

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 BATCH AND SEQUENTIAL UNLEARNING FOR NEURAL NET- WORKS

Anonymous authors

Paper under double-blind review

ABSTRACT

Machine unlearning can help comply with data owners’ “right to be forgotten”, mitigate biases, and prevent models from generating inappropriate content. Second-order unlearning algorithms like Newton unlearning have been used in previous works to rigorously unlearn selected models, without the need for expensive retraining. However, we show that Newton unlearning is susceptible to Hessian degeneracy in trained neural networks, resulting in degraded unlearning performance in the challenging batch and sequential unlearning settings. We propose two new unlearning algorithms, CuRENU and StoCuRENU, that address the Hessian degeneracy based on cubic regularization in optimization and discuss their convergence guarantees. Moreover, we demonstrate that StoCuRENU is a scalable algorithm with comparable unlearning performance to state-of-the-art empirical unlearning algorithms across diverse settings, including batch and sequential unlearning.

1 INTRODUCTION

Recent years have witnessed a growing number of machine learning models trained on *personal data* for applications in computer vision, natural language processing, and speech processing (Achiam et al., 2023; Radford et al., 2023; EDPB, 2024). However, evidence shows that these models often memorize their training datasets (Carlini et al., 2023; Nasr et al., 2023), can increase social biases (Angwin et al., 2022; Obermeyer et al., 2019), and may be misused to generate inappropriate content (Westerlund, 2019; Li et al., 2024). Consequently, data privacy laws like the General Data Protection Regulation (GDPR) 2016 enact the “right to be forgotten”, allowing data owners to demand their data and its *lineage* removed from trained models. The subfield of *machine unlearning* Bourtoule et al. (2021); Cao & Yang (2015); Nguyen et al. (2022) has emerged to address these societal and legal demands.

The substantial training data and growing model sizes render *retraining* undesirable to fulfill unlearning, e.g., OpenAI’s GPT-4 reportedly costs over \$100 million to train (Achiam et al., 2023). Therefore, the goal of machine unlearning is to obtain models that are equivalent to those retrained from scratch without the data-to-be-unlearned, while avoiding expensive retraining (Bourtoule et al., 2021; Nguyen et al., 2022). However, achieving unlearning *exactly* is challenging for neural networks due to their iterative learning process and non-linear operations (Bourtoule et al., 2021; Thudi et al., 2022). Hence, it is more practical to adopt the notion of *approximate unlearning* (Ginart et al., 2019), where the goal is to find an unlearned model that closely approximates retraining. While empirical approximate unlearning algorithms (e.g., increasing the loss on the erased set (Zhang et al., 2024b), or training with randomized labels (Golatkar et al., 2020)) exist, they offer limited guarantee for unlearning, which often restricts their success in challenging settings like sequential unlearning.

Second-order unlearning (Guo et al., 2020; Golatkar et al., 2020; Warnecke et al., 2021) is a class of approximate unlearning algorithms that leverage the second-order information (Hessian) of the loss function to better approximate retraining and achieve stronger unlearning performance. Unlike empirical unlearning algorithms, second-order unlearning algorithms are naturally connected to the rigorous concept of *influence function* (Koh & Liang, 2017) and are often guaranteed to converge to the *same loss* as retraining (Guo et al., 2020).¹ Many second-order unlearning algorithms are derived from optimization algorithms, extending the static nature of unlearning to the dynamic, iterative nature of optimization (Jia et al., 2024), where second-order information improves the convergence compared to first-order counterparts (Neel et al., 2021; Chien et al., 2024). However, we find that

¹Achieving the same loss as retraining is a necessary condition for unlearning (App. L).

existing second-order unlearning algorithms like Newton unlearning (Guo et al., 2020; Golatkar et al., 2020) for neural networks suffer from a common problem: the *degeneracy* of the Hessian matrix near the local optimum.² Due to Hessian degeneracy, the Hessian matrix is non-invertible in Newton unlearning, making it inapplicable to unlearning neural networks. This motivates our central question: *How can we unlearn neural networks effectively with second-order unlearning while addressing the issue of Hessian degeneracy?*

Upon revisiting its cause, we show that the norm of the Newton unlearning update is *highly sensitive* to a large number of small eigenvalues of the Hessian, rendering baselines such as pseudo-inversing and damping the Hessian matrix with a small diagonal matrix $\gamma\mathbf{I}$ ineffective. Since the update norm is a monotone decreasing function in the damping factor γ , we thus ask a question: *Can we determine a suitable γ that warrants effective Newton unlearning?* Our answers are two new unlearning algorithms, *Cubic-regularized Newton’s Unlearning* (CuRENU) and its scalable, *stochastic* variant (StoCuRENU), that adopt the cubic regularization method in optimization (Nesterov & Polyak, 2006; Triapuram et al., 2018) to find the optimal γ . Specifically, StoCuRENU is a Hessian-free unlearning algorithm that avoids the approximation errors in Hessian approximations (Golatkar et al., 2020; Jia et al., 2024) by using Hessian-vector products (HVPs). Moreover, it maintains a constant memory usage of $\mathcal{O}(2d)$, where d is the number of model parameters, compared to $\mathcal{O}(dn)$ that scales with n training samples in the existing Hessian-free algorithm (Qiao et al., 2025).

To summarize, our key contributions are:

1. We define a set of desiderata (effectiveness, robustness, and efficiency) for unlearning algorithms (Sec. 3.1) that existing unlearning algorithms may fail to satisfy. Then, we seek to propose unlearning algorithms that can satisfy all of them;
2. We show that Hessian degeneracy is a fundamental but oft-overlooked issue in Newton unlearning, undermining its success for neural networks. Moreover, we show that common baselines like Hessian pseudo-inverse and Hessian damping fall short in addressing this issue. (Sec. 4);
3. We formulate a new problem of automatically tuning the Hessian damping factor γ and devise two new unlearning algorithms, CuRENU and StoCuRENU, that guarantee convergence to the same loss as retraining despite the presence of problematic Hessians. (Sec. 5);
4. We show that CuRENU and StoCuRENU can unlock the potential of the vanilla Newton unlearning empirically on different datasets and models. Moreover, StoCuRENU is efficient, scalable, and can achieve comparable unlearning performance to state-of-the-art empirical unlearning algorithms, even in challenging settings like sequential unlearning. (Sec. 6).

We note that while our unlearning algorithms are adapted from existing optimization methods, we believe this adaptation is both necessary and non-trivial to address failure modes (i.e., the problematic Hessians) and allow second-order unlearning algorithms to apply successfully to neural networks. Our novelty thus lies in recognizing the potential of existing optimization methods to satisfy our desiderata, addressing limitations of second-order unlearning, and evaluating the methods extensively.

2 RELATED WORKS

Exact Unlearning. The goal of exact unlearning is to produce an unlearned model *equivalent* to a retrained model. Previous works have proposed efficient exact unlearning algorithms for conventional models like support vector machines, random forests, linear regression (Cauwenberghs & Poggio, 2000; Schelter, 2019; Brophy & Lowd, 2021), and selected learning frameworks (Cao & Yang, 2015; Xiong et al., 2023). Bourtoule et al. (2021); Yan et al. (2022) propose model-agnostic, data-centric unlearning algorithms that train an ensemble of models on disjointed data subsets to isolate retraining to a few models. However, ensemble models are expensive to store and potentially compromise performance for neural networks with large model sizes and massive training sets (Zhang et al., 2020).

Approximate Unlearning. The goal of approximate unlearning is to produce an unlearned model *similar* to a retrained model. Heuristics such as increasing the loss on erased set and training models to output random predictions often lead to *over-forgetting* that degrades the unlearned model performance (Graves et al., 2021; Eldan & Russinovich, 2023; Zhang et al., 2024b). Therefore, empirical unlearning algorithms often anchor them with additional loss on the retained set and optimize the weighted loss (Chundawat et al., 2023; Kurmanji et al., 2023). Differently, Guo

²Previous works consider linear models with convex losses, where the Hessian is positive semi-definite (Golatkar et al., 2020; Guo et al., 2020). This assumption of convexity often does not hold in neural networks.

et al. (2020); Golatkar et al. (2020) propose more rigorous unlearning algorithms that guarantee unlearning on selected models by analyzing Taylor’s approximation of the retraining loss. Thanks to second-order information, their approaches often achieve more effective unlearning than the first-order counterparts (Neel et al., 2021; Chien et al., 2024). Besides, localization techniques are adopted to identify model parameters salient to unlearning, which can be combined with other unlearning algorithms to allow unlearning for large models (Goel et al., 2022; Yu et al., 2023; Jia et al., 2023).

Second-Order Unlearning. Second-order unlearning leverages the second-order information (Hessian) of the loss function to better approximate retraining and achieve more effective unlearning. Guo et al. (2020); Golatkar et al. (2020) use Newton update to unlearn linear models with convex losses, where the Hessian is positive semi-definite. Jia et al. (2024) notes that a Newton update naturally aligns with influence function (Koh & Liang, 2017), which is used in Warnecke et al. (2021) to unlearn features and labels. However, these algorithms often suffer from the costly Hessian storage and computing. Although prior works adopt efficient approximations of Hessians (Golatkar et al., 2020; Jia et al., 2024), approximation errors can be compounded in challenging settings like sequential unlearning. In contrast, StoCuRENU is a Hessian-free unlearning algorithm that uses HVPs to avoid this accumulation error. Moreover, StoCuRENU only requires $\mathcal{O}(2d)$ memory, significantly less than $\mathcal{O}(dn)$ that scales with n training samples in the another Hessian-free work (Qiao et al., 2025).

3 PRELIMINARIES

3.1 PROBLEM FORMULATION

Let $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ denote the training set of n samples, where $\mathbf{x}_i \in \mathcal{X}$ is the input and $y_i \in \mathcal{Y}$ is the target. Let $D_e \subseteq D$ denote the *erased set* of n_e samples to be unlearned and $D_r = D \setminus D_e$ denote the *retained set* of n_r remaining samples. Let $f_{\mathbf{w}^*} : \mathcal{X} \rightarrow \mathcal{Y}$, with parameters $\mathbf{w}^* \in \mathbb{R}^d$, denote the *original model* trained on D . The goal of machine unlearning is to remove the *lineage* of D_e from $f_{\mathbf{w}^*}$ while preserving the unlearned model performance on D_r . Retraining the model solely on D_r can achieve this goal *exactly*; however, retraining is infeasible for large models as it requires many iterations over massive D_r and scales poorly with model sizes. Therefore, our goal is to find an unlearning algorithm U that returns an unlearned model that closely approximates a retrained model. We discuss a more formal definition of machine unlearning in App. K.

Desiderata. We define a set of desiderata for a good unlearning algorithm U .

D1 Effectiveness: Retraining serves as a gold standard for unlearning, as a retrained model has no lineage of D_e while performing well on D_r . Hence, U should achieve the performance as close as possible to retraining on D_e and D_r . This motivates our choice of second-order unlearning algorithms over first-order algorithms³ to better approximate retraining with second-order information.

D2 Robustness: U should require minimal hyperparameter tuning to achieve effective unlearning. In Sec. 5, we show that CuRENU and StoCuRENU can automatically find the optimal damping factor for Newton unlearning, resulting in strong unlearning performance without manual tuning of γ .

D3 Efficiency: U should require less computation and maintain constant memory usage relative to retraining. This desideratum allows U to scale to large models and handle *sequential unlearning*.

See App. A for a comparison of different unlearning algorithms and our desiderata. Moreover, we believe U should be able to handle the two following settings to be practical:

Batch Unlearning. The erased set D_e may contain multiple samples ($n_e > 1$) to accommodate concurrent unlearning requests from the data owners, unlearning of an entire class (e.g., when that class becomes irrelevant due to domain shift), and to reduce unlearning overhead (e.g., when the model owners are allowed to unlearn periodically instead of immediately).

Sequential Unlearning. Multiple rounds of unlearning can be conducted sequentially, potentially compounding unlearning errors that may appear negligible in a single round, such as *over-forgetting* (degrading unlearned model performance) or *under-forgetting* (inducing trivial unlearning of D_e). Sequential unlearning arises when data owners issue unlearning requests sequentially or when certain constraints, like data accessibility, restrict the number of samples that can be unlearned concurrently.

³In our experiments (Sec. 6), we observe that first-order unlearning algorithms like gradient descent do not sufficiently remove the *lineage* of the erased set D_e .

162 3.2 ASSUMPTIONS & NOTATIONS
163

164 We assume \mathbf{w}^* is optimized via the common empirical risk minimization framework: $\mathbf{w}^* =$
165 $\arg \min_{\mathbf{w} \in \mathbb{E}^d} \mathcal{L}(\mathbf{w}; D)$, where $\mathcal{L}(\mathbf{w}; D) \triangleq \frac{1}{|D|} \sum_{(\mathbf{x}_i, y_i) \in D} \ell(f_{\mathbf{w}}(\mathbf{x}_i), y_i)$ is the average loss over
166 samples in D under the loss function ℓ . Moreover, we make the following assumption for \mathcal{L} .

167 **Assumption 3.1.** \mathcal{L} is twice continuously differentiable with respect to (w.r.t.) \mathbf{w} .

168 For brevity, we use $\mathbf{g}_{\mathbf{w}} \triangleq \nabla_{\mathbf{w}} \mathcal{L} \in \mathbb{R}^d$ and $\mathbf{H}_{\mathbf{w}} = \nabla_{\mathbf{w}}^2 \mathcal{L} \in \mathbb{R}^{d \times d}$ to denote the gradient and the
169 Hessian of \mathcal{L} w.r.t. \mathbf{w} . We will make additional assumptions in CuRENU and StoCuRENU.
170

171 **Assumption 3.2** (ρ -Lipschitz gradient). For some $\rho > 0$, $\|\mathbf{g}_{\mathbf{w}} - \mathbf{g}_{\mathbf{w}'}\| \leq \rho \|\mathbf{w} - \mathbf{w}'\|, \forall \mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$.

172 **Assumption 3.3** (L -Lipschitz Hessian). For some $L > 0$, $\|\mathbf{H}_{\mathbf{w}} - \mathbf{H}_{\mathbf{w}'}\| \leq L \|\mathbf{w} - \mathbf{w}'\|, \forall \mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$.

173 We provide justification for Assumptions 3.1, 3.2, and 3.3 in App. B.

174 **Notations.** When necessary, we will use the subscripts D , D_e , or D_r for $\mathbf{g}_{\mathbf{w}}$ and $\mathbf{H}_{\mathbf{w}}$ to indicate the
175 corresponding data subsets that the gradient and Hessian are evaluated on. Specifically, for the Hessian
176 $\mathbf{H}_{\mathbf{w}}^{D_r}$, we use $\{\lambda_1, \dots, \lambda_d\}$ to denote its eigenvalues and $\{\mathbf{u}_1, \dots, \mathbf{u}_d\}$ to denote its corresponding
177 eigenvectors, where $\lambda_1 \geq \dots \geq \lambda_d$ (sorted in non-increasing order). Generally, for a symmetric
178 matrix \mathbf{A} , we write $\mathbf{A} \succ \mathbf{0}$ (or $\succeq \mathbf{0}$) to denote \mathbf{A} is positive definite (or positive semi-definite), i.e.,
179 $\mathbf{z}^T \mathbf{A} \mathbf{z} > 0$ (or ≥ 0) for all $\mathbf{z} \neq \mathbf{0}$. We use $\|\cdot\|$ to denote the Euclidean norm by default.

180 3.3 NEWTON UNLEARNING
181

182 Here, we describe the Newton unlearning algorithm proposed in previous works (Guo et al., 2020;
183 Warnecke et al., 2021). The benefits of Newton unlearning algorithm and its variants over first-order
184 unlearning algorithms are further discussed through the lens of optimization in App. M.

185 The Newton unlearning algorithm involves multiple iterations, starting from $\mathbf{w}_0 = \mathbf{w}^*$, where \mathbf{w}_t
186 denotes the model parameters at iteration t . For brevity, we use $\Delta_{t+1} \triangleq \mathbf{w}_{t+1} - \mathbf{w}_t$ to denote the
187 difference between two consecutive iterations. Recall that retraining aims to minimize the loss on the
188 retained set $\mathcal{L}(\mathbf{w}, D_r)$ (*retraining loss*). Under Assumption 3.1, Newton unlearning algorithm seeks
189 \mathbf{w}_{t+1} that minimizes the following quadratic approximation of $\mathcal{L}(\mathbf{w}, D_r)$ around \mathbf{w}_t :

$$\min_{\mathbf{w}_{t+1}} \left[\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r) = \mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}, \Delta_{t+1} \rangle \right]. \quad (1)$$

192 By solving the first-order necessary condition $\nabla_{\mathbf{w}_{t+1}} \tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r) = \mathbf{0}$, we get the Newton update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - (\mathbf{H}_{\mathbf{w}_t}^{D_r})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}. \quad (2)$$

195 The Newton unlearning algorithm repeatedly applies the Newton update (Eq. 2) for T iterations or
196 until a stopping criterion (e.g., sufficiently small retraining loss) is met.

197 **Computation with D_e .** The Newton update can be computed with D and D_e through the following
198 equations: $\mathbf{H}_{\mathbf{w}_t}^{D_r} = \frac{n}{n_r} \cdot \mathbf{H}_{\mathbf{w}_t}^D - \frac{n_e}{n_r} \cdot \mathbf{H}_{\mathbf{w}_t}^{D_e}$ and $\mathbf{g}_{\mathbf{w}_t}^{D_r} = \frac{n}{n_r} \cdot \mathbf{g}_{\mathbf{w}_t}^D - \frac{n_e}{n_r} \cdot \mathbf{g}_{\mathbf{w}_t}^{D_e}$. If \mathbf{w}^* is a stationary
200 point, we can further simplify $\mathbf{g}_{\mathbf{w}_0}^{D_e} = -\frac{n_e}{n_r} \cdot \mathbf{g}_{\mathbf{w}_0}^D$ due to $\mathbf{g}_{\mathbf{w}_0}^D = \mathbf{0}$. Nonetheless, we justify our choice
201 of minimizing the retraining loss $\mathcal{L}(\mathbf{w}, D_r)$ to achieve unlearning of D_e in App. L.

202 4 PROBLEMATIC HESSIANS IN NEURAL NETWORKS
203

211 Figure 1: **Left:** Hessian eigenspectrum for CNN \times FMNIST; **Middle:** Hessian rank dynamics during
212 training for CNN \times FMNIST; **Right:** Empirical Hessian eigenspectrum density for Llama-2 \times TOFU.

213
214 Newton unlearning (Sec. 3.3) assumes that $\mathbf{H}_{\mathbf{w}_t}^{D_r}$ is invertible at \mathbf{w}_t , i.e., full rank with no zero
215 eigenvalues. However, this assumption often does not hold in trained neural networks with highly
non-convex losses. In our experiments with CNN \times FMNIST, the Hessian eigenspectrum after

216 training shows many *zero* and near-zero eigenvalues (Fig. 1, left), and the Hessian rank rapidly
 217 diminishes as training converges (Fig. 1, middle), reflecting the increasing number of zero eigenvalues
 218 during training. **We observe a similar zero-concentrated Hessian eigenspectrum for large models such**
 219 **as Llama-2 \times TOFU (Fig. 1, right), showing the invertability assumption is often invalid in practice.**

220 Previous works have shown that Hessian degeneracy is a fundamental issue during training neural
 221 networks across various datasets (Sagun et al., 2017; Papyan, 2018; Ghorbani et al., 2019). A
 222 standard model for describing Hessian eigenspectra in deep neural networks is the so-called *spiked*
 223 *model*, which features a large concentration of eigenvalues near 0 (the *bulk*), and a few isolated, large
 224 eigenvalues well separated from the bulk (the *spikes*) (Johnstone, 2001; Sagun et al., 2016; 2017).
 225 The Hessian rank deficiency (hence Hessian degeneracy) is further explained in Singh et al. (2021;
 226 2023) to be closely connected to the effective number of model parameters that naturally decreases as
 227 training converges, especially in the over-parameterization paradigm. Besides, it is not uncommon
 228 for neural networks to converge to saddle points (Dauphin et al., 2014), where the Hessian contains
 229 negative eigenvalues, **as also shown in our experiment with Llama-2 \times TOFU (Fig. 1, right)**. The
 230 presence of negative eigenvalues can further undermine the convergence of Newton unlearning.

231 We summarize these properties of Hessians in trained neural networks in the following observation.

232 **Observation 4.1.** $\mathbf{H}_{\mathbf{w}_t}^{D_r}$ is degenerate with many zero and possibly negative eigenvalues, i.e., there
 233 exists $k \ll d$ s.t. $\lambda_i > 0$ for $i \leq k$ and $\lambda_j \leq 0$ for $j \geq k+1$.

235 **Baselines.** Due to Obs. 4.1, the Hessian is non-invertible (with potentially negative eigenvalues),
 236 rendering the vanilla Newton unlearning inapplicable. In practice, we often employ the following
 237 baselines to tackle the problematic Hessians: (1) replacing the exact inverse with the pseudo-inverse
 238 (**PINV-Newton**), and (2) adding a small diagonal matrix to the Hessian (**Damped Newton**).

239 **(1) Pseudo-Inverse (PINV-Newton).** The inverse of the degenerate Hessian is replaced by its unique
 240 pseudo-inverse $(\mathbf{H}_{\mathbf{w}_t}^{D_r})^\dagger$ that always exists. Applying the pseudo-inverse corresponds to finding the
 241 least-norm solution Δ_{t+1} for the linear system $\mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1} = \mathbf{g}_{\mathbf{w}_t}^{D_r}$, that is $\Delta_{t+1} = (\mathbf{H}_{\mathbf{w}_t}^{D_r})^\dagger \mathbf{g}_{\mathbf{w}_t}^{D_r}$.

