
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

Batch and Sequential Unlearning for Neural Net-
works

Anonymous authors
Paper under double-blind review

Abstract

Machine unlearning can help comply with data owners’ “right to be forgotten”,
mitigate biases, and prevent models from generating inappropriate content. Second-
order unlearning algorithms like Newton unlearning have been used in previous
works to rigorously unlearn selected models, without the need for expensive
retraining. However, we show that Newton unlearning is susceptible to Hessian de-
generacy in trained neural networks, resulting in degraded unlearning performance
in the challenging batch and sequential unlearning settings. We propose two new
unlearning algorithms, CuReNU and StoCuReNU, that address the Hessian degen-
eracy based on cubic regularization in optimization and discuss their convergence
guarantees. Moreover, we demonstrate that StoCuReNU is a scalable algorithm
with comparable unlearning performance to state-of-the-art empirical unlearning
algorithms across diverse settings, including batch and sequential unlearning.

1 Introduction
Recent years have witnessed a growing number of machine learning models trained on personal data
for applications in computer vision, natural language processing, and speech processing (Achiam et al.,
2023; Radford et al., 2023; EDPB, 2024). However, evidence shows that these models often memorize
their training datasets (Carlini et al., 2023; Nasr et al., 2023), can increase social biases (Angwin et al.,
2022; Obermeyer et al., 2019), and may be misused to generate inappropriate content (Westerlund,
2019; Li et al., 2024). Consequently, data privacy laws like the General Data Protection Regulation
(GDPR) 2016 enact the “right to be forgotten”, allowing data owners to demand their data and its
lineage removed from trained models. The subfield of machine unlearning Bourtoule et al. (2021);
Cao & Yang (2015); Nguyen et al. (2022) has emerged to address these societal and legal demands.
The substantial training data and growing model sizes render retraining undesirable to fulfill unlearning,
e.g., OpenAI’s GPT-4 reportedly costs over $100 million to train (Achiam et al., 2023). Therefore,
the goal of machine unlearning is to obtain models that are equivalent to those retrained from scratch
without the data-to-be-unlearned, while avoiding expensive retraining (Bourtoule et al., 2021; Nguyen
et al., 2022). However, achieving unlearning exactly is challenging for neural networks due to their
iterative learning process and non-linear operations (Bourtoule et al., 2021; Thudi et al., 2022). Hence,
it is more practical to adopt the notion of approximate unlearning (Ginart et al., 2019), where the
goal is to find an unlearned model that closely approximates retraining. While empirical approximate
unlearning algorithms (e.g., increasing the loss on the erased set (Zhang et al., 2024b), or training
with randomized labels (Golatkar et al., 2020)) exist, they offer limited guarantee for unlearning,
which often restricts their success in challenging settings like sequential unlearning.
Second-order unlearning (Guo et al., 2020; Golatkar et al., 2020; Warnecke et al., 2021) is a class
of approximate unlearning algorithms that leverage the second-order information (Hessian) of the
loss function to better approximate retraining and achieve stronger unlearning performance. Unlike
empirical unlearning algorithms, second-order unlearning algorithms are naturally connected to the
rigorous concept of influence function (Koh & Liang, 2017) and are often guaranteed to converge to
the same loss as retraining (Guo et al., 2020).1 Many second-order unlearning algorithms are derived
from optimization algorithms, extending the static nature of unlearning to the dynamic, iterative
nature of optimization (Jia et al., 2024), where second-order information improves the convergence
compared to first-order counterparts (Neel et al., 2021; Chien et al., 2024). However, we find that

1Achieving the same loss as retraining is a necessary condition for unlearning (App. L).
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existing second-order unlearning algorithms like Newton unlearning (Guo et al., 2020; Golatkar et al.,
2020) for neural networks suffer from a common problem: the degeneracy of the Hessian matrix
near the local optimum.2 Due to Hessian degeneracy, the Hessian matrix is non-invertible in Newton
unlearning, making it inapplicable to unlearning neural networks. This motivates our central question:
How can we unlearn neural networks effectively with second-order unlearning while addressing the
issue of Hessian degeneracy?
Upon revisiting its cause, we show that the norm of the Newton unlearning update is highly sensitive
to a large number of small eigenvalues of the Hessian, rendering baselines such as pseudo-inversing
and damping the Hessian matrix with a small diagonal matrix γI ineffective. Since the update norm
is a monotone decreasing function in the damping factor γ, we thus ask a question: Can we determine
a suitable γ that warrants effective Newton unlearning? Our answers are two new unlearning
algorithms, Cubic-regularized Newton’s Unlearning (CuReNU) and its scalable, stochastic variant
(StoCuReNU), that adopt the cubic regularization method in optimization (Nesterov & Polyak, 2006;
Tripuraneni et al., 2018) to find the optimal γ. Specifically, StoCuReNU is a Hessian-free unlearning
algorithm that avoids the approximation errors in Hessian approximations (Golatkar et al., 2020; Jia
et al., 2024) by using Hessian-vector products (HVPs). Moreover, it maintains a constant memory
usage of O(2d), where d is the number of model parameters, compared to O(dn) that scales with n
training samples in the existing Hessian-free algorithm (Qiao et al., 2025).

To summarize, our key contributions are:
1. We define a set of desiderata (effectiveness, robustness, and efficiency) for unlearning algorithms

(Sec. 3.1) that existing unlearning algorithms may fail to satisfy. Then, we seek to propose
unlearning algorithms that can satisfy all of them;

2. We show that Hessian degeneracy is a fundamental but oft-overlooked issue in Newton unlearning,
undermining its success for neural networks. Moreover, we show that common baselines like
Hessian pseudo-inverse and Hessian damping fall short in addressing this issue. (Sec. 4);

3. We formulate a new problem of automatically tuning the Hessian damping factor γ and devise
two new unlearning algorithms, CuReNU and StoCuReNU, that guarantee convergence to the
same loss as retraining despite the presence of problematic Hessians. (Sec. 5);

4. We show that CuReNU and StoCuReNU can unlock the potential of the vanilla Newton
unlearning empirically on different datasets and models. Moreover, StoCuReNU is efficient,
scalable, and can achieve comparable unlearning performance to state-of-the-art empirical
unlearning algorithms, even in challenging settings like sequential unlearning. (Sec. 6).

We note that while our unlearning algorithms are adapted from existing optimization methods, we
believe this adaptation is both necessary and non-trivial to address failure modes (i.e., the problematic
Hessians) and allow second-order unlearning algorithms to apply successfully to neural networks.
Our novelty thus lies in recognizing the potential of existing optimization methods to satisfy our
desiderata, addressing limitations of second-order unlearning, and evaluating the methods extensively.

2 Related Works
Exact Unlearning. The goal of exact unlearning is to produce an unlearned model equivalent to a
retrained model. Previous works have proposed efficient exact unlearning algorithms for conventional
models like support vector machines, random forests, linear regression (Cauwenberghs & Poggio,
2000; Schelter, 2019; Brophy & Lowd, 2021), and selected learning frameworks (Cao & Yang, 2015;
Xiong et al., 2023). Bourtoule et al. (2021); Yan et al. (2022) propose model-agnostic, data-centric
unlearning algorithms that train an ensemble of models on disjointed data subsets to isolate retraining
to a few models. However, ensemble models are expensive to store and potentially compromise
performance for neural networks with large model sizes and massive training sets (Zhang et al., 2020).
Approximate Unlearning. The goal of approximate unlearning is to produce an unlearned model
similar to a retrained model. Heuristics such as increasing the loss on erased set and training
models to output random predictions often lead to over-forgetting that degrades the unlearned model
performance (Graves et al., 2021; Eldan & Russinovich, 2023; Zhang et al., 2024b). Therefore,
empirical unlearning algorithms often anchor them with additional loss on the retained set and
optimize the weighted loss (Chundawat et al., 2023; Kurmanji et al., 2023). Differently, Guo

2Previous works consider linear models with convex losses, where the Hessian is positive semi-definite (Go-
latkar et al., 2020; Guo et al., 2020). This assumption of convexity often does not hold in neural networks.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

et al. (2020); Golatkar et al. (2020) propose more rigorous unlearning algorithms that guarantee
unlearning on selected models by analyzing Taylor’s approximation of the retraining loss. Thanks to
second-order information, their approaches often achieve more effective unlearning than the first-order
counterparts (Neel et al., 2021; Chien et al., 2024). Besides, localization techniques are adopted
to identify model parameters salient to unlearning, which can be combined with other unlearning
algorithms to allow unlearning for large models (Goel et al., 2022; Yu et al., 2023; Jia et al., 2023).
Second-Order Unlearning. Second-order unlearning leverages the second-order information
(Hessian) of the loss function to better approximate retraining and achieve more effective unlearning.
Guo et al. (2020); Golatkar et al. (2020) use Newton update to unlearn linear models with convex
losses, where the Hessian is positive semi-definite. Jia et al. (2024) notes that a Newton update
naturally aligns with influence function (Koh & Liang, 2017), which is used in Warnecke et al. (2021)
to unlearn features and labels. However, these algorithms often suffer from the costly Hessian storage
and computing. Although prior works adopt efficient approximations of Hessians (Golatkar et al.,
2020; Jia et al., 2024), approximation errors can be compounded in challenging settings like sequential
unlearning. In contrast, StoCuReNU is a Hessian-free unlearning algorithm that uses HVPs to avoid
this accumulation error. Moreover, StoCuReNU only requires O(2d) memory, significantly less than
O(dn) that scales with n training samples in the another Hessian-free work (Qiao et al., 2025).

3 Preliminaries

3.1 Problem Formulation

Let D = {(xi, yi)}ni=1 ⊆ X × Y denote the training set of n samples, where xi ∈ X is the input
and yi ∈ Y is the target. Let De ⊆ D denote the erased set of ne samples to be unlearned and
Dr = D \De denote the retained set of nr remaining samples. Let fw∗ : X → Y , with parameters
w∗ ∈ Rd, denote the original model trained on D. The goal of machine unlearning is to remove the
lineage of De from fw∗ while preserving the unlearned model performance on Dr. Retraining the
model solely on Dr can achieve this goal exactly; however, retraining is infeasible for large models
as it requires many iterations over massive Dr and scales poorly with model sizes. Therefore, our
goal is to find an unlearning algorithm U that returns an unlearned model that closely approximates a
retrained model. We discuss a more formal definition of machine unlearning in App. K.

Desiderata. We define a set of desiderata for a good unlearning algorithm U .
D1 Effectiveness: Retraining serves as a gold standard for unlearning, as a retrained model has no
lineage of De while performing well on Dr. Hence, U should achieve the performance as close as
possible to retraining on De and Dr. This motivates our choice of second-order unlearning algorithms
over first-order algorithms 3 to better approximate retraining with second-order information.
D2 Robustness: U should require minimal hyperparameter tuning to achieve effective unlearning.
In Sec. 5, we show that CuReNU and StoCuReNU can automatically find the optimal damping factor
for Newton unlearning, resulting in strong unlearning performance without manual tuning of γ.
D3 Efficiency: U should require less computation and maintain constant memory usage relative to
retraining. This desideratum allows U to scale to large models and handle sequential unlearning.
See App. A for a comparison of different unlearning algorithms and our desiderata. Moreover, we
believe U should be able to handle the two following settings to be practical:

Batch Unlearning. The erased set De may contain multiple samples (ne > 1) to accommodate
concurrent unlearning requests from the data owners, unlearning of an entire class (e.g., when that
class becomes irrelevant due to domain shift), and to reduce unlearning overhead (e.g., when the
model owners are allowed to unlearn periodically instead of immediately).

Sequential Unlearning. Multiple rounds of unlearning can be conducted sequentially, potentially
compounding unlearning errors that may appear negligible in a single round, such as over-forgetting
(degrading unlearned model performance) or under-forgetting (inducing trivial unlearning of De).
Sequential unlearning arises when data owners issue unlearning requests sequentially or when certain
constraints, like data accessibility, restrict the number of samples that can be unlearned concurrently.

3In our experiments (Sec. 6), we observe that first-order unlearning algorithms like gradient descent do not
sufficiently remove the lineage of the erased set De.
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3.2 Assumptions & Notations

We assume w∗ is optimized via the common empirical risk minimization framework: w∗ =
argminw∈Ed L(w;D), where L(w;D) ≜ 1

|D|
∑

(xi,yi)∈D ℓ(fw(xi), yi) is the average loss over
samples in D under the loss function ℓ. Moreover, we make the following assumption for L.
Assumption 3.1. L is twice continuously differentiable with respect to (w.r.t.) w.
For brevity, we use gw ≜ ∇wL ∈ Rd and Hw = ∇2

wL ∈ Rd×d to denote the gradient and the
Hessian of L w.r.t. w. We will make additional assumptions in CuReNU and StoCuReNU.
Assumption 3.2 (ρ-Lipschitz gradient). For some ρ > 0, ∥gw − gw′∥ ≤ ρ∥w−w′∥,∀w,w′ ∈ Rd.

Assumption 3.3 (L-Lipschitz Hessian). For someL > 0, ∥Hw−Hw′∥ ≤ L∥w−w′∥,∀w,w′ ∈ Rd.

We provide justification for Assumptions 3.1, 3.2, and 3.3 in App. B.
Notations. When necessary, we will use the subscripts D, De, or Dr for gw and Hw to indicate the
corresponding data subsets that the gradient and Hessian are evaluated on. Specifically, for the Hessian
HDr

w , we use {λ1, . . . , λd} to denote its eigenvalues and {u1, . . . ,ud} to denote its corresponding
eigenvectors, where λ1 ≥ · · · ≥ λd (sorted in non-increasing order). Generally, for a symmetric
matrix A, we write A ≻ 0 (or ⪰ 0) to denote A is positive definite (or positive semi-definite), i.e.,
zTAz > 0 (or ≥ 0) for all z ̸= 0. We use ∥·∥ to denote the Euclidean norm by default.

3.3 Newton Unlearning

Here, we describe the Newton unlearning algorithm proposed in previous works (Guo et al., 2020;
Warnecke et al., 2021). The benefits of Newton unlearning algorithm and its variants over first-order
unlearning algorithms are further discussed through the lens of optimization in App. M.
The Newton unlearning algorithm involves multiple iterations, starting from w0 = w∗, where wt

denotes the model parameters at iteration t. For brevity, we use ∆t+1 ≜ wt+1 −wt to denote the
difference between two consecutive iterations. Recall that retraining aims to minimize the loss on the
retained set L(w, Dr) (retraining loss). Under Assumption 3.1, Newton unlearning algorithm seeks
wt+1 that minimizes the following quadratic approximation of L(w, Dr) around wt:

min
wt+1

[
L̃(wt+1;Dr) = L(wt;Dr) + ⟨gDr

wt
,∆t+1⟩+ 1

2

〈
HDr

wt
∆t+1,∆t+1

〉]
. (1)

By solving the first-order necessary condition ∇wt+1L̃(wt+1;Dr) = 0, we get the Newton update:

wt+1 = wt − (HDr
wt

)−1gDr
wt

. (2)

The Newton unlearning algorithm repeatedly applies the Newton update (Eq. 2) for T iterations or
until a stopping criterion (e.g., sufficiently small retraining loss) is met.
Computation with De. The Newton update can be computed with D and De through the following
equations: HDr

wt
= n

nr
·HD

wt
− ne

nr
·HDe

wt
and gDr

wt
= n

nr
· gD

wt
− ne

nr
· gDe

wt
. If w∗ is a stationary

point, we can further simplify gDe
w0

= −ne

nr
· gDe

w0
due to gD

w0
= 0. Nonetheless, we justify our choice

of minimizing the retraining loss L(w, Dr) to achieve unlearning of De in App. L.

