidelity
and diversity [9,14,15]. Despite this trade-off, the uncurated samples illustrated
in Fig. 5 exhibit significant enhancements in quality, demonstrating PAG’s capa-
bility to rectify the diffusion sampling path leveraging perturbed self-attention.
A qualitative comparison with SAG [15] is also presented in Fig. 6. For further
exploration, additional samples from ADM [9] are available in Appendix B.1.
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Fig. 6: Qualitative comparison between SAG [15] and PAG. Images are sam-
pled from the ImageNet 256×256 unconditional model using the same seed sequence.
Compared to samples guided by SAG, those guided by PAG exhibit significantly im-
proved semantic structures with artifacts removed.

Table 2: Quantitative results on Stable Diffusion [27]. The results were obtained
using Stable Diffusion v1.5. Sampling was conducted for each with 30K images, and the
results were measured accordingly. For text-to-image tasks, 30k prompts were randomly
selected from the MS-COCO 2014 validation set [21].

Type Condition PAG CFG FID ↓ IS ↑

Unconditional ✗
✗ - 53.13 16.26
✓ - 47.57 21.38

Text-to-Image ✓

✗ ✗ 25.20 22.97
✗ ✓ 15.00 40.43
✓ ✗ 10.08 33.02
✓ ✓ 8.73 36.99

5.3 Latent Diffusion Models

Unconditional generation on Stable Diffusion. We further explored the
application of our guidance to Stable Diffusion [27]. In the “Unconditional” part
of Table 2, we compared the baseline without PAG to that with PAG for un-
conditional generation without prompts. The use of PAG resulted in improved
FID [12] and IS [31]. Samples from Stable Diffusion’s unconditional generation
with and without PAG are presented in the right column of Fig. 5 and in the
top row of Fig. 1. Without PAG, the majority of images tend to exhibit seman-
tically unusual structures or lower quality. In contrast, the application of PAG
leads to the generation of geometrically coherent objects or scenes, significantly
enhancing the visual quality of the samples compared to the baseline.

Text-to-image synthesis on Stable Diffusion. Results for text-to-image
generation using prompts are presented in the “Text-to-Image” part of Table 2.
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large glass goblet 
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around it”
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Fig. 7: Qualitative comparison between CFG [14] and CFG + PAG. Com-
pared to using CFG alone, incorporating PAG alongside CFG noticeably improves the
semantic coherence of the structures within the samples. This combination effectively
rectifies errors in existing samples, such as adding a missing eye to a cat or eliminating
extra legs from a zebra.

In this case, since CFG [14] can be utilized, we conducted sampling in four
different scenarios: without applying guidance as a baseline, using CFG, using
PAG, and combining both guidance methods with an appropriate scale.

Interestingly, combining PAG and CFG [14] with an appropriate scale leads
to a significant improvement in the FID of the generated images. Fig. 7 offers a
qualitative comparison between samples produced using solely CFG and those
generated with both guidance methods. The synergy of CFG’s effectiveness in
aligning images with text prompts and PAG’s enhancement of structural infor-
mation culminates in visually more appealing images when these methods are
applied together. Further analysis on the complementarity between PAG and
CFG is provided in the Appendix E.3.

Table 3: Diversity compari-
son in samples generated by
CFG [14] and PAG.

IS ↑ LPIPS ↑

CFG 1.82 0.64
PAG 2.32 0.68

To examine the trade-off between sample
quality and diversity when using CFG, we
initially define per-prompt diversity as “the
capacity to generate a variety of samples for
a given prompt”. In text-to-image synthe-
sis, this involves generating multiple images
from different latents for a single prompt,

forming a batch of generated samples. Assessing metrics on such a batch may
not effectively measure per-prompt diversity. Thus, to compare the per-prompt
diversity of CFG and PAG, we conduct samplings using various latents for a
single prompt. For this comparison, the Inception Score (IS) [31] is calculated
over 1000 generated samples, and the LPIPS [42] metric is averaged across pair-
wise comparisons of 100 samples (yielding 4950 pairs). The values presented in
Table 3 are averages from experiments conducted on 20 prompts, chosen not by
selection but by using the first 20 prompts based on the IDs from the MS-COCO
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Table 4: Quantitative results of PSLD [30] on FFHQ [16] 256×256 1K vali-
dation set.