242 **Remark 4.2.** The Newton update norm using the pseudo-inverse Hessian is $\|\Delta_{t+1}\|^2 =$
 243 $\sum_{i: \lambda_i \neq 0} \frac{1}{\lambda_i^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2$ (see derivation App. C.1). If there are many $|\lambda_i| \approx 0$ (Obs. 4.1), $\|\Delta_{t+1}\|^2 \gg 0$.

245 **(2) Damping (Damped Newton).** The degenerate Hessian is *damped* with a small diagonal matrix,
 246 i.e., $\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I}$, where the damping factor $\gamma > \max\{0, -\lambda_d\}$ and \mathbf{I} is the d -dimensional identity
 247 matrix. In fact, damping is equivalent to finding Δ_{t+1} that minimizes the *regularized* linear least
 248 squares $\|\mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1} - \mathbf{g}_{\mathbf{w}_t}^{D_r}\|^2 + \gamma \|\Delta_{t+1}\|^2$, that is $\Delta_{t+1} = (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}$.

249 **Remark 4.3.** The Newton update norm after damping is $\|\Delta_{t+1}\|^2 = \sum_{i=1}^d \frac{1}{(\gamma + \lambda_i)^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2$ (see
 250 derivation in App. C.2). If γ is too small, $\|\Delta_{t+1}\|^2 \gg 0$ due to Obs. 4.1.

252 Remarks 4.2 and 4.3 show that both PINV-Newton and Damped Newton are prone to produce
 253 excessively large-norm updates, leading to overshooting of local minima and degraded unlearning
 254 performance (violating **D1**), as observed in our experiments (Sec. 6.2). Nonetheless, Remark 4.3
 255 reveals that the update norm decreases as γ increases. Intuitively, an effective Newton unlearning
 256 should avoid too small γ that causes overly large-norm updates, while simultaneously avoiding too
 257 big γ that induces overly small-norm updates and causes slow convergence. A question arises: *How*
 258 *can we automatically find a suitable γ (**D2**) that warrants effective Newton unlearning to satisfy **D1**?*

259 5 METHODOLOGY

260 Here, we describe the methodology and theoretical guarantees of CuRENU and StoCuRENU that will
 261 be of interest to the machine learning audience, with an emphasis on their applications in unlearning.
 262 While there may be less novelty in this section, our algorithms offer principled and scalable solutions
 263 to overcome the problematic Hessians, supported by strong empirical results in the next section.

264 **Convergence guarantees.** Finding the local minima of retraining loss $\mathcal{L}(\mathbf{w}, D_r)$ is challenging for
 265 neural networks with highly non-convex losses. Therefore, it is often helpful to consider two relaxed
 266 definitions: ε -first-order stationary points (ε -FOSPs) and ε -second-order stationary points (ε -SOSPs).

267 **Definition 5.1.** An ε -FOSP \mathbf{w} of the function \mathcal{L} satisfies $\|\mathbf{g}_{\mathbf{w}}\| \leq \varepsilon$.

268 **Definition 5.2.** An ε -SOSP \mathbf{w} of the function \mathcal{L} (with L -Lipschitz Hessian) satisfies $\|\mathbf{g}_{\mathbf{w}}\| \leq \varepsilon$ and
 269 the minimum eigenvalue of the Hessian $\lambda_{\min}(\mathbf{H}_{\mathbf{w}}) \geq -\sqrt{L\varepsilon}$.

270	Unlearning Algorithm	Convergence Rate	Guarantee	Proof
271	GD	$\mathcal{O}(\varepsilon^{-2})$	ε -FOSP	Nesterov (2013)
272	SGD	$\mathcal{O}(\varepsilon^{-4})$	ε -FOSP	Khaled & Richtárik (2020)
273	Newton	local quadratic	ε -FOSP	Nocedal & Wright (2006)
274	CuRENU	global $\mathcal{O}(\varepsilon^{-1.5})$	ε -SOSP	App. D.1
275	StoCuRENU	global $\mathcal{O}(\varepsilon^{-3.5})$	ε -SOSP	App. E.1

Table 1: Convergence guarantees of different unlearning algorithms for non-convex losses.

Tab. 1 summarizes the convergence guarantees of different unlearning algorithms for non-convex losses. Both CuRENU and StoCuRENU provide convergence to an ε -SOSP, which is a stronger guarantee than the ε -FOSP offered by first-order algorithms like GD and SGD.⁴ Moreover, CuRENU and StoCuRENU provide global convergence guarantees, which are better than local convergence in Newton unlearning (that may even diverge due to degenerate Hessians). These stronger guarantees indicate that our unlearning algorithms can optimize retraining loss effectively, setting them apart from empirical unlearning algorithms such as Kurmanji et al. (2023); Zhou et al. (2025).

5.1 CUBIC-REGULARIZED NEWTON UNLEARNING (CuRENU)

Under Assumption 3.3, we consider the minimization problem of the cubic-regularized approximation (Nesterov & Polyak, 2006) of $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$ near \mathbf{w}_t :

$$\min_{\mathbf{w}_{t+1}} \left[\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r) = \mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}, \Delta_{t+1} \rangle + \frac{L}{6} \|\Delta_{t+1}\|^3 \right]. \quad (3)$$

In fact, $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$ is a global upper bound of the retraining loss $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$, which allows CuRENU to converge globally (see App. D.1). This cannot be achieved by the quadratic approximation (Eq. 1) in vanilla Newton unlearning. However, unlike Newton unlearning, the problem in Eq. 3 cannot be solved directly using the first-order necessary condition.⁵ Instead, we consider its strong dual form with the dual variable $\alpha_{t+1} \triangleq \|\mathbf{w}_{t+1} - \mathbf{w}_t\|$:

$$\begin{aligned} \sup_{\alpha_{t+1}} \xi(\alpha_{t+1}), \quad \xi(\alpha_{t+1}) &= -\frac{1}{2} \left\langle \left(\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I} \right)^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}, \mathbf{g}_{\mathbf{w}_t}^{D_r} \right\rangle - \frac{L}{12} \alpha_{t+1}^3 \\ \text{s.t. } \alpha_{t+1} &\in \mathcal{Q} = \{ \alpha \in \mathbb{R} : \mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha \mathbf{I} \succ 0, \alpha \geq 0 \}. \end{aligned} \quad (4)$$

Here, the key observation is that Eq. 4 becomes a *convex* constrained optimization problem in α_{t+1} . Therefore, it can be solved efficiently by many off-the-shelf optimization algorithms like trust-region methods (Conn et al., 2000). Importantly, α_{t+1} defines the optimal γ for the degenerate Hessians via $\gamma = \frac{L}{2} \alpha_{t+1}$. With the optimized α_{t+1} (hence γ), CuRENU repeatedly applies the following update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \left(\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I} \right)^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}. \quad (5)$$

We detail how to solve α_{t+1} using trust-region methods and discuss the duality of Eq. 3 and Eq. 4 in App. D. The pseudocode of CuRENU with trust-region solvers is provided in Algo. 1. Moreover, we prove that CuRENU converges to an ε -SOSP of the retraining loss in $\mathcal{O}(\varepsilon^{-1.5})$ iterations in App. D.1.

Complexity Analysis. Unfortunately, CuRENU suffers from high space and time complexity and does not satisfy **D3**. Specifically, it requires $\mathcal{O}(d^2)$ memory to store explicit Hessians. Its time complexity involves $\mathcal{O}(nd^2 + d^3)$ for forming and inverting the Hessians, and $\mathcal{O}(kn)$ for computing the smallest eigenvalues of the Hessians with the Lanczos method for k iterations in trust-region methods. This raises the question: *Is there a more efficient implementation of CuRENU that preserves its theoretical guarantees while being scalable to large models?*

5.2 STOCHASTIC CUBIC-REGULARIZED NEWTON UNLEARNING (StoCuRENU)

Here, we consider a more efficient implementation of CuRENU based on stochastic approximation of the cubic regularization (Tripuraneni et al., 2018). Let $\mathbf{g}_{\mathbf{w}}^{B_1}$ and $\mathbf{H}_{\mathbf{w}}^{B_2}$ denote a stochastic gradient and Hessian evaluated on two mini-batches $B_1, B_2 \subset \mathcal{D}_r$ with sizes n_1 and n_2 . Using different batches helps decorrelate the errors from stochastic estimates, which improves stability and convergence in

⁴An ε -SOSP with small ε helps avoid most saddle points and sharp local maxima, which an ε -FOSP cannot.

⁵Doing so leads to an ill-defined update $\mathbf{w}_{t+1} = \mathbf{w}_t - \left(\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \|\Delta_{t+1}\| \mathbf{I} \right)^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}$ as $\|\Delta_{t+1}\|$ is unknown.

324 Table 2: Sample-level and class-level batch unlearning on CNN \times FMNIST (averaged over 3 random
325 runs). “ \rightarrow ” means closer to retraining is better; “ \uparrow ” means higher is better; “ \downarrow ” means lower is better.
326 We use **boldface** to denote best results and underline to denote second-best results.

Method	Sample-Level Unlearning						Class-Level Unlearning					
	D_s Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)	D_s Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	85.43 \pm 0.32	87.41 \pm 0.51	88.88 \pm 0.44	1.00 \pm 0.00	0.000 \pm 0.00	50.40 \pm 0.11	0.00 \pm 0.00	91.21 \pm 0.79	81.30 \pm 0.63	1.00 \pm 0.00	0.000 \pm 0.00	51.38 \pm 0.74
Original	88.85 \pm 0.17	88.89 \pm 0.04	87.84 \pm 0.22	0.92 \pm 0.01	0.001 \pm 0.00	50.70 \pm 0.14	85.96 \pm 0.75	89.86 \pm 0.82	88.38 \pm 0.55	0.13 \pm 0.01	0.021 \pm 0.00	51.69 \pm 0.60
Rand. Lbs.	88.31 \pm 0.40	<u>88.30 \pm 0.39</u>	87.36 \pm 0.47	<u>0.94 \pm 0.01</u>	0.001 \pm 0.00	50.73 \pm 0.12	9.78 \pm 2.11	69.57 \pm 14.31	63.03 \pm 12.47	0.59 \pm 0.17	0.010 \pm 0.00	52.19 \pm 0.79
DELETE	83.34 \pm 4.70	83.25 \pm 4.73	82.19 \pm 4.67	0.85 \pm 0.06	<u>0.002 \pm 0.00</u>	51.59 \pm 0.80	0.007 \pm 0.07	<u>81.00 \pm 0.23</u>	0.99 \pm 0.01	<u>0.002 \pm 0.00</u>	51.44 \pm 1.05	
GA	64.29 \pm 0.47	63.78 \pm 0.47	63.50 \pm 0.27	0.47 \pm 0.01	0.008 \pm 0.00	51.42 \pm 1.00	7.14 \pm 0.74	72.70 \pm 13.96	65.54 \pm 12.27	0.65 \pm 0.19	0.005 \pm 0.00	52.52 \pm 0.92
GD	89.35 \pm 0.16	89.46 \pm 0.16	88.34 \pm 0.18	0.91 \pm 0.01	0.001 \pm 0.00	<u>50.68 \pm 0.14</u>	84.69 \pm 0.77	90.12 \pm 0.75	88.46 \pm 0.43	0.14 \pm 0.01	0.021 \pm 0.00	51.69 \pm 0.62
GD ^{aff}	87.06 \pm 0.17	87.06 \pm 0.05	85.99 \pm 0.24	0.92 \pm 0.02	0.002 \pm 0.00	52.34 \pm 0.10	5.53 \pm 0.22	89.45 \pm 0.72	80.18 \pm 0.72	0.92 \pm 0.04	0.002 \pm 0.00	52.06 \pm 0.12
NPO	82.57 \pm 1.63	82.22 \pm 1.49	81.59 \pm 1.76	0.89 \pm 0.04	<u>0.002 \pm 0.00</u>	<u>50.68 \pm 0.63</u>	0.00 \pm 0.00	7.02 \pm 2.25	66.74 \pm 4.73	7.72 \pm 0.09	0.002 \pm 0.00	51.60 \pm 1.46
SCRUB	83.95 \pm 1.06	84.64 \pm 0.05	83.30 \pm 1.07	0.94 \pm 0.04	0.001 \pm 0.00	50.62 \pm 0.13	0.00 \pm 0.00	92.66 \pm 0.23	82.48 \pm 0.23	0.97 \pm 0.02	0.001 \pm 0.00	51.57 \pm 0.45
PINV-Newton	9.74 \pm 3.35	9.84 \pm 3.44	9.49 \pm 3.34	0.01 \pm 0.01	0.026 \pm 0.00	49.81 \pm 0.07	1.44 \pm 2.03	8.86 \pm 1.99	8.39 \pm 1.71	0.05 \pm 0.01	0.032 \pm 0.00	50.42 \pm 0.71
Damped Newton	8.48 \pm 1.07	8.78 \pm 0.77	8.89 \pm 0.90	0.01 \pm 0.00	0.029 \pm 0.00	49.92 \pm 0.46	0.52 \pm 0.74	10.07 \pm 1.14	9.28 \pm 0.77	0.05 \pm 0.01	0.024 \pm 0.02	49.97 \pm 0.05
CuRENU	<u>86.07 \pm 0.20</u>	86.39 \pm 0.47	<u>85.20 \pm 0.08</u>	0.98 \pm 0.00	<u>0.002 \pm 0.00</u>	50.74 \pm 0.09	1.37 \pm 0.64	88.65 \pm 1.66	79.15 \pm 1.59	0.93 \pm 0.03	<u>0.002 \pm 0.00</u>	52.21 \pm 1.12
SroCuRENU	85.93 \pm 0.45	86.27 \pm 0.59	<u>85.05 \pm 0.42</u>	0.98 \pm 0.00	0.001 \pm 0.00	50.69 \pm 0.18	0.14 \pm 0.11	90.88 \pm 0.62	81.01 \pm 0.49	0.99 \pm 0.00	0.001 \pm 0.00	51.98 \pm 0.78

335 practice. Under Assumptions 3.2 and 3.3, we seek \mathbf{w}_{t+1} that minimizes the following stochastic
336 approximation of Eq. 3:

$$\min_{\mathbf{w}_{t+1}} \left[\tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}; D_r) = \mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{B_1}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{B_2} \Delta_{t+1}, \Delta_{t+1} \rangle + \frac{L}{6} \|\Delta_{t+1}\|^3 \right]. \quad (6)$$

340 While alternative methods exist, solving this problem via gradient descent (GD) is particularly
341 appealing because (1) the gradient of $\tilde{\mathcal{L}}^{sto}(\mathbf{w})$ enables efficient computation via HVPs (Hessian-
342 vector products), and (2) previous works have shown that with an appropriate learning rate, GD is an
343 effective stochastic optimization algorithm for both convex (Bottou et al., 2018; Duchi, 2018) and
344 non-convex functions (LeCun et al., 2015). GD is initialized following the procedure in App. E.2.
345 However, the vanilla GD suffers from the so-called “hard case” (Conn et al., 2000): when $\lambda_d < 0$ and
346 $\langle \mathbf{u}_d, \mathbf{g}_{\mathbf{w}_t}^{B_1} \rangle = 0$,⁶ then $\mathbf{g}_{\mathbf{w}_t}^{B_1}$ always remains in a subspace orthogonal to \mathbf{u}_d , while the optimal parametric
347 gap Δ_{t+1}^* (the global minimizer of the approximation defined in Eq. 6) can yield $\langle \mathbf{u}_d, \Delta_{t+1}^* \rangle \neq 0$.⁷
348 To avoid the “hard case”, it is common to slightly perturb the gradient, i.e., $\tilde{\mathbf{g}}_{\mathbf{w}_t}^{B_1} = \mathbf{g}_{\mathbf{w}_t}^{B_1} + \sigma \zeta$ where
349 $\sigma > 0$ and $\zeta \sim \text{Unif}(\mathbb{S}^{d-1})$. In practice, we often choose small σ ($\sigma < 1$) to preserve the original
350 gradient as much as possible, although we show that SroCuRENU remains effective across varying σ
351 in App. J.2. With a learning rate η , that completes the s -th iteration of GD:

$$\Delta_{s+1} = \Delta_s - \eta [\tilde{\mathbf{g}}_{\mathbf{w}_t}^{B_1} + \mathbf{H}_{\mathbf{w}_t}^{B_2} \Delta_s]. \quad (7)$$

353 After presumably T' iterations of GD, SroCuRENU applies $\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta_{T'}$ and repeats the same
354 process for other B_1, B_2 for T stochastic iterations or until a stopping criterion is met. We show that
355 a larger T often results in better unlearning performance in App. J.3, while choosing a fixed, small T'
356 (around 5-10) is sufficient for most of our experiments. The pseudocode for SroCuRENU is provided
357 in Algo. 2. Moreover, we prove that SroCuRENU converges to an ε -SOSP of the retraining loss in
358 $\tilde{\mathcal{O}}(\varepsilon^{-3.5})$ stochastic gradient/Hessian evaluations in App. E.1, where $\tilde{\mathcal{O}}$ hides logarithmic factors.
359

360 **Complexity Analysis.** SroCuRENU requires $\mathcal{O}(2d)$ memory for storing gradients and HVPs,
361 significantly less than $\mathcal{O}(d^2)$ in CuRENU and $\mathcal{O}(nd)$ in the previous Hessian-free work (Qiao et al.,
362 2025). Moreover, SroCuRENU requires the time complexity of $\mathcal{O}(T * (d + T' * d))$, assuming
363 the HVPs are efficiently computed in $\mathcal{O}(d)$ using Pearlmutter’s trick (Pearlmutter, 1994), which is
364 comparable with a gradient evaluation. Thus, SroCuRENU satisfies **D3**.

6 EXPERIMENTS

6.1 EXPERIMENTAL SETTINGS

366 **Datasets and Models.** Our experiments use four datasets: (1) **FashionMNIST** (FMNIST) (Xiao
367 et al., 2017): contains 60,000 grayscale images of 10 fashion items, (2) **CIFAR-10** (Krizhevsky et al.,
368 2009): contains 50,000 colour images of real-life objects, (3) **AG-News** (Zhang et al., 2015): contains
369 120,000 news titles and descriptions in 4 topics, (4) **TOFU** (Maini et al., 2024): contains 4000
370 question-answer pairs fictitiously generated by GPT-4. We train CNN for FMNIS, ResNet-18 (He
371 et al., 2016) for CIFAR-10, and fine-tune Llama-2-7B (Touvron et al., 2023) with LoRA adapters (Hu
372 et al., 2022) for AG-News and TOFU. Training hyperparameters of our models are detailed in App. F.1.

373 ⁶Here, we abuse notation and use λ_d and \mathbf{u}_d to denote the smallest eigenvalue and eigenvector of $\mathbf{H}_{\mathbf{w}_t}^{B_1}$.

374 ⁷We refer readers to Carmon & Duchi (2019); Bellavia et al. (2023) for more details.

378 **Unlearning Baselines.** We compare against following unlearning algorithms: **Retraining**⁸, **Random**
 379 **Labels** (Rand. Lbls.), **Gradient Ascent** (GA), **Gradient Descent** (GD), **GDiff** (Maini et al., 2024),
 380 Direct Preference Optimization with “**I don’t know**” as positive response (IDK) (Maini et al., 2024)
 381 as baselines and **SCRUB** (Kurmanji et al., 2023), **DELETE** (Zhou et al., 2025), and **Negative**
 382 **Preference Optimization** (NPO) (Zhang et al., 2024b) as SOTA empirical unlearning algorithms. We
 383 also include Newton unlearning algorithm with two Hessian degeneracy baselines (Sec. 4): **Hessian**
 384 **pseudo-inverse** (PINV-Newton) and **damping Hessian** (Damped Newton) with small damping factor
 385 $\gamma = 10^{-3}$. Hyperparameters for the unlearning baselines are detailed in App. F.2.

386 **Unlearning Hyperparameters.** We use $L = 5$ for FMNIST, 50 for CIFAR-10, 80 for AG-News, and
 387 400 for TOFU. Although the exact L is often hard to find⁹, we show that our algorithms are robust
 388 across different empirical choices of L and describe a procedure to choose a valid L in App. J.1. For
 389 CuRENU, we only use 1 iteration on FMNIST. For StoCuRENU, we set $\sigma = 0.1$ and set η to be
 390 the same learning rate as during training. We use $n_1 = 10, n_2 = 5$ for AG-News and TOFU, and
 391 $n_1 = 128, n_2 = 64$ for the rest. In terms of stochastic iterations, we use $T = 20, T' = 5$ for FMNIST,
 392 and use $T = 10, T' = 5$ for the rest. We study the effect of varying σ and the number of stochastic
 393 iterations of StoCuRENU in App. J.2 and App. J.3, respectively.

394 **Evaluation Metrics.** Following previous works (Kurmanji et al., 2023; Maini et al., 2024; Zhao
 395 et al., 2024), we compare **accuracy/ROUGE** on D_e, D_r , and D_{test} of the unlearned models and the
 396 retrained models (smaller gap is better) and report **Tug-of-War** (ToW) score that aggregates these
 397 gaps (**higher is better**). For classification tasks, we compute the **Jensen-Shannon divergence** (JS
 398 Div.) between the predicted probability distribution of the unlearned models and the retrained models
 399 (smaller is better) (Chundawat et al., 2023). For TOFU, we compute **Truth Ratio** of answering
 400 with incorrect answers versus correct answers when prompted with the question in D_e (higher is
 401 better) (Maini et al., 2024). Additionally, we report AUC of the **Membership Inference Attack**
 402 (MIA) using ML-Doctor (Liu et al., 2022) for classification tasks and the Min-K++ attack (Zhang
 403 et al., 2025) for text generation tasks like TOFU (a smaller gap to retraining is better). We empirically
 404 observe that the MIA is largely ineffective on our models due to regularization effects (Kaya et al.,
 405 2020) and consider overfitted models in App. G. Lastly, unlearning efficiency is evaluated based on
 406 the average **unlearning time** (in seconds) and **peak memory usage** with respect to retraining.

