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ABSTRACT

Modern retrieval systems often struggle with upgrading to new and more pow-
erful models due to the incompatibility of embeddings between the old and new
models. This necessitates a costly process known as backfilling, which involves
re-computing the embeddings for a large number of data samples. In vision,
Backward-compatible Training (BT) has been proposed to ensure that the new
model aligns with the old model’s embeddings. This paper extends the concept of
vision-only BT to the field of cross-modal retrieval, marking the first attempt to
address Cross-modal BT (XBT). Our goal is to achieve backward-compatibility
between Vision-Language Pretraining (VLP) models, such as CLIP, for the cross-
modal retrieval task. To address XBT challenges, we propose an efficient solution:
a projection module that maps the new model’s embeddings to those of the old
model. This module, pretrained solely with text data, significantly reduces the
number of image-text pairs required for XBT learning, and, once it is pretrained,
it avoids using the old model during training. Furthermore, we utilize parameter-
efficient training strategies that improve efficiency and preserve the off-the-shelf
new model’s knowledge by avoiding any modifications. Experimental results
on cross-modal retrieval datasets demonstrate the effectiveness of XBT and its
potential to enable backfill-free upgrades when a new VLP model emerges.

1 INTRODUCTION

As the volume and variety of data grow exponentially in our multimedia-rich era, developing and
maintaining efficient multi-modal retrieval systems becomes increasingly challenging. These systems,
which provide data samples relevant to a user’s query, must handle diverse data types, from text and
images to audio and video. This growth puts a premium on the scalability and performance of these
systems, necessitating continuous advancements in algorithms and technology. Embedding-based
deep models for retrieval have emerged as a key solution, transforming high-dimensional data into
a lower-dimensional dense embedding space Rehman et al. (2012); Zhou et al. (2017); Wan et al.
(2014); Jang & Cho (2020); Hoe et al. (2021); Jang et al. (2022). These models capture the semantic
meanings of data samples, enabling the quantification of similarities for retrieval.

However, it is important to note that the embedding spaces generated by different deep models are not
inherently compatible with each other. This incompatibility restricts the reuse of an existing gallery
that has been embedded with an older model when a new, better-performing model is introduced.
Consequently, this necessitates “backfilling,” a process where the entire gallery must be rebuilt using
the embeddings from the new model. Such a requirement is resource-intensive and time-consuming,
posing a significant challenge when building retrieval systems.

Backward-compatible Training (BT) Shen et al. (2020); Zhang et al. (2022a); Hu et al. (2022); Wang
et al. (2020); Zhang et al. (2022b) has been developed to tackle this issue, specifically focusing
on image retrieval systems. The main objective of BT is to train a new model from scratch in a
manner that ensures its compatibility with an old model that was used to create the existing gallery.
A successful BT model must consequently demonstrate that retrieving from the old gallery using a
query embedded with the new model outperforms that using an embedding from the old model. This
enhancement is crucial for justifying the application of BT.
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Figure 1: A conceptual visualization of Backward-compatible Training (BT, left) and its extension,
the Cross(X)-modal version (XBT, right). Circles and squares denote data samples of images and
text, respectively. XBT uses Vision-Language Pretraining (VLP) models as baselines to achieve
cross-modal, backward-compatible representation learning, allowing the new, improved model to be
compatible with the fixed old model.

Taking the BT problem a step further, we propose a new challenging task called Cross(X)-modal
Backward-compatible Training (XBT) as shown in Figure 1. Our focus here is on applying BT princi-
ples within the realm of cross-modal retrieval, specifically exploring the interaction and compatibility
between image and text embeddings of different Vision-Language Pretraining (VLP) models Radford
et al. (2021); Li et al. (2022b); Jia et al. (2021); Li et al. (2022a); Singh et al. (2022).

To achieve XBT, just like the BT problem, we need to resolve the incompatibility between the
embeddings of the old, inferior model and the new, improved model. If we follow most prior
practices of training from scratch with an additional compatibility loss term, a substantial number
of supervised image-text pairs would be needed. The ideal quantity would be in the hundreds of
millions, approximating the amount utilized in the establishment of VLP models. However, accessing
the original training samples is often impossible, and training on that scale is prohibitively expensive
and impractical. We propose an efficient solution instead: a text-only pretrained projection module,
ϕ, to align a given pretrained new model’s embeddings with those of the old model.