4 Problematic Hessians in Neural Networks

Figure 1: Left: Hessian eigenspectrum for CNN × FMNIST; Middle: Hessian rank dynamics during
training for CNN × FMNIST; Right: Empirical Hessian eigenspectrum density for Llama-2 × TOFU.

Newton unlearning (Sec. 3.3) assumes that HDr
wt

is invertible at wt, i.e., full rank with no zero
eigenvalues. However, this assumption often does not hold in trained neural networks with highly
non-convex losses. In our experiments with CNN × FMNIST, the Hessian eigenspectrum after
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training shows many zero and near-zero eigenvalues (Fig. 1, left), and the Hessian rank rapidly
diminishes as training converges (Fig. 1, middle), reflecting the increasing number of zero eigenvalues
during training. We observe a similar zero-concentrated Hessian eigenspectrum for large models such
as Llama-2 × TOFU (Fig. 1, right), showing the invertability assumption is often invalid in practice.
Previous works have shown that Hessian degeneracy is a fundamental issue during training neural
networks across various datasets (Sagun et al., 2017; Papyan, 2018; Ghorbani et al., 2019). A
standard model for describing Hessian eigenspectra in deep neural networks is the so-called spiked
model, which features a large concentration of eigenvalues near 0 (the bulk), and a few isolated, large
eigenvalues well separated from the bulk (the spikes) (Johnstone, 2001; Sagun et al., 2016; 2017).
The Hessian rank deficiency (hence Hessian degeneracy) is further explained in Singh et al. (2021;
2023) to be closely connected to the effective number of model parameters that naturally decreases as
training converges, especially in the over-parameterization paradigm. Besides, it is not uncommon
for neural networks to converge to saddle points (Dauphin et al., 2014), where the Hessian contains
negative eigenvalues, as also shown in our experiment with Llama-2 × TOFU (Fig. 1, right). The
presence of negative eigenvalues can further undermine the convergence of Newton unlearning.

We summarize these properties of Hessians in trained neural networks in the following observation.
Observation 4.1. HDr

wt
is degenerate with many zero and possibly negative eigenvalues, i.e., there

exists k ≪ d s.t. λi > 0 for i ≤ k and λj ≤ 0 for j ≥ k + 1.

Baselines. Due to Obs. 4.1, the Hessian is non-invertible (with potentially negative eigenvalues),
rendering the vanilla Newton unlearning inapplicable. In practice, we often employ the following
baselines to tackle the problematic Hessians: (1) replacing the exact inverse with the pseudo-inverse
(PINV-Newton), and (2) adding a small diagonal matrix to the Hessian (Damped Newton).

(1) Pseudo-Inverse (PINV-Newton). The inverse of the degenerate Hessian is replaced by its unique
pseudo-inverse (HDr

wt
)† that always exists. Applying the pseudo-inverse corresponds to finding the

least-norm solution ∆t+1 for the linear system HDr
wt

∆t+1 = gDr
wt

, that is ∆t+1 = (HDr
wt

)†gDr
wt

.
Remark 4.2. The Newton update norm using the pseudo-inverse Hessian is ∥∆t+1∥2 =∑

i:λi ̸=0
1
λ2
i
(uT

i g
Dr
wt

)2 (see derivation App. C.1). If there are many |λi| ≈ 0 (Obs. 4.1), ∥∆t+1∥2 ≫ 0.

(2) Damping (Damped Newton). The degenerate Hessian is damped with a small diagonal matrix,
i.e., HDr

wt
+ γI, where the damping factor γ > max{0,−λd} and I is the d-dimensional identity

matrix. In fact, damping is equivalent to finding ∆t+1 that minimizes the regularized linear least
squares ∥HDr

wt
∆t+1 − gDr

wt
∥2 + γ∥∆t+1∥2, that is ∆t+1 = (HDr

wt
+ γI)−1gDr

wt
.

Remark 4.3. The Newton update norm after damping is ∥∆t+1∥2 =
∑d

i=1
1

(γ+λi)2
(uT

i g
Dr
wt

)2 (see
derivation in App. C.2). If γ is too small, ∥∆t+1∥2 ≫ 0 due to Obs. 4.1.

Remarks 4.2 and 4.3 show that both PINV-Newton and Damped Newton are prone to produce
excessively large-norm updates, leading to overshooting of local minima and degraded unlearning
performance (violating D1), as observed in our experiments (Sec. 6.2). Nonetheless, Remark. 4.3
reveals that the update norm decreases as γ increases. Intuitively, an effective Newton unlearning
should avoid too small γ that causes overly large-norm updates, while simultaneously avoiding too
big γ that induces overly small-norm updates and causes slow convergence. A question arises: How
can we automatically find a suitable γ (D2) that warrants effective Newton unlearning to satisfy D1?

5 Methodology
Here, we describe the methodology and theoretical guarantees of CuReNU and StoCuReNU that will
be of interest to the machine learning audience, with an emphasis on their applications in unlearning.
While there may be less novelty in this section, our algorithms offer principled and scalable solutions
to overcome the problematic Hessians, supported by strong empirical results in the next section.
Convergence guarantees. Finding the local minima of retraining loss L(w, Dr) is challenging for
neural networks with highly non-convex losses. Therefore, it is often helpful to consider two relaxed
definitions: ε-first-order stationary points (ε-FOSPs) and ε-second-order stationary points (ε-SOSPs).
Definition 5.1. An ε-FOSP w of the function L satisfies ∥gw∥ ≤ ε.
Definition 5.2. An ε-SOSP w of the function L (with L-Lipschitz Hessian) satisfies ∥gw∥ ≤ ε and
the minimum eigenvalue of the Hessian λmin(Hw) ≥ −

√
Lε.
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Unlearning Algorithm Convergence Rate Guarantee Proof

GD O(ε−2) ε-FOSP Nesterov (2013)
SGD O(ε−4) ε-FOSP Khaled & Richtárik (2020)

Newton local quadratic ε-FOSP Nocedal & Wright (2006)
CuReNU global O(ε−1.5) ε-SOSP App. D.1

StoCuReNU global Õ(ε−3.5) ε-SOSP App. E.1

Table 1: Convergence guarantees of different unlearning algorithms for non-convex losses.

Tab. 1 summarizes the convergence guarantees of different unlearning algorithms for non-convex
losses. Both CuReNU and StoCuReNU provide convergence to an ε-SOSP, which is a stronger
guarantee than the ε-FOSP offered by first-order algorithms like GD and SGD.4 Moreover, CuReNU
and StoCuReNU provide global convergence guarantees, which are better than local convergence in
Newton unlearning (that may even diverge due to degenerate Hessians). These stronger guarantees
indicate that our unlearning algorithms can optimize retraining loss effectively, setting them apart
from empirical unlearning algorithms such as Kurmanji et al. (2023); Zhou et al. (2025).

5.1 Cubic-Regularized Newton Unlearning (CuReNU)

Under Assumption 3.3, we consider the minimization problem of the cubic-regularized approxima-
tion (Nesterov & Polyak, 2006) of L(wt+1;Dr) near wt:

min
wt+1

[
L̃(wt+1;Dr) = L(wt;Dr) + ⟨gDr

wt
,∆t+1⟩+ 1

2

〈
HDr

wt
∆t+1,∆t+1

〉
+ L

6 ∥∆t+1∥3
]
. (3)

In fact, L̃(wt+1;Dr) is a global upper bound of the retraining loss L(wt+1;Dr), which allows
CuReNU to converge globally (see App. D.1). This cannot be achieved by the quadratic approximation
(Eq. 1) in vanilla Newton unlearning. However, unlike Newton unlearning, the problem in Eq. 3
cannot be solved directly using the first-order necessary condition.5 Instead, we consider its strong
dual form with the dual variable αt+1 ≜ ∥wt+1 −wt∥:

supαt+1
ξ(αt+1), ξ(αt+1) = − 1

2

〈(
HDr

wt
+ L

2 αt+1I
)−1

gDr
wt

,gDr
wt

〉
− L

12α
3
t+1

s.t. αt+1 ∈ Q = {α ∈ R : HDr
wt

+ L
2 αI ≻ 0, α ≥ 0}.

(4)

Here, the key observation is that Eq. 4 becomes a convex constrained optimization problem in αt+1.
Therefore, it can be solved efficiently by many off-the-shelf optimization algorithms like trust-region
methods (Conn et al., 2000). Importantly, αt+1 defines the optimal γ for the degenerate Hessians via
γ = L

2 αt+1. With the optimized αt+1 (hence γ), CuReNU repeatedly applies the following update:

wt+1 = wt −
(
HDr

wt
+ L

2 αt+1I
)−1

gDr
wt

. (5)

We detail how to solve αt+1 using trust-region methods and discuss the duality of Eq. 3 and Eq. 4 in
App. D. The pseudocode of CuReNU with trust-region solvers is provided in Algo. 1. Moreover, we
prove that CuReNU converges to an ε-SOSP of the retraining loss in O(ε−1.5) iterations in App. D.1.

Complexity Analysis. Unfortunately, CuReNU suffers from high space and time complexity and does
not satisfy D3. Specifically, it requires O(d2) memory to store explicit Hessians. Its time complexity
involves O(nd2 + d3) for forming and inverting the Hessians, and O(kn) for computing the smallest
eigenvalues of the Hessians with the Lanczos method for k iterations in trust-region methods. This
raises the question: Is there a more efficient implementation of CuReNU that preserves its theoretical
guarantees while being scalable to large models?

5.2 Stochastic Cubic-Regularized Newton Unlearning (StoCuReNU)

Here, we consider a more efficient implementation of CuReNU based on stochastic approximation of
the cubic regularization (Tripuraneni et al., 2018). Let gB1

w and HB2
w denote a stochastic gradient and

Hessian evaluated on two mini-batches B1, B2 ⊂ Dr with sizes n1 and n2. Using different batches
helps decorrelate the errors from stochastic estimates, which improves stability and convergence in

4An ε-SOSP with small ε helps avoid most saddle points and sharp local maxima, which an ε-FOSP cannot.
5Doing so leads to an ill-defined update wt+1 = wt−

(
HDr

wt
+ L

2
∥∆t+1∥I

)−1
gDr
wt

as ∥∆t+1∥ is unknown.
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Table 2: Sample-level and class-level batch unlearning on CNN × FMNIST (averaged over 3 random
runs). “→” means closer to retraining is better; “↑” means higher is better; “↓” means lower is better.
We use boldface to denote best results and underline to denote second-best results.

Method Sample-Level Unlearning Class-Level Unlearning
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→) De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 85.43 ± 0.32 87.41 ± 0.51 84.88 ± 0.44 1.00 ± 0.00 0.000 ± 0.00 50.40 ± 0.11 0.00 ± 0.00 91.21 ± 0.79 81.30 ± 0.63 1.00 ± 0.00 0.000 ± 0.00 51.38 ± 0.74
Original 88.85 ± 0.17 88.89 ± 0.04 87.84 ± 0.22 0.92 ± 0.01 0.001 ± 0.00 50.70 ± 0.14 85.96 ± 0.75 89.86 ± 0.82 88.38 ± 0.55 0.13 ± 0.01 0.021 ± 0.00 51.69 ± 0.60

Rand. Lbls. 88.31 ± 0.40 88.30 ± 0.39 87.36 ± 0.47 0.94 ± 0.01 0.001 ± 0.00 50.73 ± 0.12 9.78 ± 2.11 69.57 ± 14.31 63.03 ± 12.47 0.59 ± 0.17 0.010 ± 0.00 52.19 ± 0.79
DELETE 83.34 ± 4.70 83.25 ± 4.73 82.19 ± 4.67 0.85 ± 0.06 0.002 ± 0.00 51.59 ± 0.80 0.00 ± 0.00 90.97 ± 0.07 81.00 ± 0.23 0.99 ± 0.01 0.002 ± 0.00 51.44 ± 1.05

GA 64.29 ± 0.47 63.78 ± 0.47 63.50 ± 0.27 0.47 ± 0.01 0.008 ± 0.00 51.42 ± 1.00 7.14 ± 0.74 72.70 ± 13.96 65.54 ± 12.27 0.65 ± 0.19 0.005 ± 0.00 52.52 ± 0.92
GD 89.35 ± 0.16 89.46 ± 0.16 88.34 ± 0.18 0.91 ± 0.01 0.001 ± 0.00 50.68 ± 0.14 84.69 ± 0.77 90.12 ± 0.75 88.46 ± 0.43 0.14 ± 0.01 0.021 ± 0.00 51.69 ± 0.62

GDiff 87.06 ± 2.17 87.51 ± 2.05 85.99 ± 2.10 0.92 ± 0.02 0.001 ± 0.00 52.34 ± 0.58 5.54 ± 4.01 89.45 ± 0.52 80.18 ± 0.72 0.92 ± 0.04 0.002 ± 0.00 52.06 ± 1.12
NPO 82.57 ± 1.63 82.22 ± 1.49 81.59 ± 1.76 0.89 ± 0.04 0.002 ± 0.00 50.68 ± 0.63 0.00 ± 0.00 75.38 ± 5.25 66.74 ± 4.73 0.72 ± 0.09 0.004 ± 0.00 51.60 ± 1.46

SCRUB 83.95 ± 1.06 84.64 ± 1.05 83.30 ± 1.07 0.94 ± 0.04 0.001 ± 0.00 50.53 ± 0.13 0.00 ± 0.00 92.66 ± 0.23 82.48 ± 0.23 0.97 ± 0.02 0.001 ± 0.00 51.57 ± 0.45
PINV-Newton 9.74 ± 3.35 9.84 ± 3.44 9.49 ± 3.34 0.01 ± 0.01 0.026 ± 0.00 49.81 ± 0.07 1.44 ± 2.03 8.86 ± 1.99 8.39 ± 1.71 0.05 ± 0.01 0.032 ± 0.00 50.42 ± 0.71

Damped Newton 8.48 ± 1.07 8.78 ± 0.77 8.89 ± 0.90 0.01 ± 0.00 0.029 ± 0.00 49.92 ± 0.46 0.52 ± 0.74 10.07 ± 1.14 9.28 ± 0.77 0.05 ± 0.01 0.024 ± 0.02 49.97 ± 0.05
CuReNU 86.07 ± 0.20 86.39 ± 0.47 85.20 ± 0.08 0.98 ± 0.00 0.002 ± 0.00 50.74 ± 0.09 1.37 ± 0.64 88.65 ± 1.66 79.15 ± 1.59 0.93 ± 0.03 0.002 ± 0.00 52.21 ± 1.12

StoCuReNU 85.93 ± 0.45 86.27 ± 0.59 85.05 ± 0.42 0.98 ± 0.00 0.001 ± 0.00 50.69 ± 0.18 0.14 ± 0.11 90.88 ± 0.62 81.01 ± 0.49 0.99 ± 0.00 0.001 ± 0.00 51.98 ± 0.78

practice. Under Assumptions 3.2 and 3.3, we seek wt+1 that minimizes the following stochastic
approximation of Eq. 3:

min
wt+1

[
L̃sto(wt+1;Dr) = L(wt;Dr) + ⟨gB1

wt
,∆t+1⟩+ 1

2

〈
HB2

wt
∆t+1,∆t+1

〉
+ L

6 ∥∆i+1∥3
]
. (6)

While alternative methods exist, solving this problem via gradient descent (GD) is particularly
appealing because (1) the gradient of L̃sto(w) enables efficient computation via HVPs (Hessian-
vector products), and (2) previous works have shown that with an appropriate learning rate, GD is an
effective stochastic optimization algorithm for both convex (Bottou et al., 2018; Duchi, 2018) and
non-convex functions (LeCun et al., 2015). GD is initialized following the procedure in App. E.2.
However, the vanilla GD suffers from the so-called “hard case” (Conn et al., 2000): when λd < 0 and
⟨ud,g

B1
wt

⟩ = 0,6 then gB1
wt

always remains in a subspace orthogonal toud, while the optimal parametric
gap ∆∗

t+1 (the global minimizer of the approximation defined in Eq. 6) can yield ⟨ud,∆
∗
t+1⟩ ≠ 0. 7

To avoid the “hard case”, it is common to slightly perturb the gradient, i.e., g̃B1
wt

= gB1
wt

+ σζ where
σ > 0 and ζ ∼ Unif(Sd−1). In practice, we often choose small σ (σ < 1) to preserve the original
gradient as much as possible, although we show that StoCuReNU remains effective across varying σ
in App. J.2. With a learning rate η, that completes the s-th iteration of GD:

∆s+1 = ∆s − η
[
g̃B1
wt

+HB2
wt

∆s

]
. (7)

After presumably T ′ iterations of GD, StoCuReNU applies wt+1 = wt +∆T ′ and repeats the same
process for other B1, B2 for T stochastic iterations or until a stopping criterion is met. We show that
a larger T often results in better unlearning performance in App. J.3, while choosing a fixed, small T ′

(around 5-10) is sufficient for most of our experiments. The pseudocode for StoCuReNU is provided
in Algo. 2. Moreover, we prove that StoCuReNU converges to an ε-SOSP of the retraining loss in
Õ(ε−3.5) stochastic gradient/Hessian evaluations in App. E.1, where Õ hides logarithmic factors.
Complexity Analysis. StoCuReNU requires O(2d) memory for storing gradients and HVPs,
significantly less than O(d2) in CuReNU and O(nd) in the previous Hessian-free work (Qiao et al.,
2025). Moreover, StoCuReNU requires the time complexity of O(T ∗ (d + T ′ ∗ d)), assuming
the HVPs are efficiently computed in O(d) using Pearlmutter’s trick (Pearlmutter, 1994), which is
comparable with a gradient evaluation. Thus, StoCuReNU satisfies D3.