407 6.2 BATCH UNLEARNING

408 To benchmark computationally expensive unlearning algorithms (i.e., PINV-Newton, Damped Newton,
 409 and CuRENU) and affirm our analysis in Sec. 4, we perform *batch unlearning* (Sec. 3.1) on CNN
 410 \times FMNIST. Following Kurmanji et al. (2023), D_e is selected according to two scenarios: (1)
 411 *sample-level unlearning*, where a random subset of 80% samples in D is removed¹⁰, and 2) *class-level*
 412 *unlearning*, where all samples of a random class is removed.

413 Tab. 2 shows unlearning performance in the batch unlearning settings. Consistent with our conjecture
 414 in Sec. 4, PINV-Newton and Damped Newton exhibit poor unlearning performance due to excessively
 415 large-norm updates. In class-level batch unlearning, the Newton update norms are 3708.78 ± 3364.67
 416 for PINV-Newton and 838.68 ± 742.96 for Damped Newton, both substantially larger than those of
 417 CuRENU (0.36 ± 0.07) and StoCuRENU (0.38 ± 0.05). Our algorithms also maintain D_e Acc. much
 418 closer to retraining than the first-order counterpart (GD), especially in class-level unlearning, which
 419 reiterates our benefits of stronger convergence guarantees. More importantly, both algorithms achieve
 420 high ToW, with StoCuRENU consistently attaining the best ToW in both settings. This indicates that
 421 the outputs of the unlearned models closely approximate those of retraining. Overall, our unlearning
 422 performance, especially with StoCuRENU, is comparable to SOTA empirical methods (SCRUB,
 423 DELETE) and even surpasses them on some metrics, demonstrating the potential of second-order
 424 unlearning algorithms in the realistic batch unlearning settings.

425 6.3 SEQUENTIAL UNLEARNING

426 We perform *sequential unlearning* (Sec. 3.1) with 5 unlearning rounds on Llama-2 \times TOFU and
 427 ResNet-18 \times CIFAR-10. In each round, D_e is chosen from 20% of the forget-10% split for TOFU and

428 ⁸For Llama-2 experiments, we use *retraining* to refer to fine-tuning the pretrained Llama-2 model on the
 429 retain set D_r from scratch.

430 ⁹It is empirically infeasible to enumerate over parameteric space to obtain exact L .

431 ¹⁰We remove a large subset to induce noticeable outputs/performance changes for clearer comparison.

Figure 2: Sample-level sequential unlearning on Llama-2 \times TOFU and class-level sequential unlearning on ResNet-18 \times CIFAR-10 with 5 unlearning rounds (averaged over 5 random runs). Full results with D_{test} are shown in App. H.1.

Table 3: Unlearning performance at the last round of sample-level sequential unlearning on Llama-2 \times TOFU and class-level sequential unlearning on ResNet-18 \times CIFAR-10 (over 5 random runs).

Method	Llama-2 \times TOFU						ResNet-18 \times CIFAR-10					
	D_e ROUGE (\rightarrow)	D_r ROUGE (\rightarrow)	D_{test} ROUGE (\rightarrow)	Truth Ratio (\uparrow)	ToW (\uparrow)	MIA (\rightarrow)	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	0.390 \pm 0.004	0.573 \pm 0.034	0.731 \pm 0.025	0.658 \pm 0.007	1.00 \pm 0.00	87.82 \pm 5.78	96.422 \pm 0.000	91.173 \pm 7.363	77.508 \pm 3.526	1.000 \pm 0.000	0.000 \pm 0.000	50.69 \pm 0.64
Original	0.625 \pm 0.003	0.587 \pm 0.008	0.716 \pm 0.025	0.508 \pm 0.002	0.71 \pm 0.03	100.00 \pm 0.00	96.422 \pm 0.000	90.237 \pm 7.728	85.058 \pm 3.526	0.033 \pm 0.027	0.032 \pm 0.004	49.68 \pm 0.62
Rand. Lbls.	-	-	-	-	-	-	0.008 \pm 0.018	17.063 \pm 2.806	16.432 \pm 2.806	0.106 \pm 0.05	0.022 \pm 0.01	50.93 \pm 0.67
DELETE	-	-	-	-	-	-	0.000 \pm 0.000	77.188 \pm 6.152	66.640 \pm 6.297	0.075 \pm 0.18	0.015 \pm 0.012	52.45 \pm 1.09
GD	0.510 \pm 0.018	0.809 \pm 0.019	0.625 \pm 0.054	0.538 \pm 0.011	0.60 \pm 0.08	99.81 \pm 0.12	93.363 \pm 9.144	87.806 \pm 1.077	0.057 \pm 0.07	0.030 \pm 0.007	51.37 \pm 0.84	
GA	0.009 \pm 0.010	0.009 \pm 0.017	0.009 \pm 0.000	0.371 \pm 0.02	0.74 \pm 0.02	26.00 \pm 1.00	5.384 \pm 7.712	24.464 \pm 2.996	22.180 \pm 2.848	0.143 \pm 0.04	0.027 \pm 0.006	51.75 \pm 0.66
GDiff	0.008 \pm 0.000	0.008 \pm 0.000	0.000 \pm 0.000	0.566 \pm 0.137	0.075 \pm 0.01	66.25 \pm 21.81	12.344 \pm 11.709	77.071 \pm 6.517	66.838 \pm 6.070	0.669 \pm 0.074	0.021 \pm 0.009	51.47 \pm 1.06
IDK	0.098 \pm 0.012	0.474 \pm 0.013	0.683 \pm 0.040	0.566 \pm 0.015	0.60 \pm 0.02	99.90 \pm 0.08	-	-	-	-	-	-
NPO	0.026 \pm 0.030	0.028 \pm 0.034	0.001 \pm 0.002	0.831 \pm 0.043	0.08 \pm 0.02	78.52 \pm 10.23	7.144 \pm 5.106	78.498 \pm 10.037	67.576 \pm 8.286	0.732 \pm 0.08	0.023 \pm 0.008	51.94 \pm 1.01
SCRUB	0.539 \pm 0.033	0.542 \pm 0.023	0.640 \pm 0.06	0.512 \pm 0.012	0.72 \pm 0.03	100.00 \pm 0.00	0.000 \pm 0.000	90.704 \pm 3.250	78.168 \pm 1.708	0.944 \pm 0.031	0.017 \pm 0.015	50.16 \pm 1.39
StoCuReNU	0.455 \pm 0.053	0.484 \pm 0.045	0.706 \pm 0.038	0.591 \pm 0.043	0.80 \pm 0.03	99.86 \pm 0.13	2.320 \pm 3.160	90.332 \pm 4.003	77.590 \pm 2.903	0.909 \pm 0.050	0.011 \pm 0.009	51.33 \pm 1.26

from 20% of a randomly selected class for CIFAR-10. We provide additional results on Llama-2 \times AG-News, along with experiments on more unlearning rounds and different choices of D_e , in App. H. We note that many computationally expensive algorithms like PINV-Newton, Damped Newton, and CuRENU from our previous experiments are not applicable here due to large model sizes.

Table 3 and Fig. 2 show unlearning performance in the sequential unlearning settings. Firstly, we note that many baselines struggle with either *under-forgetting* with trivial unlearning performance on D_e (GD), or *over-forgetting* with degraded performance on D_r and D_{test} (Rand. Lbls., GA, and even DELETE). In contrast, StoCuReNU is able to achieve close performance to retraining over multiple unlearning rounds. Its unlearning performance is comparable to SCRUB on CIFAR-10 and even surpasses it on TOFU across most metrics. These results suggest that StoCuReNU is a practical and scalable unlearning algorithm that can effectively unlearn neural networks with minimal accumulated errors. The high MIA on TOFU, however, is likely due to the inherent distributional difference between the forget and test sets, making it easier to separate them.

Remark 6.1. We note that our intention in Secs. 6.2 and 6.3 is not to claim new SOTA performance across all metrics, but rather to demonstrate that our unlearning algorithms can perform competitively with strong existing baselines (SCRUB, DELETE). The positive results show that our unlearning algorithms, especially StoCuReNU, can unlock the potential of Newton unlearning that previously struggled with degenerate Hessians. As no methods are strictly better across all metrics in these tables, StoCuReNU is a viable unlearning algorithm worth considering in various scenarios.

6.4 UNLEARNING EFFICIENCY

Tab. 4 shows the unlearning time (averaged per batch) and the peak memory usage of the best performing methods (CuRENU, StoCuReNU, DELETE, and SCRUB) in Secs. 6.2 and 6.3. We provide measures for the remaining unlearning algorithms in App. I. As expected, CuRENU incurs significant time and storage to store and invert the Hessians. StoCuReNU is an efficient alternative of CuRENU, which only requires less than 2 \times memory compared to retraining, consistent with our analysis in Sec. 5.2. Moreover, StoCuReNU is significantly faster than SCRUB on large models like Llama-2. These results show that StoCuReNU is a scalable second-order unlearning algorithm, setting it apart from the vanilla Newton unlearning. We note that SCRUB takes longer than retraining on AG-News because retraining is only performed for one epoch. On the other hand, Llama-2 experiments require more memory than ResNet-18 despite having fewer trainable parameters, as we must load both the pretrained model and the LoRA adapters into the memory.

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Unlearning efficiency measured by running time (in seconds) and peak memory usage (in MB) of the best performing unlearning algorithms in Secs. 6.2 and 6.3 (averaged over 3 random runs).

	CNN × FMNIST		ResNet-18 × CIFAR-10		Llama-2 (+LoRA) × AG-News		Llama-2 (+LoRA) × TOFU	
Trainable / Total Params	20,728 / 20,728		11,173,962 / 11,173,962		1,064,960 / 6,608,424,960		2,097,152 / 6,740,512,768	
Metric	Unl. Time (↓)	Peak Mem. (↓)	Unl. Time (↓)	Peak Mem. (↓)	Unl. Time (↓)	Peak Mem. (↓)	Unl. Time (↓)	Peak Mem. (↓)
Retraining	61.20 ± 8.70	1762	124.51 ± 10.95	3738	4792.44 ± 145.90	73896	900.71 ± 2.57	98340
DELETE	0.89 ± 0.10	1155	6.71 ± 0.05	2163	-	-	-	-
SCRUB	23.33 ± 0.43	1764	72.39 ± 4.93	3972	6796.16 ± 160.11	77112	178.52 ± 0.39	117000
CuRENU	6355.31 ± 127.31	6226	-	-	-	-	-	-
StoCuRENU	35.54 ± 6.73	1588	41.79 ± 0.94	7404	85.26 ± 18.23	79140	340.24 ± 61.04	130826

7 CONCLUSION

While Newton unlearning has been successful on linear models, extending it to neural networks is hindered by degenerate Hessians. To overcome this, we introduce CuRENU and its efficient variant StoCuRENU, which enable us to unlearn neural networks with theoretical guarantees. Experiments show that our methods, especially StoCuRENU, deliver strong performance in both batch and sequential unlearning, generalizing well beyond the theoretically supported regime. Future advances in HVP computation are expected to further improve its efficiency.

540 REFERENCES
541

542 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
543 Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
544 *arXiv:2303.08774*, 2023.

545 Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. In *Ethics of data and*
546 *analytics*, pp. 254–264. Auerbach Publications, 2022.

547 Stefania Bellavia, Davide Palitta, Margherita Porcelli, and Valeria Simoncini. Regularized methods
548 via cubic subspace minimization for nonconvex optimization. *arXiv:2306.14290*, 2023.

549 Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
550 learning. *SIAM review*, pp. 223–311, 2018.

551 Lucas Bourtoule, Varun Chandrasekaran, Christopher A. Choquette-Choo, Hengrui Jia, Adelin
552 Travers, Baiwu Zhang, David Lie, and Nicolas Papernot. Machine unlearning. In *Proc. IEEE S&P*,
553 pp. 141–159, 2021.

554 Jonathan Brophy and Daniel Lowd. Machine unlearning for random forests. In *Proc. ICML*, pp.
555 1092–1104, 2021.

556 Yinzh Cao and Junfeng Yang. Towards making systems forget with machine unlearning. In *Proc.*
557 *IEEE S&P*, pp. 463–480, 2015.

558 Nicolas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian Tramer, Borja
559 Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from diffusion models. In *Proc.*
560 *USENIX Security Symposium*, pp. 5253–5270, 2023.

561 Yair Carmon and John Duchi. Gradient descent finds the cubic-regularized nonconvex newton step.
562 *SIAM Journal on Optimization*, pp. 2146–2178, 2019.

563 Gert Cauwenberghs and Tomaso Poggio. Incremental and decremental support vector machine
564 learning. In *Proc. NeurIPS*, pp. 409–415, 2000.

565 Eli Chien, Haoyu Wang, Ziang Chen, and Pan Li. Certified machine unlearning via noisy stochastic
566 gradient descent. *Proc. NeurIPS*, 37:38852–38887, 2024.

567 Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, and Mohan Kankanhalli. Can bad teaching
568 induce forgetting? Unlearning in deep networks using an incompetent teacher. In *Proc. AAAI*, pp.
569 7210–7217, 2023.

570 Andrew R Conn, Nicholas IM Gould, and Philippe L Toint. *Trust region methods*. SIAM, 2000.

571 Yann N Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua
572 Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex
573 optimization. In *Proc. NeurIPS*, pp. 2933–2941, 2014.

574 John C Duchi. Introductory lectures on stochastic optimization. *The mathematics of data*, pp. 99–186,
575 2018.

576 EDPB. Facial recognition at airports: Individuals should have maximum control
577 over biometric data. <https://www.edpb.europa.eu/news/news/2024/facial-recognition-airports-individuals-should-have-maximum-control-over-biometric>
578 en, 2024. European Data Protection Board, Accessed: 2025-05-05.

579 Ronen Eldan and Mark Russinovich. Who's harry potter? Approximate unlearning in LLMs.
580 *arXiv:2310.02238*, 2023.

581 Guillaume Garrigos and Robert M Gower. Handbook of convergence theorems for (stochastic)
582 gradient methods. *arXiv:2301.11235*, 2023.

583 GDPR. General data protection regulation, article 17: Right to erasure ('right to be forgotten'). <https://eur-lex.europa.eu/eli/reg/2016/679/oj>, 2016. Regulation (EU) 2016/679.

594 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
 595 via Hessian eigenvalue density. In *Proc. ICML*, pp. 2232–2241, 2019.
 596

597 Antonio Ginart, Melody Guan, Gregory Valiant, and James Y. Zou. Making AI forget you: Data
 598 deletion in machine learning. In *Proc. NeurIPS*, pp. 3518–3531, 2019.
 599

600 Shashwat Goel, Ameya Prabhu, Amartya Sanyal, Ser-Nam Lim, Philip Torr, and Ponnurangam
 601 Kumaraguru. Towards adversarial evaluations for inexact machine unlearning. *arXiv:2201.06640*,
 602 2022.
 603

604 Aditya Golatkar, Alessandro Achille, and Stefano Soatto. Eternal sunshine of the spotless net:
 605 Selective forgetting in deep networks. In *Proc. CVPR*, pp. 9304–9312, 2020.
 606

607 Laura Graves, Vineel Nagisetty, and Vijay Ganesh. Amnesiac machine learning. In *Proc. AAAI*, pp.
 608 11516–11524, 2021.
 609

610 Chuan Guo, Tom Goldstein, Awni Hannun, and Laurens van der Maaten. Certified data removal from
 611 machine learning models. In *Proc. ICML*, pp. 3832–3842, 2020.
 612

613 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
 614 recognition. In *Proc. CVPR*, pp. 770–778, 2016.
 615

616 Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 617 and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In *Proc. ICLR*, 2022.
 618

619 Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, and
 620 Sijia Liu. Model sparsity can simplify machine unlearning. In *Proc. NeurIPS*, pp. 51584–51605,
 621 2023.
 622

623 Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya
 624 Kailkhura, and Sijia Liu. SOUL: Unlocking the power of second-order optimization for LLM
 625 unlearning. In *Proc. EMNLP*, pp. 4276–4292, 2024.
 626

627 Iain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. *The
 628 Annals of statistics*, pp. 295–327, 2001.
 629

630 Rohan Kashyap. A survey of deep learning optimizers—first and second order methods.
 631 *arXiv:2211.15596*, 2022.
 632

633 Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. On the effectiveness of regularization against
 634 membership inference attacks. *arXiv:2006.05336*, 2020.
 635

636 Ahmed Khaled and Peter Richtárik. Better theory for sgd in the nonconvex world. *arXiv:2002.03329*,
 637 2020.
 638

639 Diederik Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In *Proc. ICLR*, 2015.
 640

641 Pang Wei Koh and Percy Liang. Understanding black-box predictions via influence functions. In
 642 *Proc. ICML*, pp. 1885–1894, 2017.
 643

644 Jonas Moritz Kohler and Aurelien Lucchi. Sub-sampled cubic regularization for non-convex
 645 optimization. In *Proc. ICML*, pp. 1895–1904, 2017.
 646

647 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
 648 Technical report, Toronto, ON, Canada, 2009.
 649

650 Meghdad Kurmanji, Peter Triantafillou, Jamie Hayes, and Eleni Triantafillou. Towards unbounded
 651 machine unlearning. In *Proc. NeurIPS*, pp. 1957–1987, 2023.
 652

653 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *Nature*, pp. 436–444, 2015.
 654

655 Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D Li,
 656 Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark: Measuring
 657 and reducing malicious use with unlearning. In *Proc. ICML*, pp. 28525–28550, 2024.
 658

648 Yugeng Liu, Rui Wen, Xinlei He, Ahmed Salem, Zhikun Zhang, Michael Backes, Emiliano
 649 De Cristofaro, Mario Fritz, and Yang Zhang. {ML-Doctor}: Holistic risk assessment of inference
 650 attacks against machine learning models. In *Proc. USENIX Security Symposium*, pp. 4525–4542,
 651 2022.

652 Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary Chase Lipton, and J Zico Kolter. TOFU: A
 653 task of fictitious unlearning for LLMs. In *ICLR 2024 Workshop on Navigating and Addressing*
 654 *Data Problems for Foundation Models*, 2024.

655 Milad Nasr, Nicholas Carlini, Jonathan Hayase, Matthew Jagielski, A. Feder Cooper, Daphne Ippolito,
 656 Christopher A. Choquette-Choo, Eric Wallace, Florian Tramèr, and Katherine Lee. Scalable
 657 extraction of training data from (production) language models. *arXiv:2311.17035*, 2023.

658 Seth Neel, Aaron Roth, and Saeed Sharifi-Malvajerdi. Descent-to-delete: Gradient-based methods for
 659 machine unlearning. In *Proc. ALT*, pp. 931–962, 2021.

660 Yurii Nesterov. *Introductory Lectures on Convex Optimization: A Basic Course*. Springer New York,
 661 NY, 2013.

662 Yurii Nesterov and Boris T. Polyak. Cubic regularization of Newton method and its global performance.
 663 *Mathematical Programming*, pp. 177–205, 2006.

664 Thanh Tam Nguyen, Thanh Trung Huynh, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, and
 665 Quoc Viet Hung Nguyen. A survey of machine unlearning. *arXiv:2209.02299*, 2022.

666 Jorge Nocedal and Stephen J Wright. *Numerical optimization*. Springer, 2006.

667 Ziad Obermeyer, Brian Powers, Christine Vogeli, and Sendhil Mullainathan. Dissecting racial bias in
 668 an algorithm used to manage the health of populations. *Science*, 366:447–453, 2019.

669 Vardan Papyan. The full spectrum of deepnet Hessians at scale: Dynamics with SGD training and
 670 sample size. *arXiv:1811.07062*, 2018.

671 Barak A Pearlmutter. Fast exact multiplication by the Hessian. *Neural Computation*, pp. 147–160,
 672 1994.

673 Xinbao Qiao, Meng Zhang, Ming Tang, and Ermin Wei. Hessian-free online certified unlearning. In
 674 *Proc. ICLR*, 2025.

675 Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever.
 676 Robust speech recognition via large-scale weak supervision. In *Proc. ICML*, pp. 28492–28518,
 677 2023.

678 Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the Hessian in deep learning: Singularity
 679 and beyond. *arXiv:1611.07476*, 2016.

680 Levent Sagun, Utku Evci, V. Ugur Güney, Yann Dauphin, and Léon Bottou. Empirical analysis of the
 681 Hessian of over-parametrized neural networks. *arXiv:1706.04454*, 2017.

682 Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. In *Proc. ICML*, pp.
 683 343–351, 2013.

684 Sebastian Schelter. Amnesia – Towards machine learning models that can forget user data very fast.
 685 In *The 1st International Workshop on Applied AI for Database Systems and Applications*, 2019.

686 John Schulman and Thinking Machines Lab. Lora without regret. *Thinking Machines Lab:*
 687 *Connectionism*, 2025. <https://thinkingmachines.ai/blog/lora/>.

688 Ayush Sekhari, Jayadev Acharya, Gautam Kamath, and Ananda Theertha Suresh. Remember what
 689 you want to forget: Algorithms for machine unlearning. In *Proc. NeurIPS*, pp. 18075–18086, 2021.

