
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TOWARDS SIMPLE AND PROVABLE PARAMETER-FREE
ADAPTIVE GRADIENT METHODS

Anonymous authors
Paper under double-blind review

ABSTRACT

Optimization algorithms such as AdaGrad and Adam have significantly advanced
the training of deep models by dynamically adjusting the learning rate during the
optimization process. However, ad-hoc tuning of learning rates poses a challenge,
leading to inefficiencies in practice. To address this issue, recent research has
focused on developing “parameter-free” algorithms that operate effectively without
the need for learning rate tuning. Despite these efforts, existing parameter-free
variants of AdaGrad and Adam tend to be overly complex and/or lack formal
convergence guarantees. In this paper, we present AdaGrad++ and Adam++,
novel and simple parameter-free variants of AdaGrad and Adam with convergence
guarantees. We prove that AdaGrad++ achieves comparable convergence rates
to AdaGrad in convex optimization without predefined learning rate assumptions.
Similarly, Adam++ matches the convergence rate of Adam without relying on any
conditions on the learning rates. Experimental results across various deep learning
tasks validate the competitive performance of Adam++.

1 INTRODUCTION

In recent years, optimization algorithms such as AdaGrad (Duchi et al., 2011) and Adam (Kingma,
2015) have emerged as powerful tools for enhancing the training of deep learning models by efficiently
adapting the learning rate during the optimization process. While these algorithms have demonstrated
remarkable performance gains in various applications, a notable drawback lies in the necessity of
manual tuning for suitable learning rates. The process of learning rate tuning can be laborious and
often requires extensive trial and error, hindering the efficiency and scalability of deep learning model
development.
The intricate nature of learning rate tuning has motivated a large number of recent works to develop
“learning-rate-free” or “parameter-free” algorithms that can work well under various different settings
without learning rate tuning. Among the vast literature of parameter-free optimization methods, Ivgi
et al. (2023) proposed a framework called distance over gradients (DoG), which gives a parameter-
free version of stochastic gradient descent (SGD) that shares certain features as the AdaGrad-Norm
algorithm (Streeter and McMahan, 2010; Ward et al., 2020). Motivated by AdaGrad-Norm, another
recent work (Defazio and Mishchenko, 2023) also gave a framework named D-adaptation, and
parameter-free variants of SGD and Adam were proposed under this framework. Defazio et al.
(2024) proposed a different approach for schedule-free online optimization, based on which the
authors developed new variants of schedule-free SGD and Adam/AdamW. Very recently, a (Kreisler
et al., 2024) introduced a new parameter-free optimization algorithm named U-DoG, achieving a
near-optimal convergence rate in smooth stochastic convex optimization by combining the adaptive
learning rates introduced in Kavis et al. (2019) and Ivgi et al. (2023).
Despite the recent advances of parameter-free optimization algorithms, research on parameter-free
adaptive gradient methods1 remains relatively limited. Specifically, most of the existing parameter-
free algorithms are essentially variants of SGD, and entry-wisely adaptive learning rates in standard
AdaGrad and Adam algorithms are rarely considered in most of the existing parameter-free methods.

1Adaptive gradient methods usually have multiple hyperparameters other than learning rates. For example,
Adam implements exponential moving averages of first and second moments of gradients, which are controlled
by parameters β1 and β2. Here we clarify that when discussing parameter-free adaptive gradient methods, we
still allow the algorithm to have such hyperparameters which do not require extensive tuning. This is consistent
with the convention in recent works on parameter-free optimization (Defazio and Mishchenko, 2023; Mishchenko
and Defazio, 2024; Defazio et al., 2024).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Table 1: Comparison of parameter-free (p.-f.) versions of AdaGrad and Adam and their convergence
(conv.) guarantees in different works. In the table, we use the check mark (✓) to indicate that the
corresponding paper gives the corresponding parameter-free algorithm or the convergence guarantee,
while the cross mark (✗) indicates that the corresponding paper does not propose the corresponding
algorithm or the convergence guarantee.

p.-f. AdaGrad conv. of p.-f. AdaGrad p.f. Adam conv. of p.-f. Adam

DoG (Ivgi et al., 2023) ✗ ✗ ✗ ✗
D-adaptation (Defazio and Mishchenko, 2023) ✓ ✓ ✓ ✗
Prodigy (Mishchenko and Defazio, 2024) ✗ ✗ ✓ ✗
Schedule-Free (Defazio et al., 2024) ✗ ✗ ✓ ✗
U-DoG (Kreisler et al., 2024) ✗ ✗ ✗ ✗
This work ✓ ✓ ✓ ✓

Although Defazio and Mishchenko (2023); Mishchenko and Defazio (2024); Defazio et al. (2024)
recently proposed variants of parameter-free AdaGrad, Adam and AdamW that implement entry-
wisely adaptive gradients, these algorithms all introduce rather significant modifications to the original
algorithms, and the parameter-free versions of Adam/AdamW are not backed up by theoretical
convergence guarantees.
Motivated by the limitations of existing studies, in this work, we propose simple but efficient versions
of AdaGrad and Adam with provable convergence guarantees, which we name AdaGrad++ and
Adam++2 respectively. For the ease of comparison, we summarize the results regarding parameter-
free versions of AdaGrad and Adam in recent works in Table 1. The main contributions of this work
can be summarized as follows:

• We propose the AdaGrad++ algorithm, which is a parameter-free version of AdaGrad. We demon-
strate that without any assumptions on learning rates, AdaGrad++ can still achieve a O(1/

√
T)

worst-case convergence rate in convex optimization, which is the same as AdaGrad. This highlights
the efficacy and versatility of AdaGrad++ as a more accessible and user-friendly optimization
method.

• Based on AdaGrad++, we further derive the Adam++ algorithm as a parameter-free variant of
Adam. By eliminating the reliance on a well-tuned learning rate schedule, Adam++ offers more
enhanced adaptability and robustness compared to Adam. Our theoretical results demonstrates the
capability of Adam++ to match the convergence rate of Adam in convex optimization, even in the
absence of any assumptions regarding learning rates.

• We conduct experiments on image classification and large language model pretraining tasks to
evaluate the performance of the proposed algorithms. For CIFAR-10, with minimal parameter
tuning, Adam++ outperforms Adam by 0.30% on accuracy using a cosine learning rate schedule
on ResNet-16, and by 3.53% using a constant learning rate schedule on DenseNet-121. For
GPT-2 small and medium tasks, Adam++ surpasses Adam by 0.02 in both training and test losses.
Additionally, we perform an ablation study on the choice of initial and base learning rates, which
confirms our theoretical findings.

Notation. We denote scalars by lowercase letters, vectors by lowercase boldface letters, and matrices
by uppercase boldface letters. For a positive integer d, we denote [d] = {1, . . . , d}. For a vector
x = [x1, . . . , xd]

⊤ and p ≥ 1, we denote the ℓp norm of x by ∥x∥p =
(∑d

i=1 |xi|p
)1/p

, and the ℓ∞
norm of x by ∥x∥∞ = maxi∈[d] |xi|. Given two sequences {an} and {bn}, we write an = O(bn)

if there exists a constant 0 < C < +∞ such that an ≤ C bn. We use the notation Õ(·) to hide
logarithmic factors.

2Adam++ follows certain designs and corrections proposed in the AMSGrad algorithm (Reddi et al., 2018b).
However, since AMSGrad is widely considered as an algorithm in the Adam family, we still name the algorithm
as Adam++.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

In this section, we give a more comprehensive review of the existing literature on parameter-free
optimization and adaptive gradient methods.
Parameter-free optimization. Several recent works have explored parameter-free algorithms based
on modifications of the Polyak step size (Loizou et al., 2021; Gower et al., 2021; Orvieto et al.,
2022; Rolinek and Martius, 2018; Berrada et al., 2020). In addition, several studies have investigated
step-size selection methods derived from Line-Search algorithms (Vaswani et al., 2019; Paquette
and Scheinberg, 2018). Another line of works, including LARS (You et al., 2017a), LAMB (You
et al., 2017b), Adafactor (Simonyan and Zisserman, 2015), and Fromage (Bernstein et al., 2020),
introduced learning rate adjustment schemes based on the norms of iterates. Moreover, Chandra
et al. (2022) proposed a scheme to adjust the learning rates based on certain automatically calculated
hypergradients. Several recent works (Orabona and Tommasi, 2017; Chen et al., 2022) have also
proposed parameter-free algorithms by reducing the optimization process to a game of betting on a
coin. Another recent work (Kleinsorge et al., 2023) proposed a novel rotation invariant parameter-free
algorithm based on exponential learning rate adaption. Finally, a line of recent works (Orabona, 2014;
Kempka et al., 2019) have studied parameter-free algorithms in solving specific learning tasks such
as linear and kernel regression.
Adaptive gradient methods. There is a large body of literature on variants of AdaGrad and Adam.
Specifically, RMSProp (Kurbiel and Khaleghian, 2017) was the first work that proposed using an
exponential moving average instead of a cumulative sum to handle the second moment in AdaGrad.
Reddi et al. (2018b) pointed out an extreme case where Adam may face convergence issues, and
proposed AMSGrad accordingly with convergence guarantees. RMSProp, Adam and AMSGrad have
also inspired many variants, including SC-AdaGrad, SC-RMSprop (Mukkamala and Hein, 2017),
Sadagrad (Chen et al., 2018), YOGI (Zaheer et al., 2018), Padam (Chen et al., 2021), and RAdam
(Liu et al.). More recently, several works such as STORM (Cutkosky and Orabona, 2019), adaptive
normalized SGD (Cutkosky and Mehta, 2020), Adam+ (Liu et al., 2020), SUPER-ADAM Huang
et al. (2021) implemented various variance reduction techniques in Adam. Guo et al. (2021) presented
a novel convergence analysis for a family of Adam-style methods with an increasing momentum
parameter for the first-order moment. Alacaoglu et al. (2020) proposed a new type of framework to
analyze the regret of the Adam style methods. Zhou et al. established high-probabiliy convergence
guarantees of AdaGrad and Adam in nonconvex optimization.