6 Experiments
6.1 Experimental Settings

Datasets and Models. Our experiments use four datasets: (1) FashionMNIST (FMNIST) (Xiao
et al., 2017): contains 60,000 grayscale images of 10 fashion items, (2) CIFAR-10 (Krizhevsky et al.,
2009): contains 50,000 colour images of real-life objects, (3) AG-News (Zhang et al., 2015): contains
120,000 news titles and descriptions in 4 topics, (4) TOFU (Maini et al., 2024): contains 4000
question-answer pairs fictitiously generated by GPT-4. We train CNN for FMNIS, ResNet-18 (He
et al., 2016) for CIFAR-10, and fine-tune Llama-2-7B (Touvron et al., 2023) with LoRA adapters (Hu
et al., 2022) for AG-News and TOFU. Training hyperparameters of our models are detailed in App. F.1.

6Here, we abuse notation and use λd and ud to denote the smallest eigenvalue and eigenvector of HB2
wt

.
7We refer readers to Carmon & Duchi (2019); Bellavia et al. (2023) for more details.
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Unlearning Baselines. We compare against following unlearning algorithms: Retraining8, Random
Labels (Rand. Lbls.), Gradient Ascent (GA), Gradient Descent (GD), GDiff (Maini et al., 2024),
Direct Preference Optimization with “I don’t know” as positive response (IDK) (Maini et al., 2024)
as baselines and SCRUB (Kurmanji et al., 2023), DELETE (Zhou et al., 2025), and Negative
Preference Optimization (NPO) (Zhang et al., 2024b) as SOTA empirical unlearning algorithms. We
also include Newton unlearning algorithm with two Hessian degeneracy baselines (Sec. 4): Hessian
pseudo-inverse (PINV-Newton) and damping Hessian (Damped Newton) with small damping factor
γ = 10−3. Hyperparameters for the unlearning baselines are detailed in App. F.2.
Unlearning Hyperparameters. We use L = 5 for FMNIST, 50 for CIFAR-10, 80 for AG-News, and
400 for TOFU. Although the exact L is often hard to find 9, we show that our algorithms are robust
across different empirical choices of L and describe a procedure to choose a valid L in App. J.1. For
CuReNU, we only use 1 iteration on FMNIST. For StoCuReNU, we set σ = 0.1 and set η to be
the same learning rate as during training. We use n1 = 10, n2 = 5 for AG-News and TOFU, and
n1 = 128, n2 = 64 for the rest. In terms of stochastic iterations, we use T = 20, T ′ = 5 for FMNIST,
and use T = 10, T ′ = 5 for the rest. We study the effect of varying σ and the number of stochastic
iterations of StoCuReNU in App. J.2 and App. J.3, respectively.

Evaluation Metrics. Following previous works (Kurmanji et al., 2023; Maini et al., 2024; Zhao
et al., 2024), we compare accuracy/ROUGE on De, Dr, and Dtest of the unlearned models and the
retrained models (smaller gap is better) and report Tug-of-War (ToW) score that aggregates these
gaps (higher is better). For classification tasks, we compute the Jensen-Shannon divergence (JS
Div.) between the predicted probability distribution of the unlearned models and the retrained models
(smaller is better) (Chundawat et al., 2023). For TOFU, we compute Truth Ratio of answering
with incorrect answers versus correct answers when prompted with the question in De (higher is
better) (Maini et al., 2024). Additionally, we report AUC of the Membership Inference Attack
(MIA) using ML-Doctor (Liu et al., 2022) for classification tasks and the Min-K++ attack (Zhang
et al., 2025) for text generation tasks like TOFU (a smaller gap to retraining is better). We empirically
observe that the MIA is largely ineffective on our models due to regularization effects (Kaya et al.,
2020) and consider overfitted models in App. G. Lastly, unlearning efficiency is evaluated based on
the average unlearning time (in seconds) and peak memory usage with respect to retraining.

6.2 Batch Unlearning

To benchmark computationally expensive unlearning algorithms (i.e., PINV-Newton, Damped Newton,
and CuReNU) and affirm our analysis in Sec. 4, we perform batch unlearning (Sec. 3.1) on CNN
× FMNIST. Following Kurmanji et al. (2023), De is selected according to two scenarios: (1)
sample-level unlearning, where a random subset of 80% samples in D is removed10, and 2) class-level
unlearning, where all samples of a random class is removed.

Tab. 2 shows unlearning performance in the batch unlearning settings. Consistent with our conjecture
in Sec. 4, PINV-Newton and Damped Newton exhibit poor unlearning performance due to excessively
large-norm updates. In class-level batch unlearning, the Newton update norms are 3708.78± 3364.67
for PINV-Newton and 838.68± 742.96 for Damped Newton, both substantially larger than those of
CuReNU (0.36±0.07) and StoCuReNU (0.38±0.05). Our algorithms also maintain De Acc. much
closer to retraining than the first-order counterpart (GD), especially in class-level unlearning, which
reiterates our benefits of stronger convergence guarantees. More importantly, both algorithms achieve
high ToW, with StoCuReNU consistently attaining the best ToW in both settings. This indicates that
the outputs of the unlearned models closely approximate those of retraining. Overall, our unlearning
performance, especially with StoCuReNU, is comparable to SOTA empirical methods (SCRUB,
DELETE) and even surpasses them on some metrics, demonstrating the potential of second-order
unlearning algorithms in the realistic batch unlearning settings.

6.3 Sequential Unlearning

We perform sequential unlearning (Sec. 3.1) with 5 unlearning rounds on Llama-2 × TOFU and
ResNet-18 × CIFAR-10. In each round, De is chosen from 20% of the forget-10% split for TOFU and

8For Llama-2 experiments, we use retraining to refer to fine-tuning the pretrained Llama-2 model on the
retain set Dr from scratch.

9It is empirically infeasible to enumerate over parameteric space to obtain exact L.
10We remove a large subset to induce noticeable outputs/performance changes for clearer comparison.
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Figure 2: Sample-level sequential unlearning on Llama-2 × TOFU and class-level sequential
unlearning on ResNet-18 × CIFAR-10 with 5 unlearning rounds (averaged over 5 random runs). Full
results with Dtest are shown in App. H.1.

Table 3: Unlearning performance at the last round of sample-level sequential unlearning on Llama-2
× TOFU and class-level sequential unlearning on ResNet-18 × CIFAR-10 (over 5 random runs).

Method Llama-2 × TOFU ResNet-18 × CIFAR-10
De ROUGE (→) Dr ROUGE (→) Dtest ROUGE (→) Truth Ratio (↑) ToW (↑) MIA (→) De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 0.390 ± 0.004 0.573 ± 0.034 0.731 ± 0.023 0.658 ± 0.007 1.00 ± 0.00 87.82 ± 5.78 0.000 ± 0.000 91.173 ± 7.363 77.508 ± 3.628 1.000 ± 0.000 0.000 ± 0.000 50.69 ± 0.64
Original 0.625 ± 0.003 0.587 ± 0.008 0.716 ± 0.035 0.508 ± 0.002 0.71 ± 0.03 100.00 ± 0.00 96.422 ± 2.883 90.237 ± 7.728 85.058 ± 3.526 0.033 ± 0.027 0.032 ± 0.004 49.68 ± 0.62

Rand. Lbls. - - - - - - 0.008 ± 0.018 17.065 ± 2.705 16.432 ± 2.806 0.106 ± 0.054 0.022 ± 0.01 50.93 ± 0.67
DELETE - - - - - - 0.000 ± 0.000 77.188 ± 6.152 66.640 ± 6.297 0.775 ± 0.180 0.015 ± 0.012 52.45 ± 1.09

GD 0.510 ± 0.018 0.809 ± 0.019 0.625 ± 0.054 0.538 ± 0.011 0.60 ± 0.08 99.81 ± 0.12 93.400 ± 9.144 93.363 ± 5.199 87.806 ± 1.077 0.057 ± 0.079 0.030 ± 0.007 51.37 ± 0.84
GA 0.009 ± 0.017 0.009 ± 0.017 0.000 ± 0.000 0.571 ± 0.102 0.07 ± 0.01 26.68 ± 17.08 5.384 ± 7.712 24.464 ± 2.996 22.180 ± 2.848 0.143 ± 0.049 0.027 ± 0.006 51.75 ± 0.66

GDiff 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.808 ± 0.137 0.07 ± 0.01 40.25 ± 21.81 12.344 ± 11.709 77.071 ± 6.517 66.838 ± 6.070 0.669 ± 0.074 0.021 ± 0.009 51.47 ± 1.06
IDK 0.098 ± 0.012 0.474 ± 0.013 0.683 ± 0.040 0.566 ± 0.015 0.60 ± 0.02 99.89 ± 0.08 - - - - - -
NPO 0.026 ± 0.030 0.028 ± 0.034 0.001 ± 0.002 0.831 ± 0.043 0.08 ± 0.02 78.52 ± 10.23 7.144 ± 5.106 78.498 ± 10.037 67.576 ± 8.286 0.732 ± 0.086 0.023 ± 0.008 51.94 ± 1.01

SCRUB 0.539 ± 0.033 0.542 ± 0.023 0.640 ± 0.066 0.512 ± 0.012 0.72 ± 0.03 100.00 ± 0.00 0.000 ± 0.000 90.704 ± 3.350 78.168 ± 1.708 0.944 ± 0.031 0.017 ± 0.015 50.16 ± 1.39
StoCuReNU 0.455 ± 0.053 0.484 ± 0.045 0.706 ± 0.038 0.591 ± 0.043 0.80 ± 0.03 99.86 ± 0.13 2.320 ± 3.160 90.332 ± 4.003 77.590 ± 2.903 0.909 ± 0.050 0.011 ± 0.009 51.33 ± 1.26

from 20% of a randomly selected class for CIFAR-10. We provide additional results on Llama-2 ×
AG-News, along with experiments on more unlearning rounds and different choices of De, in App. H.
We note that many computationally expensive algorithms like PINV-Newton, Damped Newton, and
CuReNU from our previous experiments are not applicable here due to large model sizes.

Table 3 and Fig. 2 show unlearning performance in the sequential unlearning settings. Firstly, we
note that many baselines struggle with either under-forgetting with trivial unlearning performance
on De (GD), or over-forgetting with degraded performance on Dr and Dtest (Rand. Lbls., GA, and
even DELETE). In contrast, StoCuReNU is able to achieve close performance to retraining over
multiple unlearning rounds. Its unlearning performance is comparable to SCRUB on CIFAR-10
and even surpasses it on TOFU across most metrics. These results suggest that StoCuReNU is a
practical and scalable unlearning algorithm that can effectively unlearn neural networks with minimal
accumulated errors. The high MIA on TOFU, however, is likely due to the inherent distributional
difference between the forget and test sets, making it easier to separate them.
Remark 6.1. We note that our intention in Secs. 6.2 and 6.3 is not to claim new SOTA performance
across all metrics, but rather to demonstrate that our unlearning algorithms can perform competitively
with strong existing baselines (SCRUB, DELETE). The positive results show that our unlearning
algorithms, especially StoCuReNU, can unlock the potential of Newton unlearning that previously
struggled with degenerate Hessians. As no methods are strictly better across all metrics in these
tables, StoCuReNU is a viable unlearning algorithm worth considering in various scenarios.

6.4 Unlearning Efficiency

Tab. 4 shows the unlearning time (averaged per batch) and the peak memory usage of the best
performing methods (CuReNU, StoCuReNU, DELETE, and SCRUB) in Secs. 6.2 and 6.3. We
provide measures for the remaining unlearning algorithms in App. I. As expected, CuReNU incurs
significant time and storage to store and invert the Hessians. StoCuReNU is an efficient alternative
of CuReNU, which only requires less than 2× memory compared to retraining, consistent with our
analysis in Sec. 5.2. Moreover, StoCuReNU is significantly faster than SCRUB on large models
like Llama-2. These results show that StoCuReNU is a scalable second-order unlearning algorithm,
setting it apart from the vanilla Newton unlearning. We note that SCRUB takes longer than retraining
on AG-News because retraining is only performed for one epoch. On the other hand, Llama-2
experiments require more memory than ResNet-18 despite having fewer trainable parameters, as we
must load both the pretrained model and the LoRA adapters into the memory.
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Table 4: Unlearning efficiency measured by running time (in seconds) and peak memory usage (in
MB) of the best performing unlearning algorithms in Secs. 6.2 and 6.3 (averaged over 3 random runs).

CNN × FMNIST ResNet-18 × CIFAR-10 Llama-2 (+LoRA) × AG-News Llama-2 (+LoRA) × TOFU
Trainable / Total Params 20,728 / 20,728 11,173,962 / 11,173,962 1,064,960 / 6,608,424,960 2,097,152 / 6,740,512,768

Metric Unl. Time (↓) Peak Mem. (↓) Unl. Time (↓) Peak Mem. (↓) Unl. Time (↓) Peak Mem. (↓) Unl. Time (↓) Peak Mem. (↓)
Retraining 61.20 ± 8.70 1762 124.51 ± 10.95 3738 4792.44 ± 145.90 73896 900.71 ± 2.57 98340
DELETE 0.89 ± 0.10 1155 6.71 ± 0.05 2163 - - - -
SCRUB 23.33 ± 0.43 1764 72.39 ± 4.93 3972 6796.16 ± 160.11 77112 178.52 ± 0.39 117000

CuReNU 6355.31 ± 127.31 6226 - - - - - -
StoCuReNU 35.54 ± 6.73 1588 41.79 ± 0.94 7404 85.26 ± 18.23 79140 340.24 ± 61.04 130826

7 Conclusion

While Newton unlearning has been successful on linear models, extending it to neural networks is
hindered by degenerate Hessians. To overcome this, we introduce CuReNU and its efficient variant
StoCuReNU, which enable us to unlearn neural networks with theoretical guarantees. Experiments
show that our methods, especially StoCuReNU, deliver strong performance in both batch and
sequential unlearning, generalizing well beyond the theoretically supported regime. Future advances
in HVP computation are expected to further improve its efficiency.
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A Comparison of Unlearning Algorithms Against Desiderata

Method D1 D2 D3 Sequential Unlearning
GD ✗ ✗ ✓ ✗

Newton ✗ ✗ ✗ ✗
PINV Newton ✗ ✗ ✗ ✗

Damped Newton ✗ ✗ ✗ ✗
Hessian-free Unlearning (Qiao et al., 2025) ✓ ✓ ✗ ✗

CuReNU ✓ ✓ ✗ ✗
StoCuReNU ✓ ✓ ✓ ✓

Table 5: Comparison of different unlearning algorithms against our desiderata (Sec. 3.1).