690 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference attacks
 691 against machine learning models. In *Proc. IEEE S&P*, pp. 3–18, 2017.

702 Sidak Pal Singh, Gregor Bachmann, and Thomas Hofmann. Analytic insights into structure and rank
 703 of neural network Hessian maps. In *Proc. NeurIPS*, pp. 23914–23927, 2021.
 704

705 Sidak Pal Singh, Thomas Hofmann, and Bernhard Schölkopf. The Hessian perspective into the nature
 706 of convolutional neural networks. In *Proc. ICML*, pp. 31930–31968, 2023.
 707

708 Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
 709 and momentum in deep learning. In *Proc. ICML*, pp. 1139–1147, 2013.
 710

711 Anvith Thudi, Gabriel Deza, Varun Chandrasekaran, and Nicolas Papernot. Unrolling SGD:
 712 Understanding factors influencing machine unlearning. In *Proc. IEEE EuroS&P*, pp. 303–319,
 713 2022.
 714

715 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
 716 Nikolay Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
 717 Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
 718 Wenjin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 719 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 720 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 721 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 722 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 723 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 724 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 725 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 726 Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models.
 727 *arXiv:2307.09288*, 2023.
 728

729 Nilesh Tripuraneni, Mitchell Stern, Chi Jin, Jeffrey Regier, and Michael I Jordan. Stochastic cubic
 730 regularization for fast nonconvex optimization. In *Proc. NeurIPS*, pp. 2904–2913, 2018.
 731

732 Joel A Tropp et al. An introduction to matrix concentration inequalities. *Foundations and Trends® in
 733 Machine Learning*, pp. 1–230, 2015.
 734

735 Alexander Warnecke, Lukas Pirch, Christian Wressnegger, and Konrad Rieck. Machine unlearning of
 736 features and labels. *arXiv:2108.11577*, 2021.
 737

738 Mika Westerlund. The emergence of deepfake technology: A review. *Technology innovation
 739 management review*, 9, 2019.
 740

741 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a novel image dataset for benchmarking
 742 machine learning algorithms. *arXiv:1708.07747*, 2017.
 743

744 Zuobin Xiong, Wei Li, Yingshu Li, and Zhipeng Cai. Exact-Fun: An exact and efficient federated
 745 unlearning approach. In *IEEE ICDM*, pp. 1439–1444, 2023.
 746

747 Peng Xu, Fred Roosta, and Michael W Mahoney. Newton-type methods for non-convex optimization
 748 under inexact Hessian information. *Mathematical Programming*, pp. 35–70, 2020.
 749

750 Haonan Yan, Xiaoguang Li, Ziyao Guo, Hui Li, Fenghua Li, and Xiaodong Lin. ARCANe: An
 751 efficient architecture for exact machine unlearning. In *Proc. IJCAI*, pp. 4006–4013, 2022.
 752

753 Zhewei Yao, Amir Gholami, Kurt Keutzer, and Michael W Mahoney. Pyhessian: Neural networks
 754 through the lens of the Hessian. In *IEEE BigData*, pp. 581–590, 2020.
 755

756 Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in machine learning:
 757 Analyzing the connection to overfitting. In *Proc. IEEE CSF*, pp. 268–282, 2018.
 758

759 Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, and Heng Ji. Unlearning bias in language models
 760 by partitioning gradients. In *Findings of the Association for Computational Linguistics: ACL 2023*,
 761 pp. 6032–6048, 2023.
 762

763 Binchi Zhang, Yushun Dong, Tianhao Wang, and Jundong Li. Towards certified unlearning for deep
 764 neural networks. In *Proc. ICML*, pp. 58800–58818, 2024a.
 765

756 Jingyang Zhang, Jingwei Sun, Eric Yeats, Yang Ouyang, Martin Kuo, Jianyi Zhang, Hao Frank Yang,
757 and Hai Li. Min-k%++: Improved baseline for pre-training data detection from large language
758 models. In *Proc. ICLR*, 2025.

759

760 Ruiqi Zhang, Licong Lin, Yu Bai, and Song Mei. Negative preference optimization: From catastrophic
761 collapse to effective unlearning. In *Proc. COLM*, 2024b.

762

763 Shaofeng Zhang, Meng Liu, and Junchi Yan. The diversified ensemble neural network. In *Proc. NeurIPS*, pp. 16001–16011, 2020.

764

765 Xiang Zhang, Junbo Zhao, and Yann LeCun. Character-level convolutional networks for text
766 classification. In *Proc. NeurIPS*, pp. 649–657, 2015.

767

768 Kairan Zhao, Meghdad Kurmanji, George-Octavian Bărbulescu, Eleni Triantafillou, and Peter
769 Triantafillou. What makes unlearning hard and what to do about it. In *Proc. NeurIPS*, pp.
770 12293–12333, 2024.

771

772 Yu Zhou, Dian Zheng, Qijie Mo, Renjie Lu, Kun-Yu Lin, and Wei-Shi Zheng. Decoupled distillation
773 to erase: A general unlearning method for any class-centric tasks. In *Proc. CVPR*, pp. 20350–20359,
774 2025.

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 A COMPARISON OF UNLEARNING ALGORITHMS AGAINST DESIDERATA
811

Method	D1	D2	D3	Sequential Unlearning
GD	✗	✗	✓	✗
Newton	✗	✗	✗	✗
PINV Newton	✗	✗	✗	✗
Damped Newton	✗	✗	✗	✗
Hessian-free Unlearning (Qiao et al., 2025)	✓	✓	✗	✗
CuRENU	✓	✓	✗	✗
StoCuRENU	✓	✓	✓	✓

819 Table 5: Comparison of different unlearning algorithms against our desiderata (Sec. 3.1).
820821 Tab. 5 compares different unlearning algorithms with respect to our desiderata: **Effectiveness (D1)**,
822 **Robustness (D2)**, and **Efficiency (D3)** (Sec. 3.1). We note that **D3** is assessed based on both *time*
823 and *memory* efficiency compared to retraining. Additionally, we also compare them regarding their
824 applicability to challenging settings such as sequential unlearning.
825826 **Gradient Descent (GD).** In Sec. 6, we observe that GD fails to sufficiently remove the lineage of D_e
827 in both batch and sequential unlearning settings, and thus does not satisfy **D1**. App. J.6 shows that its
828 unlearning performance is susceptible to the selected learning rate, which fails **D2**. Nonetheless, GD
829 only relies on gradient, which satisfies **D3**.
830831 **Newton Unlearning.** We note that vanilla Newton unlearning often fails to apply to neural networks
832 due to problematic Hessians (Sec. 4), and thus does not satisfy **D1**. Without appropriate damping, it
833 can produce large-norm updates and poor unlearning performance, indicating a failure to meet **D2**.
834 Moreover, it requires storing and computing full Hessians, which is computationally expensive, and
835 therefore does not satisfy **D3** and sequential unlearning.
836837 **PINV-Newton and Damped Newton.** Both PINV-Newton and Damped Newton demonstrate poor
838 unlearning performance in our experiments (Sec. 6), and thus fail to satisfy **D1**. While PINV-Newton
839 does not involve explicit hyperparameters, leaving potential improvements via tuning unclear, Damped
840 Newton is sensitive to the choice of damping factor (Sec. 4), and therefore does not satisfy **D2**. As
841 with the vanilla Newton method, both approaches also fail to meet **D3** and sequential unlearning due
842 to the high computational and storage costs of handling Hessians.
843844 **CuRENU and StoCuRENU.** In Sec. 6, we show that CuRENU and StoCuRENU achieve unlearning
845 performance close to retraining, satisfying **D1**. Both algorithms remain robust across different
846 choices of L (App. J.1). CuRENU identifies the optimal damping factor via an optimization problem
847 (Sec. 5.1), requiring minimal tuning (**D2**), but it does not meet **D3** and cannot be applied to sequential
848 unlearning due to high computational and storing cost. Its stochastic variant, StoCuRENU, retains
849 robustness to hyperparameters such as the number of stochastic iterations (App. J.3) and σ (App. J.2),
850 which make it satisfy **D2**. Moreover, StoCuRENU is computationally and memory efficient (**D3**),
851 while being effective for sequential unlearning (Sec. 6.3).
852853 **Hessian-free Unlearning (Qiao et al., 2025).** While the Hessian-free unlearning algorithm in Qiao
854 et al. (2025) demonstrates effective unlearning for linear regressions and CNNs (**D1**) and robustness to
855 varying step sizes and epochs (**D2**), it requires storing a substantial number of HVPs (Hessian-vector
856 products) that scale with the dataset size, and therefore fails to satisfy **D3**. This high storage cost
857 limits its overall application, including sequential unlearning.
858859 B JUSTIFICATION OF ASSUMPTIONS
860861 For completeness, we restate our assumptions in Sec. 3.2.
862863 **Assumption B.1.** \mathcal{L} is twice continuously differentiable with respect to \mathbf{w} .
864865 **Assumption B.2** (ρ -Lipschitz gradient). For some $\rho > 0$, $\|\mathbf{g}_w - \mathbf{g}_{w'}\| \leq \rho \|\mathbf{w} - \mathbf{w}'\|, \forall \mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$.
866867 **Assumption B.3** (L -Lipschitz Hessian). For some $L > 0$, $\|\mathbf{H}_w - \mathbf{H}_{w'}\| \leq L \|\mathbf{w} - \mathbf{w}'\|, \forall \mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$.
868869 Assumptions B.1, B.2 and B.3 are widely used in existing works (Zhang et al., 2024a; Sekhari
870 et al., 2021; Guo et al., 2020). More importantly, they do not require the loss function to be convex,
871

allowing us to extend our analysis to non-convex settings such as neural networks. A caveat of these assumptions is that they may exclude non-differentiable activations, such as ReLU activations that are commonly used in neural networks. To address this, we empirically evaluate CuRENU and StoCuRENU on ReLU-activated networks like CNN \times FMNIST and ResNet-18 \times CIFAR10 (Sec. 6). Our experiments show that both unlearning algorithms are able to achieve strong unlearning performance, suggesting that they generalize well beyond the theoretically limited regime.

C DERIVATIONS

Under Assumption B.1, $\mathbf{H}_{\mathbf{w}_t}^{D_r} \in \mathbb{R}^{d \times d}$ is symmetric and is orthogonally diagonalizable by the spectral theorem, i.e., $\mathbf{H}_{\mathbf{w}_t}^{D_r} = \mathbf{Q} \Lambda \mathbf{Q}^{-1}$ with an orthonormal basis $\mathbf{Q} \triangleq [\mathbf{u}_1, \dots, \mathbf{u}_d]$ and a diagonal matrix $\Lambda = \text{diag}(\lambda_1, \dots, \lambda_d)$. Moreover, since \mathbf{Q} is orthonormal, $\mathbf{Q}^T = \mathbf{Q}^{-1}$ and $\mathbf{u}_i^T \mathbf{u}_i = \|\mathbf{u}_i\|^2 = 1$.

C.1 DERIVATION OF REMARK 4.2

Remark C.1 (Restated of Remark 4.2). *The Newton update norm using the pseudo-inverse Hessian is $\|\Delta_{t+1}\|^2 = \sum_{i: \lambda_i \neq 0} \frac{1}{\lambda_i^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2$.*

We denote by $\Lambda^\dagger \triangleq \text{diag}(\frac{1}{\lambda_1}, \dots, \frac{1}{\lambda_d})$ a pseudo-inverse of Λ , where $\frac{1}{\lambda_i} \triangleq 0$ if $\lambda_i = 0$. Expanding $(\mathbf{H}_{\mathbf{w}_t}^{D_r})^\dagger$, we get:

$$\begin{aligned} (\mathbf{H}_{\mathbf{w}_t}^{D_r})^\dagger \mathbf{g}_{\mathbf{w}_t}^{D_r} &= (\mathbf{Q} \Lambda \mathbf{Q}^{-1})^\dagger \mathbf{g}_{\mathbf{w}_t}^{D_r} = (\mathbf{Q} \Lambda^\dagger \mathbf{Q}^{-1}) \mathbf{g}_{\mathbf{w}_t}^{D_r} = (\mathbf{Q} \Lambda^\dagger \mathbf{Q}^T) \mathbf{g}_{\mathbf{w}_t}^{D_r} \\ &= \sum_{i=1}^d \frac{1}{\lambda_i} \mathbf{u}_i (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r}) = \sum_{i: \lambda_i \neq 0} \frac{1}{\lambda_i} \mathbf{u}_i (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r}) \end{aligned}$$

Since the above expression is a sum of orthonormal vectors \mathbf{u}_i , where each \mathbf{u}_i is scaled by $\frac{1}{\lambda_i} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})$, the update norm using the pseudo-inverse Hessian is given by:

$$\|(\mathbf{H}_{\mathbf{w}_t}^{D_r})^\dagger \mathbf{g}_{\mathbf{w}_t}^{D_r}\|^2 = \sum_{i: \lambda_i \neq 0} \frac{1}{\lambda_i^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2 \|\mathbf{u}_i\|^2 = \sum_{i: \lambda_i \neq 0} \frac{1}{\lambda_i^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2.$$

C.2 DERIVATION OF REMARK 4.3

Remark C.2 (Restated of Remark 4.3). *The Newton update norm using the damped Hessian is $\|\Delta_{t+1}\|^2 = \sum_{i=1}^d \frac{1}{(\gamma + \lambda_i)^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2$.*

We denote by $\Lambda_\gamma \triangleq \text{diag}(\gamma + \lambda_1, \dots, \gamma + \lambda_d)$ a diagonal matrix of eigenvalues for the γ -damped Hessian $\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I}$, where $\gamma \geq \max\{0, -\lambda_d\}$. Expanding $\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I}$, we get:

$$\begin{aligned} (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r} &= (\mathbf{Q} \Lambda_\gamma \mathbf{Q}^{-1})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r} = (\mathbf{Q} \Lambda_\gamma^{-1} \mathbf{Q}^{-1}) \mathbf{g}_{\mathbf{w}_t}^{D_r} = (\mathbf{Q} \Lambda_\gamma^{-1} \mathbf{Q}^T) \mathbf{g}_{\mathbf{w}_t}^{D_r} \\ &= \sum_{i=1}^d \frac{1}{\gamma + \lambda_i} \mathbf{u}_i (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r}). \end{aligned}$$

Therefore, as explained in App. C.1, the update norm using the γ -damped Hessian is:

$$\|(\mathbf{H}_{\mathbf{w}_t}^{D_r} + \gamma \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}\|^2 = \sum_{i=1}^d \frac{1}{(\gamma + \lambda_i)^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2 \|\mathbf{u}_i\|^2 = \sum_{i=1}^d \frac{1}{(\gamma + \lambda_i)^2} (\mathbf{u}_i^T \mathbf{g}_{\mathbf{w}_t}^{D_r})^2.$$

918 D DETAILS OF CURENU
919920 **Upper bound.** Here, we prove that the cubic regularized approximation $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$ is a global
921 upper bound of $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$. A similar proof can be found in Lemma 1 of Nesterov & Polyak (2006).
922923 *Proof.* For all $\mathbf{w}, \mathbf{w}' \in \mathbb{R}^d$,
924

925
$$\mathbf{g}_{\mathbf{w}'} - \mathbf{g}_{\mathbf{w}} = \int_0^1 \mathbf{H}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})}(\mathbf{w}' - \mathbf{w}) d\tau.$$

926

927 Then,
928

929
$$\begin{aligned} 930 \|\mathbf{g}_{\mathbf{w}} - \mathbf{g}_{\mathbf{w}'} - \mathbf{H}_{\mathbf{w}}(\mathbf{w}' - \mathbf{w})\| &\leq \left\| \int_0^1 (\mathbf{H}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{H}_{\mathbf{w}})(\mathbf{w}' - \mathbf{w}) d\tau \right\| \\ 931 &\leq \int_0^1 \|(\mathbf{H}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{H}_{\mathbf{w}})(\mathbf{w}' - \mathbf{w})\| d\tau \\ 932 &\leq \|\mathbf{w}' - \mathbf{w}\| \int_0^1 \|(\mathbf{H}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{H}_{\mathbf{w}})\| d\tau \quad (\text{sub-multiplicative}) \\ 933 &\leq \|\mathbf{w}' - \mathbf{w}\| \int_0^1 \tau L \|\mathbf{w}' - \mathbf{w}\| d\tau = \frac{L}{2} \|\mathbf{w}' - \mathbf{w}\|^2 \quad (\text{by Assumption B.3}). \\ 934 \\ 935 \\ 936 \\ 937 \\ 938 \end{aligned}$$

939 Hence,
940

941
$$\begin{aligned} 942 &\left| \mathcal{L}(\mathbf{w}') - \mathcal{L}(\mathbf{w}) - \langle \mathbf{g}_{\mathbf{w}}, \mathbf{w}' - \mathbf{w} \rangle - \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}}(\mathbf{w}' - \mathbf{w}), \mathbf{w}' - \mathbf{w} \rangle \right| \\ 943 &\leq \left| \int_0^1 \langle \mathbf{g}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{g}_{\mathbf{w}} - \tau \mathbf{H}_{\mathbf{w}}(\mathbf{w}' - \mathbf{w}), \mathbf{w}' - \mathbf{w} \rangle d\tau \right| \\ 944 &\leq \int_0^1 \left| \langle \mathbf{g}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{g}_{\mathbf{w}} - \tau \mathbf{H}_{\mathbf{w}}(\mathbf{w}' - \mathbf{w}), \mathbf{w}' - \mathbf{w} \rangle \right| d\tau \\ 945 &\leq \|\mathbf{w}' - \mathbf{w}\| \int_0^1 \|\mathbf{g}_{\mathbf{w}+\tau(\mathbf{w}'-\mathbf{w})} - \mathbf{g}_{\mathbf{w}} - \tau \mathbf{H}_{\mathbf{w}}(\mathbf{w}' - \mathbf{w})\| d\tau \quad (\text{by Cauchy-Schwarz inequality}) \\ 946 &\leq \|\mathbf{w}' - \mathbf{w}\| \int_0^1 \frac{L}{2} \tau^2 \|\mathbf{w}' - \mathbf{w}\| d\tau = \frac{L}{6} \|\mathbf{w}' - \mathbf{w}\|^3. \\ 947 \\ 948 \\ 949 \\ 950 \\ 951 \\ 952 \end{aligned}$$

953 Let the evaluated data be the retain set D_r , $\mathbf{w}' = \mathbf{w}_{t+1}$ and $\mathbf{w} = \mathbf{w}_t$. By solving the absolute value
954 inequality above, for all $\mathbf{w}_t, \mathbf{w}_{t+1} \in \mathbb{R}^d$ we have:
955

956
$$\mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}, \Delta_{t+1} \rangle + \frac{L}{6} \|\Delta_{t+1}\|^3 \geq \mathcal{L}(\mathbf{w}_{t+1}; D_r), \quad (8)$$

957

958 where $\Delta_{t+1} \triangleq \|\mathbf{w}_{t+1} - \mathbf{w}_t\|$. The left-hand side is the cubic regularized approximation $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$.
959 \square
960961 D.1 CONVERGENCE GUARANTEE
962963 **Definition D.1** (Restated of Definition 5.2). *An ε -SOSP \mathbf{w} of the function \mathcal{L} (with L -Lipschitz
964 Hessian) satisfies $\|\mathbf{g}_{\mathbf{w}}\| \leq \varepsilon$ and the minimum eigenvalue of the Hessian $\lambda_{\min}(\mathbf{H}_{\mathbf{w}}) \geq -\sqrt{L\varepsilon}$.*
965966 A 0-SOSP is a local minimum as $\|\nabla \mathcal{L}(\mathbf{w})\|$ is 0 and the Hessian is positive semi-definite. When ε is
967 small, the gradient norm is close to 0 and the Hessian's minimum eigenvalue is near non-negative,
968 meaning that strongly negative curvature directions are absent or, if present, very mild. While finding
969 an exact local minimum is computationally hard, an ε -SOSP with sufficiently small ε can approximate
970 a local minimum and avoid most saddle points and sharp local maxima.971 **Proposition D.2** (Adapted from (Nesterov & Polyak, 2006, Theorem 1)). *For non-convex functions
972 satisfying Assumption B.3, CURENU converges to an ε -SOSP in $\mathcal{O}(\varepsilon^{-1.5})$ iterations.*

972 *Proof.* Let \mathbf{w}_t denote the parameters in iteration t . We define $\mathbf{w}_{t+1}^* \triangleq \arg \min_{\mathbf{w}_{t+1}} \tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$,
 973 where $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$ is given in Eq. 3 and $\Delta_{t+1}^* \triangleq \mathbf{w}_{t+1}^* - \mathbf{w}_t$.
 974

975 For \mathbf{w}_{t+1}^* to be a global minimizer of $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$, it must satisfy:
 976

$$\mathbf{g}_{\mathbf{w}_t}^{D_r} + \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^* + \frac{L}{2} \|\Delta_{t+1}^*\| \Delta_{t+1}^* = 0 \quad (9)$$

$$\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \|\Delta_{t+1}^*\| \mathbf{I} \succeq 0 \quad (10)$$

981 Multiplying Δ_{t+1}^* once in the Eq. 9 and twice in the Inequality 10, we get:
 982

$$\langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1}^* \rangle + \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*, \Delta_{t+1}^* \rangle + \frac{L}{2} \|\Delta_{t+1}^*\|^3 = 0 \quad (11)$$

$$\langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*, \Delta_{t+1}^* \rangle + \frac{L}{2} \|\Delta_{t+1}^*\|^3 \geq 0 \quad (12)$$