3 REVIEW OF EXISTING METHODS AND PREVIEW OF PROPOSED METHODS

In this section, we give a brief review of the adaptive gradient methods, and discuss existing literature
of parameter-free adaptive gradient methods, followed by a preview of our proposed methods.
We consider the optimization problem as follows

min
x∈Rd

f(x), (3.1)

where f can be a convex or nonconvex function. In order to optimize (3.1), the standard stochastic
gradient descent (SGD) performs the following update rule

xt+1 = xt − ηtgt, (3.2)

where gt represents the stochastic gradient at the t-th iteration, ηt denotes the learning rate. Adaptive
gradient methods (Duchi et al., 2011; Hinton et al., 2012; Kingma, 2015; Reddi et al., 2018a;
Loshchilov and Hutter, 2019; Chen et al., 2020) aim to give well-designed adjustments to the learning
rate ηt, particularly focusing on applying different learning rates for different entries of the iterates.
Among popular adaptive gradient methods, AdaGrad (Duchi et al., 2011) stands out as one of the
pioneering methods. The update rule for AdaGrad is given by:

xt+1 = xt −
ηt√∑t

i=1 g
2
i + δ

· gt, (3.3)

where δ is a small positive constant, and we use the common notation where the square (·)2 and
square root

√
· operations are performed entry-wise when applied to a vector.

Adam (Kingma, 2015) is another widely recognized adaptive gradient methods. Compared with
AdaGard, it implements exponential moving averages over g2

t ’s, as well as momentum acceleration,

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

with the update rule defined as follows:

xt+1 = xt − ηt
mt√
vt + δ

, mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)g
2
t . (3.4)

Another line of research on parameter-free optimization seeks to reduce or remove the necessity
of learning rate tuning. The distance over gradient (DoG) (Ivgi et al., 2023) framework is popular
method which sets the learning rate ηt in stochastic gradient descent (3.2) as

ηt =
maxi≤t ∥x0 − xi∥2√∑t

i=1 ∥gi∥22
.

DoG can be treated as a modification on the AdaGrad-Norm algorithm (Duchi et al., 2011; Streeter

and McMahan, 2010; Ward et al., 2020) with ηt = D/
√∑t

i=1 ∥gi∥22, where the parameter D is
set as maxi≤t ∥x0 − xi∥2 in DoG. Several other parameter-free methods (Defazio and Mishchenko,
2023; Mishchenko and Defazio, 2024) also focused on estimating the parameter D with different
criteria. Notably, these recent studies of parameter-free algorithms focus more on the variants of SGD,
which do not implement the entry-wise adaptive learning rates in AdaGrad and Adam. Although
several recent works (Defazio and Mishchenko, 2023; Mishchenko and Defazio, 2024; Defazio et al.,
2024) proposed parameter-free variants of AdaGrad or Adam, they are mostly not backed up with
theoretical guarantees. Moreover, existing parameter-free variants of AdaGrad and Adam are mostly
relatively complicated, deviating significantly from the standard forms of AdaGrad and Adam.
Preview of our proposed methods. Inspired by DoG (Ivgi et al., 2023), we propose simple
parameter-free variants of AdaGrad and Adam, which we call AdaGrad++ and Adam++ respectively.
Specifically, AdaGrad++ follows the update rule of AdaGrad in (3.3), but with

ηt = d−1/2 ·max
i≤t

∥xi − x0∥2,

where d is the dimension of x. Note that ηt is the maximum distance between the initialization x0

and all the iterates along the optimization trajectory normalized by
√
d. Moreover, a specific and

simplified case in Adam++ is directly based on the update rule of Adam in (3.4), with

ηt =
maxi≤t ∥xi − x0∥2√

d(t+ 1)
.

Compared with existing parameter-free versions of AdaGrad and Adam, AdaGrad++ and Adam++ are
in much simpler form. Interestingly, despite the simplicity, our analysis demonstrates that AdaGrad++
and Adam++ enjoy good theoretical convergence guarantees, and perform surprisingly well in various
experiments. For more details, please refer to Sections 4 and 5.

4 ADAGRAD++: A PARAMETER-FREE VERSION OF ADAGRAD

In this section, we present the details of the AdaGrad++ algorithm, and then give theoretical guarantees
on its performance in convex optimization.

4.1 ALGORITHM

We consider the optimization problem as introduced in (3.1) in the setting of stochastic optimization,
and we assume access to a stochastic gradient oracle G(x) satisfying E[G(x)|x] ∈ ∂f(x). The
AdaGrad++ algorithm is presented in Algorithm 1.
In Algorithm 1, it is clear that the key innovation of AdaGrad++ lies in the introduction of the quantity
rt = ∥xt − x0∥2/

√
d, and the definition that ηt = max(ηt−1, rt). These definitions are inspired by

the DoG framework (Ivgi et al., 2023), and are the key to a parameter-free approach. We would also
like to comment that introducing the factor d−1/2 in the definition of rt is crucial in AdaGrad++,
resulting in both strong theoretical guarantees and robust practical performance across different tasks
with varying dimensions. The intuition is that AdaGrad++ implements different adaptive learning
rates for different coordinates, and the d−1/2 factor converts the “total distance” in DoG to the “mean
squared distance (displacement)”, which is more robust to d.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Parameter-Free AdaGrad (AdaGrad++)
1: input: x0, η0 = ϵ, δ
2: for t = 0, to n do
3: rt = ∥xt − x0∥2/

√
d

4: ηt = max(ηt−1, rt)
5: gt = G(xt)
6: st = (

∑t
i=0 gi ⊙ gi)

1/2

7: Ht = δ + diag(st)
8: xt+1 = xt − ηt ·H−1

t gt
9: end for

4.2 CONVERGENCE GUARANTEE

In this subsection, we present convergence guarantees of AdaGrad++ (Algorithm 1) under the setting
where f(x) is convex.3 We first give an assumption on the stochastic gradient G(x).
Assumption 4.1. There exists some continuous function l : Rd → R such that ∥G(x)∥2 ≤ l(x)
almost surely.

Assumption 4.1 states that the stochastic gradients have a deterministic bound l(x) on their norm.
By allowing different bounds at different x, this assumption is much weaker compared to the more
common Lipschitz assumption that directly requires that ∥G(x)∥2 is bounded to a constant. The same
assumption has been made in Ivgi et al. (2023). Note that this assumption is strictly weaker than the
typical bounded gradient norm assumption, and as we will show later, it yields stronger convergence
results.
Our main result on the convergence of AdaGrad++ is given in the following theorem.

Theorem 4.2. Let x0, . . . ,xT be the iterates of AdaGrad++. Further let τ ∈ argmaxt≤T
∑t−1
i=0

ηi
ηt

and define xτ =
∑τ−1

t=0 ηtxt∑τ−1
t=0 ηt

. Then under Assumption 4.1, for any δ ∈ (0, 1), L > 0 and any x∗ ∈ Rd,

with probability at least 1− δ − P(maxt≤T l(xt) > L), it holds that

f(xτ) ≤ f(x∗) +O

(
M1∥sτ∥2 +

√
M2∥sτ∥22 +M3

T

)
.

Here, Dτ = maxt≤τ ∥xt − x∗∥∞, Dτ = maxt≤τ ∥xt − x∗∥2, and

M1 =
D2
τ

√
d

η0
· log

(
ηT
η0

)
, M2 = D

2

τ log
2

(
ηT
η0

)
· log

[
60 log(6t)

δ

]
,

M3 = L2 log2
(
ηT
η0

)
· log2

[
60 log(6t)

δ

]
,

Theorem 4.2 gives the bound of f(xτ) that is defined by an arbitrarily chosen reference point
x∗, and the bound contains a term f(x∗) as well as several other terms that are related to the
distance between algorithm iterates and x∗. This type of bound with a reference point matches
standard bounds in convex and Lipschitz/smooth optimization (Bubeck et al., 2015). Moreover,
the probability for the bound in Theorem 4.2 to hold depends on P(maxt≤T l(xt) > L), and the
bound holds with high probability when P(maxt≤T l(xt) > L) is small. It is worth noting that if
l(·) is always bounded, which corresponds to a Lipschitz f , then P(maxt≤T l(xt) > L) = 0 with an
appropriately chosen constant L. Notably, Theorem 4.2 covers more general and non-Lipschitz cases
as well, since l(·) only needs to be bounded along the optimization trajectory x0, . . . ,xT to grant
P(maxt≤T l(xt) > L) = 0.
In addition, Theorem 4.2 reveals that an important term ∥sτ∥2 determines the convergence rate of
AdaGrad++. We note that a similar quantity has been investigated by Zhou et al. in the study of
nonconvex convergence guarantees of adaptive gradient methods. This similarity demonstrates that
our proposed parameter-free algorithm AdaGrad++ still captures the key nature of AdaGrad. Taking a

3We also provide analysis for nonconvex cases in Appendix D.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 2 Parameter-Free Adam (Adam++)
1: input: x0, η0 = ϵ, δ, β1, β2, λ
2: for t = 0, to n do
3: rt = ∥xt − x0∥2/

√
d

4: ηt = max(ηt−1, rt)
5: gt = G(xt)
6: β1t = β1λ

t−1

7: mt = β1tmt−1 + (1− β1t)gt
8: Case 1: st = (

∑t
i=0 gi ⊙ gi)

1/2

9: Case 2: vt = β2vt−1 + (1− β2)gt ⊙ gt, st =
√

(t+ 1) ·maxt′≤t(vt′)
10: Ht = δ + diag(st)
11: xt+1 = xt − ηt ·H−1

t mt

12: end for

closer look at the quantity ∥sτ∥2, by definition, we have ∥sτ∥2 =
√∑τ

t=0 ∥gt∥22. When the objective
function is Lipschitz (i.e., l(·) is bounded), it is clear that a worst-case upper bound of ∥sτ∥2 is

√
T ,

leading to a 1/
√
T bound on the convergence rate (see Corollary A.1 in Appendix A). However, as

discussed in Zhou et al., here we point out that in practice, we often observe that ∥sτ∥2 ≪
√
T due to

the fact that the algorithm converges and the stochastic gradients ∥gt∥2 may converge to zero. When
∥sτ∥2 = O(T 1/2−α) for some α ∈ (0, 1/2), we will have a better convergence rate of AdaGrad++
(see Corollary A.2 in Appendix A).

Finally, M1 has a
√
d dependence, which may seem large. However, this is not the case, since Dτ is

defined with respect to the vector infinity norm, and thus D2
τ

√
d is of the same order as D̄2

τ .

5 ADAM++: A PARAMETER-FREE VERSION OF ADAM

Based on the analysis of Adagrad++, in this section, we introduce the Adam++ algorithm together
with its theoretical convergence guarantees.