Tab. 5 compares different unlearning algorithms with respect to our desiderata: Effectiveness (D1),
Robustness (D2), and Efficiency (D3) (Sec. 3.1). We note that D3 is assessed based on both time
and memory efficiency compared to retraining. Additionally, we also compare them regarding their
applicability to challenging settings such as sequential unlearning.

Gradient Descent (GD). In Sec. 6, we observe that GD fails to sufficiently remove the lineage of De

in both batch and sequential unlearning settings, and thus does not satisfy D1. App. J.6 shows that its
unlearning performance is susceptible to the selected learning rate, which fails D2. Nonetheless, GD
only relies on gradient, which satisfies D3.

Newton Unlearning. We note that vanilla Newton unlearning often fails to apply to neural networks
due to problematic Hessians (Sec. 4), and thus does not satisfy D1. Without appropriate damping, it
can produce large-norm updates and poor unlearning performance, indicating a failure to meet D2.
Moreover, it requires storing and computing full Hessians, which is computationally expensive, and
therefore does not satisfy D3 and sequential unlearning.

PINV-Newton and Damped Newton. Both PINV-Newton and Damped Newton demonstrate poor
unlearning performance in our experiments (Sec. 6), and thus fail to satisfy D1. While PINV-Newton
does not involve explicit hyperparameters, leaving potential improvements via tuning unclear, Damped
Newton is sensitive to the choice of damping factor (Sec. 4), and therefore does not satisfy D2. As
with the vanilla Newton method, both approaches also fail to meet D3 and sequential unlearning due
to the high computational and storage costs of handling Hessians.

CuReNU and StoCuReNU. In Sec. 6, we show that CuReNU and StoCuReNU achieve unlearning
performance close to retraining, satisfying D1. Both algorithms remain robust across different
choices of L (App. J.1). CuReNU identifies the optimal damping factor via an optimization problem
(Sec. 5.1), requiring minimal tuning (D2), but it does not meet D3 and cannot be applied to sequential
unlearning due to high computational and storing cost. Its stochastic variant, StoCuReNU, retains
robustness to hyperparameters such as the number of stochastic iterations (App. J.3) and σ (App. J.2),
which make it satisfy D2. Moreover, StoCuReNU is computationally and memory efficient (D3),
while being effective for sequential unlearning (Sec. 6.3).

Hessian-free Unlearning (Qiao et al., 2025). While the Hessian-free unlearning algorithm in Qiao
et al. (2025) demonstrates effective unlearning for linear regressions and CNNs (D1) and robustness to
varying step sizes and epochs (D2), it requires storing a substantial number of HVPs (Hessian-vector
products) that scale with the dataset size, and therefore fails to satisfy D3. This high storage cost
limits its overall application, including sequential unlearning.

B Justification of Assumptions

For completeness, we restate our assumptions in Sec. 3.2.
Assumption B.1. L is twice continuously differentiable with respect to w.
Assumption B.2 (ρ-Lipschitz gradient). For some ρ > 0, ∥gw −gw′∥ ≤ ρ∥w−w′∥,∀w,w′ ∈ Rd.

Assumption B.3 (L-Lipschitz Hessian). For someL > 0, ∥Hw−Hw′∥ ≤ L∥w−w′∥,∀w,w′ ∈ Rd.

Assumptions B.1, B.2 and B.3 are widely used in existing works (Zhang et al., 2024a; Sekhari
et al., 2021; Guo et al., 2020). More importantly, they do not require the loss function to be convex,
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allowing us to extend our analysis to non-convex settings such as neural networks. A caveat of
these assumptions is that they may exclude non-differentiable activations, such as ReLU activations
that are commonly used in neural networks. To address this, we empirically evaluate CuReNU
and StoCuReNU on ReLU-activated networks like CNN × FMNIST and ResNet-18 × CIFAR10
(Sec. 6). Our experiments show that both unlearning algorithms are able to achieve strong unlearning
performance, suggesting that they generalize well beyond the theoretically limited regime.

C Derivations

Under Assumption B.1, HDr
wt

∈ Rd×d is symmetric and is orthogonally diagonalizable by the spectral
theorem, i.e., HDr

wt
= QΛQ−1 with an orthornormal basis Q ≜ [u1, . . . ,ud] and a diagonal matrix

Λ = diag(λ1, . . . , λd). Moreover, since Q is orthonormal, QT = Q−1 and uT
i ui = ∥ui∥2 = 1.

C.1 Derivation of Remark 4.2

Remark C.1 (Restated of Remark 4.2). The Newton update norm using the pseudo-inverse Hessian
is ∥∆t+1∥2 =

∑
i:λi ̸=0

1
λ2
i
(uT

i g
Dr
wt

)2.

We denote by Λ† ≜ diag( 1
λ1
, . . . , 1

λd
) a pseudo-inverse of Λ, where 1

λi
≜ 0 if λi = 0. Expanding

(HDr
wt

)†, we get:

(HDr
wt

)†gDr
wt

= (QΛQ−1)†gDr
wt

= (QΛ†Q−1)gDr
wt

= (QΛ†QT )gDr
wt

=

d∑
i=1

1

λi
ui(u

T
i g

Dr
wt

) =
∑

i:λi ̸=0

1

λi
ui(u

T
i g

Dr
wt

)

Since the above expression is a sum of orthonormal vectors ui, where each ui is scaled by 1
λi
(uT

i g
Dr
wt

),
the update norm using the pseudo-inverse Hessian is given by:

∥(HDr
wt

)†gDr
wt

∥2 =
∑

i:λi ̸=0

1

λ2
i

(uT
i g

Dr
wt

)2∥ui∥2 =
∑

i:λi ̸=0

1

λ2
i

(uT
i g

Dr
wt

)2.

C.2 Derivation of Remark 4.3

Remark C.2 (Restated of Remark 4.3). The Newton update norm using the damped Hessian is
∥∆t+1∥2 =

∑d
i=1

1
(γ+λi)2

(uT
i g

Dr
wt

)2.

We denote by Λγ ≜ diag(γ + λ1, . . . , γ + λd) a diagonal matrix of eigenvalues for the γ-damped
Hessian HDr

wt
+ γI, where γ ≥ max{0,−λd}. Expanding HDr

wt
+ γI, we get:

(HDr
wt

+ γI)−1gDr
wt

= (QΛγQ
−1)−1gDr

wt
= (QΛ−1

γ Q−1)gDr
wt

= (QΛ−1
γ QT )gDr

wt

=

d∑
i=1

1

γ + λi
ui(u

T
i g

Dr
wt

).

Therefore, as explained in App. C.1, the update norm using the γ-damped Hessian is:

∥(HDr
wt

+ γI)−1gDr
wt

∥2 =

d∑
i=1

1

(γ + λi)2
(uT

i g
Dr
wt

)2∥ui∥2 =

d∑
i=1

1

(γ + λi)2
(uT

i g
Dr
wt

)2.
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D Details of CuReNU

Upper bound. Here, we prove that the cubic regularized approximation L̃(wt+1;Dr) is a global
upper bound of L(wt+1;Dr). A similar proof can be found in Lemma 1 of Nesterov & Polyak (2006).

Proof. For all w,w′ ∈ Rd,

gw′ − gw =

∫ 1

0

Hw+τ(w′−w)(w
′ −w)dτ.

Then,

∥gw − gw′ −Hw(w′ −w)∥ ≤ ∥
∫ 1

0

(
Hw+τ(w′−w) −Hw

)
(w′ −w)dτ∥

≤
∫ 1

0

∥(Hw+τ(w′−w) −Hw)(w′ −w)∥dτ

≤ ∥w′ −w∥
∫ 1

0

∥
(
Hw+τ(w′−w) −Hw

)
∥dτ (sub-multiplicative)

≤ ∥w′ −w∥
∫ 1

0

τL∥w′ −w∥dτ =
L

2
∥w′ −w∥2 (by Assumption B.3).

Hence,∣∣∣∣L(w′)− L(w)− ⟨gw,w′ −w⟩ − 1

2
⟨Hw(w′ −w),w′ −w⟩

∣∣∣∣
≤
∣∣∣∣∫ 1

0

⟨gw+τ(w′−w) − gw − τHw(w′ −w),w′ −w⟩dτ
∣∣∣∣

≤
∫ 1

0

∣∣⟨gw+τ(w′−w) − gw − τHw(w′ −w),w′ −w⟩
∣∣ dτ

≤ ∥w′ −w∥
∫ 1

0

∥gw+τ(w′−w) − gw − τHw(w′ −w)∥dτ (by Cauchy-Schwarz inequality)

≤ ∥w′ −w∥
∫ 1

0

L

2
τ2∥w′ −w∥dτ =

L

6
∥w′ −w∥3.

Let the evaluated data be the retain set Dr, w′ = wt+1 and w = wt. By solving the absolute value
inequality above, for all wt,wt+1 ∈ Rd we have:

L(wt;Dr) + ⟨gDr
wt

,∆t+1⟩+
1

2
⟨HDr

wt
∆t+1,∆t+1⟩+

L

6
∥∆t+1∥3 ≥ L(wt+1;Dr), (8)

where ∆t+1 ≜ ∥wt+1−wt∥. The left-hand side is the cubic regularized approximation L̃(wt+1;Dr).

D.1 Convergence Guarantee

Definition D.1 (Restated of Definition 5.2). An ε-SOSP w of the function L (with L-Lipschitz
Hessian) satisfies ∥gw∥ ≤ ε and the minimum eigenvalue of the Hessian λmin(Hw) ≥ −

√
Lε.

A 0-SOSP is a local minimum as ∥∇L(w)∥ is 0 and the Hessian is positive semi-definite. When ε is
small, the gradient norm is close to 0 and the Hessian’s minimum eigenvalue is near non-negative,
meaning that strongly negative curvature directions are absent or, if present, very mild. While finding
an exact local minimum is computationally hard, an ε-SOSP with sufficiently small ε can approximate
a local minimum and avoid most saddle points and sharp local maxima.
Proposition D.2 (Adapted from (Nesterov & Polyak, 2006, Theorem 1)). For non-convex functions
satisfying Assumption B.3, CuReNU converges to an ε-SOSP in O(ε−1.5) iterations.
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Proof. Let wt denote the parameters in iteration t. We define w∗
t+1 ≜ argminwt+1

L̃(wt+1;Dr),
where L̃(wt+1;Dr) is given in Eq. 3 and ∆∗

t+1 ≜ w∗
t+1 −wt.

For w∗
t+1 to be a global minimizer of L̃(wt+1;Dr), it must satisfy:

gDr
wt

+HDr
wt

∆∗
t+1 +

L

2
∥∆∗

t+1∥∆∗
t+1 = 0 (9)

HDr
wt

+
L

2
∥∆∗

t+1∥I ⪰ 0 (10)

Multiplying ∆∗
t+1 once in the Eq. 9 and twice in the Inequality 10, we get:

⟨gDr
wt

,∆∗
t+1⟩+ ⟨HDr

wt
∆∗

t+1,∆
∗
t+1⟩+

L

2
∥∆∗

t+1∥3 = 0 (11)

⟨HDr
wt

∆∗
t+1,∆

∗
t+1⟩+

L

2
∥∆∗

t+1∥3 ≥ 0 (12)

Together, Eq. 11 and Ineq. 12 imply that:

⟨gDr
wt

,∆∗
t+1⟩ ≤ 0. (13)

Step 1: We now aim to bound the decrease in L(·;Dr) at each iteration. Since Eq. 8 state that
L̃(wt+1;Dr) is the upper bound of L(wt+1;Dr), we have:

L(wt;Dr)− L(w∗
t+1;Dr) ≥ L(wt;Dr)− L̃(w∗

t+1;Dr).

Moreover, using Definition 3 of L̃(·;Dr), Eq. 11 and Inequality 13, we have:

L(wt;Dr)− L̃(w∗
t+1;Dr) = −⟨gDr

wt
,∆∗

t+1⟩ −
1

2
⟨HDr

wt
∆∗

t+1; ∆
∗
t+1⟩ −

L

6
∥∆∗

t+1∥3

= −1

2
⟨gDr

wt
,∆∗

t+1⟩+
L

12
∥∆∗

t+1∥3 ≥ L

12
∥∆∗

t+1∥3.

Hence,

L(wt;Dr)− L(w∗
t+1;Dr) ≥

L

12
∥∆∗

t+1∥3.

Step 2: We set up the following auxiliary results.

a) From Eq. 10, we have that

∥gDr
wt

+HDr
wt

∆∗
t+1∥ =

L

2
∥∆∗

t+1∥2.

Moreover, by Inequality 2.2 in Lemma 1 of Nesterov & Polyak (2006), we get:

∥gDr

w∗
t+1

− gDr
wt

−HDr
wt

∆∗
t+1∥ ≤ L

2
∥∆∗

t+1∥2.

By the triangle inequality, these results imply that:

∥gDr

w∗
t+1

∥ ≤ ∥gDr
wt

+HDr
wt

∆∗
t+1∥+ ∥gDr

w∗
t+1

− gDr
wt

−HDr
wt

∆∗
t+1∥ ≤ L∥∆∗

t+1∥2. (14)

b) In view of Inequality 10, the following must hold:

−λmin(H
Dr
wt

) ≤ L

2
∥∆∗

t+1∥. (15)

Step 3: We define

µL(w) = max

{√
1

L
∥∇L(w;Dr)∥,−

1

L
λmin(∇2L(w;Dr))

}
. (16)
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Intuitively, µL(w) ≥ 0 reflects the (non)-local optimality of w, i.e. w is a local minimum with
∇L(w;Dr) = 0 and ∇2L(w;Dr) ⪰ 0 iff µL(w) = 0.

We now aim to show that ∥∆∗
t+1∥ ≥ µL(w

∗
t+1). Indeed, expanding µL(w

∗
t+1) using Inequality 14

and Ineq. 15, we get: √
1

L
∥gDr

wt+1∥ ≤
√

1

L
· L∥∆∗

t+1∥2 = ∥∆∗
t+1∥

− 1

L
λmin(H

Dr

w∗
t+1

) ≤ 1

L
· L
2
∥∆∗

t+1∥ =
1

2
∥∆∗

t+1∥

Therefore, ∥∆∗
t+1∥ ≥ µL(w

∗
t+1).

Step 4: Let L∗ be a lower bound for L(w;Dr). Given that CuReNU involves T iterations, it follows
from the results of Step 1 and Step 3 that:

L(w0;Dr)− L∗ ≥
T−1∑
t=0

[L(wt;Dr)− L(w∗
t+1;Dr)]

≥
T−1∑
t=0

L

12
∥∆∗

t+1∥3

≥
T−1∑
t=0

L

12
µ3
L(w

∗
t+1) ≥

TL

12
min

1≤t≤T
µ3
L(w

∗
t )

Hence,

min
1≤t≤T

µL(w
∗
t ) ≤

(
12

TL
(L(w0;Dr)− L∗)

)1/3

(17)

By our definition in Eq. 16, for min1≤t≤T µL(wt) corresponding to an ε-SOSP (Definition 5.2), it
must satisfy:

min
1≤t≤T

µL(w
∗
t ) ≥ min

1≤t≤T

√
1

L
∥∇L(w∗

t ;Dr)∥ ≥
√

ε

L

min
1≤t≤T

µL(w
∗
t ) ≥ min

1≤t≤T
− 1

L
λmin∇L(w∗

t ;Dr) ≥
√

ε

L

Using Inequality 17 and making T the subject of the formula, we have that:

T ≤ 12
√
L(L(w0;Dr)− L∗)

ε1.5
.