987 Together, Eq. 11 and Ineq. 12 imply that:
 988

$$\langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1}^* \rangle \leq 0. \quad (13)$$

991 **Step 1:** We now aim to bound the decrease in $\mathcal{L}(\cdot; D_r)$ at each iteration. Since Eq. 8 state that
 992 $\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$ is the upper bound of $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$, we have:
 993

$$\mathcal{L}(\mathbf{w}_t; D_r) - \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) \geq \mathcal{L}(\mathbf{w}_t; D_r) - \tilde{\mathcal{L}}(\mathbf{w}_{t+1}^*; D_r).$$

995 Moreover, using Definition 3 of $\tilde{\mathcal{L}}(\cdot; D_r)$, Eq. 11 and Inequality 13, we have:
 996

$$\begin{aligned} 997 \mathcal{L}(\mathbf{w}_t; D_r) - \tilde{\mathcal{L}}(\mathbf{w}_{t+1}^*; D_r) &= -\langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1}^* \rangle - \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*, \Delta_{t+1}^* \rangle - \frac{L}{6} \|\Delta_{t+1}^*\|^3 \\ 998 &= -\frac{1}{2} \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1}^* \rangle + \frac{L}{12} \|\Delta_{t+1}^*\|^3 \geq \frac{L}{12} \|\Delta_{t+1}^*\|^3. \\ 999 \\ 1000 \end{aligned}$$

1001 Hence,
 1002

$$1003 \mathcal{L}(\mathbf{w}_t; D_r) - \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) \geq \frac{L}{12} \|\Delta_{t+1}^*\|^3. \\ 1004$$

1005 **Step 2:** We set up the following auxiliary results.
 1006

1007 a) From Eq. 10, we have that
 1008

$$\|\mathbf{g}_{\mathbf{w}_t}^{D_r} + \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*\| = \frac{L}{2} \|\Delta_{t+1}^*\|^2.$$

1011 Moreover, by Inequality 2.2 in Lemma 1 of Nesterov & Polyak (2006), we get:
 1012

$$1013 \|\mathbf{g}_{\mathbf{w}_{t+1}^*}^{D_r} - \mathbf{g}_{\mathbf{w}_t}^{D_r} - \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*\| \leq \frac{L}{2} \|\Delta_{t+1}^*\|^2. \\ 1014$$

1015 By the triangle inequality, these results imply that:
 1016

$$1017 \|\mathbf{g}_{\mathbf{w}_{t+1}^*}^{D_r}\| \leq \|\mathbf{g}_{\mathbf{w}_t}^{D_r} + \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*\| + \|\mathbf{g}_{\mathbf{w}_{t+1}^*}^{D_r} - \mathbf{g}_{\mathbf{w}_t}^{D_r} - \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*\| \leq L \|\Delta_{t+1}^*\|^2. \quad (14)$$

1018 b) In view of Inequality 10, the following must hold:
 1019

$$1020 -\lambda_{\min}(\mathbf{H}_{\mathbf{w}_t}^{D_r}) \leq \frac{L}{2} \|\Delta_{t+1}^*\|. \quad (15)$$

1023 **Step 3:** We define
 1024

$$1025 \mu_L(\mathbf{w}) = \max \left\{ \sqrt{\frac{1}{L} \|\nabla \mathcal{L}(\mathbf{w}; D_r)\|}, -\frac{1}{L} \lambda_{\min}(\nabla^2 \mathcal{L}(\mathbf{w}; D_r)) \right\}. \quad (16)$$

1026 Intuitively, $\mu_L(\mathbf{w}) \geq 0$ reflects the (non)-local optimality of \mathbf{w} , i.e. \mathbf{w} is a local minimum with
 1027 $\nabla \mathcal{L}(\mathbf{w}; D_r) = \mathbf{0}$ and $\nabla^2 \mathcal{L}(\mathbf{w}; D_r) \succeq \mathbf{0}$ iff $\mu_L(\mathbf{w}) = 0$.
 1028

1029 We now aim to show that $\|\Delta_{t+1}^*\| \geq \mu_L(\mathbf{w}_{t+1}^*)$. Indeed, expanding $\mu_L(\mathbf{w}_{t+1}^*)$ using Inequality 14
 1030 and Ineq. 15, we get:
 1031

$$\begin{aligned} \sqrt{\frac{1}{L} \|\mathbf{g}_{\mathbf{w}_{t+1}}^{D_r}\|} &\leq \sqrt{\frac{1}{L} \cdot L \|\Delta_{t+1}^*\|^2} = \|\Delta_{t+1}^*\| \\ -\frac{1}{L} \lambda_{\min}(\mathbf{H}_{\mathbf{w}_{t+1}}^{D_r}) &\leq \frac{1}{L} \cdot \frac{L}{2} \|\Delta_{t+1}^*\| = \frac{1}{2} \|\Delta_{t+1}^*\| \end{aligned}$$

1036 Therefore, $\|\Delta_{t+1}^*\| \geq \mu_L(\mathbf{w}_{t+1}^*)$.
 1037

1038 **Step 4:** Let \mathcal{L}^* be a lower bound for $\mathcal{L}(\mathbf{w}; D_r)$. Given that CuRENU involves T iterations, it follows
 1039 from the results of **Step 1** and **Step 3** that:
 1040

$$\begin{aligned} \mathcal{L}(\mathbf{w}_0; D_r) - \mathcal{L}^* &\geq \sum_{t=0}^{T-1} [\mathcal{L}(\mathbf{w}_t; D_r) - \mathcal{L}(\mathbf{w}_{t+1}^*; D_r)] \\ &\geq \sum_{t=0}^{T-1} \frac{L}{12} \|\Delta_{t+1}^*\|^3 \\ &\geq \sum_{t=0}^{T-1} \frac{L}{12} \mu_L^3(\mathbf{w}_{t+1}^*) \geq \frac{TL}{12} \min_{1 \leq t \leq T} \mu_L^3(\mathbf{w}_t^*) \end{aligned}$$

1041 Hence,
 1042

$$\min_{1 \leq t \leq T} \mu_L(\mathbf{w}_t^*) \leq \left(\frac{12}{TL} (\mathcal{L}(\mathbf{w}_0; D_r) - \mathcal{L}^*) \right)^{1/3} \quad (17)$$

1043 By our definition in Eq. 16, for $\min_{1 \leq t \leq T} \mu_L(\mathbf{w}_t)$ corresponding to an ε -SOSP (Definition 5.2), it
 1044 must satisfy:
 1045

$$\begin{aligned} \min_{1 \leq t \leq T} \mu_L(\mathbf{w}_t^*) &\geq \min_{1 \leq t \leq T} \sqrt{\frac{1}{L} \|\nabla \mathcal{L}(\mathbf{w}_t^*; D_r)\|} \geq \sqrt{\frac{\varepsilon}{L}} \\ \min_{1 \leq t \leq T} \mu_L(\mathbf{w}_t^*) &\geq \min_{1 \leq t \leq T} -\frac{1}{L} \lambda_{\min} \nabla \mathcal{L}(\mathbf{w}_t^*; D_r) \geq \sqrt{\frac{\varepsilon}{L}} \end{aligned}$$

1046 Using Inequality 17 and making T the subject of the formula, we have that:
 1047

$$T \leq \frac{12\sqrt{L}(\mathcal{L}(\mathbf{w}_0; D_r) - \mathcal{L}^*)}{\varepsilon^{1.5}}.$$

1048 Hence, $T \leq \mathcal{O}(\varepsilon^{-1.5})$. □
 1049

1050 D.2 DUALITY BETWEEN THE PRIMAL AND DUAL PROBLEMS

1051 Here, we restate the minimization problem of the cubic-regularized quadratic approximation of
 1052 $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$ as defined in Eq. 3:
 1053

$$\min_{\mathbf{w}_{t+1}} \left[\tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r) = \mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}, \Delta_{t+1} \rangle + \frac{L}{6} \|\Delta_{t+1}\|^3 \right].$$

1054 Let $\alpha_{t+1} \triangleq \|\mathbf{w}_{t+1} - \mathbf{w}_t\|$. For the above primal problem, we have the dual optimization problem in
 1055 α_{t+1} as described in Eq. 4:
 1056

$$\begin{aligned} \sup_{\alpha_{t+1}} \xi(\alpha_{t+1}), \quad \xi(\alpha_{t+1}) &= -\frac{1}{2} \left\langle \left(\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I} \right)^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}, \mathbf{g}_{\mathbf{w}_t}^{D_r} \right\rangle - \frac{L}{12} \alpha_{t+1}^3 \\ \text{s.t.} \quad \alpha_{t+1} &\in \mathcal{Q} = \{ \alpha \in \mathbb{R} : \mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha \mathbf{I} \succ 0, \alpha \geq 0 \}. \end{aligned}$$

The duality gap is the difference between the optimized value of the primal problem $\min_{\mathbf{w}_{t+1}} \tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r)$ and that of the dual problem $\sup_{\alpha_{t+1}} \xi(\alpha_{t+1})$. If the duality gap equals 0, which is called *strong duality*, the optimized value of the dual problem equals the optimized value of the primal problem. The following proposition, adapted from Nesterov & Polyak (2006, Theorem 10), states the duality gap between the primal and dual problems.

Proposition B.2.1. *For any $L > 0$, the primal and dual problems satisfy strong duality, i.e., $\min_{\mathbf{w}_{t+1}} \tilde{\mathcal{L}}(\mathbf{w}_{t+1}; D_r) = \sup_{\alpha_{t+1}} \xi(\alpha_{t+1})$. Moreover, let $\Delta_{t+1} \triangleq (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}$. Then, for any $\alpha_{t+1} \in \mathcal{Q}$, the duality gap is $\frac{4}{3L} \cdot \frac{\alpha_{t+1} + 2\|\Delta_{t+1}\|}{(\alpha_{t+1} + \|\Delta_{t+1}\|)^2} \cdot \xi'(\alpha_{t+1})^2 \geq 0$ where ξ' denotes the first-order derivative of ξ w.r.t. α_{t+1} .*

Note that the dual problem is a one-dimensional concave maximization problem over $\alpha_{t+1} \in \mathcal{Q}$. From Proposition B.2.1, $\tilde{\mathcal{L}}(\mathbf{w}_{t+1})$ is minimized when $\alpha_{t+1} \in \mathcal{Q}$ satisfies $\xi'(\alpha_{t+1}) = 0$, indicating a global maximizer of the dual problem. Moreover, even if finding such a maximizer is infeasible, finding $\alpha_{t+1} \in \mathcal{Q}$ with a small $\xi'(\alpha_{t+1})$ implies a small duality gap and thus the primal function value is near optimal. Additionally, the concave constrained dual problem can be solved efficiently instead of the non-convex primal problem through techniques to solve the trust-region subproblem, as we will show next.

D.3 SOLVING THE DUAL PROBLEM USING TRUST-REGION METHODS

Firstly, by taking the derivative of ξ (defined in Eq. 4) w.r.t. α_{t+1} we have:

$$\begin{aligned} \xi'(\alpha_{t+1}) &= \frac{d}{d\alpha_{t+1}} \left[-\frac{1}{2} \langle (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}, \mathbf{g}_{\mathbf{w}_t}^{D_r} \rangle - \frac{L}{12} \alpha_{t+1}^3 \right] \\ &= \frac{L}{4} (\mathbf{g}_{\mathbf{w}_t}^{D_r})^T (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I})^{-1} (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r} - \frac{L}{4} \alpha_{t+1}^2 \\ &= \frac{L}{4} (\|\Delta_{t+1}\|^2 - \alpha_{t+1}^2). \end{aligned}$$

Setting $\xi'(\alpha_{t+1})$ to 0 and note that $\alpha_{t+1} \geq 0$ we have:

$$\|\Delta_{t+1}\| = \alpha_{t+1}. \quad (18)$$

Also, since $\Delta_{t+1} \succ 0$ we have:

$$\alpha_{t+1} > \max \left\{ 0, -\frac{2}{L} \lambda_d \right\}, \quad (19)$$

where λ_d is the minimum eigenvalue of $\mathbf{H}_{\mathbf{w}_t}^{D_r}$. Here, we use trust-region methods (Conn et al., 2000) to solve Eq. 18 and Eq. 19. We consider the following trust-region subproblem:

$$\min_{\Delta_{t+1}} \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1} \rangle + \frac{1}{2} \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}, \Delta_{t+1} \rangle \quad \text{s.t.} \quad \|\Delta_{t+1}\| \leq \alpha_{t+1}.$$

By Corollary 7.2.2 of Conn et al. (2000), the above problem admits a global minimizer $\Delta_{t+1}^* \triangleq (\mathbf{H}_{\mathbf{w}_t}^{D_r} + \frac{L}{2} \alpha_{t+1} \mathbf{I})^{-1} \mathbf{g}_{\mathbf{w}_t}^{D_r}$ that satisfies Eq. 18 and Eq. 19. Therefore, we adopt a standard procedure to solve the trust-region subproblem.

Our procedure starts from $\alpha_{t+1} = \max\{0, -\frac{2}{L} \lambda_d\} + \varepsilon$, where ε is a small constant. Note that this choice of α_{t+1} yields the largest $\|\Delta_{t+1}\|$, as we showed the latter is a monotonically decreasing function of $\gamma = \frac{L}{2} \alpha_{t+1}$ (App. C.2). From this, two cases arise by comparing α_{t+1} and $\|\Delta_{t+1}\|$:

- **Case 1** happens when $\|\Delta_{t+1}\| \geq \alpha_{t+1}$. Empirically, we observe that this case is common for neural networks with highly non-convex losses. Then, we can use Newton's method to find the root of $\|\Delta_{t+1}\| - \alpha_{t+1} = 0$ using its derivative w.r.t. α_{t+1} . However, we will empirically use Newton's method with a better-behaved function $\frac{1}{\|\Delta_{t+1}\|} - \frac{1}{\alpha_{t+1}}$ to avoid the tricky case when Δ_{t+1} has small eigenvalues (Conn et al., 2000, Section 7.3.3).

1134 • **Case 2** happens when $\|\Delta_{t+1}\| < \alpha_{t+1}$. This means Δ_{t+1}^* is in the interior of the trust region
 1135 (with radius α_{t+1}), and the trust-region subproblem becomes an unconstrained optimization
 1136 problem. However, by Corollary 7.2.2 of Conn et al. (2000), this implies that $\alpha_{t+1} = 0$ and
 1137 the Hessian is itself positive definite, which contradicts our empirical observation (Obs. 4.1).
 1138 Nonetheless, if this occurs, we will accept $\Delta_{t+1}^* = \Delta_{t+1}$.
 1139
 1140
 1141

1142 D.4 PSEUDOCODE

1143
 1144 We provide the pseudocode of CuReNU in Algorithm 1. The algorithm employs Newton’s method
 1145 with a trust region (App. D.3) to solve the dual problem. Following Conn et al. (2000), we use the
 1146 Cholesky decomposition of the regularized Hessian matrix to enhance computational efficiency and
 1147 numerical stability.

1148 **Fast computation via Cholesky decomposition.**

1151 **Algorithm 1** CuReNU

1152 **Input:** original model parameters \mathbf{w}^* , retained set D_r , objective function \mathcal{L} , Hessian Lipschitz
 1153 constant L , number of unlearning iterations T , number of Newton’s iterations T_{inner} , tolerance ε
 1154
 1155 1: Set $\mathbf{w}_0 = \mathbf{w}^*$
 1156 2: **for** $t = 0..T - 1$ **do**
 1157 3: Get $\mathbf{g}_{\mathbf{w}_t}^{D_r} = \nabla \mathcal{L}(\mathbf{w}_t; D_r)$
 1158 4: Get $\mathbf{H}_{\mathbf{w}_t}^{D_r} = \nabla^2 \mathcal{L}(\mathbf{w}_t; D_r)$
 1159 5: $\Delta_{t+1} = \text{SOLVE DUAL PROBLEM}(\mathbf{H}_{\mathbf{w}_t}^{D_r}, \mathbf{g}_{\mathbf{w}_t}^{D_r}, L, \varepsilon, T_{inner})$
 1160 6: Set $\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta_{t+1}$
 1161 7: **end for**
 1162 **Output:** unlearned model parameters: \mathbf{w}_T ;

1163
 1164 8: **function** $\text{SOLVE DUAL PROBLEM}(\mathbf{H}, \mathbf{g}, L, \varepsilon, T_{inner})$ ▷ See D.3
 1165 9: Get the minimum eigenvalue λ_d of \mathbf{H}
 1166 10: Set $\gamma_0 = \max(0, -\lambda_d) + \varepsilon$
 1167 11: Set $\alpha_0 = \frac{\gamma_0}{2L}$
 1168 12: Factorize $\mathbf{H} + \gamma_0 \mathbf{I} = \mathbf{L} \mathbf{L}^T$ ▷ Cholesky Decomposition
 1169 13: Solve Δ in $(\mathbf{L} \mathbf{L}^T)^{-1} \Delta = \mathbf{g}$
 1170 14: **if** $\|\Delta\| \geq \alpha_0$ **then**
 1171 15: **for** $t = 1..T_{inner}$ **do** ▷ Newton’s Method
 1172 16: **if** $\|\Delta\| - \alpha_{t-1} \leq \varepsilon$ **then**
 1173 17: **break**;
 1174 18: **else**
 1175 19: Solve $\mathbf{L} \mathbf{u} = \Delta$
 1176 20: Set $\xi'(\alpha_{t-1}) = \frac{1}{\|\Delta\|} - \frac{1}{\alpha_{t-1}}$
 1177 21: Set $\xi''(\alpha_{t-1}) = \frac{\|\mathbf{u}\|^2}{\|\Delta\|^3} + \frac{1}{\gamma_{t-1} \alpha_{t-1}}$
 1178 22: Set $\gamma_t = \gamma_{t-1} - \frac{\xi'(\alpha_{t-1})}{\xi''(\alpha_{t-1})}$
 1179 23: Set $\alpha_t = \frac{\gamma_t}{2L}$
 1180 24: Factorize $\mathbf{H} + \gamma_t \mathbf{I} = \mathbf{L} \mathbf{L}^T$ ▷ Cholesky Decomposition
 1181 25: Solve $(\mathbf{L} \mathbf{L}^T)^{-1} \Delta = \mathbf{g}$
 1182 26: **end if**
 1183 27: **end for**
 1184 28: **end if**
 1185 29: **return** Δ ;
 1186 30: **end function**

1187

1188 E DETAILS OF StoCURENU
11891190 E.1 CONVERGENCE GUARANTEE
11911192 Throughout this section, we use $\tilde{\mathcal{O}}$ to hide the logarithmic factors, i.e. $\tilde{\mathcal{O}}(f(n)) = \mathcal{O}(f(n) \log^k n)$
1193 for some constant k . To make the convergence analysis tractable, we need the following assumption.1194 **Assumption B.2.1.** *The stochastic gradient and Hessian estimates of \mathcal{L} satisfy*1195

- 1196 • $\forall \mathbf{w}, \mathbb{E} [\|\mathbf{g}_{\mathbf{w}}^{B_1} - \mathbf{g}_{\mathbf{w}}^D\|] \leq \sigma_1^2$ and $\|\mathbf{g}_{\mathbf{w}}^{B_1} - \mathbf{g}_{\mathbf{w}}^D\| \leq M_1$ almost surely;
- 1197 • $\forall \mathbf{w}, \mathbb{E} [\|\mathbf{H}_{\mathbf{w}}^{B_2} - \mathbf{H}_{\mathbf{w}}^D\|] \leq \sigma_2^2$ and $\|\mathbf{H}_{\mathbf{w}}^{B_2} - \mathbf{H}_{\mathbf{w}}^D\| \leq M_2$ almost surely.