5.1 ALGORITHM

We consider the same optimization problem as introduced in (3.1) in the stochastic setting. We
also consider the same stochastic gradient oracle G(x) satisfying E[G(x)|x] ∈ ∂f(x). The Adam++
algorithm is depicted in Algorithm 2. There are several key points in Algorithm 2 to note. First
of all, Adam++ also implements the key quantity rt = ∥xt − x0∥2/

√
d introduced in AdaGrad++

to automatically adapt the “learning rate”. Moreover, Adam++ allows dynamically decaying first-
moment parameter β1t = β1λ

t, which follows the definition in AMSGrad (Reddi et al., 2018a).
When setting λ = 1, we can recover the common setup with a constant β1. The introduction of the
decaying β1t is due to technical reasons, and our theoretical analysis on Adam relies on a λ ∈ (0, 1).
However, we remark that Adam++ with λ = 1 can achieve highly competitive performance under
various practical settings.
Another key feature of Adam++ is that it covers two cases. In Case 1, we implement entry-wise
adaptive learning rates that are similar to AdaGrad and AdaGrad++. In Case 2, we implement a
more common exponential moving average of the second moment vt but also introduce another
quantity st. Particularly regarding the definition of st =

√
(t+ 1) ·maxt′≤t(vt′), we note that

the factor
√
(t+ 1) ensures reasonable scaling when incorporated with the quantity rt. This factor

makes the scaling of st in Case 2 more compatible with that in Case 1. Moreover, the max operation
maxt′≤t(vt′) is inherited from the AMSGrad modification to Adam (Reddi et al., 2018a), which has
been shown to be crucial in ensuring theoretical guarantees. However, experiments have demonstrated
that the simplified version st =

√
(t+ 1) · vt works better in practice. This is consistent with many

empirical observations (Gugger and Howard, 2018).

5.2 CONVERGENCE GUARANTEE OF ADAM++

In this section, we give the convergence guarantee of Adam++. Our result will be based on the
same assumption (Assumption 4.1) as that of AdaGrad++. The main result is given in the following
theorem.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Theorem 5.1. Let x0, . . . ,xT be the iterations of Adam++ following either Case 1 or Case 2 in

Algorithm 2. In addition, let τ ∈ argmaxt≤T
∑t−1
i=0

ηi
ηt

and define xτ =
∑T−1

t=0 ηtxτ∑T−1
t=0 ηt

. Suppose

0 < β1 <
√
β2 and 0 < λ < 1. Then under Assumption 4.1, for any δ ∈ (0, 1), L > 0 and any

x∗ ∈ Rd, with probability at least 1− δ − P(maxt≤T l(xt) > L), the following results hold:

f(xτ) ≤ f(x∗) +O

(
M1∥sτ∥2 +

√
M2∥sτ∥22 +M3

T

)
,

Here, Dτ = maxt≤τ ∥xt − x∗∥∞, Dτ = maxt≤τ ∥xt − x∗∥2, and

M1 =
D2
τ

√
d

η0
· log

(
ηT
η0

)
, M2 = D

2

τ log
2

(
ηT
η0

)
· log

[
60 log(6t)

δ

]
,

M3 = L2 log2
(
ηT
η0

)
· log2

[
60 log(6t)

δ

]
,

Theorem 5.1 gives the convergence guarantee for Adam++. To the best of our knowledge, this
is the first convergence guarantee of a parameter-free version of Adam. The bound holds with
high probability when l(·) is bounded along the optimization trajectory x0, . . . ,xT . Moreover,
similar to the bound for AdaGrad++, the quantity ∥sτ∥2 is a key quantity: when l(x) is bounded,
the worst-case bound of ∥sτ∥2 is O(

√
T), leading to a Õ(1/

√
T) convergence rate. However, if

∥sτ∥2 = O(T 1/2−α) for some α ∈ (0, 1/2), we can expect a faster convergence rate.
Clearly, we can also establish the counterparts of Corollaries A.1 and A.2 for Adam++. However, to
avoid repetitions, here we only give the corollary below as the counterpart of Corollary A.2. The
counterpart of Corollary A.1 can be obtrained by setting α = 0.

Corollary 5.2. Suppose that the assumptions in Theorem 5.1 hold. Further assume that there exist
G > 0 such that l(x) ≤ G and ∥sτ∥2 ≤ G · T 1/2−α for some α ∈ [0, 1/2). Then for any x∗ ∈ Rd,
with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T 1/2+α

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

In the worst case where α = 0, Corollary 5.2 gives a convergence rate of order
√
d/T for Adam++.

This matches the convergence rate in in the original paper of AMSGrad (Theorem 4 and Corollary 1
in (Reddi et al., 2018a)) as well as those in more recent works (e.g., Theorems 4.3, 5.2, Corollaries
4.6, 5.5 in Zhou et al. and Theorems 1,2,3,4 in Défossez et al.). We note that a very recent work
(Ahn and Cutkosky, 2024) gives a new convergence result for Adam improving the dependency in
the dimension d. However, Ahn and Cutkosky (2024) focuses on the nonconvex setting and studies
the convergence rate towards a stationary point, which is different from the setting considered in this
paper.

6 EXPERIMENTS

In this section, we evaluate the performance of Adam++ across image classification and large language
model pretraining tasks to test its efficacy. For image classification problems, we train models on
the CIFAR-10 dataset and CIFAR-100 datasets (Krizhevsky et al., 2009). To demonstrate Adam++’s
versatility and stability across different network structures, we apply it to neural network architectures
including ResNet-18 (He et al., 2016), VGG16 (Simonyan and Zisserman, 2015), and DenseNet-
121 (Huang et al., 2017). We use AdamW, a version of Adam (Kingma, 2015) with decoupled
weight decay4, as the baseline, and also compare Adam++ against two state-of-the-art parameter-
free algorithms: D-Adaptation Adam (Defazio and Mishchenko, 2023) and Prodigy (Mishchenko
and Defazio, 2024). For large language model pretraining tasks, we use a reproduced GPT-2
model with 125M and 355M parameters respectively on the OpenWebText dataset (Gokaslan and
Cohen, 2019). Our training settings are based on those from NanoGPT and Sophia (Liu et al.,

4To compare with D-Adaptation Adam, we still denote "Adam" in the figures.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

2023). We just explicit some experiments of image classification task here and postpone other
experiments including large language model experiments and ablation study to Appendix H due to
page limitation. We omit the experiments for AdaGrad++ as we found it consistently underperforms
compared to Adam and Adam++, despite being better than AdaGrad. The code is available at
https://anonymous.4open.science/r/Adampp_pub-1626.

6.1 IMAGE CLASSIFICATION

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

4

3

2

1

0

1

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

0 25 50 75 100 125 150 175 200
Epochs

78

80

82

84

86

88

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) VGG16, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

3

2

1

0

1

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) VGG16, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) VGG16, test loss

0 25 50 75 100 125 150 175 200
Epochs

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(g) DenseNet-121, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

2

1

0

1

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(h) DenseNet-121, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.75

0.50

0.25

0.00

0.25

0.50

0.75

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(i) DenseNet-121, test loss

Figure 1: The results of training ResNet-18, VGG16 and DenseNet-121 on CIFAR-10 with a constant
learning rate schedule.

We aim to compare the optimization algorithms in a setting with minimal or no parameter tuning. On
ResNet-18, VGG16 and DenseNet-121, we run the baseline AdamW optimizer with learning rate
searching from 1× 10−4 to 1× 10−2 and a decoupled weight decay of 5× 10−4. For all parameter-
free algorithms, including DAdapt Adam, Prodigy, and Adam++, although there is no learning rate
choice required, we set a base learning rate factor that can be applied on top of the adaptive learning
rate, as introduced in Ivgi et al. (2023); Mishchenko and Defazio (2024); Defazio and Mishchenko
(2023). For these parameter-free optimizers, we search for the base learning rate factor ranging
from 0.1 to 3.0, while keeping all other parameters consistent with those of AdamW, ensuring a fair
comparison. 5. Moreover, we repeat these experiments for 8 times with different random seeds to
reduce the effect of randomness, and we plot the range of these curves with colored shadows. For
model architectures, we modify the output dimensions of these networks to 10 in CIFAR-10 to align
with the number of output classes. We provide a detailed list of all training parameters in Appendix G.
And the results demonstrate that our algorithm remains superior performances to other algorithms.
Constant Learning Rate Schedule Figure 1 illustrates the training loss, test loss and test accuracy
curves against training epochs on the CIFAR-10 dataset for various network architectures and
algorithms. The task is challenging due to the use of a fixed learning rate throughout all epochs.
For the Adam++ algorithm, we implement both Case 1 and Case 2 variants. It can be observed
that Adam++ demonstrates superior performance to baseline parameter-free optimization methods,

5We discuss the reason for learning rate search on parameter-free algorithms in Appendix F.

8

https://anonymous.4open.science/r/Adampp_pub-1626

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

8

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.0

0.5

0.0

0.5

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

0 25 50 75 100 125 150 175 200
Epochs

78

80

82

84

86

88

90

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) VGG16, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) VGG16, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) VGG16, test loss

0 25 50 75 100 125 150 175 200
Epochs

70.0

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(g) DenseNet-121, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

2

1

0

1

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(h) DenseNet-121, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.75

0.50

0.25

0.00

0.25

0.50

0.75

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(i) DenseNet-121, test loss

Figure 2: The results of training ResNet-18, VGG16 and DenseNet-121 on CIFAR-10 with a cosine
learning rate schedule.

including Prodigy and D-Adaptation Adam. Moreover, Adam++ either matches or surpasses Adam’s
performance. On DenseNet-121, Adam++ even achieves much higher test accuracies than AdamW.
Cosine Learning Rate Schedule In addition to the learning rates found by parameter-free algorithms,
it is common to apply an additional learning rate schedule on top of that according to (Ivgi et al., 2023;
Mishchenko and Defazio, 2024; Defazio and Mishchenko, 2023). Figure 2 provides a comparison of
our algorithm with other baselines with cosine scheduler. This annealed schedule aids in stabilizing
training by being more cautious near the optimal point. Under the annealed setting, all the algorithms
exhibit improvement over their counterparts with a constant learning rate. Moreover, Adam++ can
also achieve comparable or even better performance than AdamW in most cases, and maintain a
competitive edge over other parameter-free algorithms including D-Adaptation Adam.