Hence, T ≤ O(ε−1.5).

D.2 Duality Between the Primal and Dual Problems

Here, we restate the minimization problem of the cubic-regularized quadratic approximation of
L(wt+1;Dr) as defined in Eq. 3:

min
wt+1

[
L̃(wt+1;Dr) = L(wt;Dr) + ⟨gDr

wt
,∆t+1⟩+ 1

2

〈
HDr

wt
∆t+1,∆t+1

〉
+ L

6 ∥∆t+1∥3
]
.

Let αt+1 ≜ ∥wt+1 −wt∥. For the above primal problem, we have the dual optimization problem in
αt+1 as described in Eq. 4:

supαt+1
ξ(αt+1), ξ(αt+1) = − 1

2

〈(
HDr

wt
+ L

2 αt+1I
)−1

gDr
wt

,gDr
wt

〉
− L

12α
3
t+1

s.t. αt+1 ∈ Q = {α ∈ R : HDr
wt

+ L
2 αI ≻ 0, α ≥ 0}.
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The duality gap is the difference between the optimized value of the primal problem
minwt+1 L̃(wt+1;Dr) and that of the dual problem supαt+1

ξ(αt+1). If the duality gap equals
0, which is called strong duality, the optimized value of the dual problem equals the optimized
value of the primal problem. The following proposition, adapted from Nesterov & Polyak (2006,
Theorem 10), states the duality gap between the primal and dual problems.
Proposition B.2.1. For any L > 0, the primal and dual problems satisfy strong duality, i.e.,
minwt+1

L̃(wt+1;Dr) = supαt+1
ξ(αt+1). Moreover, let ∆t+1 ≜

(
HDr

wt
+ L

2 αt+1I
)−1

gDr
wt

. Then,
for any αt+1 ∈ Q, the duality gap is 4

3L · αt+1+2∥∆t+1∥
(αt+1+∥∆t+1∥)2 · ξ′(αt+1)

2 ≥ 0 where ξ′ denotes the
first-order derivative of ξ w.r.t. αt+1.

Note that the dual problem is a one-dimensional concave maximization problem over αt+1 ∈ Q.
From Proposition B.2.1, L̃(wt+1) is minimized when αt+1 ∈ Q satisfies ξ′(αt+1) = 0, indicating
a global maximizer of the dual problem. Moreover, even if finding such a maximizer is infeasible,
finding αt+1 ∈ Q with a small ξ′(αt+1) implies a small duality gap and thus the primal function
value is near optimal. Additionally, the concave constrained dual problem can be solved efficiently
instead of the non-convex primal problem through techniques to solve the trust-region subproblem, as
we will show next.

D.3 Solving the Dual Problem using Trust-Region Methods

Firstly, by taking the derivative of ξ (defined in Eq. 4) w.r.t. αt+1 we have:

ξ′(αt+1) =
d

dαt+1

[
−1

2
⟨(HDr

wt
+

L

2
αt+1I)

−1gDr
wt

,gDr
wt

⟩ − L

12
α3
t+1

]
=

L

4
(gDr

wt
)T (HDr

wt
+

L

2
αt+1I)

−1(HDr
wt

+
L

2
αt+1I)

−1gDr
wt

− L

4
α2
t+1

=
L

4
(∥∆t+1∥2 − α2

t+1).

Setting ξ′(αt+1) to 0 and note that αt+1 ≥ 0 we have:

∥∆t+1∥ = αt+1. (18)

Also, since ∆t+1 ≻ 0 we have:

αt+1 > max

{
0,− 2

L
λd

}
, (19)

where λd is the minimum eigenvalue of HDr
wt

. Here, we use trust-region methods (Conn et al., 2000)
to solve Eq. 18 and Eq. 19. We consider the following trust-region subproblem:

min
∆t+1

⟨gDr
wt

,∆t+1⟩+
1

2
⟨HDr

wt
∆t+1,∆t+1⟩ s.t. ∥∆t+1∥ ≤ αt+1.

By Corollary 7.2.2 of Conn et al. (2000), the above problem admits a global minimizer ∆∗
t+1 ≜(

HDr
wt

+ L
2 αt+1I

)−1
gDr
wt

that satisfies Eq. 18 and Eq. 19. Therefore, we adopt a standard procedure
to solve the trust-region subproblem.

Our procedure starts from αt+1 = max{0,− 2
Lλd}+ ε, where ε is a small constant. Note that this

choice of αt+1 yields the largest ∥∆t+1∥, as we showed the latter is a monotonically decreasing
function of γ = L

2 αt+1 (App. C.2). From this, two cases arise by comparing αt+1 and ∥∆t+1∥:

• Case 1 happens when ∥∆t+1∥ ≥ αt+1. Empirically, we observe that this case is common
for neural networks with highly non-convex losses. Then, we can use Newton’s method
to find the root of ∥∆t+1∥ − αt+1 = 0 using its derivative w.r.t. αt+1. However, we will
empirically use Newton’s method with a better-behaved function 1

∥∆t+1∥ − 1
αt+1

to avoid
the tricky case when ∆t+1 has small eigenvalues (Conn et al., 2000, Section 7.3.3).
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• Case 2 happens when ∥∆t+1∥ < αt+1. This means ∆∗
t+1 is in the interior of the trust region

(with radius αt+1), and the trust-region subproblem becomes an unconstrained optimization
problem. However, by Corollary 7.2.2 of Conn et al. (2000), this implies that αt+1 = 0 and
the Hessian is itself positive definite, which contradicts our empirical observation (Obs. 4.1).
Nonetheless, if this occurs, we will accept ∆∗

t+1 = ∆t+1.

D.4 Pseudocode

We provide the pseudocode of CuReNU in Algorithm 1. The algorithm employs Newton’s method
with a trust region (App. D.3) to solve the dual problem. Following Conn et al. (2000), we use the
Cholesky decomposition of the regularized Hessian matrix to enhance computational efficiency and
numerical stability.

Fast computation via Cholesky decomposition.

Algorithm 1 CuReNU
Input: original model parameters w∗, retained set Dr, objective function L, Hessian Lipschitz
constant L, number of unlearning iterations T , number of Newton’s iterations Tinner, tolerance ε

1: Set w0 = w∗

2: for t = 0..T − 1 do
3: Get gDr

wt
= ∇L(wt;Dr)

4: Get HDr
wt

= ∇2L(wt;Dr)

5: ∆t+1 = SolveDualProblem(HDr
wt

, gDr
wt

, L, ε, Tinner)
6: Set wt+1 = wt +∆t+1

7: end for
Output: unlearned model parameters: wT ;

8: function SolveDualProblem(H, g, L, ε, Tinner) ▷ See D.3
9: Get the minimum eigenvalue λd of H

10: Set γ0 = max(0,−λd) + ε
11: Set α0 = γ0

2L

12: Factorize H+ γ0I = LLT ▷ Cholesky Decomposition
13: Solve ∆ in (LLT )−1∆ = g
14: if ∥∆∥ ≥ α0 then
15: for t = 1..Tinner do ▷ Newton’s Method
16: if |∥∆∥ − αt−1| ≤ ε then
17: break;
18: else
19: Solve Lu = ∆
20: Set ξ′(αt−1) =

1
∥∆∥ − 1

αt−1

21: Set ξ′′(αt−1) =
∥u∥2

∥∆∥3 + 1
γt−1αt−1

22: Set γt = γt−1 − ξ′(αt−1)
ξ′′(αt−1)

23: Set αt =
γt

2L

24: Factorize H+ γtI = LLT ▷ Cholesky Decomposition
25: Solve (LLT )−1∆ = g
26: end if
27: end for
28: end if
29: return ∆;
30: end function
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E Details of StoCuReNU

E.1 Convergence Guarantee

Throughout this section, we use Õ to hide the logarithmic factors, i.e. Õ(f(n)) = O(f(n) logk n)
for some constant k. To make the convergence analysis tractable, we need the following assumption.
Assumption B.2.1. The stochastic gradient and Hessian estimates of L satisfy

• ∀w,E
[
∥gB1

w − gD
w∥
]
≤ σ2

1 and ∥gB1
w − gD

w∥ ≤ M1 almost surely;

• ∀w,E
[
∥HB2

w −HD
w∥
]
≤ σ2

2 and ∥HB2
w −HD

w∥ ≤ M2 almost surely.
Theorem B.2.1 (Adapted from (Tripuraneni et al., 2018, Corollary 1)). For non-convex functions
satisfying Assumptions B.3, B.2 and stochastic estimates satisfying Assumption B.2.1, with probability
greater than 1− δ, if n1 = Õ

(
σ2
1

ε2

)
and n2 = Õ

(
σ2
2

Lε

)
, StoCuReNU can converge to an ε-SOSP in

Õ(ε−3.5) stochastic gradient/HVP evaluations where ε is sufficiently small.

Proof. Step 1: Under Assumption B.2.1, we use the matrix Bernstein inequality Tropp et al. (2015)
to derive the following concentration bounds for gradient and HVP:

• For n1 ≥ max(M1

c1ε
,

σ2
1

c21ε
2 )

8
3 log

2d
δ , then with probability 1− δ′,

∥gB1
wt

− gDr
wt

∥ ≤ c1ε

• For n2 ≥ max( M2

c2
√
Lε

,
σ2
2

c22Lε
) 83 log

2d
δ , then with probability 1− δ′,

∀z ∈ Rd,
∥∥(HB2

wt
−HDr

wt

)
z
∥∥ ≤ c2

√
Lε∥z∥

For a sufficiently small ε, the above inequalities hold for n1 = Õ
(

σ2
1

ε2

)
and n2 = Õ

(
σ2
2

Lε

)
.

Step 2: We denote w∗
t+1 ≜ minwt+1 L̃sto(wt+1;Dr) and ∆∗

t+1 ≜ w∗
t+1 − wt, where

L̃sto(wt+1;Dr) is defined in Eq. 6. Here, we note that w∗
t+1 is shown to be achievable by

the gradient descent algorithm (perturbed by a small σ) as described in Sec. 5.2. The convergence
guarantee of gradient descent is given in (Carmon & Duchi, 2019).

Similar to the proof in Step 1 of App. D.1, we have:

L(wt;Dr)− L̃sto(w∗
t+1;Dr) ≥

L

12
∥∆∗

t+1∥3.

However, unlike the results in App. D.1, it does not immediately follow that L̃sto(wt+1;Dr) is the
upper bound of L(wt+1;Dr). Instead, this upper bound holds only up to a certain tolerance, as we
will show next.

Step 3: By the proof of Lemma 4 of Tripuraneni et al. (2018), if w∗
t+1 is an ε-SOSP (Definition 5.2),

then

∥∆∗
t+1∥ ≤ 1

2

√
ε

L
. (20)

Otherwise, we have that ∥∆∗
t+1∥ ≥ 1

2

√
ε
L .

Step 4: Using the implication of L-Lipschitz Hessian (Eq. 8), Cauchy-Schwarz inequality with
gradient and HVP concentration bounds in Step 1, and the results from Step 2:

L(w∗
t+1;Dr)− L(wt;Dr)

≤ ⟨gDr
wt

,∆∗
t+1⟩+ ⟨HDr

wt
∆∗

t+1,∆
∗
t+1⟩+

L

6
∥∆∗

t+1∥3

= L̃sto(w∗
t+1;Dr)− L(wt;Dr) + ⟨gDr

wt
− gB1

wt
,∆∗

t+1⟩+
1

2
⟨(HDr

wt
−HB2

wt
)∆∗

t+1,∆
∗
t+1⟩

≤ − L

12
∥∆∗

t+1∥3 + c1ε∥∆∗
t+1∥+

c2
2

√
Lε∥∆∗

t+1∥2
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We now consider the characteristics of w∗
t+1:

Case 1: w∗
t+1 is an ε-SOSP, then using Ineq. 20, we get:

L(w∗
t+1;Dr)− L(wt;Dr) ≤ − 1

96

√
ε3

L
+

c1
2

√
ε3

L
+

c2
8

√
ε3

L
≤ −c

√
ε3

L
,

where c ≥ 1
96 − c1

2 − c2
8 by making c1, c2 arbitrarily small (i.e. increasing n1 and n2).

Case 2: If w∗
t+1 is not an ε-SOSP, then ε ≤ 4L∥∆∗

t+1∥2.

L(w∗
t+1;Dr)− L(wt;Dr) ≤ − L

12
∥∆∗

t+1∥3 + 4c1L∥∆∗
t+1∥3 + c2L∥∆∗

t+1∥3

≤ − 1

96

√
ε3

L
+

c1
2

√
ε3

L
+

c2
8

√
ε3

L
≤ −c

√
ε3

L
,

where c ≥ 1
96 − c1

2 − c2
8 by making c1, c2 arbitrarily small (i.e. increasing n1 and n2).

In both cases, we get the following bound:

L(wt;Dr)− L(w∗
t+1;Dr) ≥ c

√
ε3

L
. (21)

Step 5: Let L∗ be the lower bound of L(w;Dr).StoCuReNU involves at most T iterations to decrease
from L(w0;Dr) to L∗, where the upper bound on per-iteration decrease is given in Inequality 21.
Following the same argument as Step 4 of the proof of Prop D.2, the total number of iterations T is:

T ≤
√
L(L(w0, Dr)− L∗)

cε1.5
.

Step 6: Sincen1 = Õ(
σ2
1

ε2 ) andn2 = Õ(
σ2
2

Lε ) from Step 1, each iteration (corresponding to minimizing
the stochastic cubic-regularized approximation once) cost involve n1 gradient and n2 · T (ε) HVP
evaluations, where T (ε) is the number of steps for the gradient descent method to find a sufficiently
good minimizer of L̃sto. By Lemma 1 of Tripuraneni et al. (2018), T (ε) ≤ Õ( ρ√

Lε
). Hence, the

overall computational cost is

Õ

(√
L(L(w0, Dr)− L∗)

cε1.5

(
σ2
1

ε2
+

σ2
2

Lε
· ρ√

Lε

))
.

When ε is sufficiently small, the above equals to Õ(ε−3.5) gradient/Hessian vector evaluations.

E.2 Pseudocode

We provide the pseudocode for StoCuReNU in Algorithm 2. Following Carmon & Duchi (2019),
when the stochastic gradient is large, i.e. ∥gB1

wt
∥ ≥ ρ2

L , we take a Cauchy step (steepest descent within
the trust region), which is closed-form and computationally efficient as shown in Lines 12-13, to
induce Ω(

√
ε3

L ) decrease in the stochastic approximation L̃sto and function value L.