1198 **Theorem B.2.1** (Adapted from (Tripuraneni et al., 2018, Corollary 1)). *For non-convex functions
1199 satisfying Assumptions B.3, B.2 and stochastic estimates satisfying Assumption B.2.1, with probability
1200 greater than $1 - \delta$, if $n_1 = \tilde{\mathcal{O}}\left(\frac{\sigma_1^2}{\varepsilon^2}\right)$ and $n_2 = \tilde{\mathcal{O}}\left(\frac{\sigma_2^2}{L\varepsilon}\right)$, StoCURENU can converge to an ε -SOSP in
1201 $\tilde{\mathcal{O}}(\varepsilon^{-3.5})$ stochastic gradient/HVP evaluations where ε is sufficiently small.*1202
1203 *Proof.* **Step 1:** Under Assumption B.2.1, we use the matrix Bernstein inequality Tropp et al. (2015)
1204 to derive the following concentration bounds for gradient and HVP:1205 • For $n_1 \geq \max\left(\frac{M_1}{c_1\varepsilon}, \frac{\sigma_1^2}{c_1^2\varepsilon^2}\right) \frac{8}{3} \log \frac{2d}{\delta}$, then with probability $1 - \delta'$,

1206
$$\|\mathbf{g}_{\mathbf{w}_t}^{B_1} - \mathbf{g}_{\mathbf{w}_t}^{D_r}\| \leq c_1\varepsilon$$

1207 • For $n_2 \geq \max\left(\frac{M_2}{c_2\sqrt{L\varepsilon}}, \frac{\sigma_2^2}{c_2^2L\varepsilon}\right) \frac{8}{3} \log \frac{2d}{\delta}$, then with probability $1 - \delta'$,

1208
$$\forall \mathbf{z} \in \mathbb{R}^d, \|(\mathbf{H}_{\mathbf{w}_t}^{B_2} - \mathbf{H}_{\mathbf{w}_t}^{D_r}) \mathbf{z}\| \leq c_2\sqrt{L\varepsilon}\|\mathbf{z}\|$$

1209 For a sufficiently small ε , the above inequalities hold for $n_1 = \tilde{\mathcal{O}}\left(\frac{\sigma_1^2}{\varepsilon^2}\right)$ and $n_2 = \tilde{\mathcal{O}}\left(\frac{\sigma_2^2}{L\varepsilon}\right)$.1210 **Step 2:** We denote $\mathbf{w}_{t+1}^* \triangleq \min_{\mathbf{w}_{t+1}} \tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}; D_r)$ and $\Delta_{t+1}^* \triangleq \mathbf{w}_{t+1}^* - \mathbf{w}_t$, where
1211 $\tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}; D_r)$ is defined in Eq. 6. Here, we note that \mathbf{w}_{t+1}^* is shown to be achievable by
1212 the gradient descent algorithm (perturbed by a small σ) as described in Sec. 5.2. The convergence
1213 guarantee of gradient descent is given in (Carmon & Duchi, 2019).1214 Similar to the proof in **Step 1** of App. D.1, we have:

1215
$$\mathcal{L}(\mathbf{w}_t; D_r) - \tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}^*; D_r) \geq \frac{L}{12} \|\Delta_{t+1}^*\|^3.$$

1216 However, unlike the results in App. D.1, it does not immediately follow that $\tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}; D_r)$ is the
1217 upper bound of $\mathcal{L}(\mathbf{w}_{t+1}; D_r)$. Instead, this upper bound holds only up to a certain tolerance, as we
1218 will show next.1219 **Step 3:** By the proof of Lemma 4 of Tripuraneni et al. (2018), if \mathbf{w}_{t+1}^* is an ε -SOSP (Definition 5.2),
1220 then

1221
$$\|\Delta_{t+1}^*\| \leq \frac{1}{2} \sqrt{\frac{\varepsilon}{L}}. \quad (20)$$

1222 Otherwise, we have that $\|\Delta_{t+1}^*\| \geq \frac{1}{2} \sqrt{\frac{\varepsilon}{L}}$.1223 **Step 4:** Using the implication of L -Lipschitz Hessian (Eq. 8), Cauchy-Schwarz inequality with
1224 gradient and HVP concentration bounds in **Step 1**, and the results from **Step 2**:

1225
$$\begin{aligned} 1226 & \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) - \mathcal{L}(\mathbf{w}_t; D_r) \\ 1227 & \leq \langle \mathbf{g}_{\mathbf{w}_t}^{D_r}, \Delta_{t+1}^* \rangle + \langle \mathbf{H}_{\mathbf{w}_t}^{D_r} \Delta_{t+1}^*, \Delta_{t+1}^* \rangle + \frac{L}{6} \|\Delta_{t+1}^*\|^3 \\ 1228 & = \tilde{\mathcal{L}}^{sto}(\mathbf{w}_{t+1}^*; D_r) - \mathcal{L}(\mathbf{w}_t; D_r) + \langle \mathbf{g}_{\mathbf{w}_t}^{D_r} - \mathbf{g}_{\mathbf{w}_t}^{B_1}, \Delta_{t+1}^* \rangle + \frac{1}{2} \langle (\mathbf{H}_{\mathbf{w}_t}^{D_r} - \mathbf{H}_{\mathbf{w}_t}^{B_2}) \Delta_{t+1}^*, \Delta_{t+1}^* \rangle \\ 1229 & \leq -\frac{L}{12} \|\Delta_{t+1}^*\|^3 + c_1\varepsilon \|\Delta_{t+1}^*\| + \frac{c_2}{2} \sqrt{L\varepsilon} \|\Delta_{t+1}^*\|^2 \end{aligned}$$

1242 We now consider the characteristics of \mathbf{w}_{t+1}^* :
 1243

1244 *Case 1:* \mathbf{w}_{t+1}^* is an ε -SOSP, then using Ineq. 20, we get:
 1245

$$1246 \quad \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) - \mathcal{L}(\mathbf{w}_t; D_r) \leq -\frac{1}{96} \sqrt{\frac{\varepsilon^3}{L}} + \frac{c_1}{2} \sqrt{\frac{\varepsilon^3}{L}} + \frac{c_2}{8} \sqrt{\frac{\varepsilon^3}{L}} \leq -c \sqrt{\frac{\varepsilon^3}{L}},$$

1247 where $c \geq \frac{1}{96} - \frac{c_1}{2} - \frac{c_2}{8}$ by making c_1, c_2 arbitrarily small (i.e. increasing n_1 and n_2).
 1248

1249 *Case 2:* If \mathbf{w}_{t+1}^* is not an ε -SOSP, then $\varepsilon \leq 4L\|\Delta_{t+1}^*\|^2$.
 1250

1251

$$1252 \quad \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) - \mathcal{L}(\mathbf{w}_t; D_r) \leq -\frac{L}{12} \|\Delta_{t+1}^*\|^3 + 4c_1 L \|\Delta_{t+1}^*\|^3 + c_2 L \|\Delta_{t+1}^*\|^3$$

$$1253 \quad \leq -\frac{1}{96} \sqrt{\frac{\varepsilon^3}{L}} + \frac{c_1}{2} \sqrt{\frac{\varepsilon^3}{L}} + \frac{c_2}{8} \sqrt{\frac{\varepsilon^3}{L}} \leq -c \sqrt{\frac{\varepsilon^3}{L}},$$

1254 where $c \geq \frac{1}{96} - \frac{c_1}{2} - \frac{c_2}{8}$ by making c_1, c_2 arbitrarily small (i.e. increasing n_1 and n_2).
 1255

1256 In both cases, we get the following bound:
 1257

$$1258 \quad \mathcal{L}(\mathbf{w}_t; D_r) - \mathcal{L}(\mathbf{w}_{t+1}^*; D_r) \geq c \sqrt{\frac{\varepsilon^3}{L}}. \quad (21)$$

1259 **Step 5:** Let \mathcal{L}^* be the lower bound of $\mathcal{L}(\mathbf{w}; D_r)$. StoCuRENU involves at most T iterations to decrease
 1260 from $\mathcal{L}(\mathbf{w}_0; D_r)$ to \mathcal{L}^* , where the upper bound on per-iteration decrease is given in Inequality 21.
 1261 Following the same argument as Step 4 of the proof of Prop D.2, the total number of iterations T is:
 1262

$$1263 \quad T \leq \frac{\sqrt{L}(\mathcal{L}(\mathbf{w}_0, D_r) - \mathcal{L}^*)}{c\varepsilon^{1.5}}.$$

1264 **Step 6:** Since $n_1 = \tilde{\mathcal{O}}(\frac{\sigma_1^2}{\varepsilon^2})$ and $n_2 = \tilde{\mathcal{O}}(\frac{\sigma_2^2}{L\varepsilon})$ from **Step 1**, each iteration (corresponding to minimizing
 1265 the stochastic cubic-regularized approximation once) cost involve n_1 gradient and $n_2 \cdot \mathcal{T}(\varepsilon)$ HVP
 1266 evaluations, where $\mathcal{T}(\varepsilon)$ is the number of steps for the gradient descent method to find a sufficiently
 1267 good minimizer of $\tilde{\mathcal{L}}^{sto}$. By Lemma 1 of Tripuraneni et al. (2018), $\mathcal{T}(\varepsilon) \leq \tilde{\mathcal{O}}(\frac{\rho}{\sqrt{L\varepsilon}})$. Hence, the
 1268 overall computational cost is
 1269

$$1270 \quad \tilde{\mathcal{O}}\left(\frac{\sqrt{L}(\mathcal{L}(\mathbf{w}_0, D_r) - \mathcal{L}^*)}{c\varepsilon^{1.5}} \left(\frac{\sigma_1^2}{\varepsilon^2} + \frac{\sigma_2^2}{L\varepsilon} \cdot \frac{\rho}{\sqrt{L\varepsilon}}\right)\right).$$

1271 When ε is sufficiently small, the above equals to $\tilde{\mathcal{O}}(\varepsilon^{-3.5})$ gradient/Hessian vector evaluations. \square
 1272

1273 E.2 PSEUDOCODE

1274 We provide the pseudocode for StoCuRENU in Algorithm 2. Following Carmon & Duchi (2019),
 1275 when the stochastic gradient is large, i.e. $\|\mathbf{g}_{\mathbf{w}_t}^{B_1}\| \geq \frac{\rho^2}{L}$, we take a Cauchy step (steepest descent within
 1276 the trust region), which is closed-form and computationally efficient as shown in Lines 12-13, to
 1277 induce $\Omega(\sqrt{\frac{\varepsilon^3}{L}})$ decrease in the stochastic approximation $\tilde{\mathcal{L}}^{sto}$ and function value \mathcal{L} .
 1278

1279 F DETAILED EXPERIMENTAL SETTINGS

1280 F.1 TRAINING HYPERPARAMETERS

1281 We conduct our experiments on NVIDIA H100 GPUs (80GB) and NVIDIA H200 GPUs (141GB).
 1282 Our evaluation is averaged across 3 random seeds {1, 2, 3}. The training hyperparameters in our
 1283 experiments are detailed below.

1296 **Algorithm 2** StoCURENU

1297 **Input:** original model parameters \mathbf{w}^* , retained set D_r , objective function \mathcal{L} , gradient Lipschitz
 1298 constant ρ , Hessian Lipschitz constant L , number of unlearning iterations T , number of gradient
 1299 descent iterations T_{inner} , gradient perturbation parameter σ , learning rate η

1300 1: Set $\mathbf{w}_0 = \mathbf{w}^*$

1301 2: **for** $t = 0..T - 1$ **do**

1302 3: Get B_1, B_2 independently sampled from D_r

1303 4: Get $\mathbf{g}_{\mathbf{w}_t}^{B_1} = \nabla \mathcal{L}(\mathbf{w}_t; B_1)$

1304 5: Get $\mathbf{H}_{\mathbf{w}_t}^{B_2} = \nabla^2 \mathcal{L}(\mathbf{w}_t; B_2)$

1305 6: $\Delta_{t+1} = \text{GRADIENTDESCENT}(\mathbf{H}_{\mathbf{w}_t}^{B_2}, \mathbf{g}_{\mathbf{w}_t}^{B_1}, \rho, L, T_{inner}, \sigma, \eta)$

1306 7: Set $\mathbf{w}_{t+1} = \mathbf{w}_t + \Delta_{t+1}$

1307 8: **end for**

1308 **Output:** unlearned model parameters: \mathbf{w}_T ;

1309 9:

1310 10: **function** $\text{GRADIENTDESCENT}(\mathbf{H}, \mathbf{g}, \rho, L, T_{inner}, \sigma, \eta)$

1311 11: **if** $\|\mathbf{g}\| \geq \frac{\rho^2}{L}$ **then** ▷ Cauchy Step

1312 12: Set $R_c = -\frac{\mathbf{g}^\top \mathbf{H} \mathbf{g}}{L \|\mathbf{g}\|^2} + \sqrt{\left(\frac{\mathbf{g}^\top \mathbf{H} \mathbf{g}}{L \|\mathbf{g}\|^2}\right)^2 + \frac{2\|\mathbf{g}\|}{L}}$

1313 13: Set $\Delta = -R_c \frac{\mathbf{g}}{\|\mathbf{g}\|}$

1314 14: **return** Δ ;

1315 15: **else**

1316 16: Set $\Delta_0 = 0$

1317 17: Get $\tilde{\mathbf{g}} = \mathbf{g} + \sigma \zeta$ where $\zeta \sim \text{Unif}(\mathbb{S}^{d-1})$ ▷ Gradient Descent

1318 18: **for** $t = 0..T_{inner} - 1$ **do**

1319 19: $\Delta_{t+1} = \Delta_t - \eta (\mathbf{H} \Delta_t + \tilde{\mathbf{g}} + L \|\Delta_t\| \Delta_t)$

1320 20: **end for**

1321 21: **return** $\Delta_{T_{inner}}$;

1322 22: **end if**

1323 23: **end function**

1325

1326 **CNN × FMNIST.** The dataset includes 60,000 training samples and 10,000 test samples. We adopt
 1327 a small 2-layer CNN with 32 filters of size 3×3 , max pooling of size 2×2 , ReLU activations, and a
 1328 fully connected layer with 64 hidden units. We train the CNN with the SGD optimizer with a batch
 1329 size of 64 over 30 epochs, a learning rate of 0.01 with decay 0.5 every 2,000 steps.

1330

1331 **ResNet-18 × CIFAR-10.** The dataset contains 50,000 training samples and 10,000 test samples.
 1332 We train a ResNet18 (He et al., 2016) using the Adam optimizer with a batch size of 100 for 10
 1333 epochs, a learning rate of 0.001 with decay 0.5 every 5,000 steps, and a weight decay of 10^{-4} .

1334

1335 **Llama-2 × AG-News.** The dataset contains 120,000 training samples and 7,600 test samples. We
 1336 fine-tune the pretrained Llama-2-7B model from Hugging Face¹¹ using LoRA ($r = 2, \alpha = 2$, drop
 1337 out 0.1) in bfloat16, with a batch size of 15 over 1 training epoch, learning rate of 10^{-4} , and a warmup
 1338 ratio of 0.03.

1339

1340 **Llama-2 × TOFU.** The training set contains 4,000 question–answer pairs fictitiously generated by
 1341 GPT-4, while the test set contains 100 question–answer pairs about real-world authors. We finetune
 1342 the pretrained Llama-2-7B-chat model from Hugging Face¹² using LoRA ($r = 4, \alpha = 16$, drop out
 1343 0.05) in bfloat16, with a batch size of 4 and 4 gradient accumulation steps over 5 training epochs with
 1344 a learning rate of 10^{-3} . We also provide results on full Llama-2-7B without LoRA in App. H.5.

1345 We compute the empirical Hessian eigenspectrum density for Llama-2 × TOFU (Fig. 1, right) using
 1346 the PyHessian package (Yao et al., 2020) with 100 iterations of the Stochastic Lanczos Quadrature
 1347 algorithm. Due to memory constraints, it is infeasible to compute the Hessian eigenspectrum over

1348 ¹¹<https://huggingface.co/meta-llama/Llama-2-7b-hf>.

1349 ¹²<https://huggingface.co/meta-llama/Llama-2-7b-chat-hf>.

1350 the full dataset. Therefore, to mitigate variance, we repeat the process 10 times with independent
 1351 mini-batches of size 8 and report the averaged results.
 1352

1353 **F.2 UNLEARNING BASELINES**
 1354

1355 Here, we describe the unlearning baselines and their hyperparameters used in our experiments. Unless
 1356 otherwise specified, we conduct grid search for the best learning rate in $\{10^{-5}, 10^{-4}, 10^{-3}\}$.
 1357

- 1358 • **Retraining**: trains the model from scratch on the retain set D_r . For Llama-2 experiments,
 1359 we use retraining to refer to fine-tuning the pre-trained Llama-2 model on D_r from scratch.
 1360 The training/fine-tuning hyperparameters are the same as those used for training/fine-tuning
 1361 the original model on the full training set D .
- 1362 • **Random Labels** (Rand. Lbls.): fine-tunes the model on the randomly labeled D_e for 1
 1363 epoch.
- 1364 • **DELETE** (Zhou et al., 2025): uses the original model to generate new labels for D_e (different
 1365 from the true labels), then minimizes Kullback-Leibler (KL) divergence with respect to new
 1366 labels for 1 epoch.
- 1367 • **Gradient Descent** (GD): minimizes losses on D_e via gradient descent on D_r . We run GD
 1368 for 1 epoch on TOFU and 5 epochs for the rest, with the same learning rate as during training.
 1369
- 1370 • **Gradient Ascent** (GA): maximizes losses on D_e via gradient ascent for 1 epoch.
 1371
- 1372 • **Gradient Difference** (GDiff) (Maini et al., 2024): minimizes the weighted average of the
 1373 loss on D_r and the negated loss on D_e . We sample a subset of D_r to be of the same size as
 1374 D_e and assign equal weights to both loss terms. We run GDiff for 1 epoch on TOFU and 5
 1375 epochs for the rest.
- 1376 • **SCRUB** (Kurmanji et al., 2023): maximizes the KL divergence to the output distribution
 1377 of the original model on D_e while minimizing it on D_r in an alternative manner. We run
 1378 SCRUB for 1 epoch on TOFU and 5 epochs for the rest.
 1379
- 1380 • **PINV-Newton** (Sec. 4): replaces exact inverse with pseudo-inverse in the vanilla Newton
 1381 unlearning. We run PINV-Newton for 1 epoch on FMNIST.
 1382
- 1383 • **Damped Newton** (Sec. 4): adds a small diagonal matrix $\gamma \mathbf{I}$ to the degenerate Hessian in the
 1384 vanilla Newton unlearning. We use $\gamma = 10^{-3}$ by default. We run Damped Newton for 1
 1385 epoch on FMNIST.
 1386
- 1387 • **IDK** (Maini et al., 2024): encourages alternative answers such as “I don’t know” when
 1388 prompted the LLMs with questions in D_e . We run IDK for 1 epoch on TOFU.
 1389
- 1390 • **NPO** (Zhang et al., 2024b): discourages the original answers/predictions in D_e . We run
 1391 NPO for 1 epoch. We conduct grid search for the optimal β in $\{0.5, 1, 2\}$.
 1392

1393 While relevant, our experiments do not include a comparison with the Hessian-free work of Qiao et al.
 1394 (2025) due to their prohibitively high computational cost and memory requirements. Particularly,
 1395 Qiao et al. (2025) inherently incur substantial computational overhead due to the precomputation
 1396 step that computes the Hessian-vector product for every sample in the training set. When evaluating
 1397 their method on FMNIST, the precomputation step takes around 468.3 hours (≈ 19.5 days) to run,
 1398 which already far exceeds the time required for retraining (≈ 61.20 seconds) and defeats the purpose
 1399 of unlearning. Additionally, their method requires $O(nd)$ memory to store HVP for every sample
 1400 in the training set, where n is the dataset size. The prohibitively long precomputation time and the
 1401 significant memory requirement thus make Qiao et al. (2025) impractical in real-world settings.
 1402

1403 **F.3 HESSIAN-VECTOR PRODUCTS COMPUTATION**

1404 A common operation involving the Hessian matrix in many applications is its product with an arbitrary
 1405 vector \mathbf{v} , known as a Hessian-vector product (HVP). Pearlmutter (1994) introduced an efficient method
 1406 for computing HVPs without materializing the full Hessian \mathbf{H} based on the following definition:
 1407

$$1408 \mathbf{Hv} = \lim_{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} [\nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w} + \varepsilon \mathbf{v}) - \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{w})] = \nabla_{\mathbf{w}} [\langle \nabla_{\mathbf{w}} \mathcal{L}(\cdot), \mathbf{v} \rangle](\mathbf{w}).$$

1409 Here, HVP corresponds to the directional derivative of the gradient $\nabla_{\mathbf{w}} \mathcal{L}$ in the direction of vector \mathbf{v} .
 1410

1404 Automatic differentiation (AD) can be used to compute the derivatives involved in HVP computation.
 1405 At its core, AD builds a computational graph by decomposing the function into variables and
 1406 elementary operations, and applies the chain rule on this graph to compute derivatives. Depending on
 1407 the order of multiplications in the chain rule, AD can be implemented in *forward mode* (propagating
 1408 derivatives from inputs to outputs) or *backward mode* (propagating derivatives from outputs to inputs).
 1409 Forward mode is often more memory-efficient than backward mode because it does not require storing
 1410 all intermediate states in the computational graph during derivative computation.

1411 By combining different AD modes, we can efficiently compute HVPs using two common approaches:
 1412 *forward-over-backward* and *backward-over-backward*. The basic steps for each approach are outlined
 1413 below.

1414 **Forward-over-backward.**

1415

- 1416 1. Compute the gradient $\nabla_w \mathcal{L}(w)$ using the backward-mode AD.
- 1417 2. Compute the directional derivative of $\nabla_w \mathcal{L}(w)$ in the direction of v using the Jacobian-vector
 1418 product with forward-mode AD.

1420 **Backward-over-backward.**

1421

- 1422 1. Compute the gradient $\nabla_w \mathcal{L}(w)$ using the backward-mode AD.
- 1423 2. Compute the scalar product $h(w) \triangleq \langle \nabla_w \mathcal{L}(w), v \rangle$.
- 1424 3. Compute the gradient of $h(w)$ w.r.t. w using another backward-mode AD.

1426 Our experiments use PyTorch’s HVP implementation, which is supported through
 1427 `torch.autograd.functional.hvp()`. Since forward-mode AD is not natively supported in
 1428 PyTorch, HVPs are computed using the backward-over-backward approach, which has a larger memory
 1429 footprint due to double backward differentiations. Moving forward, a more efficient implementation
 1430 of HVP computation in PyTorch, such as the forward-over-backward approach, can be studied to
 1431 further improve the efficiency of StoCuRENU.