7 CONCLUSION AND FUTURE WORK

In this paper, we propose two simple but effective algorithms, namely AdaGrad++ and Adam++, that
are parameter-free variants of AdaGrad and AdamW respectively. We demonstrate that, despite the
simple intuition, AdaGrad++ and Adam++ are guaranteed to converge with a reasonable convergence
rate, and also perform surprisingly well in various experiments. These theoretical and empirical
results highlight the potential of AdaGrad++ and Adam++ to be robust and practical choices for a
wide range of optimization tasks.
Although this work proposes these novel algorithms with a lot of experiments, it still contain some
limitations. We note that the proposed method still requires tuning of the base learning rate, which
is a common limitation of all existing parameter-free optimization algorithms. In future work, we
aim to eliminate this requirement. Moreover, Adam++ is used in our experiments without proof, and
establishing convergence guarantees for AdamW++ is another promising area for future work.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work introduces two kinds of parameter-free optimization algorithms that demonstrate better
efficiency on training deep learning neural networks. These methods are potential for accelerating
innovation and application of AI techniques in downstream fields such as education and healthcare.
However, latent threat to job market and potential promotion for the spread of false information
should be further investigated.

REFERENCES

Kwangjun Ahn and Ashok Cutkosky. Adam with model exponential moving average is effective for
nonconvex optimization. arXiv preprint arXiv:2405.18199, 2024.

Ahmet Alacaoglu, Yura Malitsky, Panayotis Mertikopoulos, and Volkan Cevher. A new regret
analysis for adam-type algorithms. In International conference on machine learning, pages
202–210. PMLR, 2020.

Jeremy Bernstein, Arash Vahdat, Yisong Yue, and Ming-Yu Liu. On the distance between two neural
networks and the stability of learning. Advances in Neural Information Processing Systems, 33:
21370–21381, 2020.

Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Training neural networks for and by
interpolation. In International conference on machine learning, pages 799–809. PMLR, 2020.

Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. Foundations and Trends®
in Machine Learning, 8(3-4):231–357, 2015.

Kartik Chandra, Audrey Xie, Jonathan Ragan-Kelley, and Erik Meijer. Gradient descent: The ultimate
optimizer. Advances in Neural Information Processing Systems, 35:8214–8225, 2022.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings
of the Twenty-Ninth International Joint Conference on Artificial Intelligence, 2020.

Jinghui Chen, Dongruo Zhou, Yiqi Tang, Ziyan Yang, Yuan Cao, and Quanquan Gu. Closing the
generalization gap of adaptive gradient methods in training deep neural networks. In Proceedings
of the Twenty-Ninth International Conference on International Joint Conferences on Artificial
Intelligence, pages 3267–3275, 2021.

Keyi Chen, John Langford, and Francesco Orabona. Better parameter-free stochastic optimization
with ode updates for coin-betting. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 36, pages 6239–6247, 2022.

Zaiyi Chen, Yi Xu, Enhong Chen, and Tianbao Yang. Sadagrad: Strongly adaptive stochastic gradient
methods. In International Conference on Machine Learning, pages 913–921. PMLR, 2018.

Ashok Cutkosky and Harsh Mehta. Momentum improves normalized sgd. In International conference
on machine learning, pages 2260–2268. PMLR, 2020.

Ashok Cutkosky and Francesco Orabona. Momentum-based variance reduction in non-convex sgd.
Advances in neural information processing systems, 32, 2019.

Aaron Defazio and Konstantin Mishchenko. Learning-rate-free learning by d-adaptation. In Interna-
tional Conference on Machine Learning, pages 7449–7479. PMLR, 2023.

Aaron Defazio, Xingyu Yang, Ahmed Khaled, Konstantin Mishchenko, Harsh Mehta, and Ashok
Cutkosky. The road less scheduled. Advances in Neural Information Processing Systems, 37:
9974–10007, 2024.

Alexandre Défossez, Leon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. Transactions on Machine Learning Research.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of machine learning research, 12(7), 2011.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aaron Gokaslan and Vanya Cohen. Openwebtext corpus, 2019.

Robert M Gower, Aaron Defazio, and Michael Rabbat. Stochastic polyak stepsize with a moving
target. arXiv preprint arXiv:2106.11851, 2021.

Sylvain Gugger and Jeremy Howard. Adamw and super-convergence is now the fastest way to train
neural nets. last accessed, 19, 2018.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. A novel convergence analysis for
algorithms of the adam family and beyond. arXiv preprint arXiv:2104.14840, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. Neural networks for machine learning lecture
6a overview of mini-batch gradient descent, 2012.

Feihu Huang, Junyi Li, and Heng Huang. Super-adam: faster and universal framework of adaptive
gradients. Advances in Neural Information Processing Systems, 34:9074–9085, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 4700–4708, 2017.

Maor Ivgi, Oliver Hinder, and Yair Carmon. Dog is sgd’s best friend: A parameter-free dynamic step
size schedule. In International Conference on Machine Learning, pages 14465–14499. PMLR,
2023.

Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adaptive algorithm
with optimal guarantees for constrained optimization. Advances in neural information processing
systems, 32, 2019.

Michal Kempka, Wojciech Kotlowski, and Manfred K Warmuth. Adaptive scale-invariant online
algorithms for learning linear models. In International conference on machine learning, pages
3321–3330. PMLR, 2019.

Diederik P Kingma. Adam: A method for stochastic optimization. In 3rd International Conference
on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015.

Alexander Kleinsorge, Stefan Kupper, Alexander Fauck, and Felix Rothe. Elra: Exponential learning
rate adaption gradient descent optimization method. arXiv preprint arXiv:2309.06274, 2023.

Itai Kreisler, Maor Ivgi, Oliver Hinder, and Yair Carmon. Accelerated parameter-free stochastic
optimization. In Conference on Learning Theory, 2024.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Thomas Kurbiel and Shahrzad Khaleghian. Training of deep neural networks based on distance
measures using rmsprop. arXiv preprint arXiv:1708.01911, 2017.

Hong Liu, Zhiyuan Li, David Leo Wright Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable
stochastic second-order optimizer for language model pre-training. In The Twelfth International
Conference on Learning Representations, 2023.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. In International Conference on
Learning Representations.

Mingrui Liu, Wei Zhang, Francesco Orabona, and Tianbao Yang. Adam+: A stochastic method with
adaptive variance reduction. arXiv preprint arXiv:2011.11985, 2020.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Nicolas Loizou, Sharan Vaswani, Issam Hadj Laradji, and Simon Lacoste-Julien. Stochastic polyak
step-size for sgd: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics, pages 1306–1314. PMLR, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019.

Konstantin Mishchenko and Aaron Defazio. Prodigy: an expeditiously adaptive parameter-free learner.
In Proceedings of the 41st International Conference on Machine Learning, pages 35779–35804,
2024.

Mahesh Chandra Mukkamala and Matthias Hein. Variants of rmsprop and adagrad with logarithmic
regret bounds. In International conference on machine learning, pages 2545–2553. PMLR, 2017.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y Ng, et al.
Reading digits in natural images with unsupervised feature learning. In NIPS workshop on deep
learning and unsupervised feature learning, volume 2011, page 4. Granada, 2011.

Francesco Orabona. Simultaneous model selection and optimization through parameter-free stochastic
learning. Advances in Neural Information Processing Systems, 27, 2014.

Francesco Orabona and Tatiana Tommasi. Training deep networks without learning rates through
coin betting. Advances in Neural Information Processing Systems, 30, 2017.

Antonio Orvieto, Simon Lacoste-Julien, and Nicolas Loizou. Dynamics of sgd with stochastic
polyak stepsizes: Truly adaptive variants and convergence to exact solution. Advances in Neural
Information Processing Systems, 35:26943–26954, 2022.

C Paquette and K Scheinberg. A stochastic line search method with convergence rate analysis. arxiv
e-prints, art. arXiv preprint arXiv:1807.07994, 2018.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018a.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018b.

Michal Rolinek and Georg Martius. L4: Practical loss-based stepsize adaptation for deep learning.
Advances in neural information processing systems, 31, 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015.

Matthew Streeter and H Brendan McMahan. Less regret via online conditioning. arXiv preprint
arXiv:1002.4862, 2010.

Amirhossein Tavanaei. Embedded encoder-decoder in convolutional networks towards explainable ai.
arXiv preprint arXiv:2007.06712, 2020.

Sharan Vaswani, Aaron Mishkin, Issam Laradji, Mark Schmidt, Gauthier Gidel, and Simon Lacoste-
Julien. Painless stochastic gradient: Interpolation, line-search, and convergence rates. Advances in
neural information processing systems, 32, 2019.

Rachel Ward, Xiaoxia Wu, and Leon Bottou. Adagrad stepsizes: Sharp convergence over nonconvex
landscapes. Journal of Machine Learning Research, 21(219):1–30, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks. arXiv
preprint arXiv:1708.03888, 2017a.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling sgd batch size to 32k for imagenet training.
arXiv preprint arXiv:1708.03888, 6(12):6, 2017b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Manzil Zaheer, Sashank Reddi, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods
for nonconvex optimization. Advances in neural information processing systems, 31, 2018.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence
of adaptive gradient methods for nonconvex optimization. Transactions on Machine Learning
Research.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A FURTHER DISCUSSION ON ADAGRAD++

Based on Theorem 4.2, we have the following corollaries:

Corollary A.1. Suppose that the assumptions in Theorem 4.2 hold. Further assume that l(x) ≤ G
for all x. Then for any x∗ ∈ Rd, with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

Corollary A.1 gives a simplified version of Theorem 4.2 under the special case when l(x) ≤ G. We
note that Mishchenko and Defazio (2024) proposed a parameter-free version of AdaGrad named
D-Adapted AdaGrad and established a convergence rate of the order O(dG∞/

√
T), under the

assumption that ∥G(x)∥∞ ≤ G∞. Considering ∥G(x)∥2 ≤
√
d · ∥G(x)∥∞, we have G ≤

√
d ·G∞,

and therefore our result can be reduced to the bound in Mishchenko and Defazio (2024) when we
ignore the distance factor Dτ .