F Detailed Experimental Settings

F.1 Training Hyperparameters

We conduct our experiments on NVIDIA H100 GPUs (80GB) and NVIDIA H200 GPUs (141GB).
Our evaluation is averaged across 3 random seeds {1, 2, 3}. The training hyperparameters in our
experiments are detailed below.
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Algorithm 2 StoCuReNU
Input: original model parameters w∗, retained set Dr, objective function L, gradient Lipschitz
constant ρ, Hessian Lipschitz constant L, number of unlearning iterations T , number of gradient
descent iterations Tinner, gradient perturbation parameter σ, learning rate η

1: Set w0 = w∗

2: for t = 0..T − 1 do
3: Get B1, B2 independently sampled from Dr

4: Get gB1
wt

= ∇L(wt;B1)

5: Get HB2
wt

= ∇2L(wt;B2)

6: ∆t+1 = GradientDescent(HB2
wt

,gB1
wt

, ρ, L, Tinner, σ, η)
7: Set wt+1 = wt +∆t+1

8: end for
Output: unlearned model parameters: wT ;

9:
10: function GradientDescent(H,g, ρ, L, Tinner, σ, η)
11: if ∥g∥ ≥ ρ2

L then ▷ Cauchy Step

12: Set Rc = −g⊤Hg
L∥g∥2 +

√(
g⊤Hg
L∥g∥2

)2
+ 2∥g∥

L

13: Set ∆ = −Rc
g

∥g∥
14: return ∆;
15: else
16: Set ∆0 = 0
17: Get g̃ = g + σζ where ζ ∼ Unif(Sd−1) ▷ Gradient Descent
18: for t = 0..Tinner − 1 do
19: ∆t+1 = ∆t − η (H∆t + g̃ + L∥∆t∥∆t)
20: end for
21: return ∆Tinner ;
22: end if
23: end function

CNN × FMNIST. The dataset includes 60,000 training samples and 10,000 test samples. We adopt
a small 2-layer CNN with 32 filters of size 3 × 3, max pooling of size 2 × 2, ReLU activations, and a
fully connected layer with 64 hidden units. We train the CNN with the SGD optimizer with a batch
size of 64 over 30 epochs, a learning rate of 0.01 with decay 0.5 every 2,000 steps.

ResNet-18 × CIFAR-10. The dataset contains 50,000 training samples and 10,000 test samples.
We train a ResNet18 (He et al., 2016) using the Adam optimizer with a batch size of 100 for 10
epochs, a learning rate of 0.001 with decay 0.5 every 5,000 steps, and a weight decay of 10−4.

Llama-2 × AG-News. The dataset contains 120,000 training samples and 7,600 test samples. We
fine-tune the pretrained Llama-2-7B model from Hugging Face11 using LoRA (r = 2, α = 2, drop
out 0.1) in bfloat16, with a batch size of 15 over 1 training epoch, learning rate of 10−4, and a warmup
ratio of 0.03.

Llama-2 × TOFU. The training set contains 4,000 question–answer pairs fictitiously generated by
GPT-4, while the test set contains 100 question–answer pairs about real-world authors. We finetune
the pretrained Llama-2-7B-chat model from Hugging Face12 using LoRA (r = 4, α = 16, drop out
0.05) in bfloat16, with a batch size of 4 and 4 gradient accumulation steps over 5 training epochs with
a learning rate of 10−3. We also provide results on full Llama-2-7B without LoRA in App. H.5.

We compute the empirical Hessian eigenspectrum density for Llama-2 × TOFU (Fig. 1, right) using
the PyHessian package (Yao et al., 2020) with 100 iterations of the Stochastic Lanczos Quadrature
algorithm. Due to memory constraints, it is infeasible to compute the Hessian eigenspectrum over

11https://huggingface.co/meta-llama/Llama-2-7b-hf.
12https://huggingface.co/meta-llama/Llama-2-7b-chat-hf.
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the full dataset. Therefore, to mitigate variance, we repeat the process 10 times with independent
mini-batches of size 8 and report the averaged results.

F.2 Unlearning Baselines

Here, we describe the unlearning baselines and their hyperparameters used in our experiments. Unless
otherwise specified, we conduct grid search for the best learning rate in {10−5, 10−4, 10−3}.

• Retraining: trains the model from scratch on the retain set Dr. For Llama-2 experiments,
we use retraining to refer to fine-tuning the pre-trained Llama-2 model on Dr from scratch.
The training/fine-tuning hyperparameters are the same as those used for training/fine-tuning
the original model on the full training set D.

• Random Labels (Rand. Lbls.): fine-tunes the model on the randomly labeled De for 1
epoch.

• DELETE (Zhou et al., 2025): uses the original model to generate new labels forDe (different
from the true labels), then minimizes Kullback-Leibler (KL) divergence with respect to new
labels for 1 epoch.

• Gradient Descent (GD): minimizes losses on De via gradient descent on Dr. We run GD
for 1 epoch on TOFU and 5 epochs for the rest, with the same learning rate as during training.

• Gradient Ascent (GA): maximizes losses on De via gradient ascent for 1 epoch.
• Gradient Difference (GDiff) (Maini et al., 2024): minimizes the weighted average of the

loss on Dr and the negated loss on De. We sample a subset of Dr to be of the same size as
De and assign equal weights to both loss terms. We run GDiff for 1 epoch on TOFU and 5
epochs for the rest.

• SCRUB (Kurmanji et al., 2023): maximizes the KL divergence to the output distribution
of the original model on De while minimizing it on Dr in an alternative manner. We run
SCRUB for 1 epoch on TOFU and 5 epochs for the rest.

• PINV-Newton (Sec. 4): replaces exact inverse with pseudo-inverse in the vanilla Newton
unlearning. We run PINV-Newton for 1 epoch on FMNIST.

• Damped Newton (Sec. 4): adds a small diagonal matrix γI to the degenerate Hessian in the
vanilla Newton unlearning. We use γ = 10−3 by default. We run Damped Newton for 1
epoch on FMNIST.

• IDK (Maini et al., 2024): encourages alternative answers such as “I don’t know” when
prompted the LLMs with questions in De. We run IDK for 1 epoch on TOFU.

• NPO (Zhang et al., 2024b): discourages the original answers/predictions in De. We run
NPO for 1 epoch. We conduct grid search for the optimal β in {0.5, 1, 2}.

While relevant, our experiments do not include a comparison with the Hessian-free work of Qiao et al.
(2025) due to their prohibitively high computational cost and memory requirements. Particularly,
Qiao et al. (2025) inherently incur substantial computational overhead due to the precomputation
step that computes the Hessian-vector product for every sample in the training set. When evaluating
their method on FMNIST, the precomputation step takes around 468.3 hours (≈ 19.5 days) to run,
which already far exceeds the time required for retraining (≈ 61.20 seconds) and defeats the purpose
of unlearning. Additionally, their method requires O(nd) memory to store HVP for every sample
in the training set, where n is the dataset size. The prohibitively long precomputation time and the
significant memory requirement thus make Qiao et al. (2025) impractical in real-world settings.

F.3 Hessian-vector Products Computation

A common operation involving the Hessian matrix in many applications is its product with an arbitrary
vector v, known as a Hessian-vector product (HVP). Pearlmutter (1994) introduced an efficient method
for computing HVPs without materializing the full Hessian H based on the following definition:

Hv = lim
ε→0

1

ε
[∇wL(w + εv)−∇wL(w)] = ∇w[⟨∇wL(·),v⟩](w).

Here, HVP corresponds to the directional derivative of the gradient ∇wL in the direction of vector v.
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Automatic differentiation (AD) can be used to compute the derivatives involved in HVP computation.
At its core, AD builds a computational graph by decomposing the function into variables and
elementary operations, and applies the chain rule on this graph to compute derivatives. Depending on
the order of multiplications in the chain rule, AD can be implemented in forward mode (propagating
derivatives from inputs to outputs) or backward mode (propagating derivatives from outputs to inputs).
Forward mode is often more memory-efficient than backward mode because it does not require storing
all intermediate states in the computational graph during derivative computation.

By combining different AD modes, we can efficiently compute HVPs using two common approaches:
forward-over-backward and backward-over-backward. The basic steps for each approach are outlined
below.

Forward-over-backward.

1. Compute the gradient ∇wL(w) using the backward-mode AD.
2. Compute the directional derivative of∇wL(w) in the direction ofv using the Jacobian-vector

product with forward-mode AD.

Backward-over-backward.

1. Compute the gradient ∇wL(w) using the backward-mode AD.

2. Compute the scalar product h(w) ≜ ⟨∇wL(w),v⟩.
3. Compute the gradient of h(w) w.r.t. w using another backward-mode AD.

Our experiments use PyTorch’s HVP implementation, which is supported through
torch.autograd.functional.hvp(). Since forward-mode AD is not natively supported in
PyTorch, HVPs are computed using the backward-over-backward approach, which has a larger memory
footprint due to double backward differentiations. Moving forward, a more efficient implementation
of HVP computation in PyTorch, such as the forward-over-backward approach, can be studied to
further improve the efficiency of StoCuReNU.

G Additional Results for MIA

As discussed in Sec. 6.1, we obtain the MIA results using ML-Doctor (Liu et al., 2022) by computing
the AUC score based on the losses of the unlearned model on De and Dtest. However, we observe
that the standard MIA based on losses of the unlearned models is not informative (e.g., Table 3),
which we hypothesize is due to the following factors:

Overfitting. As mentioned in Kurmanji et al. (2023), the original model in their work has overfitted
more than a state-of-the-art model on CIFAR-10 would, and their MIA is performed on the overfitted
original and unlearned models. Additionally, the analysis in Liu et al. (2022) also shows that a higher
overfitting level leads to better membership inference. However, the original model in our setting
is more generalized (from Table 3, Dtest and Dr accuracy are close to each other with a difference
of 1.85%), and MIA on our non-overfitted models is less informative. While studies have shown
that there are connections between overfitting and privacy leakage (Shokri et al., 2017; Yeom et al.,
2018; Liu et al., 2022), in our setting, when the original model generalizes well on Dtest, the losses
on De and Dtest would be less distinguishable, which leads to close-to-50% MIA result for both
original and unlearned models. Therefore, we conduct a new experiment by training the original
ResNet model and CNN model for 50 epochs to obtain overfitted models (e.g., from Table 6, Dtest

accuracy is much lower than Dr accuracy with a difference of 7.17%) and perform unlearning on the
overfitted model. However, in practice, an overfitted model is less preferable than those with better
generalization abilities. Tables 6 and 8 show the performance and MIA results for different unlearning
algorithms on the overfitted CNN and ResNet models, where the MIA result is more informative.
Based on the results from the overfitted ResNet, our StoCuReNU successfully decreases MIA result
by 6.06%. While there remains a gap between StoCuReNU and the state-of-the-art method SCRUB,
our StoCuReNU offers advantages in theoretical support and efficiency.

Test Loss Distributions. In our MIA experiments on FMNIST, CIFAR, and AG-News, De and Dtest

samples are drawn from the same distribution, e.g., samples of the same class. This results in similar
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Table 6: Performance and MIA results in the class-level sequential unlearning setting on the overfitted
ResNet-18 × CIFAR-10 (averaged over 3 random runs). Results are reported at the last unlearning
round.

Method Overfitted ResNet-18 × CIFAR-10 Class Removal
De Acc. (→) Dr Acc. (↑) Dtest Acc. (↑) ToW (↑) JS Div. (↓) MIA (→)

Retraining 0.00 ± 0.00 99.94 ± 0.01 84.52 ± 0.23 1.00 ± 0.00 0.0 ± 0.0 48.96 ± 1.21
Original 99.89 ± 0.03 99.90 ± 0.01 92.73 ± 0.07 0.00 ± 0.00 0.036 ± 0.0 57.61 ± 0.35

Rand. Lbls. 16.45 ± 1.92 94.96 ± 0.64 81.25 ± 1.07 0.77 ± 0.01 0.024 ± 0.0 60.14 ± 0.81
DELETE 0.05 ± 0.01 97.95 ± 0.18 82.44 ± 0.41 0.96 ± 0.01 0.011 ± 0.001 51.86 ± 0.74

GD 99.97 ± 0.03 99.86 ± 0.01 92.53 ± 0.17 0.00 ± 0.00 0.036 ± 0.0 57.81 ± 0.50
GA 4.35 ± 1.36 43.64 ± 14.91 37.10 ± 12.14 0.23 ± 0.10 0.029 ± 0.001 48.73 ± 0.86

GDiff 18.18 ± 1.33 78.15 ± 3.28 66.92 ± 3.31 0.53 ± 0.04 0.036 ± 0.0 49.93 ± 0.11
NPO 15.95 ± 1.14 90.71 ± 1.32 78.26 ± 1.35 0.72 ± 0.01 0.036 ± 0.0 51.47 ± 1.51

SCRUB 0.00 ± 0.00 85.92 ± 1.33 75.43 ± 0.83 0.78 ± 0.01 0.008 ± 0.002 49.68 ± 0.99
StoCuReNU 1.82 ± 1.97 87.25 ± 0.77 74.52 ± 0.67 0.77 ± 0.02 0.017 ± 0.003 51.55 ± 1.87

Figure 3: Loss distributions for samples on non-overfitted and overfitted, original and retraining
models.

Table 7: Performance and MIA results for StoCuReNU and other tested baselines in sequential
unlearning setting on Llama-2 × TOFU where the test set is in a similar distribution as the forget set.

Method Llama-2 × TOFU
De ROUGE (→) D′

r ROUGE (→) D′
test ROUGE (→) Truth Ratio (↑) ToW (↑) MIA (→)

Retraining 0.386 ± 0.004 0.576 ± 0.005 0.746 ± 0.027 0.664 ± 0.012 1.00 ± 0.00 63.72 ± 0.93
Original 0.628 ± 0.008 0.570 ± 0.007 0.679 ± 0.068 0.513 ± 0.011 0.69 ± 0.03 99.04 ± 0.26

GD 0.497 ± 0.010 0.759 ± 0.006 0.612 ± 0.033 0.545 ± 0.005 0.63 ± 0.04 94.89 ± 0.51
GA 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.521 ± 0.024 0.07 ± 0.01 81.63 ± 16.03

GDiff 0.09 ± 0.09 0.09 ± 0.09 0.00 ± 0.00 0.81 ± 0.05 0.10 ± 0.02 91.98 ± 0.99
IDK 0.112 ± 0.024 0.462 ± 0.009 0.668 ± 0.025 0.570 ± 0.010 0.59 ± 0.01 96.17 ± 0.27

SCRUB 0.598 ± 0.020 0.549 ± 0.011 0.657 ± 0.083 0.508 ± 0.007 0.69 ± 0.05 98.83 ± 0.23
NPO 0.62 ± 0.16 0.43 ± 0.06 0.79 ± 0.13 0.59 ± 0.11 0.56 ± 0.01 71.79 ± 1.23

StoCuReNU 0.477 ± 0.011 0.495 ± 0.006 0.678 ± 0.021 0.570 ± 0.001 0.76 ± 0.02 97.54 ± 2.13

Table 8: Performance and MIA results for StoCuReNU and other tested baselines in batch unlearning
setting on overfitted CNN × FMNIST (averaged over 3 random runs).

Method Overfitted CNN × FMNIST
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 0.00 ± 0.00 86.07 ± 0.01 76.62 ± 0.11 1.00 ± 0.00 0.000 ± 0.000 54.04 ± 0.56
Original 92.57 ± 3.13 84.55 ± 0.80 84.32 ± 0.93 0.07 ± 0.03 0.024 ± 0.004 53.90 ± 0.81

Rand. Lbls. 4.70 ± 3.73 74.74 ± 6.43 67.02 ± 5.53 0.77 ± 0.10 0.007 ± 0.002 50.04 ± 0.48
DELETE 1.43 ± 1.29 82.67 ± 1.29 73.58 ± 1.18 0.92 ± 0.01 0.002 ± 0.001 50.84 ± 1.35

GD 92.21 ± 3.45 84.58 ± 0.78 84.30 ± 0.88 0.07 ± 0.03 0.023 ± 0.004 53.99 ± 0.37
GA 0.52 ± 0.49 76.82 ± 4.25 68.38 ± 3.77 0.83 ± 0.07 0.005 ± 0.003 51.34 ± 0.75

GDiff 0.18 ± 0.29 74.32 ± 9.96 66.20 ± 8.99 0.80 ± 0.16 0.006 ± 0.004 52.11 ± 1.44
NPO 5.81 ± 3.94 81.04 ± 1.21 72.77 ± 1.05 0.86 ± 0.04 0.003 ± 0.001 51.27 ± 0.67

SCRUB 0.00 ± 0.00 82.95 ± 0.29 73.90 ± 0.31 0.94 ± 0.01 0.006 ± 0.001 48.33 ± 3.49
StoCuReNU 0.64 ± 1.04 81.65 ± 1.66 72.79 ± 1.41 0.91 ± 0.03 0.003 ± 0.001 51.20 ± 0.18
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loss distributions on De and Dtest samples on both the original and unlearned models. As shown in
Fig. 3, both non-overfitted and overfitted models result in similar loss distributions on De and Dtest

samples. This makes it more challenging for the MIA attacker to perform the binary classification,
which thus results in not very high accuracy for both original and unlearned models. On the other
hand, in our experiments on TOFU, the distribution of Dtest samples in the TOFU dataset is relatively
different from De samples, e.g., samples contain different question-answering content. This leads to
different loss distributions on De and Dtest samples that are naturally separable, which results in the
large MIA AUC as shown in Table 3, where even Retraining reaches as high as 78.46. Therefore, we
conduct a new experiment by selecting 400 samples from the original Dr to form a new D′

test to
enforce a similar distribution as De. This also results in a new D′

r with 3, 200 samples. We train
Llama-2 on the new training set, then perform unlearning and evaluate the results. Table 7 shows the
performance and MIA results on this setting, where the MIA results are closer to 50 and Retraining
achieves 63.72. Based on the results, while our StoCuReNU does not achieve the optimal MIA result,
it demonstrates competitive unlearning performance by decreasing the De ROUGE and preserves the
model utility well with high D′

r and D′
test ROUGE.