1433 **G ADDITIONAL RESULTS FOR MIA**

1435 As discussed in Sec. 6.1, we obtain the MIA results using ML-Doctor (Liu et al., 2022) by computing
 1436 the AUC score based on the losses of the unlearned model on D_e and D_{test} . However, we observe
 1437 that the standard MIA based on losses of the unlearned models is not informative (e.g., Table 3),
 1438 which we hypothesize is due to the following factors:

1439 **Overfitting.** As mentioned in Kurmanji et al. (2023), the original model in their work has overfitted
 1440 more than a state-of-the-art model on CIFAR-10 would, and their MIA is performed on the overfitted
 1441 original and unlearned models. Additionally, the analysis in Liu et al. (2022) also shows that a higher
 1442 overfitting level leads to better membership inference. However, the original model in our setting
 1443 is more generalized (from Table 3, D_{test} and D_r accuracy are close to each other with a difference
 1444 of 1.85%), and MIA on our non-overfitted models is less informative. While studies have shown
 1445 that there are connections between overfitting and privacy leakage (Shokri et al., 2017; Yeom et al.,
 1446 2018; Liu et al., 2022), in our setting, when the original model generalizes well on D_{test} , the losses
 1447 on D_e and D_{test} would be less distinguishable, which leads to close-to-50% MIA result for both
 1448 original and unlearned models. Therefore, we conduct a new experiment by training the original
 1449 ResNet model and CNN model for 50 epochs to obtain overfitted models (e.g., from Table 6, D_{test}
 1450 accuracy is much lower than D_r accuracy with a difference of 7.17%) and perform unlearning on the
 1451 overfitted model. However, in practice, an overfitted model is less preferable than those with better
 1452 generalization abilities. Tables 6 and 8 show the performance and MIA results for different unlearning
 1453 algorithms on the overfitted CNN and ResNet models, where the MIA result is more informative.
 1454 Based on the results from the overfitted ResNet, our StoCuRENU successfully decreases MIA result
 1455 by 6.06%. While there remains a gap between StoCuRENU and the state-of-the-art method SCRUB,
 1456 our StoCuRENU offers advantages in theoretical support and efficiency.

1457 **Test Loss Distributions.** In our MIA experiments on FMNIST, CIFAR, and AG-News, D_e and D_{test}
 1458 samples are drawn from the same distribution, e.g., samples of the same class. This results in similar

1458 Table 6: Performance and MIA results in the class-level sequential unlearning setting on the overfitted
 1459 ResNet-18 \times CIFAR-10 (averaged over 3 random runs). Results are reported at the last unlearning
 1460 round.

Method	Overfitted ResNet-18 \times CIFAR-10 Class Removal					
	D_e Acc. (\rightarrow)	D_r Acc. (\uparrow)	D_{test} Acc. (\uparrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	0.00 \pm 0.00	99.94 \pm 0.01	84.52 \pm 0.23	1.00 \pm 0.00	0.0 \pm 0.0	48.96 \pm 1.21
Original	99.89 \pm 0.03	99.90 \pm 0.01	92.73 \pm 0.07	0.00 \pm 0.00	0.036 \pm 0.0	57.61 \pm 0.35
Rand. Lbls.	16.45 \pm 1.92	94.96 \pm 0.64	81.25 \pm 1.07	0.77 \pm 0.01	0.024 \pm 0.0	60.14 \pm 0.81
DELETE	0.05 \pm 0.01	97.95 \pm 0.18	82.44 \pm 0.41	0.96 \pm 0.01	0.011 \pm 0.001	51.86 \pm 0.74
GD	99.97 \pm 0.03	98.86 \pm 0.01	92.53 \pm 0.17	0.00 \pm 0.00	0.036 \pm 0.0	57.81 \pm 0.50
GA	4.35 \pm 1.36	43.64 \pm 14.91	37.10 \pm 12.14	0.23 \pm 0.10	0.029 \pm 0.001	48.73 \pm 0.86
GDiff	18.18 \pm 1.33	78.15 \pm 3.28	66.92 \pm 3.31	0.53 \pm 0.04	0.036 \pm 0.0	49.93 \pm 0.11
NPO	15.95 \pm 1.14	90.71 \pm 1.32	78.26 \pm 1.35	0.72 \pm 0.01	0.036 \pm 0.0	51.47 \pm 1.51
SCRUB	0.00 \pm 0.00	85.92 \pm 1.33	75.43 \pm 0.83	0.78 \pm 0.01	0.008 \pm 0.002	49.68 \pm 0.99
StoCuReNU	1.82 \pm 1.97	87.25 \pm 0.77	74.52 \pm 0.67	0.77 \pm 0.02	0.017 \pm 0.003	51.55 \pm 1.87

1482 Figure 3: Loss distributions for samples on non-overfitted and overfitted, original and retraining
 1483 models.

1485 Table 7: Performance and MIA results for StoCuReNU and other tested baselines in sequential
 1486 unlearning setting on Llama-2 \times TOFU where the test set is in a similar distribution as the forget set.

Method	Llama-2 \times TOFU					
	D_e ROUGE (\rightarrow)	D'_r ROUGE (\rightarrow)	D'_{test} ROUGE (\rightarrow)	Truth Ratio (\uparrow)	ToW (\uparrow)	MIA (\rightarrow)
Retraining	0.386 \pm 0.004	0.576 \pm 0.005	0.746 \pm 0.027	0.664 \pm 0.012	1.00 \pm 0.00	63.72 \pm 0.93
Original	0.628 \pm 0.008	0.570 \pm 0.007	0.679 \pm 0.068	0.513 \pm 0.011	0.69 \pm 0.03	99.04 \pm 0.26
GD	0.497 \pm 0.010	0.759 \pm 0.006	0.612 \pm 0.033	0.545 \pm 0.005	0.63 \pm 0.04	94.89 \pm 0.51
GA	0.000 \pm 0.000	0.000 \pm 0.000	0.000 \pm 0.000	0.521 \pm 0.024	0.07 \pm 0.01	81.63 \pm 16.03
GDiff	0.09 \pm 0.09	0.09 \pm 0.09	0.00 \pm 0.00	0.81 \pm 0.05	0.10 \pm 0.02	91.98 \pm 0.99
IDK	0.112 \pm 0.024	0.462 \pm 0.009	0.668 \pm 0.025	0.570 \pm 0.010	0.59 \pm 0.01	96.17 \pm 0.27
SCRUB	0.598 \pm 0.020	0.549 \pm 0.011	0.657 \pm 0.083	0.508 \pm 0.007	0.69 \pm 0.05	98.83 \pm 0.23
NPO	0.62 \pm 0.16	0.43 \pm 0.06	0.79 \pm 0.13	0.59 \pm 0.11	0.56 \pm 0.01	71.79 \pm 1.23
StoCuReNU	0.477 \pm 0.011	0.495 \pm 0.006	0.678 \pm 0.021	0.570 \pm 0.001	0.76 \pm 0.02	97.54 \pm 2.13

1497 Table 8: Performance and MIA results for StoCuReNU and other tested baselines in batch unlearning
 1498 setting on overfitted CNN \times FMNIST (averaged over 3 random runs).

Method	Overfitted CNN \times FMNIST					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	0.00 \pm 0.00	86.07 \pm 0.01	76.62 \pm 0.11	1.00 \pm 0.00	0.000 \pm 0.000	54.04 \pm 0.56
Original	92.57 \pm 3.13	84.55 \pm 0.80	84.32 \pm 0.93	0.07 \pm 0.03	0.024 \pm 0.004	53.90 \pm 0.81
Rand. Lbls.	4.70 \pm 3.73	74.74 \pm 6.43	67.02 \pm 5.53	0.77 \pm 0.10	0.007 \pm 0.002	50.04 \pm 0.48
DELETE	1.43 \pm 1.29	82.67 \pm 1.29	73.58 \pm 1.18	0.92 \pm 0.01	0.002 \pm 0.001	50.84 \pm 1.35
GD	92.21 \pm 3.45	84.58 \pm 0.78	84.30 \pm 0.88	0.07 \pm 0.03	0.023 \pm 0.004	53.99 \pm 0.37
GA	0.52 \pm 0.49	76.82 \pm 4.25	68.38 \pm 3.77	0.83 \pm 0.07	0.005 \pm 0.003	51.34 \pm 0.75
GDiff	0.18 \pm 0.29	74.32 \pm 9.96	66.20 \pm 8.99	0.80 \pm 0.16	0.006 \pm 0.004	52.11 \pm 1.44
NPO	5.81 \pm 3.94	81.04 \pm 1.21	72.77 \pm 1.05	0.86 \pm 0.04	0.003 \pm 0.001	51.27 \pm 0.67
SCRUB	0.00 \pm 0.00	82.95 \pm 0.29	73.90 \pm 0.31	0.94 \pm 0.01	0.006 \pm 0.001	48.33 \pm 3.49
StoCuReNU	0.64 \pm 1.04	81.65 \pm 1.66	72.79 \pm 1.41	0.91 \pm 0.03	0.003 \pm 0.001	51.20 \pm 0.18

loss distributions on D_e and D_{test} samples on both the original and unlearned models. As shown in Fig. 3, both non-overfitted and overfitted models result in similar loss distributions on D_e and D_{test} samples. This makes it more challenging for the MIA attacker to perform the binary classification, which thus results in not very high accuracy for both original and unlearned models. On the other hand, in our experiments on TOFU, the distribution of D_{test} samples in the TOFU dataset is relatively different from D_e samples, e.g., samples contain different question-answering content. This leads to different loss distributions on D_e and D_{test} samples that are naturally separable, which results in the large MIA AUC as shown in Table 3, where even Retraining reaches as high as 78.46. Therefore, we conduct a new experiment by selecting 400 samples from the original D_r to form a new D'_{test} to enforce a similar distribution as D_e . This also results in a new D'_r with 3,200 samples. We train Llama-2 on the new training set, then perform unlearning and evaluate the results. Table 7 shows the performance and MIA results on this setting, where the MIA results are closer to 50 and Retraining achieves 63.72. Based on the results, while our StoCuRENU does not achieve the optimal MIA result, it demonstrates competitive unlearning performance by decreasing the D_e ROUGE and preserves the model utility well with high D'_r and D'_{test} ROUGE.

H SUPPLEMENTARY EXPERIMENTS FOR SEQUENTIAL UNLEARNING

H.1 FULL RESULT FOR SEQUENTIAL UNLEARNING IN MAIN PAPER

Here, we show the full results that includes D_{test} Acc. and ROUGE of sample-level sequential unlearning on Llama-2 \times TOFU (Fig. 4, top) and class-level sequential unlearning on ResNet-18 \times CIFAR-10 (Fig. 4, bottom). The results show that StoCuRENU preserves decent performance on D_{test} across the unlearning rounds in the sequential unlearning setting.

Figure 4: Full results on sample-level sequential unlearning on Llama-2 \times TOFU (top) and class-level sequential unlearning on ResNet-18 \times CIFAR-10 (bottom) with 5 unlearning rounds (averaged over 5 random runs).

H.2 INCREASED UNLEARNING ROUND

In this experiment, we extended our sequential unlearning experiments to 10 rounds using ResNet-18 on the CIFAR-10 dataset. We increase D_e to include two full classes (20% of the full dataset, or 10,000 samples). The experiment is conducted using the random seed 1. Despite the increased number of unlearning rounds and larger D_e , our results in Fig. 5 and Table 9 show that our StoCuRENU can perform relatively well compared to the strong baselines by staying close to Retraining throughout the increased unlearning rounds and achieving the best ToW score at the end of sequential unlearning.

H.3 CLASS-LEVEL SEQUENTIAL UNLEARNING ON LLAMA-2 \times AG-NEWS

In this experiment, we perform class-level sequential unlearning with Llama-2-7B on the AG-News dataset (Zhang et al., 2015). The number of unlearning rounds is set to 3, which corresponds to 10,000 samples to be unlearned per round. The results in Table 10 and Fig. 6 show that our

Figure 5: Extended sequential unlearning with 10 unlearning rounds on ResNet18 \times CIFAR-10 (seed 1).

Table 9: Unlearning performance at the last unlearning round for extended sequential unlearning with 10 unlearning rounds on ResNet18 \times CIFAR-10 (seed 1).

Method	ResNet18 \times CIFAR-10					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	0.00	99.40	81.56	1.00	0.000	53.36
Original	95.54	98.96	88.63	0.04	0.031	50.66
Rand. Lbls.	0.00	17.67	16.92	0.06	0.014	50.74
DELETE	0.00	97.63	80.23	0.97	0.007	50.26
GD	94.34	99.25	88.84	0.05	0.030	49.85
GA	0.00	17.82	16.09	0.06	0.032	53.18
GDiff	0.00	47.85	42.06	0.29	0.028	52.56
SCRUB	0.00	95.02	80.56	0.95	0.007	50.69
NPO	0.00	22.33	19.65	0.09	0.032	52.51
StoCuReNU	0.38	96.98	80.98	0.97	0.006	53.72

StoCuReNU achieves good forgetting under the class-level setting, reaching a similar Acc. as SCRUB on D_e as well as decent model utility by maintaining the D_{test} Acc. and D_r Acc..

Figure 6: Class-level sequential unlearning on Llama-2 \times AG-News (averaged over 3 random runs).

Table 10: Unlearning performance at the last unlearning round for 10% class-level sequential unlearning on Llama-2 \times AG-News (averaged across 3 random runs).

Method	Llama-2 \times AG-News					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	0.00 ± 0.00	95.20 ± 1.04	70.62 ± 0.85	1.00 ± 0.00	0.000 ± 0.000	49.96 ± 0.32
Original	98.24 ± 1.77	94.59 ± 0.55	94.60 ± 0.08	0.01 ± 0.01	0.014 ± 0.008	49.47 ± 1.95
Rand. Lbls.	0.00 ± 0.00	79.19 ± 7.75	59.01 ± 5.76	0.75 ± 0.13	0.019 ± 0.025	50.65 ± 0.89
DELETE	0.00 ± 0.00	93.48 ± 0.97	69.51 ± 0.79	0.97 ± 0.01	0.030 ± 0.008	49.52 ± 0.63
GD	59.21 ± 3.80	95.64 ± 0.66	85.42 ± 1.13	0.34 ± 0.03	0.045 ± 0.017	50.31 ± 1.31
GA	0.00 ± 0.00	33.33 ± 0.00	25.00 ± 0.00	0.21 ± 0.01	0.028 ± 0.027	49.90 ± 1.20
GDiff	0.00 ± 0.00	62.56 ± 9.37	46.90 ± 7.06	0.52 ± 0.12	0.015 ± 0.008	49.65 ± 0.41
SCRUB	9.69 ± 3.33	96.49 ± 0.68	73.14 ± 1.09	0.87 ± 0.04	0.018 ± 0.012	49.42 ± 1.52
NPO	0.01 ± 0.01	41.63 ± 4.56	31.37 ± 3.54	0.28 ± 0.05	0.028 ± 0.020	49.89 ± 0.81
StoCuReNU	3.95 ± 2.85	90.03 ± 0.61	67.91 ± 0.99	0.89 ± 0.03	0.023 ± 0.007	51.23 ± 0.26

1620
1621

H.4 SAMPLE-LEVEL SEQUENTIAL UNLEARNING

1622
1623
1624
1625
1626
1627

Noisy Data Removal. In this experiment, we mislabel 20% of the training set, such that the label is shifted right from the true label. We then perform sequential unlearning on mislabeled data for 10 rounds, each round removes 2% of the randomly selected mislabeled data. In this setting, unlearning can increase the model performance on D_r and D_{test} by removing the noisy data that harms the model utility. Tab. 11 shows our results, which demonstrate that our StoCuRENU performs well in removing noisy data and preserving the model utility.

1628
1629
1630

Table 11: Unlearning performance at the last unlearning round for noisy data sequential unlearning on ResNet18 \times CIFAR-10 (averaged over 3 random runs).

1631
1632
1633
1634
1635
1636
1637
1638
1639

Method	ResNet18 \times CIFAR-10					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA AUC (\rightarrow)
Retraining	6.88 \pm 0.10	100.00 \pm 0.00	89.83 \pm 0.02	1.00 \pm 0.00	0.0 \pm 0.0	53.55 \pm 3.46
Original	26.41 \pm 0.94	96.09 \pm 0.05	81.97 \pm 0.52	0.71 \pm 0.01	2.9e-6 \pm 0.8e-6	52.95 \pm 1.62
Rand. Lbls.	11.70 \pm 0.76	9.96 \pm 1.66	9.93 \pm 2.15	0.02 \pm 0.00	2.8e-6 \pm 1.1e-6	54.44 \pm 0.45
GD	13.39 \pm 0.58	97.90 \pm 0.05	86.42 \pm 0.11	0.88 \pm 0.01	3.7e-6 \pm 1.7e-6	51.80 \pm 3.13
GA	6.98 \pm 2.51	9.05 \pm 0.86	9.04 \pm 1.27	0.02 \pm 0.00	19.8e-6 \pm 22.7e-6	49.04 \pm 3.19
SCRUB	2.52 \pm 0.23	82.81 \pm 1.77	80.43 \pm 1.41	0.72 \pm 0.02	3.5e-6 \pm 1.3e-6	51.28 \pm 3.54
StoCuRENU	9.06 \pm 0.69	96.26 \pm 0.36	85.92 \pm 0.20	0.90 \pm 0.00	3.7e-6 \pm 1.7e-6	54.67 \pm 3.43

1640
1641
1642
1643
1644
1645
1646
1647

Naive Data Removal. In this experiment, we perform sequential unlearning to iteratively remove a random training subset across multiple rounds, which we refer to as *sample-level sequential unlearning*. Fig. 7 and Tables 12, 13 show our results for sample-level sequential unlearning of 10% randomly selected training data on CIFAR-10 and AG-News. As observed, StoCuRENU maintains a close performance to Retraining and comparable results to SOTA methods (DELETE, SCRUB) on D_e and does not degrade model performance on D_{test} and D_r even after multiple unlearning requests. This reinforces our argument that StoCuRENU is a good unlearning algorithm for long-term settings such as sequential unlearning on both class and sample levels.

1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671

Figure 7: Sample-level sequential unlearning of 10% training data. **Top Row:** Llama-2 \times AG-News (2000 unlearned samples per round). **Bottom Row:** ResNet-18 \times CIFAR-10 (1000 unlearned samples per round).

1672
1673

H.5 SEQUENTIAL UNLEARNING ON LLAMA-2 WITHOUT LoRA

Our main results on Llama-2 focus on the LoRA-tuned setting because LoRA (Hu et al., 2022) is now a widely adopted approach for fine-tuning LLMs due to its efficiency and competitive effectiveness to full-scale fine-tuning (Schulman & Lab, 2025). Furthermore, fine-tuning datasets are often

1674 Table 12: Unlearning performance at the last unlearning round for 10% sample-level sequential
 1675 unlearning on Llama-2 \times AG-News (averaged over 3 random runs).

Method	Llama-2 \times AG-News					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	94.55 \pm 0.21	95.41 \pm 0.11	94.53 \pm 0.17	1.00 \pm 0.00	0.000 \pm 0.000	49.94 \pm 0.42
Original	95.36 \pm 0.10	95.50 \pm 0.03	94.63 \pm 0.06	0.99 \pm 0.00	0.027 \pm 0.013	50.06 \pm 0.20
Rand. Lbls.	28.17 \pm 0.46	28.21 \pm 0.70	28.23 \pm 0.72	0.04 \pm 0.00	0.014 \pm 0.011	49.71 \pm 0.69
GD	96.39 \pm 0.10	97.90 \pm 0.10	94.84 \pm 0.13	0.95 \pm 0.00	0.021 \pm 0.015	49.10 \pm 0.62
GA	24.91 \pm 0.08	25.02 \pm 0.01	25.02 \pm 0.02	0.03 \pm 0.00	0.018 \pm 0.002	50.24 \pm 0.88
SCRUB	96.46 \pm 0.17	98.00 \pm 0.24	95.11 \pm 0.09	0.95 \pm 0.01	0.028 \pm 0.010	49.86 \pm 0.18
StoCuReNU	91.46 \pm 2.53	91.57 \pm 2.26	90.35 \pm 3.04	0.90 \pm 0.07	0.018 \pm 0.012	49.97 \pm 0.35

1685 Table 13: Unlearning performance at the last unlearning round for 10% sample-level sequential
 1686 unlearning on ResNet18 \times CIFAR-10 (averaged over 3 random runs).

Method	ResNet18 \times CIFAR-10					
	D_e Acc. (\rightarrow)	D_r Acc. (\rightarrow)	D_{test} Acc. (\rightarrow)	ToW (\uparrow)	JS Div. (\downarrow)	MIA (\rightarrow)
Retraining	83.64 \pm 0.80	85.89 \pm 0.68	83.01 \pm 0.62	1.00 \pm 0.00	0.0 \pm 0.0	50.03 \pm 0.11
Original	87.31 \pm 1.05	87.11 \pm 0.93	84.74 \pm 0.66	0.94 \pm 0.01	0.028 \pm 0.004	51.64 \pm 0.69
Rand. Lbls.	41.61 \pm 2.34	41.46 \pm 2.80	40.28 \pm 1.42	0.19 \pm 0.03	0.013 \pm 0.0	50.41 \pm 0.25
DELETE	84.35 \pm 2.02	84.49 \pm 2.28	82.61 \pm 2.04	0.96 \pm 0.03	0.029 \pm 0.001	50.67 \pm 0.83
GD	90.72 \pm 0.31	90.86 \pm 0.08	88.30 \pm 0.19	0.84 \pm 0.02	0.002 \pm 0.0	51.55 \pm 0.70
GA	43.90 \pm 7.56	44.29 \pm 7.48	42.75 \pm 6.51	0.22 \pm 0.07	0.032 \pm 0.0	50.23 \pm 0.32
GDiff	74.95 \pm 2.69	77.95 \pm 2.47	75.98 \pm 1.93	0.78 \pm 0.04	0.030 \pm 0.001	51.23 \pm 0.31
NPO	68.80 \pm 5.49	69.14 \pm 5.23	67.24 \pm 4.78	0.60 \pm 0.10	0.029 \pm 0.002	51.23 \pm 1.46
SCRUB	85.42 \pm 0.84	87.26 \pm 0.83	84.74 \pm 0.82	0.95 \pm 0.02	0.003 \pm 0.0	50.50 \pm 0.48
StoCuReNU	86.54 \pm 1.01	87.25 \pm 1.18	84.77 \pm 1.17	0.93 \pm 0.03	0.003 \pm 0.0	50.57 \pm 0.24

1701 task-specific datasets that are more privacy-sensitive than the public datasets used for full-scale LLM
 1702 training, making them particularly relevant for unlearning. Nonetheless, we conducted an additional
 1703 experiment on Llama-2-7B without LoRA on the TOFU dataset with a similar sequential unlearning
 1704 setup as Sec. 6.3 to verify the scalability of our method to full-scale LLM fine-tuning.