Our focus is on using only text data to estimate the entire distribution of embeddings in the VLP space.
Specifically, we train ϕ to learn the similarity between old and new text embeddings in a contrastive
manner. By increasing the number of text samples, which is simpler than preparing image-text pairs,
ϕ can approximate the oracle projection between the intra-modal distributions of both old and new
embeddings for texts. Assuming that the intra-modal distribution of texts in the VLP embedding
space can mirror that of images, we can simply apply the same ϕ to the new image embeddings to
synthesize the corresponding old image embeddings.

With these generated synthetic old image and text embeddings, which can be considered as aligned
with the new embeddings, we aim to fine-tune the new model. In this process, far fewer supervised
image-text pairs are required than in the original training dataset of the VLP. This also allows us to
avoid using old model parameters during training, thereby enhancing training efficiency. In addition,
we incorporate parameter-efficient fine-tuning schemes Lester et al. (2021); Kim et al. (2021); Hu
et al. (2021) into the new model, which add small trainable parameters and do not harm any of the new
model’s original parameters during training. This not only accelerates the new model’s fine-tuning
process but also allows for an easy reversion to the original new-to-new retrieval by simply removing
the additional parameters.

We demonstrate our approach on various cross-modal benchmarks, highlighting the effectiveness of
XBT in cross-modal retrieval protocols. In response to the rapid advancement of VLP models, XBT
offers an environmentally friendly solution by enabling backfill-free systems.

Our contributions can be summarized as:

• The Cross-modal Backward-compatible Training (XBT) concept is introduced for the first
time to solve the backfilling problem that stems from real-world cross-modal retrieval
systems.
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• A novel XBT solution is proposed, which uses a text-only pretrained projection module, ϕ,
to efficiently align the embeddings of new and old models using only text samples.

• The proposal is demonstrated on various datasets and protocols, showcasing XBT’s effec-
tiveness in building backfill-free cross-modal retrieval systems.

2 RELATED WORKS

Backward-compatible Training. The concept of Backward-compatible Training (BT) was first
introduced in the study (Shen et al. (2020)). This approach influences a new model with the learned
classifier of the old model, thereby achieving backward compatibility between the old and new
models. However, BT can degrade the original representational performance of the new model. To
overcome this, Meng et al. (2021) proposed aligning class-wise centers presented by the old and
new models. Another approach to achieve backward compatibility is to use an additional projection
to map the old embedding into the new embedding space by adding a lightweight transformation,
as suggested in Hu et al. (2022); Wang et al. (2020). The work of Ramanujan et al. (2022) further
adds an auxiliary feature in preparation for future updates, while Zhou et al. (2022) uses additional
dimensionality in the embedding to obtain compatibility. An online strategy that backfills the gallery
on the fly is explored in Zhang et al. (2022a), and Yan et al. (2021) addresses the model regression
problem. Despite this progress, the scenario considering cross-modal retrieval between image and
text, which has many real-world applications, remains unexplored. Our study on XBT in this paper
aims to fill this gap.

Vision-Language Continual and Transfer Learning The fields of continual learning Aljundi et al.
(2017); Chaudhry et al. (2019); De Lange et al. (2021) and transfer learning Lu et al. (2015); Zhuang
et al. (2020) bear similarities to backward-compatible representation learning, as all aim to update
an existing model to boost performance. In the realm of multi-modal representation learning for
cross-modal retrieval, continual learning approaches like Wang et al. (2021) propose methods to
prevent catastrophic forgetting across different modalities. Transfer learning approaches like Zhen
et al. (2020) suggest strategies for transferring knowledge from previously labeled categories (source
modality) to new, unlabeled categories (target modality). However, our proposed XBT stands apart
from these methods as it specifically tackles the challenge of maintaining backward compatibility
between old and new models. This unique attribute makes XBT ideally suited for backfill-free
retrieval scenarios, where the embeddings of the old model remain unchanged, yet we can still
leverage the enhanced performance of the new model.

3 METHODOLOGY

Our goal is to construct a backfill-free, embedding-based, cross-modal retrieval system using VLP
models, which are configured with an image encoder EI and a text encoder ET . When a new better
performing VLP model {EI

new, E
T
new} emerges, we aim to ensure its compatibility with the old

model {EI
old, E

T
old} that was used to construct the gallery. To achieve this, we introduce Cross(X)-

modal Backward-compatible Training (XBT). Given an image x and text caption t, XBT enables
retrieval between a new image embedding vnew = EI

new(x) and the text embeddings (wold), as
well as between a new text embedding wnew = ET

new(t) and the image embeddings (vold). We
denote backward compatible embeddings as v̄ and w̄. All embeddings we utilize in this work are
l2-normalized.