H Supplementary Experiments for Sequential Unlearning

H.1 Full result for sequential unlearning in main paper

Here, we show the full results that includes Dtest Acc. and ROUGE of sample-level sequential
unlearning on Llama-2 × TOFU (Fig. 4, top) and class-level sequential unlearning on ResNet-18 ×
CIFAR-10 (Fig. 4, bottom). The results show that StoCuReNU preserves decent performance on
Dtest across the unlearning rounds in the sequential unlearning setting.
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Figure 4: Full results on sample-level sequential unlearning on Llama-2 × TOFU (top) and class-level
sequential unlearning on ResNet-18 × CIFAR-10 (bottom) with 5 unlearning rounds (averaged over 5
random runs).

H.2 Increased Unlearning Round

In this experiment, we extended our sequential unlearning experiments to 10 rounds using ResNet-18
on the CIFAR-10 dataset. We increase De to include two full classes (20% of the full dataset, or
10, 000 samples). The experiment is conducted using the random seed 1. Despite the increased number
of unlearning rounds and larger De, our results in Fig. 5 and Table 9 show that our StoCuReNU can
perform relatively well compared to the strong baselines by staying close to Retraining throughout the
increased unlearning rounds and achieving the best ToW score at the end of sequential unlearning.

H.3 Class-Level Sequential Unlearning on Llama-2 × AG-News

In this experiment, we perform class-level sequential unlearning with Llama-2-7B on the AG-News
dataset (Zhang et al., 2015). The number of unlearning rounds is set to 3, which corresponds
to 10,000 samples to be unlearned per round. The results in Table 10 and Fig. 6 show that our
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Figure 5: Extended sequential unlearning with 10 unlearning rounds on ResNet18 × CIFAR-10 (seed
1).

Table 9: Unlearning performance at the last unlearning round for extended sequential unlearning with
10 unlearning rounds on ResNet18 × CIFAR-10 (seed 1).

Method ResNet18 × CIFAR-10
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 0.00 99.40 81.56 1.00 0.000 53.36
Original 95.54 98.96 88.63 0.04 0.031 50.66

Rand. Lbls. 0.00 17.67 16.92 0.06 0.014 50.74
DELETE 0.00 97.63 80.23 0.97 0.007 50.26

GD 94.34 99.25 88.84 0.05 0.030 49.85
GA 0.00 17.82 16.09 0.06 0.032 53.18

GDiff 0.00 47.85 42.06 0.29 0.028 52.56
SCRUB 0.00 95.02 80.56 0.95 0.007 50.69

NPO 0.00 22.33 19.65 0.09 0.032 52.51
StoCuReNU 0.38 96.98 80.98 0.97 0.006 53.72

StoCuReNU achieves good forgetting under the class-level setting, reaching a similar Acc. as SCRUB
on De as well as decent model utility by maintaining the Dtest Acc. and Dr Acc..
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Figure 6: Class-level sequential unlearning on Llama-2 × AG-News (averaged over 3 random runs).

Table 10: Unlearning performance at the last unlearning round for 10% class-level sequential
unlearning on Llama-2 × AG-News (averaged across 3 random runs).

Method Llama-2 × AG-News
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 0.00 ± 0.00 95.20 ± 1.04 70.62 ± 0.85 1.00 ± 0.00 0.000 ± 0.000 49.96 ± 0.32
Original 98.24 ± 1.77 94.59 ± 0.55 94.60 ± 0.08 0.01 ± 0.01 0.014 ± 0.008 49.47 ± 1.95

Rand. Lbls. 0.00 ± 0.00 79.19 ± 7.75 59.01 ± 5.76 0.75 ± 0.13 0.019 ± 0.025 50.65 ± 0.89
DELETE 0.00 ± 0.00 93.48 ± 0.97 69.51 ± 0.79 0.97 ± 0.01 0.030 ± 0.008 49.52 ± 0.63

GD 59.21 ± 3.80 95.64 ± 0.66 85.42 ± 1.13 0.34 ± 0.03 0.045 ± 0.017 50.31 ± 1.31
GA 0.00 ± 0.00 33.33 ± 0.00 25.00 ± 0.00 0.21 ± 0.01 0.028 ± 0.027 49.90 ± 1.20

GDiff 0.00 ± 0.00 62.56 ± 9.37 46.90 ± 7.06 0.52 ± 0.12 0.015 ± 0.008 49.65 ± 0.41
SCRUB 9.69 ± 3.33 96.49 ± 0.68 73.14 ± 1.09 0.87 ± 0.04 0.018 ± 0.012 49.42 ± 1.52

NPO 0.01 ± 0.01 41.63 ± 4.56 31.37 ± 3.54 0.28 ± 0.05 0.028 ± 0.020 49.89 ± 0.81
StoCuReNU 3.95 ± 2.85 90.03 ± 0.61 67.91 ± 0.99 0.89 ± 0.03 0.023 ± 0.007 51.23 ± 0.26
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H.4 Sample-Level Sequential Unlearning

Noisy Data Removal. In this experiment, we mislabel 20% of the training set, such that the label is
shifted right from the true label. We then perform sequential unlearning on mislabeled data for 10
rounds, each round removes 2% of the randomly selected mislabeled data. In this setting, unlearning
can increase the model performance on Dr and Dtest by removing the noisy data that harms the
model utility. Tab. 11 shows our results, which demonstrate that our StoCuReNU performs well in
removing noisy data and preserving the model utility.

Table 11: Unlearning performance at the last unlearning round for noisy data sequential unlearning
on ResNet18 × CIFAR-10 (averaged over 3 random runs).

Method ResNet18 × CIFAR-10
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA AUC (→)

Retraining 6.88 ± 0.10 100.00 ± 0.00 89.83 ± 0.02 1.00 ± 0.00 0.0 ± 0.0 53.55 ± 3.46
Original 26.41 ± 0.94 96.09 ± 0.05 81.97 ± 0.52 0.71 ± 0.01 2.9e-6 ± 0.8e-6 52.95 ± 1.62

Rand. Lbls. 11.70 ± 0.76 9.96 ± 1.66 9.93 ± 2.15 0.02 ± 0.00 2.8e-6 ± 1.1e-6 54.44 ± 0.45
GD 13.39 ± 0.58 97.90 ± 0.05 86.42 ± 0.11 0.88 ± 0.01 3.7e-6 ± 1.7e-6 51.80 ± 3.13
GA 6.98 ± 2.51 9.05 ± 0.86 9.04 ± 1.27 0.02 ± 0.00 19.8e-6 ± 22.7e-6 49.04 ± 3.19

SCRUB 2.52 ± 0.23 82.81 ± 1.77 80.43 ± 1.41 0.72 ± 0.02 3.5e-6 ± 1.3e-6 51.28 ± 3.54
StoCuReNU 9.06 ± 0.69 96.26 ± 0.36 85.92 ± 0.20 0.90 ± 0.00 3.7e-6 ± 1.7e-6 54.67 ± 3.43

Naive Data Removal. In this experiment, we perform sequential unlearning to iteratively remove a
random training subset across multiple rounds, which we refer to as sample-level sequential unlearning.
Fig. 7 and Tables 12, 13 show our results for sample-level sequential unlearning of 10% randomly
selected training data on CIFAR-10 and AG-News. As observed, StoCuReNU maintains a close
performance to Retraining and comparable results to SOTA methods (DELETE, SCRUB) on De and
does not degrade model performance on Dtest and Dr even after multiple unlearning requests. This
reinforces our argument that StoCuReNU is a good unlearning algorithm for long-term settings such
as sequential unlearning on both class and sample levels.
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Figure 7: Sample-level sequential unlearning of 10% training data. Top Row: Llama-2 × AG-News
(2000 unlearned samples per round). Bottom Row: ResNet-18 × CIFAR-10 (1000 unlearned samples
per round).

H.5 Sequential Unlearning on Llama-2 without LoRA

Our main results on Llama-2 focus on the LoRA-tuned setting because LoRA (Hu et al., 2022) is now
a widely adopted approach for fine-tuning LLMs due to its efficiency and competitive effectiveness
to full-scale fine-tuning (Schulman & Lab, 2025). Furthermore, fine-tuning datasets are often
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Table 12: Unlearning performance at the last unlearning round for 10% sample-level sequential
unlearning on Llama-2 × AG-News (averaged over 3 random runs).

Method Llama-2 × AG-News
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 94.55 ± 0.21 95.41 ± 0.11 94.53 ± 0.17 1.00 ± 0.00 0.000 ± 0.000 49.94 ± 0.42
Original 95.36 ± 0.10 95.50 ± 0.03 94.63 ± 0.06 0.99 ± 0.00 0.027 ± 0.013 50.06 ± 0.20

Rand. Lbls. 28.17 ± 0.46 28.21 ± 0.70 28.23 ± 0.72 0.04 ± 0.00 0.014 ± 0.011 49.71 ± 0.69
GD 96.39 ± 0.10 97.90 ± 0.10 94.84 ± 0.13 0.95 ± 0.00 0.021 ± 0.015 49.10 ± 0.62
GA 24.91 ± 0.08 25.02 ± 0.01 25.02 ± 0.02 0.03 ± 0.00 0.018 ± 0.002 50.24 ± 0.88

SCRUB 96.46 ± 0.17 98.00 ± 0.24 95.11 ± 0.09 0.95 ± 0.01 0.028 ± 0.010 49.86 ± 0.18
StoCuReNU 91.46 ± 2.53 91.57 ± 2.26 90.35 ± 3.04 0.90 ± 0.07 0.018 ± 0.012 49.97 ± 0.35

Table 13: Unlearning performance at the last unlearning round for 10% sample-level sequential
unlearning on ResNet18 × CIFAR-10 (averaged over 3 random runs).

Method ResNet18 × CIFAR-10
De Acc. (→) Dr Acc. (→) Dtest Acc. (→) ToW (↑) JS Div. (↓) MIA (→)

Retraining 83.64 ± 0.80 85.89 ± 0.68 83.01 ± 0.62 1.00 ± 0.00 0.0 ± 0.0 50.03 ± 0.11
Original 87.31 ± 1.05 87.11 ± 0.93 84.74 ± 0.66 0.94 ± 0.01 0.028 ± 0.004 51.64 ± 0.69

Rand. Lbls. 41.61 ± 2.34 41.46 ± 2.80 40.28 ± 1.42 0.19 ± 0.03 0.013 ± 0.0 50.41 ± 0.25
DELETE 84.35 ± 2.02 84.49 ± 2.28 82.61 ± 2.04 0.96 ± 0.03 0.029 ± 0.001 50.67 ± 0.83

GD 90.72 ± 0.31 90.86 ± 0.08 88.30 ± 0.19 0.84 ± 0.02 0.002 ± 0.0 51.55 ± 0.70
GA 43.90 ± 7.56 44.29 ± 7.48 42.75 ± 6.51 0.22 ± 0.07 0.032 ± 0.0 50.23 ± 0.32

GDiff 74.95 ± 2.69 77.95 ± 2.47 75.98 ± 1.93 0.78 ± 0.04 0.030 ± 0.001 51.23 ± 0.31
NPO 68.80 ± 5.49 69.14 ± 5.23 67.24 ± 4.78 0.60 ± 0.10 0.029 ± 0.002 51.23 ± 1.46

SCRUB 85.42 ± 0.84 87.26 ± 0.83 84.74 ± 0.82 0.95 ± 0.02 0.003 ± 0.0 50.50 ± 0.48
StoCuReNU 86.54 ± 1.01 87.25 ± 1.18 84.77 ± 1.17 0.93 ± 0.03 0.003 ± 0.0 50.57 ± 0.24

task-specific datasets that are more privacy-sensitive than the public datasets used for full-scale LLM
training, making them particularly relevant for unlearning. Nonetheless, we conducted an additional
experiment on Llama-2-7B without LoRA on the TOFU dataset with a similar sequential unlearning
setup as Sec. 6.3 to verify the scalability of our method to full-scale LLM fine-tuning.

We provide our results in Tab. 14, which show a similar trend to our results for LoRA-tuned LLM
unlearning in Tab. 3. While StoCuReNU does not achieve the best forgetting efficiency, as shown by
a De ROUGE gap of 0.162 from retraining, it shows a better unlearning trade-off between forgetting
and utility preservation than SOTA methods like SCRUB via higher ToW score. More importantly,
the fact that the Original model achieves the best ToW score amongst all tested methods shows that
most of them are likely insufficient for large-scale unlearning, leading to either worse forgetting
efficiency (observed in GD, StoCuReNU) or worse utility preservation (observed in GA, GDiff, IDK,
NPO, SCRUB). This challenging setting calls for the development of more robust unlearning methods
in the future.

Table 14: Unlearning performance at the last unlearning round for sample-level sequential unlearning
on Llama-2 × TOFU without LoRA (seed 1).

Method Llama-2 × TOFU
De ROUGE (→) Dr ROUGE (→) Dtest ROUGE (→) Truth Ratio (↑) ToW (↑) MIA (→)

Retraining 0.399 0.672 0.861 0.695 1.000 88.93
Original 0.692 0.686 0.894 0.539 0.674 100.00

GD 0.677 0.904 0.891 0.559 0.538 99.62
GA 0.000 0.000 0.000 0.344 0.027 10.44

GDiff 0.032 0.207 0.198 0.484 0.114 6.68
IDK 0.066 0.373 0.502 0.616 0.300 99.20
NPO 0.078 0.082 0.002 0.805 0.039 55.37

SCRUB 0.321 0.404 0.611 0.674 0.506 79.21
StoCuReNU 0.561 0.535 0.695 0.547 0.603 99.99
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I Full Results for Unlearning Efficiency

Table 15 (an expanded version of Table 4 in the main paper) shows the running time comparison
(in seconds) among different unlearning algorithms to unlearn a batch of erased data points across
various datasets and models. As anticipated, the unlearning algorithms that utilize the second-order
information, such as PINV-Newton, Damped Newton, and CuReNU, have the longest running times
and even exceed that of Retraining on FMNIST. Therefore, these algorithms are impractical for
large-scale experiments with ResNet18 and Llama-2. On the other hand, GA, NPO, and Rand. Lbls.
are fast unlearning algorithms but tend to significantly degrade model performance post-unlearning,
especially in long-term settings such as sequential unlearning (Sec. 6.3 and App. H.4). GD and GDiff
are also fast unlearning algorithms, but they do not unlearn effectively. In contrast, DELETE is a
strong state-of-the-art method that performs unlearning both efficiently and effectively. Meanwhile,
StoCuReNU can maintain decent efficiency across various datasets and models and be more efficient
than the state-of-the-art method SCRUB despite being a second-order method by leveraging the
fast HVPs and the stochastic setup, while maintaining a decent erasing quality and post-unlearning
performance.