1705 We provide our results in Tab. 14, which show a similar trend to our results for LoRA-tuned LLM
 1706 unlearning in Tab. 3. While StoCuReNU does not achieve the best forgetting efficiency, as shown by
 1707 a D_e ROUGE gap of 0.162 from retraining, it shows a better unlearning trade-off between forgetting
 1708 and utility preservation than SOTA methods like SCRUB via higher ToW score. More importantly,
 1709 the fact that the Original model achieves the best ToW score amongst all tested methods shows that
 1710 most of them are likely insufficient for large-scale unlearning, leading to either worse forgetting
 1711 efficiency (observed in GD, StoCuReNU) or worse utility preservation (observed in GA, GDiff, IDK,
 1712 NPO, SCRUB). This challenging setting calls for the development of more robust unlearning methods
 1713 in the future.

1714 Table 14: Unlearning performance at the last unlearning round for sample-level sequential unlearning
 1715 on Llama-2 \times TOFU without LoRA (seed 1).

Method	Llama-2 \times TOFU					
	D_e ROUGE (\rightarrow)	D_r ROUGE (\rightarrow)	D_{test} ROUGE (\rightarrow)	Truth Ratio (\uparrow)	ToW (\uparrow)	MIA (\rightarrow)
Retraining	0.399	0.672	0.861	0.695	1.000	88.93
Original	0.692	0.686	0.894	0.539	0.674	100.00
GD	0.677	0.904	0.891	0.559	0.538	99.62
GA	0.000	0.000	0.000	0.344	0.027	10.44
GDiff	0.032	0.207	0.198	0.484	0.114	6.68
IDK	0.066	0.373	0.502	0.616	0.300	99.20
NPO	0.078	0.082	0.002	0.805	0.039	55.37
SCRUB	0.321	0.404	0.611	0.674	0.506	79.21
StoCuReNU	0.561	0.535	0.695	0.547	0.603	99.99

1728 I FULL RESULTS FOR UNLEARNING EFFICIENCY

1730 Table 15 (an expanded version of Table 4 in the main paper) shows the running time comparison
 1731 (in seconds) among different unlearning algorithms to unlearn a batch of erased data points across
 1732 various datasets and models. As anticipated, the unlearning algorithms that utilize the second-order
 1733 information, such as PINV-Newton, Damped Newton, and CuRENU, have the longest running times
 1734 and even exceed that of Retraining on FMNIST. Therefore, these algorithms are impractical for
 1735 large-scale experiments with ResNet18 and Llama-2. On the other hand, GA, NPO, and Rand. Lbls.
 1736 are fast unlearning algorithms but tend to significantly degrade model performance post-unlearning,
 1737 especially in long-term settings such as sequential unlearning (Sec. 6.3 and App. H.4). GD and GDif
 1738 are also fast unlearning algorithms, but they do not unlearn effectively. In contrast, DELETE is a
 1739 strong state-of-the-art method that performs unlearning both efficiently and effectively. Meanwhile,
 1740 StoCuRENU can maintain decent efficiency across various datasets and models and be more efficient
 1741 than the state-of-the-art method SCRUB despite being a second-order method by leveraging the
 1742 fast HVPs and the stochastic setup, while maintaining a decent erasing quality and post-unlearning
 1743 performance.

1744 Table 15: Running time comparison (in seconds) across different datasets and models (averaged over
 1745 3 random runs).

1747 Dataset	1748 FMNIST		1749 CIFAR-10		1750 AG-News		1751 TOFU	
1752 Model	1753 2-layer CNN		1754 ResNet18		1755 Llama-2-7B (+LoRA)		1756 Llama-2-7B (+LoRA)	
1757 Trainable Parameters	1758 20,728		1759 11,173,962		1760 1,064,960		1761 2,097,152	
Retraining	61.20 \pm 8.70	1.0 \times	124.51 \pm 10.95	1.0 \times	4792.44 \pm 145.90	1.0 \times	900.71 \pm 2.57	1.0 \times
Rand. Lbls.	1.70 \pm 0.19	0.03 \times	2.58 \pm 0.10	0.02 \times	144.63 \pm 1.83	0.03 \times	-	-
DELETE	0.89 \pm 0.10	0.01 \times	6.71 \pm 0.05	0.05 \times	133.54 \pm 3.90	0.03 \times	-	-
GD	9.04 \pm 0.82	0.1 \times	19.16 \pm 4.03	0.2 \times	4641.50 \pm 407.93	0.96 \times	181.45 \pm 0.41	0.20 \times
GA	2.28 \pm 0.58	0.03 \times	5.78 \pm 0.26	0.04 \times	105.46 \pm 2.85	0.02 \times	5.61 \pm 0.63	0.01 \times
GDif	1.34 \pm 0.03	0.02 \times	6.51 \pm 0.07	0.05 \times	482.11 \pm 103.48	0.10 \times	50.38 \pm 1.22	0.06 \times
PINV-Newton	6185.72 \pm 804.94	101.1 \times	-	-	-	-	-	-
Damped Newton	6228.82 \pm 739.82	101.7 \times	-	-	-	-	-	-
SCRUB	23.33 \pm 0.43	0.4 \times	72.39 \pm 4.93	0.6 \times	6796.16 \pm 160.11	1.4 \times	178.52 \pm 0.39	0.20 \times
IDK	-	-	-	-	-	-	37.94 \pm 0.38	0.04 \times
NPO	0.80 \pm 0.02	0.01 \times	0.87 \pm 0.05	0.01 \times	134.34 \pm 2.27	0.03 \times	31.02 \pm 0.24	0.03 \times
CuRENU	6355.31 \pm 127.31	103.8 \times	-	-	-	-	-	-
StoCuRENU	35.54 \pm 6.73	0.6 \times	41.79 \pm 0.94	0.3 \times	85.26 \pm 18.23	0.02 \times	340.24 \pm 61.04	0.38 \times

1760 J ABLATION STUDIES

1771 Figure 8: Class-level sequential unlearning performance on FMNIST (averaged over 3 random runs).
 1772

1773 Throughout our ablation studies of CuRENU and StoCuRENU, we adopt a class-level sequential
 1774 unlearning setting with 60 unlearning rounds on the FMNIST dataset. We choose class 2 to be
 1775 unlearned and report the averaged results over 3 random seeds {125, 126, 127}. Fig. 8 presents the
 1776 sequential unlearning performance for this setup. The remaining ablation results are reported at the
 1777 last unlearning round.

1778 J.1 EFFECT OF VARYING L

1779 Since the exact Hessian Lipschitz constant L is often hard to find, we treat it as a hyperparameter
 1780 and analyze the effectiveness of our algorithms with varying choices of L in Fig. 9. As can be seen,

both algorithms exhibit consistent performance and remain close to the retraining baseline across different L values. This highlights the robustness of CuRENU and StoCuRENU with respect to the choice of L , in contrast to the strong dependence on learning rates in the many first-order unlearning algorithms such as GD, GA, and Rand. Lbls..

Figure 9: Performance of CuRENU and StoCuRENU for different empirical choices of L (seed 125).

On a separate note, it is important to keep L large enough (e.g., approximately $L = 70$ for CuRENU, as marked by the shaded region) to ensure the validity of the cubic approximation and maintain convergence guarantees. Nonetheless, an appropriate value of L can be determined during training and before unlearning actually happens.

How to find a valid empirical L ? It is infeasible to empirically estimate the exact Hessian Lipschitz constant L in neural networks, as it would require enumerating over the entire space of model parameters. To address this, we have adopted a more practical approach that is also suggested in Section 5.2 of Nesterov & Polyak (2006): starting with a random guess of L , we increase L if the model fails to converge (since a valid upper bound would induce convergence); otherwise, we can use L , or decrease L and check if a reduced L still induces convergence. Since the actual L is an upper bound, this procedure is guaranteed to return a valid empirical L .

Caveats for non-Lipschitz models. When the model fails to satisfy L -Lipschitz Hessian (i.e., no valid L exists), selecting a sufficiently large L remains beneficial as it can act as an effective regularizer to prevent large steps (large-norm updates) in suboptimal directions.

J.2 EFFECT OF VARYING σ IN STOCURENU

Tab. 16 presents unlearning performance for varying levels of gradient perturbation σ on CNN \times FMNIST. We find that StoCuRENU achieves comparable unlearning performance to retraining across a wide range of σ . This observation excludes $\sigma = 100$, where the stochastic gradient is heavily perturbed. Since gradient perturbation is intended to prevent the “hard case” (Conn et al., 2000), it is often sufficient to use a small σ , such as $\sigma < 1$, in our experiments while maintaining the fidelity of the stochastic gradient.

σ	D_e Acc.	D_r Acc.	D_{test} Acc.
10^{-3}	0.072 ± 0.097	87.568 ± 1.640	76.525 ± 1.161
10^{-2}	0.000 ± 0.000	87.922 ± 3.056	76.854 ± 2.324
10^{-1}	1.072 ± 1.857	86.638 ± 2.379	75.820 ± 1.582
1	0.000 ± 1.279	87.914 ± 0.887	76.712 ± 0.977
10	0.072 ± 0.125	87.696 ± 2.834	76.729 ± 2.533
100	0.016 ± 0.016	43.193 ± 9.832	37.441 ± 8.486
Retraining	0.000 ± 0.000	92.466 ± 0.883	80.225 ± 0.963

Table 16: Effect of σ in StoCuRENU (averaged over 3 random runs).

J.3 EFFECT OF VARYING T IN STOCURENU

Fig. 10 shows the unlearning performance when varying the number of stochastic iterations T in StoCuRENU. As T increases, StoCuRENU better approximates the retraining performance on D_{test} ,

1836 D_e , and D_r . This illustrates the inherent trade-off between unlearning performance and computational
 1837 efficiency in StoCuRENU. Nonetheless, we observe that StoCuRENU can obtain good unlearning
 1838 performance with only around 10-20 iterations, offering a significant advantage over full retraining. In
 1839 practice, the number of stochastic iterations in StoCuRENU can be tuned to meet specific unlearning
 1840 requirements.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Figure 10: Effect of the number of stochastic iterations T in StoCuRENU (seed 125).

J.4 EFFECT OF VARYING BATCH SIZE IN STOCURENU

We assume the same batch sizes are used for gradient evaluation and Hessian-vector product evaluation in StoCuRENU, i.e., $n_1 = n_2$.¹³ Tab. 17 presents unlearning performance on CNN \times FMNIST for varying batch sizes. Our results show that StoCuRENU with mini-batch sampling can achieve comparable performance (within 2-4% difference on $D_e/D_r/D_{test}$ Acc.) to the full-batch setting (i.e., batch size = $|D_r|$), suggesting that the sampling-induced stochasticity might have minimal impact on unlearning effectiveness.

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

Batch Size	D_e Acc.	D_r Acc.	D_{test} Acc.
32	1.839 ± 2.899	87.445 ± 1.585	76.400 ± 1.471
64	1.322 ± 1.002	88.863 ± 2.724	77.683 ± 2.711
128	1.344 ± 1.078	89.954 ± 1.604	78.958 ± 1.388
256	1.383 ± 2.073	90.383 ± 2.084	79.138 ± 1.426
512	4.544 ± 7.513	91.042 ± 1.747	79.950 ± 0.850
1024	0.133 ± 0.217	89.820 ± 3.593	78.321 ± 3.157
2048	0.150 ± 0.246	89.958 ± 3.461	78.433 ± 3.043
$ D_r $	0.206 ± 0.178	90.018 ± 3.360	78.542 ± 2.860
Retraining	0.000 ± 0.000	92.466 ± 0.883	80.225 ± 0.963

Table 17: Effect of batch size in StoCuRENU (averaged over 3 random runs).

J.5 ANALYSIS OF DUAL VARIABLE α IN CuRENU

We set the number of unlearning iterations $T = 1$ for CuRENU and observe the value of α during class-level sequential unlearning on FMNIST in Fig. 11. Compared to the damping factor $\gamma = 10^{-3}$ in Damped Newton, the dual variable α in CuRENU often admits larger values, which effectively prevents the model from excessively large norm updates.

During sequential unlearning, the value of α consistently decreases until around round 50. This may imply that the Hessian becomes more well-behaved over time, and less regularization is needed. After round 50, however, α increases again. This allows for larger norm updates, which may be needed for class unlearning.

¹³In practice, StoCuRENU can sample batches of different sizes for gradient evaluation and Hessian-vector product evaluation.

Figure 11: The dynamics of α in our CuRENU method (averaged over 3 random runs).

J.6 EFFECT OF VARYING LEARNING RATE IN GD

Prior works have noted that the performance of gradient descent (GD) is highly sensitive to the choice of learning rate (Schaul et al., 2013). Here, we provide empirical evidence that supports this claim when GD is applied for unlearning in Fig. 12. As we can see, its performance on D_e varies significantly across different learning rates. This suggests that identifying the optimal learning rate for GD to achieve unlearning performance close to retraining may be challenging in practice.

Figure 12: Effect of varying learning rates in GD (seed 125).

K DEFINITION OF MACHINE UNLEARNING

Here, we provide a formal definition of machine unlearning used in (Nguyen et al., 2022).

Let $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n \subseteq \mathcal{X} \times \mathcal{Y}$ denote the training set of n samples, where $\mathbf{x}_i \in \mathbb{R}^d$ is the input and $y_i \in \mathbb{R}$ is the target. Let $D_e \subseteq D$ denote the *erased set* of n_e samples to be unlearned and $D_r = D \setminus D_e$ denote the *retained set* of n_r remaining samples.

Let $\Pr(A(D))$ denote the model distributions trained on D using a randomized learning algorithm A . We denote by U an unlearning algorithm that takes the training set D , the erased set D_e , the trained model $A(D) \in \mathcal{H}$, and returns an unlearned model in \mathcal{H} . U is deemed *exact unlearning* iff

$$\forall \mathcal{T} \subseteq \mathcal{H}, D \subseteq \mathcal{X} \times \mathcal{Y}, D_e \subseteq D, \quad \text{then} \quad \Pr(A(D_r) \in \mathcal{T}) = \Pr(U(D, D_e, A(D)) \in \mathcal{T}).$$

Exact unlearning algorithms, such as Bourtoule et al. (2021); Yan et al. (2022), are often expensive to perform, especially for neural networks due to massive D and large model sizes. Therefore, our goal is to achieve a relaxed notion of *approximate unlearning*, i.e.,

$$\forall \mathcal{T} \subseteq \mathcal{H}, D \subseteq \mathcal{X} \times \mathcal{Y}, D_e \subseteq D, \quad \text{then} \quad \Pr(A(D_r) \in \mathcal{T}) \approx \Pr(U(D, D_e, A(D)) \in \mathcal{T}).$$

We can view $A(D)$ as a function mapping any input \mathbf{x} to real outputs (e.g., predicted logits for classification tasks) and \mathcal{H} defines the set of all such models. Hence, our target U must achieve *similar outputs* to retraining on any data. This motivates us to achieve the same retraining loss in our work.

L JUSTIFICATION OF UNLEARNING GOAL

The common goal of unlearning algorithms in Sections 3.3, 5.1, and 5.2 is to minimize the loss $\mathcal{L}(\mathbf{w}; D_r)$ on the retained set to achieve unlearning of D_e . This choice is widely used in existing

1944 works (Guo et al., 2020; Neel et al., 2021; Sekhari et al., 2021) and adopted in our work because
 1945 it forms a necessary condition to approximate a retrained model on D_r , i.e., if an unlearned model
 1946 does not minimize $\mathcal{L}(\mathbf{w}; D_r)$, it cannot be the same as a retrained model. In special cases like
 1947 strongly-convex losses with at most one minimum, this necessary condition is also a sufficient
 1948 condition. Nonetheless, our unlearning algorithms can be extended to other loss formulations, such
 1949 as a weighted combination of $\mathcal{L}(\mathbf{w}; D_r)$ and $-\mathcal{L}(\mathbf{w}; D_e)$. Empirically, we find that incorporating a
 1950 small negated gradient on D_e helps prevent the model from being trapped at the original solution
 1951 when minimizing the retraining loss.

M BACKGROUND IN OPTIMIZATION

1955 As demonstrated in Sections 3.3, 5.1 and 5.2, we can view unlearning as an optimization process
 1956 that starts from a local minimum of the loss on D (the original model) and seeks a nearby local
 1957 minimum of the loss on D_r (a retrained model). To approach unlearning, we can study the broader
 1958 optimization literature, which broadly categorizes optimization methods into *first-order* methods and
 1959 *second-order* methods.¹⁴ These optimization methods are further distinguished by their behavior
 1960 in *convex* and *non-convex* settings, with unlearning neural networks typically situated in the more
 1961 challenging non-convex setting.

1962 **Convex vs. Non-Convex Optimization.** Convex optimization involves minimizing a convex
 1963 objective function (or maximizing a concave one) over a convex feasible set. In convex optimization
 1964 problems, any local minimum is also a global minimum. Moreover, if the objective function is strictly
 1965 convex, the local minimum, if exists, is unique. In contrast, non-convex optimization arises when the
 1966 objective function is non-convex. In non-convex optimization, a *first-order* stationary point (where
 1967 the gradient is close to 0) may correspond to a local minimum, a local maximum, or a saddle point.
 1968 In contrast, a *second-order* stationary point (where the gradient is close to 0 and the Hessian is nearly
 1969 positive semi-definite) can help avoid most saddle points and local maxima with strong negative
 1970 curvature. Although finding a local minimum may not correspond to a global minimum, empirical
 1971 studies show that many local minima in non-convex problems tend to have objective values nearly as
 1972 good as the global minimum (Kashyap, 2022).

1973 **First-Order Methods.** Gradient descent (GD) and its variants (e.g., stochastic gradient descent
 1974 (SGD), momentum (Sutskever et al., 2013), and Adam (Kinga et al., 2015)) are widely used first-order
 1975 optimization methods in machine learning due to their scalability to high-dimensional data and
 1976 complex models, such as deep neural networks. We subsequently restate the convergence results for
 1977 GD and SGD. Interested readers can refer to (Nesterov, 2013; Garrigos & Gower, 2023; Khaled &
 1978 Richtárik, 2020) for more details.

1979 For a convex function with Lipschitz continuous gradient, GD achieves a convergence rate of $\mathcal{O}(\frac{1}{k})$
 1980 (sublinear convergence), where k is the number of iterations. If the function is strongly convex, GD
 1981 enjoys a linear convergence rate of $\mathcal{O}(c^k)$ for some constant $0 < c < 1$. For non-convex optimization,
 1982 GD can only guarantee convergence to an ε -first-order stationary point (ε -FOSP) in $\mathcal{O}(\varepsilon^{-2})$ iterations.

1983 In the stochastic setting, SGD converges in expectation at a rate of $\mathcal{O}(\frac{1}{\sqrt{k}})$ for convex functions
 1984 and $\mathcal{O}(\frac{1}{k})$ for strongly convex functions. If the function is non-convex, SGD can only guarantee
 1985 convergence to an ε -FOSP in $\mathcal{O}(\varepsilon^{-4})$ iterations.

1988 **Second-Order Methods.** Many real-world functions, such as objective functions in neural networks,
 1989 are inherently non-convex. Although first-order optimization methods like GD and SGD are
 1990 computationally efficient and scalable, they often suffer from slow convergence in ill-conditioned
 1991 problems and may get stuck at saddle points if the function is non-convex. In contrast, Newton's
 1992 method leverages the second-order information of the function to accelerate the convergence. When
 1993 the function is strongly convex with a Lipschitz continuous Hessian, and the initialization is sufficiently
 1994 close to the minimizer, Newton's method converges locally at a quadratic rate (Nocedal & Wright,
 1995 2006). In general, however, its global convergence is not guaranteed. Moreover, Newton's method
 1996 may instead converge to saddle points or maxima, as it does not distinguish among stationary points.

1997 ¹⁴While higher-order methods exist, they are rarely adopted due to significant computational and numerical
 1998 instability.

1998 To achieve global convergence, cubic regularization methods (Nesterov & Polyak, 2006) construct a
1999 global upper bound of the objective function by adding a cubic term to the quadratic approximation.
2000 For a function (possibly non-convex) with Lipschitz continuous Hessian, cubic-regularized Newton's
2001 method can achieve convergence to an ε -second-order stationary point (ε -SOSP) in $\mathcal{O}(\varepsilon^{-1.5})$ iterations.
2002 For small ε , converging to ε -SOSP can help avoid most saddle points and sharp local maxima.

2003 In the stochastic setting, Kohler & Lucchi (2017) proposes a variant of cubic regularization that
2004 utilizes subsampled gradients and Hessians, but does not provide its asymptotic analysis. Xu et al.
2005 (2020) considers stochastic Hessians but still requires access to the full gradients. Leveraging HVPs
2006 to avoid explicit Hessian computation, Tripathaneni et al. (2018) proposes a scalable Hessian-free
2007 variant that converges to an ε -SOSP in $\tilde{\mathcal{O}}(\varepsilon^{-3.5})$ gradient/HVP evaluations.
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051