Box Inpainting SR (8×) Gaussian Deblur Motion Deblur

Method FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓ FID ↓ LPIPS ↓

PSLD 43.11 0.167 42.98 0.360 41.53 0.221 93.39 0.450
PSLD + PAG (Ours) 21.13 0.149 38.57 0.354 37.08 0.343 40.26 0.397

Degraded Baseline PAG (Ours)GT Degraded Baseline PAG (Ours)GT

Fig. 8: Qualitative results of PSLD [30] with our PAG on FFHQ [16] dataset.
Left Top: Box inpainting. Left Bottom: Super-resolution (×8). Right Top: Gaus-
sian deblur. Right Bottom: Motion deblur. Using PAG leads to the removal of arti-
facts and blurriness, resulting in more realistic restorations.

2014 validation set [21]. Further samples from Stable Diffusion are available in
Appendix B.2 for additional reference.

5.4 Downstream Tasks

Inverse problems. Inverse problem is one of the major tasks in the uncon-
ditional generation, which aims to restore x from the noisy measurement y =
A(x)+n, where A(·) denotes measurement operator (e.g ., Gaussian blur) and n
represents a vector of noise. In this task, where text prompts are not available,
PAG can operate properly to improve sample quality without prompts, whereas
it is challenging to utilize existing guidance methods that require prompts. We
test PAG using a subset of FFHQ [16] 256×256 on PSLD [30] which leverages
DPS [6] and LDM [27] to solve linear inverse problems. More details about ex-
perimental settings are provided in Appendix A.

Table 4 shows the quantitative results of PSLD with PAG on box inpainting,
super-resolution (×8), gaussian deblur, and motion deblur. The performance
of PSLD with PAG outperforms all of the tasks in FID [12], and mostly in
LPIPS [42]. Fig. 8 highlights a considerable improvement in the quality of re-
stored samples using PAG, with a notable reduction of artifacts present in the
original method. Importantly, PAG can be adopted to any other restoration
model based on diffusion models, shown in Appendix C.

ControlNet. ControlNet [41], a method for introducing spatial conditioning
controls in pretrained text-to-image diffusion models, sometimes struggles to
produce high-quality samples under unconditional generation scenarios, particu-
larly when the spatial control signal is sparse, such as pose conditions. However,
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Fig. 9: ControlNet [41] sample images conditioned by pose and depth with-
out text prompt. Samples guided by PAG appear more realistic, exhibiting fewer
artifacts and semantically coherent structure.

as demonstrated in Fig. 9, PAG enhances sample quality in these instances.
This enables the generation of plausible samples conditioned solely on spatial
information without the need for specific prompts, making it useful for crafting
training datasets tailored to specific goals and allowing artists to test diverse,
imaginative works without relying on detailed prompts.

5.5 Ablation Studies

We provide ablations studies on self-attention perturbation strategy and effects
of guidance scales on qualitative and quantitative results on Appendix D.

PAG, like CFG, can parallelize the two denoising passes in Fig. 4 by dupli-
cating the input of the Diffusion U-Net and making a batch. As a result, the
computational cost is nearly identical to that of CFG, and details on time and
memory consumption are provided in the Appendix A.6.

6 Conclusion
In this work, we proposed a novel guidance method, termed Perturbed-Attention
Guidance (PAG), which leverages structural perturbation for improved image
generation. Starting with an elucidation of how CFG [14] refines sample realism,
by replacing the diffusion U-Net’s self-attention map with an identity matrix,
we effectively guide the generation process away from structural degradation.
Crucially, PAG achieves superior sample quality in both conditional and un-
conditional settings, requiring no additional training or external modules. Fur-
thermore, we demonstrate the versatility of PAG by showing its effectiveness in
downstream tasks such as image restoration. We believe that our exploration
enriches the understanding of sampling guidance methods and diffusion models,
and illuminates the applicability of unconditional diffusion models, liberating
diffusion models from reliance on text prompts and CFG.
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