Corollary A.2. Suppose that the assumptions in Theorem 4.2 hold. Further assume that there exist
G > 0 such that l(x) ≤ G and ∥sτ∥2 ≤ G · T 1/2−α for some α ∈ [0, 1/2). Then for any x∗ ∈ Rd,
with probability at least 1− δ, it holds that

f(xτ) ≤ f(x∗) + Õ

(
D2
τG ·

√
d

T 1/2+α

)
,

where Dτ = maxt≤τ ∥xt − x∗∥∞.

Corollary A.2 is a straightforward simplification of Theorem 4.2 under the additional condition that
∥sτ∥2 ≤ G · T 1/2−α. It verifies that when the key quantity ∥sτ∥2 is smaller than the worst-case
O(

√
T) bound, the convergence rate can be faster than O(1/

√
T).

B PROOF OF THEOREM 4.2

Proof of Theorem 4.2. We define dt = xt − x∗, and define ψt(x) = ⟨x,Htx⟩ and Bψ(x,y) =
ψ(x − y)/2. Let gt = (gt,1, · · · , gt,d), st = (st,1, · · · , st,d) and dt = (dt,1, · · · , dt,d). From the
definition of xt+1 we have

xk+1 = argmin
x

{ηk⟨gk,x⟩+Bψk
(x,xk)},

which gives

⟨x− xk+1, ηkgk +∇ψk(xk+1)−∇ψk(xk)⟩ ≥ 0 (B.1)

for all x. Setting x = x∗ and rearranging the terms, we can then obtain a bound of ⟨xk+1 − x∗,gk⟩.
Thus we have the inequality by denoting the dual norm of ∥ · ∥ψk

by ∥ · ∥ψ∗
k

ηk⟨xk − x∗,gk⟩ = ηk⟨xk+1 − x∗,gk⟩+ ηk⟨xk − xk+1,gk⟩

≤ ⟨x∗ − xk+1,∇ψk(xk+1)−∇ψk(xk)⟩+Bψk
(xk,xk+1) +

η2k
2
∥gk∥2ψ∗

k

= Bψk
(x∗,xk)−Bψk

(x∗,xk+1) +
η2k
2
∥gk∥2ψ∗

k
, (B.2)

where the inequality follows by (B.1) and the Cauchy-Schwarz inequality for ⟨xk−xk+1, ηkgk⟩, and
the second equality follows by the definition of Bψk

(x∗,xk), Bψk
(x∗,xk+1), and Bψk

(xk,xk+1).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

In addition, we define xt :=
1∑t−1

k=0 ηk

∑t−1
k=0 ηkxk and ∆t := ∇f(xt)− gt, then we have

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

t−1∑
k=0

ηk(f(xk)− f(x∗))

≤ 1∑T−1
t=0 ηt

T−1∑
t=0

ηt
(
⟨xt − x∗,gt⟩+ ⟨xt − x∗,∇f(xt)− gt⟩

)
≤ 1∑T−1

t=0 ηt

{
t−1∑
k=0

[Bψk
(x∗,xk)−Bψk

(x∗,xk+1)]︸ ︷︷ ︸
I1

+
1

2

t−1∑
k=0

η2k∥gk∥2ψ∗
k︸ ︷︷ ︸

I2

+

t−1∑
k=0

ηk⟨xk − x∗,∆k⟩︸ ︷︷ ︸
noise

}
, (B.3)

where the first inequality holds by the convexity of f(x) and Jensen’s inequality, the second inequality
follows again by the convexity of f(x), and the last inequality follows by (B.2). For I1 on the right-
hand side of (B.3), we have

t−1∑
k=0

Bψk
(x∗,xk)−Bψk

(x∗,xk+1) =

d∑
i=1

t−1∑
k=0

sk,i(d
2
k,i − d2k+1,i)/2

≤ D2
t

d∑
i=1

st−1,i, (B.4)

where we use the fact of Dt = maxi≤t ∥xi − x∗∥∞.
For I2 on the right-hand side of (B.3), we have

t−1∑
k=0

η2k∥gt∥2ψ∗
k
≤ η2t

d∑
i=1

t−1∑
k=0

g2k,i
sk,i

≤ 2η2t

d∑
i=1

st−1,i ≤ O(D2
t

d∑
i=1

st−1,i), (B.5)

where the first inequality holds due to the nondecreasing property of ηt, and the second inequality
holds by using Lemma E.1 for every i = 1, · · · , d. Besides, note that

ηt ≤ max
k≤t

∥xt − x0∥2/
√
d+ ϵ ≤ max

k≤t
∥(xt − x∗)− (x0 − x∗)∥2/

√
d+ ϵ ≤ Dt, (B.6)

we obtain the final inequality. For the noise term of (B.3), let

Yk = ηkDk, Xk =

〈
∆k,

xk − x∗

Dk

〉
, and X̂k = −

〈
∇f(xk),

xk − x∗

Dk

〉
,

then we get
t−1∑
k=0

YkXk =

t−1∑
k=0

ηk⟨∆k,xk − x∗⟩.

Therefore, by Lemma E.2, we have

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

ηk⟨∆k,xk − x∗⟩

∣∣∣∣∣ ≥ 8ηt−1Dt−1

√√√√θt,δ

d∑
i=1

s2t−1,i + L2θ2t,δ

)

≤ P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

YkXk

∣∣∣∣∣ ≥ 8Yt

√√√√θt,δ

t−1∑
k=0

(Xk−1 − X̂k−1)2 + L2θ2t,δ

)
≤ δ + P(lT ≥ L),

(B.7)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where lT = maxt≤T l(xt).
By substituting (B.5),(B.4) and (B.7) into (B.3) we have that, for all δ ∈ (0, 1) and L > 0, with
probability at least 1− δ − P(lT > L), for all t ≤ T , the optimality gap f(xt)− f∗ is

O

(D2
t

∑d
i=1 st,i/ηt + 8Dt

√
θt,δ

∑d
i=1 s

2
t,i + L2θ2t,δ∑t−1

k=0 ηk/ηt

)
.

Furthermore, we use the QM-AM inequality to obtain the bound of ∥st∥1 ≤
√
d∥st∥2. Finally, by

applying Lemma E.1 for ηt∑t−1
k=0 ηk

and using the fact that η0 < ηt to bound ηt in the numerator, we
finish the proof.

C PROOF OF THEOREM 5.1

Proof of Theorem 5.1. We define dt = xt − x∗, and let ψt(x) = ⟨x,Htx⟩ and Bψ(x,y) =
ψ(x − y)/2. Let gt = (gt,1, · · · , gt,d), st = (st,1, · · · , st,d),vt = (vt,1, · · · , vt,d) and dt =
(dt,1, · · · , dt,d). From the definition of xk+1 we have

xk+1 = argmin
x

{ηk⟨mk,x⟩+Bψk
(x,xk)},

which gives

⟨x− xk+1, ηkmk +∇ψk(xk+1)−∇ψk(xk)⟩ ≥ 0 (C.1)

for all x. Setting x = x∗ and rearranging the terms, we can then obtain a bound of ⟨xk+1 − x∗,mt⟩.
Thus we have the inequality by denoting the dual norm of ∥ · ∥ψk

by ∥ · ∥ψ∗
k

ηk⟨xk − x∗,mk⟩ = ηk⟨xk+1 − x∗,mk⟩+ ηk⟨xk − xk+1,mk⟩

≤ ⟨x∗ − xk+1,∇ψk(xk+1)−∇ψk(xk)⟩+Bψk
(xk,xk+1) +

η2k
2
∥mk∥2ψ∗

k

= Bψk
(x∗,xk)−Bψk

(x∗,xk+1) +
η2k
2
∥mk∥2ψ∗

k
,

where the inqeuality holds by (C.1) and the Cauchy-Schwarz inequality for ⟨xk − xk+1, ηkmk⟩.
Using the fact that mk = β1kmk−1 + (1− β1k)gk, we have

ηk⟨xk − x∗,gk⟩ ≤
1

1− β1k
(Bψk

(x∗,xk)−Bψk
(x∗,xk+1))

+
η2k

2(1− β1)
∥mk∥2ψ∗

k
− ηkβ1k

1− β1k
⟨xk − x∗,mk−1⟩

≤ 1

1− β1k
(Bψk

(x∗,xk)−Bψk
(x∗,xk+1))

+
η2k

2(1− β1k)
∥mk∥2ψ∗

k
+

η2kβ1k
2(1− β1k)

∥mk−1∥2ψ∗
k
+

β1k
1− β1k

Bψk
(xk,x

∗). (C.2)

By the convexity of f(x), we have

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

t−1∑
k=0

ηk⟨xk − x∗,∇f(xk)⟩

=
1∑t−1

k=0 ηk
(

t−1∑
k=0

ηk⟨xk − x∗,gk⟩+ ηk⟨xk − x∗,∆k⟩),

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

where ∆t = ∇f(xt)− gt. Substituting (C.2) into the above inequality leads to

f(xt)− f(x∗) ≤ 1∑t−1
k=0 ηk

{
t−1∑
k=0

(
Bψk

(x∗,xk)−Bψk
(x∗,xk+1)

)
(1− β1k)︸ ︷︷ ︸
I1

+

t−1∑
k=0

β1k
1− β1k

Bψk
(xk,x

∗)︸ ︷︷ ︸
I2

+

t−1∑
k=0

(
η2k

2(1− β1k)
∥mk∥2ψ∗

k
+

η2kβ1k
2(1− β1k)

∥mk−1∥2ψ∗
k
)︸ ︷︷ ︸

I3

+

t−1∑
k=0

ηk⟨xk − x∗,∆k⟩︸ ︷︷ ︸
noise

}
. (C.3)

For I1, we have

t−1∑
k=0

Bψk
(x∗,xk)−Bψk

(x∗,xk+1)

1− β1k
≤

d∑
i=1

t−1∑
k=0

sk,i(d
2
k,i − d2k+1,i)

2(1− β1)
=

d∑
i=1

t−1∑
k=0

sk,iD
2
t

1− β1
. (C.4)

Here the first inequality holds for the reason that β1k ≤ β1, the second inequality holds for the
definition of Dt and the fact that Dt > dk,i for all k < t.
For I2, we have

Bψk
(xk,x

∗) ≤ D2
k

2

d∑
i=1

sk,i.

By the fact of β1k = β1λ
k, we have

t−1∑
k=0

β1k
1− β1k

Bψk
(xk,x

∗) ≤ β1D
2
t

2(1− β1)(1− λ)

d∑
i=1

st−1,i. (C.5)

For I3 in the inequality (C.3), we give the proofs for the two cases in Algorithm 3 separately.