3.1 CRITERION FOR CROSS-MODAL BACKWARD COMPATIBILITY

Following the definition of backward compatibility in BT work Shen et al. (2020), we can construct
strict constraints that ensure cross-modal backward compatibility as:

d(wnewi
, voldj

) ≤ d(woldi
, voldj

),∀yi = yj , d(wnewi
, voldj

) ≥ d(woldi
, voldj

),∀yi ̸= yj ,

d(vnewi , woldj ) ≤ d(voldi , woldj ),∀yi = yj , d(vnewi , woldj ) ≥ d(voldi , woldj ),∀yi ̸= yj ,
(1)

where yi and yj represent whether an image and text are paired (yi = yj) or not (yi ̸= yj). The term
d(·, ·) represents a distance metric in the embedding space, and we choose cosine distance as the
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Figure 2: An illustration of the text-only pretraining of ϕ (left), and XBT with ϕ (right). Using only
text samples, ϕ is trained to approximate distribution of old text embeddings from that of new ones.
During training, noise ϵ is injected to input of ϕ. After pretraining, the same ϕ is used to generate
both of synthetic old image and text embeddings from the new VLP embeddings and train to learn
cross-modal backward-compatible representation.

baseline. The constraints in Eqn. 1 formally express the requirement that the new embedding must
perform at least as well as the old embedding in terms of correctly matching image-text pairs.

However, exhaustively satisfying these constraints is intractable due to the potential for the old
embeddings to outperform the new embeddings in certain retrieval cases. As a result, we relax the
criteria by defining an alternative evaluation metric as:

M(wnew, vold; Q,G) > M(wold, vold; Q,G),

M(vnew, wold; Q,G) > M(vold, wold; Q,G),
(2)

where a metric, such as recall, M(q, g; Q,G) takes query embedding q and gallery embedding g over
query set Q and gallery set G. This criterion suggests that the general performance is enhanced when
the query embedding from the XBT-trained new model is used to perform retrieval with the gallery
of the old model, compared to the performance of the old model alone. In essence, fulfilling Eqn. 2
indicates that the new model has achieved backward compatibility and can feasibly update without
backfilling gallery.

Additionally, it is important to highlight that VLP models function as zero-shot learners. This leads
us to define the XBT problem differently from classic BT, which trains separate models for specific
image domain retrieval tasks such as ImageNet Russakovsky et al. (2015) or VGGFace2 Cao et al.
(2018). In contrast, XBT tackles a more challenging task, aiming to bridge a new VLP model with a
frozen old VLP model while retaining the new model’s original zero shot capability. In this paper, we
therefore assess the performance of XBT using retrieval and classification benchmarks in a zero-shot
manner.

3.2 TEXT-ONLY PRETRAINING

The vast and diverse image-text pairs used to build VLP models significantly enhance their ability
to connect semantically similar visual content and natural language Chen et al. (2023). However,
this creates a complex embedding distribution that is difficult to predict and understand, thereby
complicating the XBT process. A straightforward solution is to use a large number of supervised
image-text pairs, similar to the approach used when building VLP models from scratch, to estimate
the entire distribution of image and text embeddings during XBT.

However, acquiring a sufficient number of accurate supervised pairs is extremely costly. To be far
more efficient, we employ a small sized projection module, ϕ, and train it exclusively with text
samples, as shown in Figure 2. We hypothesize that the distribution of text embeddings in VLP
models, which is determined by their semantic similarity, is similarly mirrored in the distribution of
their corresponding matched images. With this in mind, we aim to train ϕ to cover the broad spectrum
of the text embedding distribution between the new and old VLP models, making embeddings from
the same text sample similar and others dissimilar in a contrastive way:
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Figure 3: Our proposed learning process to achieve XBT. Notably, the old VLP model’s encoders are
not required in this stage, enhancing efficiency in training.

Lpre = Et∼DT
[Lc(ϕ(wnew + ϵ), wold; τpre)], (3)

where t denotes text data sampled from text corpus DT = {ti}
NDT
i=1 of NDT

text samples, and Lc(·, ·)
is a standard batch-wise contrastive loss as defined in CLIP Radford et al. (2021) of temperature τpre.