Table 15: Running time comparison (in seconds) across different datasets and models (averaged over
3 random runs).

Dataset FMNIST CIFAR-10 AG-News TOFU
Model 2-layer CNN ResNet18 Llama-2-7B (+LoRA) Llama-2-7B (+LoRA)

Trainable Parameters 20,728 11,173,962 1,064,960 2,097,152
Retraining 61.20 ± 8.70 1.0× 124.51 ± 10.95 1.0× 4792.44 ± 145.90 1.0× 900.71 ± 2.57 1.0×
Rand. Lbls. 1.70 ± 0.19 0.03× 2.58 ± 0.10 0.02× 144.63 ± 1.83 0.03× - -
DELETE 0.89 ± 0.10 0.01× 6.71 ± 0.05 0.05× 133.54 ± 3.90 0.03× - -

GD 9.04 ± 0.82 0.1× 19.16 ± 4.03 0.2× 4641.50 ± 407.93 0.96× 181.45 ± 0.41 0.20×
GA 2.28 ± 0.58 0.03× 5.78 ± 0.26 0.04× 105.46 ± 2.85 0.02× 5.61 ± 0.63 0.01×

GDiff 1.34 ± 0.03 0.02× 6.51 ± 0.07 0.05× 482.11 ± 103.48 0.10× 50.38 ± 1.22 0.06×
PINV-Newton 6185.72 ± 804.94 101.1× - - - - - -

Damped Newton 6228.82 ± 739.82 101.7× - - - - - -
SCRUB 23.33 ± 0.43 0.4× 72.39 ± 4.93 0.6× 6796.16 ± 160.11 1.4× 178.52 ± 0.39 0.20×

IDK - - - - - - 37.94 ± 0.38 0.04×
NPO 0.80 ± 0.02 0.01× 0.87 ± 0.05 0.01× 134.34 ±2.27 0.03× 31.02 ± 0.24 0.03×

CuReNU 6355.31 ± 127.31 103.8× - - - - - -
StoCuReNU 35.54 ± 6.73 0.6× 41.79 ± 0.94 0.3× 85.26 ± 18.23 0.02× 340.24 ± 61.04 0.38×

J Ablation Studies

Figure 8: Class-level sequential unlearning performance on FMNIST (averaged over 3 random runs).

Throughout our ablation studies of CuReNU and StoCuReNU, we adopt a class-level sequential
unlearning setting with 60 unlearning rounds on the FMNIST dataset. We choose class 2 to be
unlearned and report the averaged results over 3 random seeds {125, 126, 127}. Fig. 8 presents the
sequential unlearning performance for this setup. The remaining ablation results are reported at the
last unlearning round.

J.1 Effect of varying L

Since the exact Hessian Lipschitz constant L is often hard to find, we treat it as a hyperparameter
and analyze the effectiveness of our algorithms with varying choices of L in Fig. 9. As can be seen,
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both algorithms exhibit consistent performance and remain close to the retraining baseline across
different L values. This highlights the robustness of CuReNU and StoCuReNU with respect to the
choice of L, in contrast to the strong dependence on learning rates in the many first-order unlearning
algorithms such as GD, GA, and Rand. Lbls..

Figure 9: Performance of CuReNU and StoCuReNU for different empirical choices of L (seed 125).

On a separate note, it is important to keep L large enough (e.g., approximately L = 70 for CuReNU,
as marked by the shaded region) to ensure the validity of the cubic approximation and maintain
convergence guarantees. Nonetheless, an appropriate value of L can be determined during training
and before unlearning actually happens.

How to find a valid empirical L? It is infeasible to empirically estimate the exact Hessian Lipschitz
constant L in neural networks, as it would require enumerating over the entire space of model
parameters. To address this, we have adopted a more practical approach that is also suggested in
Section 5.2 of Nesterov & Polyak (2006): starting with a random guess of L, we increase L if the
model fails to converge (since a valid upper bound would induce convergence); otherwise, we can use
L, or decrease L and check if a reduced L still induces convergence. Since the actual L is an upper
bound, this procedure is guaranteed to return a valid empirical L.

Caveats for non-Lipschitz models. When the model fails to satisfy L-Lipschitz Hessian (i.e., no
valid L exists), selecting a sufficiently large L remains beneficial as it can act as an effective regularizer
to prevent large steps (large-norm updates) in suboptimal directions.

J.2 Effect of varying σ in StoCuReNU

Tab. 16 presents unlearning performance for varying levels of gradient perturbation σ on CNN ×
FMNIST. We find that StoCuReNU achieves comparable unlearning performance to retraining across
a wide range of σ. This observation excludes σ = 100, where the stochastic gradient is heavily
perturbed. Since gradient perturbation is intended to prevent the “hard case” (Conn et al., 2000), it is
often sufficient to use a small σ, such as σ < 1, in our experiments while maintaining the fidelity of
the stochastic gradient.

σ De Acc. Dr Acc. Dtest Acc.

10−3 0.072 ± 0.097 87.568 ± 1.640 76.525 ± 1.161
10−2 0.000 ± 0.000 87.922 ± 3.056 76.854 ± 2.324
10−1 1.072 ± 1.857 86.638 ± 2.379 75.820 ± 1.582
1 0.000 ± 1.279 87.914 ± 0.887 76.712 ± 0.977
10 0.072 ± 0.125 87.696 ± 2.834 76.729 ± 2.533
100 0.016 ± 0.016 43.193 ± 9.832 37.441 ± 8.486

Retraining 0.000 ± 0.000 92.466 ± 0.883 80.225 ± 0.963

Table 16: Effect of σ in StoCuReNU (averaged over 3 random runs).

J.3 Effect of varying T in StoCuReNU

Fig. 10 shows the unlearning performance when varying the number of stochastic iterations T in
StoCuReNU. As T increases, StoCuReNU better approximates the retraining performance on Dtest,
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De, and Dr. This illustrates the inherent trade-off between unlearning performance and computational
efficiency in StoCuReNU. Nonetheless, we observe that StoCuReNU can obtain good unlearning
performance with only around 10-20 iterations, offering a significant advantage over full retraining. In
practice, the number of stochastic iterations in StoCuReNU can be tuned to meet specific unlearning
requirements.

Figure 10: Effect of the number of stochastic iterations T in StoCuReNU (seed 125).

J.4 Effect of varying batch size in StoCuReNU

We assume the same batch sizes are used for gradient evaluation and Hessian-vector product evaluation
in StoCuReNU, i.e., n1 = n2.13 Tab. 17 presents unlearning performance on CNN × FMNIST
for varying batch sizes. Our results show that StoCuReNU with mini-batch sampling can achieve
comparable performance (within 2-4% difference on De/Dr/Dtest Acc.) to the full-batch setting
(i.e, batch size = |Dr|), suggesting that the sampling-induced stochasticity might have minimal impact
on unlearning effectiveness.

Batch Size De Acc. Dr Acc. Dtest Acc.
32 1.839 ± 2.899 87.445 ± 1.585 76.400 ± 1.471
64 1.322 ± 1.002 88.863 ± 2.724 77.683 ± 2.711
128 1.344 ± 1.078 89.954 ± 1.604 78.958 ± 1.388
256 1.383 ± 2.073 90.383 ± 2.084 79.138 ± 1.426
512 4.544 ± 7.513 91.042 ± 1.747 79.950 ± 0.850
1024 0.133 ± 0.217 89.820 ± 3.593 78.321 ± 3.157
2048 0.150 ± 0.246 89.958 ± 3.461 78.433 ± 3.043
|Dr| 0.206 ± 0.178 90.018 ± 3.360 78.542 ± 2.860

Retraining 0.000 ± 0.000 92.466 ± 0.883 80.225 ± 0.963

Table 17: Effect of batch size in StoCuReNU (averaged over 3 random runs).

J.5 Analysis of dual variable α in CuReNU

We set the number of unlearning iterations T = 1 for CuReNU and observe the value of α during
class-level sequential unlearning on FMNIST in Fig. 11. Compared to the damping factor γ = 10−3

in Damped Newton, the dual variable α in CuReNU often admits larger values, which effectively
prevents the model from excessively large norm updates.

During sequential unlearning, the value of α consistently decreases until around round 50. This may
imply that the Hessian becomes more well-behaved over time, and less regularization is needed. After
round 50, however, α increases again. This allows for larger norm updates, which may be needed for
class unlearning.

13In practice, StoCuReNU can sample batches of different sizes for gradient evaluation and Hessian-vector
product evaluation.

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Figure 11: The dynamics of α in our CuReNU method (averaged over 3 random runs).

J.6 Effect of varying learning rate in GD

Prior works have noted that the performance of gradient descent (GD) is highly sensitive to the
choice of learning rate (Schaul et al., 2013). Here, we provide empirical evidence that supports this
claim when GD is applied for unlearning in Fig. 12. As we can see, its performance on De varies
significantly across different learning rates. This suggests that identifying the optimal learning rate
for GD to achieve unlearning performance close to retraining may be challenging in practice.

Figure 12: Effect of varying learning rates in GD (seed 125).

K Definition of Machine Unlearning

Here, we provide a formal definition of machine unlearning used in (Nguyen et al., 2022).

Let D = {(xi, yi)}ni=1 ⊆ X × Y denote the training set of n samples, where xi ∈ Rd is the input
and yi ∈ R is the target. Let De ⊆ D denote the erased set of ne samples to be unlearned and
Dr = D \De denote the retained set of nr remaining samples.

Let Pr(A(D)) denote the model distributions trained on D using a randomized learning algorithm A.
We denote by U an unlearning algorithm that takes the training set D, the erased set De, the trained
model A(D) ∈ H, and returns an unlearned model in H. U is deemed exact unlearning iff

∀T ⊆ H, D ⊆ X × Y, De ⊆ D, then Pr(A(Dr) ∈ T ) = Pr(U(D,De, A(D)) ∈ T ).

Exact unlearning algorithms, such as Bourtoule et al. (2021); Yan et al. (2022), are often expensive to
perform, especially for neural networks due to massive D and large model sizes. Therefore, our goal
is to achieve a relaxed notion of approximate unlearning, i.e.,

∀T ⊆ H, D ⊆ X × Y, De ⊆ D, then Pr(A(Dr) ∈ T ) ≈ Pr(U(D,De, A(D)) ∈ T ).

We can view A(D) as a function mapping any input x to real outputs (e.g., predicted logits for
classification tasks) and H defines the set of all such models. Hence, our target U must achieve similar
outputs to retraining on any data. This motivates us to achieve the same retraining loss in our work.

L Justification of Unlearning Goal

The common goal of unlearning algorithms in Sections 3.3, 5.1, and 5.2 is to minimize the loss
L(w;Dr) on the retained set to achieve unlearning of De. This choice is widely used in existing
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works (Guo et al., 2020; Neel et al., 2021; Sekhari et al., 2021) and adopted in our work because
it forms a necessary condition to approximate a retrained model on Dr, i.e., if an unlearned model
does not minimize L(w;Dr), it cannot be the same as a retrained model. In special cases like
strongly-convex losses with at most one minimum, this necessary condition is also a sufficient
condition. Nonetheless, our unlearning algorithms can be extended to other loss formulations, such
as a weighted combination of L(w;Dr) and −L(w;De). Empirically, we find that incorporating a
small negated gradient on De helps prevent the model from being trapped at the original solution
when minimizing the retraining loss.

M Background in Optimization

As demonstrated in Sections 3.3, 5.1 and 5.2, we can view unlearning as an optimization process
that starts from a local minimum of the loss on D (the original model) and seeks a nearby local
minimum of the loss on Dr (a retrained model). To approach unlearning, we can study the broader
optimization literature, which broadly categorizes optimization methods into first-order methods and
second-order methods.14 These optimization methods are further distinguished by their behavior
in convex and non-convex settings, with unlearning neural networks typically situated in the more
challenging non-convex setting.

Convex vs. Non-Convex Optimization. Convex optimization involves minimizing a convex
objective function (or maximizing a concave one) over a convex feasible set. In convex optimization
problems, any local minimum is also a global minimum. Moreover, if the objective function is strictly
convex, the local minimum, if exists, is unique. In contrast, non-convex optimization arises when the
objective function is non-convex. In non-convex optimization, a first-order stationary point (where
the gradient is close to 0) may correspond to a local minimum, a local maximum, or a saddle point.
In contrast, a second-order stationary point (where the gradient is close to 0 and the Hessian is nearly
positive semi-definite) can help avoid most saddle points and local maxima with strong negative
curvature. Although finding a local minimum may not correspond to a global minimum, empirical
studies show that many local minima in non-convex problems tend to have objective values nearly as
good as the global minimum (Kashyap, 2022).

First-Order Methods. Gradient descent (GD) and its variants (e.g., stochastic gradient descent
(SGD), momentum (Sutskever et al., 2013), and Adam (Kinga et al., 2015)) are widely used first-order
optimization methods in machine learning due to their scalability to high-dimensional data and
complex models, such as deep neural networks. We subsequently restate the convergence results for
GD and SGD. Interested readers can refer to (Nesterov, 2013; Garrigos & Gower, 2023; Khaled &
Richtárik, 2020) for more details.

For a convex function with Lipschitz continuous gradient, GD achieves a convergence rate of O( 1k )
(sublinear convergence), where k is the number of iterations. If the function is strongly convex, GD
enjoys a linear convergence rate of O(ck) for some constant 0 < c < 1. For non-convex optimization,
GD can only guarantee convergence to an ε-first-order stationary point (ε-FOSP) in O(ε−2) iterations.

In the stochastic setting, SGD converges in expectation at a rate of O( 1√
k
) for convex functions

and O( 1k ) for strongly convex functions. If the function is non-convex, SGD can only guarantee
convergence to an ε-FOSP in O(ε−4) iterations.

Second-Order Methods. Many real-world functions, such as objective functions in neural networks,
are inherently non-convex. Although first-order optimization methods like GD and SGD are
computationally efficient and scalable, they often suffer from slow convergence in ill-conditioned
problems and may get stuck at saddle points if the function is non-convex. In contrast, Newton’s
method leverages the second-order information of the function to accelerate the convergence. When
the function is strongly convex with a Lipschitz continuous Hessian, and the initialization is sufficiently
close to the minimizer, Newton’s method converges locally at a quadratic rate (Nocedal & Wright,
2006). In general, however, its global convergence is not guaranteed. Moreover, Newton’s method
may instead converge to saddle points or maxima, as it does not distinguish among stationary points.

14While higher-order methods exist, they are rarely adopted due to significant computational and numerical
instability.
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To achieve global convergence, cubic regularization methods (Nesterov & Polyak, 2006) construct a
global upper bound of the objective function by adding a cubic term to the quadratic approximation.
For a function (possibly non-convex) with Lipschitz continuous Hessian, cubic-regularized Newton’s
method can achieve convergence to an ε-second-order stationary point (ε-SOSP) inO(ε−1.5) iterations.
For small ε, converging to ε-SOSP can help avoid most saddle points and sharp local maxima.

In the stochastic setting, Kohler & Lucchi (2017) proposes a variant of cubic regularization that
utilizes subsampled gradients and Hessians, but does not provide its asymptotic analysis. Xu et al.
(2020) considers stochastic Hessians but still requires access to the full gradients. Leveraging HVPs
to avoid explicit Hessian computation, Tripuraneni et al. (2018) proposes a scalable Hessian-free
variant that converges to an ε-SOSP in Õ(ε−3.5) gradient/HVP evaluations.
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