Case 1: st = (
∑t
k=0 g

2
k)

1/2.
If we choose the first definition of st, we have the fact that

∥mt∥2ψ∗
t
=

d∑
i=1

(
∑t
j=0(1− β1j)Π

t−j
s=1β1(t−s+1)gj,i)

2√∑t
j=0 g

2
j,i

≤
d∑
i=1

(
∑t
j=0 Π

t−j
s=1β1(t−s+1))(

∑t
j=0 Π

t−j
s=1β1(t−s+1)g

2
j,i)√∑t

j=0 g
2
j,i

≤
d∑
i=1

(
∑t
j=0 β

t−j
1)(

∑t
j=0 β

t−j
1 g2j,i)√∑t

j=0 g
2
j,i

≤ 1

1− β1

d∑
i=1

∑t
j=0 β

t−j
1 g2j,i√∑t

j=0 g
2
j,i

.

The first inequality follows from Cauchy-Schwarz inequality. The second inequality is due to the fact
that β1j ≤ β1 for all j ≤ t. The third inequality follows from the inequality

∑t
j=1 β

t−j
1 ≤ 1/(1−β1).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

By summing the inequalities, we have

t−1∑
k=0

∥mk∥2ψ∗
k
≤ 1

1− β1

d∑
i=1

t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

j=0 g
2
j,i

=
1

1− β1

d∑
i=1

t−1∑
k=0

k∑
j=0

βk−j1 g2j,i√∑k
s=0 g

2
s,i

≤ 1

1− β1

d∑
i=1

t−1∑
k=0

k∑
j=0

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=
1

1− β1

d∑
i=1

t−1∑
j=0

t−1∑
k=j

βk−j1 g2j,i√∑j
s=0 g

2
s,i

.

Moreover, we have

t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

j=0 g
2
j,i

=

t−1∑
k=0

∑k
j=1 β

k−j
1 g2j,i√∑k

s=0 g
2
s,i

=

t−1∑
k=0

k∑
j=1

βk−j1 g2j,i√∑k
s=0 g

2
s,i

≤
t−1∑
k=0

k∑
j=1

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=
∑

k≥j,0≤k≤t−1

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=

t−1∑
j=0

t−1∑
k=j

βk−j1 g2j,i√∑j
s=0 g

2
s,i

=

t−1∑
j=0

t−1−j∑
k=0

βk1 g
2
j,i√∑j

s=0 g
2
s,i

=

t−1∑
j=0

(

t−1−j∑
k=0

βk1)
g2j,i√∑j
s=0 g

2
s,i

.

Therefore, noting that
g2j,i√∑j
k=0 g

2
j,i

≤ 2(
√∑j

k=0 g
2
j,i −

√∑j−1
k=0 g

2
j,i), we have

t−1∑
k=0

∥mk∥2ψ∗
j
≤ 1

1− β1

d∑
i=1

t−1∑
j=0

(

t−1−j∑
k=0

βk1)
g2j,i√∑j
s=0 g

2
s,i

≤ 2

1− β1

d∑
i=1

t−1∑
j=0

βt−1−j
1

√√√√ j∑
s=0

g2s,i.

≤ 2

(1− β1)2
∥st−1∥1. (C.6)

Case 2: st =
√
(t+ 1) ·maxk≤t(vk).

If we choose the second form of st, suppose γ = β1/
√
β2 < 1, and we have

∥mk∥2ψ∗
k
=

d∑
i=1

m2
k,i

sk,i
≤

d∑
i=1

m2
k,i√

(k + 1)vk,i

=

d∑
i=1

(
∑k
j=0(1− β1j)Π

k−j
s=1β1(k−s+1)gj,i)

2√
(k + 1)((1− β2)

∑k
j=0 β

k−j
2 g2j,i)

.

For the definition of st, by the Cauchy-Schwarz inequality and the fact that β1t ≤ β1, we have

∥mk∥2ψ∗
k
≤

d∑
i=1

(
∑k
j=0 Π

k−j
s=1β1(k−s+1))(

∑k
j=0 Π

k−j
s=1β1(k−s+1)g

2
j,i)√

(k + 1)((1− β2)
∑k
j=0 β

k−j
2 g2j,i

≤
d∑
i=1

(
∑k
j=0 β

k−j
1)(

∑k
j=0 β

k−j
1 g2j,i)√

(k + 1)((1− β2)
∑k
j=0 β

k−j
2 g2j,i)

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Then by applying the inequality that
∑k
j=0 β

k−j
1 ≤ 1/(1− β1), we have

∥mk∥2ψ∗
k
≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

∑k
j=0 β

k−j
1 g2j,i√∑k

j=0 β
k−j
2 g2j,i

≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

t∑
j=0

βk−j1 g2j,i√
βk−j2 g2j,i

≤ 1

(1− β1)
√

(k + 1)(1− β2)

d∑
i=1

k∑
j=0

γk−j |gj,i|.

Thus the sum of ∥mt∥2ψ∗
t

can be further bounded as follows:

t∑
k=0

∥mk∥2ψ∗
k
≤

t∑
k=0

1

(1− β1)
√
(k + 1)(1− β2)

d∑
i=1

k∑
j=0

γk−j |gj,i|

=
1

(1− β1)
√
1− β2

d∑
i=1

t∑
k=0

|gk,i|
t∑

j=k

γj−t√
j + 1

≤ 1

(1− β1)
√
1− β2

d∑
i=1

t∑
k=0

|gk,i|
t∑

j=k

γj−k√
k + 1

≤ 1

(1− β1)
√
1− β2

t∑
k=0

∥gp∥1
(1− γ)

√
(k + 1)

. (C.7)

For the noise term, we define Dt = max k ≤ t∥dk∥2, and let

Yk = ηkDk, Xk =

〈
∆k,

xk − x∗

Dk

〉
, and X̂k = −

〈
∇f(xk),

xk − x∗

Dk

〉
.

Thus we get
t−1∑
k=0

YkXk =

t−1∑
k=0

ηk⟨∆k,xk − x∗⟩.

Therefore, we have

P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

ηk⟨∆k,xk − x∗⟩

∣∣∣∣∣ ≥ 8ηt−1Dt−1

√√√√θt,δ

d∑
i=1

s2t,i + L2θ2t,δ

)

≤ P

(
∃t ≤ T :

∣∣∣∣∣
t−1∑
k=0

YkXk

∣∣∣∣∣ ≥ 8Yt

√√√√θt,δ

t−1∑
k=0

(Xk − X̂k)2 + L2θ2t,δ

)
≤ δ + P(lT ≥ L),

where the last inequality holds by using lemma E.2 and defining lt = maxk≤t l(xk). Thus we have
that, for all δ ∈ (0, 1) and L > 0, with probability at least 1− δ − P(lT > L), for all t ≤ T ,

f(xt)− f∗ ≤ (I1 + I2 + I3) +
8Dtηt∑t−1
k=0 ηk

√√√√θt,δ

d∑
i=1

s2t,i + L2θ2t,δ. (C.8)

Thus by substituting (C.4),(C.5), (C.6) and (C.7) into (C.8), we obtain that for all t < T

f(xt)− f∗ ≤ ηt∑t−1
k=0 ηk

(
D2
t

(1− β1)ηt
∥st−1∥1 +

(1 + β1)ηt
(1− β1)3

∥st−1∥1

+
β1D

2
t ∥st−1∥1

2(1− β1)(1− λ)ηt
+ 8Dt

√
θt,δ∥st∥22 + L2θ2t,δ

)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

for case 1, and

f(xt)− f∗ ≤ ηt∑t−1
k=0 ηk

(
D2
t

(1− β1)ηt
∥st−1∥1 +

(1 + β1)ηt

(1− β1)2
√
1− β2(1− γ)

t−1∑
k=0

∥gk∥1√
k + 1

+
β1D

2
t ∥st−1∥1

2(1− β1)(1− λ)ηt
+ 8Dt

√
θt,δ∥st∥22 + L2θ2t,δ

)
for case 2, with probability at least 1− δ − P(lT > L). We use the QM-AM inequality to obtain the
bounds of ∥st∥1 ≤

√
d∥st∥2 and ∥gt∥1 ≤

√
d∥gt∥2. Then we use (B.6) to bound ηt. Furthermore,

we use Lemma E.1 for ηt∑t−1
k=0 ηk

and use η0 < ηt to bound ηt in the numerator. In summary,

f(xτ)− f∗ ≤O

(
log

(
ηT
η0

)(
D2
τ

√
d∥sτ∥2

(1− β1)η0
+

(1 + β1)Dτ

√
d

(1− β1)3
∥sτ∥2

+
β1D

2
τ

√
d∥sτ∥2

2(1− β1)(1− λ)η0
+ 8Dτ

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

)
/T

)
for case 1 and

f(xτ)− f∗ ≤O

(
log

(
ηT
η0

)(
D2
τ

√
d∥sτ∥2

(1− β1)η0
+

(1 + β1)Dτ

√
d

(1− β1)2
√
1− β2(1− γ)

τ−1∑
k=0

∥gk∥2√
k + 1

+
β1D

2
τ

√
d∥sτ∥2

2(1− β1)(1− λ)η0
+ 8Dτ

√
θτ,δ∥sτ∥22 + L2θ2τ,δ

)
/T

)

for case 2, with probability at least 1− δ − P(lT > L).

D CONVERGENCE IN NONCONVEX OPTIMIZATION SETTING

In this section, we provide the convergence guarantee in nonconvex deterministic optimization setting.

D.1 PRELIMINARIES

Denote x∗ = argminx f(x) ≥ −∞. And in this section, ∥ · ∥ denotes the ℓ2 norm by default. A
function F : Rd → R has L-Lipschitz smooth gradient if

∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥, ∀x,y ∈ Rd.

For L-Lipschitz function F , we write F ∈ C1
L and refer to L as the smoothness constant for F .

Furthermore, we assume the following assumptions hold:

Assumption D.1. There exist D such that ∥xk − x0∥/
√
d ≤ D for all k ≥ 0.

Assumption D.2.
∥∇f(x)∥2 ≤ G2

D.2 CONVERGENCE RESULTS

According to the definition of L-Lipschitz and simple calculation, we have the following lemmas:

Lemma D.3. Let f ∈ C1
L. Then,

f(x) ≤ f(y) + ⟨∇f(y),x− y⟩+ L

2
∥x− y∥2.

Lemma D.4. For any non-negative a1, · · · , aT a,d a1 ≥ 1, we have

T∑
l=1

al∑l
i=1 ai

≤ log

(T∑
i=1

ai

)
+ 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Lemma D.5 (Ivgi et al. 2023). Let a0, ..., at be a nondecreasing sequence of nonnegative numbers.
Then

t∑
k=1

ak − ak−1√
ak

≤ 2(
√
at −

√
a0)

.

Based on the above lemmas, we have the following theorem:

Theorem D.6.

min
k≤t

∥gk∥1 ≤
f0−f∗
η0

+D
∑d
i=1(2 log(

G
√
t

g0,i
) + 1)

√
t

. (D.1)

Proof of Theorem D.6. For simplicity, we write fk = f(xk), f∗ = f(x∗). By Lemma (D.3), for all
k ≥ 0 we have

fk+1 − fk
ηk

≤ −⟨∇f(xk),H−1
k gk⟩+

ηkL

2
∥H−1

k gk∥2.

Thus by rearranging, and due to the definition of gk, we have

⟨gk,H−1
k gk⟩ ≤

fk − fk+1

ηk
+
ηkL

2
∥H−1

k gk∥2. (D.2)

Sum up (D.2) from k = 1 to t− 1, and use the definition of Hj , we have

t−1∑
k=0

d∑
i=1

g2k,i
sk,i

≤
t−1∑
k=0

fk − fk+1

ηk︸ ︷︷ ︸
I1

+
L

2

t−1∑
k=0

ηk∥H−1
k gk∥2︸ ︷︷ ︸

I2

. (D.3)

For the I1 on the right-hand side of (D.3), by using the facts that ηk is nondecreasing and f∗ is
minimal, we have

t−1∑
k=0

fk − fk+1

ηk
=
f0
η0

−
t−1∑
k=1

fk ·
(

1

ηk−1
− 1

ηk

)
− ft
ηt−1

≤ f0
η0

−
t−1∑
k=1

f∗ ·
(

1

ηk−1
− 1

ηk

)
− f∗
ηt−1

=
f0 − f∗
η0

. (D.4)

For the I2 of (D.3), we have

t−1∑
k=0

ηk∥H−1
k gk∥2 =

t−1∑
k=0

ηk

d∑
i=1

g2k,i
s2k,i

≤ ηt−1

d∑
i=1

t−1∑
k=0

g2k,i
s2k,i

≤ ηt−1

d∑
i=1

[
2 log

(
st,i
g0,i

)
+ 1

]

≤ ηt−1

d∑
i=1

[
2 log

(√
t ·G
g0,i

)
+ 1

]
. (D.5)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Here the first inequality holds due to the fact that ηk is non-decreasing, and the second inequality
holds by using Lemma (D.5) with al = g2l,i/g

2
0,i. For the term on the left-hand side of (D.3), we have

t−1∑
k=0

d∑
i=1

g2k,i
sk,i

≥
d∑
i=1

t−1∑
k=0

g2k,i
st,i

=

d∑
i=1

st,i

≥
d∑
i=1

t−1∑
k=0

|gk,i|√
t

≥
√
tmin
k<t

∥gk∥1 (D.6)

where the first inequality holds for the fact that sk,i is nondecreasing, and the final inequality holds
for the QM–AM inequality. We thus prove the conclusion by substituding inequalities (D.4), (D.5),
(D.6) into (D.3).

E AUXILIARY LEMMAS

In this section, we present and summarize two auxiliary lemmas provided by Ivgi et al. (2023) that
provide tools for our proof of the main theorems.
Lemma E.1. [Lemmas 3 and 4 in Ivgi et al. (2023)] Suppose 0 < a0 ≤ a1 ≤ · · · ≤ aT . Then the
following two inequalities hold:

max
t≤T

∑
τ<t

aτ
at

≥ 1

e

(
T

log+(aT /a0)
− 1

)
,

t∑
k=1

ak − ak−1√
ak

≤ 2(
√
at −

√
a0).

Lemma E.2. [Lemma 7 in Ivgi et al. (2023)] Consider a filtration F = {Ft}t≥0 in a probability
space. Let S be the set of nonnegative and nondecreasing sequences. Suppose that Ct ∈ Ft−1 and
that {Xt}t≥0 is a martingale difference sequence adapted to {Ft}t≥0 such that |Xt| ≤ Ct with
probability 1 for all t ≥ 0. Then, for all δ ∈ (0, 1), c > 0, T > 0, and Xt ∈ Ft−1 such that
|Xt| ≤ Ct with probability 1, it holds that

P

(
∃t ≤ T, ∃{yi}∞i=1 ∈ S such that

∣∣∣∣ t∑
i=1

yiXi

∣∣∣∣ ≥ 8yt

√√√√θt,δ

t∑
i=1

(Xi −Xi)2 + c2θ2t,δ

)
≤ δ + P(∃t ≤ T : Ct ≥ c),

where θt,δ = log(60 log(6t)
δ).

F DISCUSSION ON LEARNING RATE SEARCH ON PARAMETER-FREE
ALGORITHMS

In our computer vision experiments, we implement learning rate search for the base learning rate
within a small range, instead of setting learning rate to 1.0 as suggested. Actually, most of the
parameter-free algorithms have to tune some hyper-parameters. For example, DoG (Ivgi et al., 2023)
may set different rϵs and D-Adapt Adam (Defazio and Mishchenko, 2023) can change different γks.
However, as we shown in Appendix H.3, different hyper-parameters affect little on performance (but
can still have some affect). For example, the test accuracy for Resnet18 model trained on CIFAR-100
with Adam++ (Case 1) only varies between 66.49 to 70.42 when the learning rate varies between 1.0
to 2.0. And the final learning rates are different for different algorithms and tasks. In comparison,
for different scenarios, non-parameter-free algorithms, such as AdamW, requires different learning
rates. For example, the learning rate for AdamW may vary from ∼ 10−2 in computer vision tasks to
∼ 10−4 in LLM tasks, since AdamW does not compute the optimal step size automatically.
The reason why we choose [0.1, 3.0] as the learning rate range is that we observed an obvious
peak phenomenon during searching, and all the peaks in our experiments are located in [0.9, 2.0].
Therefore, we extend this range to [0.1, 3.0] for Adam++ and baseline parameter-free algorithms for
fair comparison.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

G PARAMETER SETTINGS

Although the suggested learning rate is 1.0 for these parameter-free optimizers, throughout the
training, we still search for the base learning rate from 0.1 to 3.0, and the initial learning rate
of Adam++ is set to 1 × 10−6(1 + ∥x0∥22) for image classification tasks, as suggested by Ivgi
et al. (2023). For GPT-2 small and GPT-2 medium tasks, the initial learning rates of AdamW++
are 6 × 10−4(1 + ∥x0∥22) and 3 × 10−4(1 + ∥x0∥22), respectively, where 6 × 10−4 and 3 × 10−4

correspond to the default learning rates for AdamW training. The initial learning rates of Prodigy and
D-Adapt Adam are set as the default 1× 10−6 as the algorithms did not suggest any modification of
this parameter.
In addition, we list the parameters, architectures and hardware that we used for the experiments. All
other parameters not listed are set as default. The information is collected in Tables 2–3.

Table 2: Computer Vision experiment.

Hyper-parameter Value
Architecture ResNet 18, VGG16, DenseNet-121

Epochs 200
GPUs 1×A6000

Batch size 256
LR schedule Constant/Cosine Decay
weight decay 5e-4
(β1, β2) (0.9, 0.999)

Table 3: Large language model experiment

Hyper-parameter Value
Architecture GPT-2 Small/GPT-2 Medium

Steps 50K
GPUs 8×A100

Batch size 480
Context Length 1024

LR schedule Cosine Decay with Warmup
Seeds 5000+offset

weight decay 0.1
(β1, β2) (0.9, 0.95)

Adam LR 6e-4/3e-4

H ADDITIONAL EXPERIMENTS

In this section, we present some additional experiment results.

H.1 RESULTS ON MORE NETWORK MODELS AND DATASETS

In this section, we include more experiments for additional network architectures, scheduler and
datasets. Here we present (1) ResNet-18 model trained with CIFAR-10 dataset with Multi-step
learning rate scheduler, which is similar to constant learning rate scheduler except for a 0.1× learning
rate decay at 100-th and 150-th steps (shown in Figures 8 and 9); (2) ResNet-18 and DenseNet-121
models trained with CIFAR-100 dataset with constant and cosine scheduler (presented in Figures 10
and 11); (3) ResNet-18 model trained with SVHN dataset (Netzer et al., 2011) with constant and
cosine scheduler (displayed in Figures 12 and 13); and (4) ResNet-50 model (He et al., 2016) trained
with Tiny-ImageNet dataset Tavanaei (2020) with constant and cosine scheduler (demonstrated in
Figures 14 and 15). All other hyperparameters remain consistent with those detailed in Section 6.1
and Appendix G.
In Figures 8 and 9, we note that even with a more complicated scheduler, both Case 1 and Case 2
of Adam++ demonstrate a strong and consistent performance. And from Figures 10, 11, 12, 13, 14
and 15, it can be observed that Adam++ still outperforms other parameter-free algorithms in different
kinds of computer vision tasks, including CIFAR-100, SVHN and Tiny-ImageNet.
This consistency in performance highlights Adam++’s robustness and its ability to perform reliably
without the need for frequent adjustments or tuning.

H.2 LARGE LANGUAGE MODEL (LLM) PRETRAINING

In this subsection, we pretrain GPT-2 models with 125M and 355M parameters using the OpenWeb-
Text dataset. For the baseline, we employ the AdamW optimizer instead of Adam, as empirically
AdamW performs better than AdamW in LLM tasks . For all parameter-free algorithms, including
our proposed Adam++, we apply decoupled weight decay to align with AdamW, referring to the
adjusted version of Adam++ as AdamW++. In detail, AdamW uses a standard cosine learning rate
schedule with 2000 warm-up steps. The batch size is set to 480, with a learning rate of 6× 10−4 for
GPT-2 small and 3× 10−4 for GPT-2 medium, as specified in Liu et al. (2023). All parameter-free

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Steps

2.80

2.85

2.90

2.95

3.00

3.05

3.10

3.15

3.20

Te
st

 L
os

s

Adam
D-Adapt Adam
Prodigy
Adam++

5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
Steps

2.8 × 100

2.85 × 100

2.9 × 100

2.95 × 100

3 × 100

3.05 × 100

3.1 × 100

3.15 × 100

3.2 × 100

Tr
ai

n
Lo

ss

Adam
D-Adapt Adam
Prodigy
Adam++

Figure 3: Comparison of training GPT-2 Small (155M) on OpenWebText. Left: Test loss. Per-
formance at 50k steps—AdamW: 3.00, D-Adapt AdamW: 3.01, Prodigy: 3.01, Adam++: 2.98.
Right: Train loss. Performance at 50k steps—AdamW: 2.97, D-Adapt AdamW: 2.97, Prodigy: 2.98,
AdamW++: 2.95. AdamW++ refers to AdamW++ (Case 2).

10000 20000 30000 40000 50000
Steps

2.60

2.65

2.70

2.75

2.80

2.85

2.90

2.95

3.00

Te
st

 L
os

s

Adam
D-Adapt Adam
Prodigy
Adam++

10000 20000 30000 40000 50000
Steps

2.6 × 100

2.65 × 100

2.7 × 100

2.75 × 100

2.8 × 100

2.85 × 100

2.9 × 100

2.95 × 100

3 × 100

Tr
ai

n
Lo

ss
Adam
D-Adapt Adam
Prodigy
Adam++

Figure 4: Comparison of training GPT-2 Medium (355M) on OpenWebText. Left: Test loss.
Performance at 50k steps—AdamW: 2.80, D-Adapt AdamW: 2.87, Prodigy: 2.80, AdamW++:
2.78. Right: Train loss. Performance at 50k steps—AdamW: 2.75, D-Adapt AdamW: 2.82, Prodigy:
2.75, AdamW++: 2.73. AdamW++ refers to AdamW++ (Case 2).

algorithms use the same hyperparameters and learning rate schedule as AdamW. Additional details
for pretraining are provided in Appendix G.
In Figures 3 and 4, we observe that AdamW++ outperforms AdamW by 0.02 in both training loss
and validation loss on GPT-2 small and GPT-2 medium. In contrast, Prodigy performs 0.01 worse
than AdamW on GPT-2 small and matches AdamW on GPT-2 medium, while D-Adapt Adam shows
the weakest performance on these tasks. These results emphasize the ability of our algorithm to
effectively handle large-scale language tasks.

H.3 ABLATION STUDY

We conduct an ablation study to assess the impact of different choices for the base learning rate and
the initial learning rate on training loss and test accuracy using ResNet-50.
Initial learning rate η0 Our theory suggests that the choice of the initial η0 will not influence the
final loss performance, as long as η0 is not too large. We tested this hypothesis by running each of the
problems using values of η0 ranging from 10−6 to 1. Figure 5 validates this conclusion in practice.

Base learning rate For this experiment alone, we consider Adam++ with different values of the
base learning rate of ηt = c · maxi≤t ∥xi−x0∥2√

d
. According to our theory, our algorithms are expected

to be unstable when c > 1 and slow to converge when c < 1. Figure 6 illustrates the performance
around c = 1.

H.4 COMPUTATIONAL OVERHEAD

In this section, we analyze computational overhead by plotting test loss and test accuracy against
wall-clock time for different models with different scheduler on different datasets, as shown in
Figure 7. The results in Figure 7 are shown on the tasks of training ResNet-18 on CIFAR-10 with
constant scheduler and training DenseNet-121 on CIFAR-10 with cosine scheduler. Adam++ Case

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

10 6 10 5 10 4 10 3 10 2 10 1

Initial step size

82

83

84

85

86

87

Te
st

 A
cc

ur
ac

y
(%

)

Adam ++ (Case 2)

10 6 10 5 10 4 10 3 10 2 10 1

Initial step size

0.05

0.10

0.15

0.20

0.25

0.30

Tr
ai

n
Lo

ss

Adam++ (Case 2)

Figure 5: Effect of different choices of η0 on test accuracy and training losses. When η0 is less than
10−1, its influence on final performance is marginal.

10 1 100

Base step size

65

70

75

80

85

Te
st

 A
cc

ur
ac

y
(%

)

Adam ++ (Case 2)

10 1 100

Base step size

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Tr
ai

n
Lo

ss

Adam++ (Case 2)

Figure 6: Effect of different choices of c on test accuracy and training losses. When c is between 0.5
and 4, its influence on final performance is limited.

1 incurs less computational overhead compared to Prodigy and D-Adapt Adam, while delivering
comparable or superior performance.

I DISCUSSION ON THE MEMORY USAGE OF ADAGRAD++ AND ADAM++
In this section, we briefly discuss the memory usage of AdaGrad++ and Adam++. Specifically, we
note that, compared to vanilla AdaGrad and Adam, AdaGrad++ and Adam++ require the storage
of an additional set of parameters, x0, resulting in slightly higher memory usage. However, it is
important to highlight that, compared to existing parameter-free adaptive gradient methods such as
Prodigy (Mishchenko and Defazio, 2024) and D-adaptation (Defazio and Mishchenko, 2023), which
necessitate storing multiple intermediate quantities of the same size as the number of parameters, our
proposed algorithms are more efficient in terms of memory usage.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 10 20 30 40 50
Run Clock Time (minutes)

80

82

84

86

88

90

92

94
Te

st
 A

cc
ur

ac
y

(%
)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, CIFAR-10, constant scheduler, test
accuracy

0 10 20 30 40 50
Run Clock Time (minutes)

1.25

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, CIFAR-10, constant scheduler, test loss

0 20 40 60 80 100 120
Run Clock Time (minutes)

30

35

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) DenseNet-121, CIFAR-100, cosine scheduler,
test accuracy

0 20 40 60 80 100 120
Run Clock Time (minutes)

0.4

0.6

0.8

1.0

1.2

1.4

lo
g(

Te
st

 lo
ss

) Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) DenseNet-121, CIFAR-100, cosine scheduler, test
loss

Figure 7: Test accuracy and test loss with respect to wall-clock time for different algorithms in training
ResNet-18 and DenseNet-121 on CIFAR-10 and CIFAR-100 datasets with different schedulers.

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

8

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.5

1.0

0.5

0.0

0.5

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

Figure 8: The results of training ResNet-18 on CIFAR-10 with a Multi-step learning rate schedule.

0 25 50 75 100 125 150 175 200
Epochs

80

82

84

86

88

90

92

94

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

8

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.5

1.0

0.5

0.0

0.5

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

Figure 9: The results of training ResNet-18 on CIFAR-100 with a Multi-step learning rate schedule.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epochs

55.0

57.5

60.0

62.5

65.0

67.5

70.0

72.5

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

3

2

1

0

1

2

3

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

0 25 50 75 100 125 150 175 200
Epochs

30

35

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) DenseNet-121, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

2

1

0

1

2

3

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) DenseNet-121, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
g(

Te
st

 lo
ss

) Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) DenseNet-121, test loss

Figure 10: The results of training ResNet-18 and DenseNet-121 on CIFAR-100 with a constant
learning rate schedule.

0 25 50 75 100 125 150 175 200
Epochs

57.5

60.0

62.5

65.0

67.5

70.0

72.5

75.0

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

0 25 50 75 100 125 150 175 200
Epochs

30

35

40

45

50

55

60

65

70

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(d) DenseNet-121, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

2

1

0

1

2

3

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(e) DenseNet-121, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.4

0.6

0.8

1.0

1.2

1.4

lo
g(

Te
st

 lo
ss

) Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(f) DenseNet-121, test loss

Figure 11: The results of training ResNet-18 and DenseNet-121 on CIFAR-100 with a cosine learning
rate schedule.

0 25 50 75 100 125 150 175 200
Epochs

90

91

92

93

94

95

96

97

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

4

3

2

1

0

1

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

2.0

1.5

1.0

0.5

0.0

0.5

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

Figure 12: The results of training ResNet-18 on SVHN with a constant learning rate schedule.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

0 25 50 75 100 125 150 175 200
Epochs

90

91

92

93

94

95

96

97

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-18, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

8

6

4

2

0

2

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-18, training loss

0 25 50 75 100 125 150 175 200
Epochs

1.5

1.0

0.5

0.0

0.5

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-18, test loss

Figure 13: The results of training ResNet-18 on SVHN with a cosine learning rate schedule.

0 25 50 75 100 125 150 175 200
Epochs

25

30

35

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-50, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

1.0

0.5

0.0

0.5

1.0

1.5

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-50, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.6

0.8

1.0

1.2

1.4

1.6

1.8

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-50, test loss

Figure 14: The results of training ResNet-50 with on Tiny-ImageNet with a constant learning rate
schedule.

0 25 50 75 100 125 150 175 200
Epochs

30

35

40

45

50

55

60

65

Te
st

 A
cc

ur
ac

y
(%

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(a) ResNet-50, test accuracy

0 25 50 75 100 125 150 175 200
Epochs

1.0

0.5

0.0

0.5

1.0

1.5

lo
g(

Tr
ai

ni
ng

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(b) ResNet-50, training loss

0 25 50 75 100 125 150 175 200
Epochs

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

lo
g(

Te
st

 lo
ss

)

Adam
D-Adapt Adam
Prodigy
Adam++ (Case 1)
Adam++ (Case 2)

(c) ResNet-50, test loss

Figure 15: The results of training ResNet-50 on Tiny-ImageNet with a cosine learning rate schedule.

28

	Introduction
	Related Work
	Review of existing methods and preview of proposed methods
	AdaGrad++: a parameter-free version of AdaGrad
	Algorithm
	Convergence Guarantee

	Adam++: a parameter-free version of Adam
	Algorithm
	Convergence Guarantee of Adam++

	Experiments
	Image Classification

	Conclusion and Future Work
	Further Discussion on AdaGrad++
	Proof of Theorem 4.2
	Proof of Theorem 5.1
	Convergence in Nonconvex Optimization Setting
	Preliminaries
	Convergence Results

	Auxiliary lemmas
	Discussion on Learning Rate Search on Parameter-free Algorithms
	Parameter Settings
	Additional Experiments
	Results on More Network Models and Datasets
	Large Language Model (LLM) Pretraining
	Ablation Study
	Computational Overhead

	Discussion on the Memory Usage of AdaGrad++ and Adam++