To prevent overfitting towards the text domain, which could widen the discrepancy between the
image and text embedding representations, we inject noise ϵ sampled from a Gaussian distribution
(ϵ ∼ N(0, σ2)), inspired by the approaches Nukrai et al. (2022); Gu et al. (2023). Notably, ϕ is
designed to take the new VLP model’s embeddings, which means that wnew+ ϵ is also l2-normalized.

During this stage, only ϕ is updated, while all encoders remain fixed. By expanding the scale of DT ,
we can effectively replicate the complete text embedding spaces of both new and old VLP models.
Additionally, ϕ can be applied to new image embeddings to generate synthetic old image embeddings
that closely approximate the actual old ones.

3.3 CROSS-MODAL BACKWARD-COMPATIBLE TRAINING

Training Loss. The objective of XBT is to ensure cross-modal compatibility, specifically between
wnew and vold, as well as between vnew and wold. For a given dataset D = {xi, ti}ND

i=1 of ND

supervised image-text pairs, we aim to train the new VLP model encoders, EI
new and ET

new. Note that
in our base setting, the text corpus is significantly larger than the supervised dataset, i.e., NDT

≫ ND.

However, the dimensionality of new and old VLP embeddings may differ, and even if they are the
same, they are not be directly compatible. To address this, we apply the pretrained ϕ to ensure that
the new embeddings match the dimension of the old ones and project into the compatible embedding
space, as shown in Figure 2. This can be represented as:

ϕ(vnew) = v̄new, ϕ(wnew) = w̄new, (4)

where v̄new and w̄new denote synthetic old embeddings and {v̄new, w̄new, vold, wold} ⊂ RK , with
K denoting the dimensionality of the old VLP model’s embedding.

We then apply XBT loss LX as follows:

LX = Ex,t∼D[Lc(v̄new, w̄new; τX)]. (5)

Here, Lc(·, ·) is the same contrastive loss used in Eqn. 3, with temperature τX . As shown in Figure
3, the new VLP encoders, EI

new and ET
new, and ϕ are trained through LX in an end-to-end manner.

Ultimately, v̄new and w̄new become cross-modal backward-compatible with existing old gallery
embeddings, vold and wold, as all embeddings are distributed in the compatible space through ϕ.

Efficient Training. The efficiency of XBT can be attributed to two design choices that avoid: (1) any
dependence on the old model when conducting XBT, and (2) updating the new VLP model off the
shelf. We have already seen how ϕ can effectively achieve (1). (2) is simply facilitated by applying
small-sized additional parameters, namely Soft prompt Lester et al. (2021) and LoRAHu et al. (2021).

To be more specific, we incorporate the concept of soft prompt tuning, as outlined in Lester et al.
(2021); Jia et al. (2022). Soft prompting is applied to the vision encoder EI

new by adding trainable
prompts as input, along with image patch tokens. We exclude soft prompt tuning on the text side, as
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we use the text-only pretrained module ϕ, which requires maintaining the original distribution of text
embeddings. We adopt the LoRA strategy Hu et al. (2021) for the new VLP model’s encoders EI

new
and ET

new to avoid modifying original parameters. These two factors, in conjunction with ϕ, offer an
on-off solution: we can retrieve old samples using additional parameters, and we can easily revert to
the original model by removing these parameters for new-to-new retrieval.

Further, regarding ϕ during XBT (Sec. 3.3), we only fine-tune the parameters of layer normalization.
This is done with the aim of preserving the knowledge learned during the text-only pretraining stage
(Sec. 3.2) and facilitating easy adaptation towards the image-text joint representation space.

In the end, our XBT framework offers a parameter-efficient solution that enables rapid convergence
with fewer training iterations (a single epoch is sufficient); maintains the new model’s power; and
requires far fewer supervised training samples than the scale of VLP model pretraining (approximately
1% of the level required to train CLIP Radford et al. (2021) from scratch, which uses a 400M dataset,
and 0.2% of the level required for LAION-2B based CLIP models Schuhmann et al. (2022), which
utilize a 2B dataset). All these help to avoid any full-scale retraining of the new VLP models, paving
the way for XBT to simply use new VLP models off-the-shelf as mentioned.

4 EXPERIMENTS

The evaluation of the proposed cross-modal backward compatibility includes image-text zero-shot
retrieval. Pretrained VLP models are used as our baseline, with the goal to assess performance in
a zero-shot environment by tuning a given pretrained new VLP model that is stronger than the old
model. The results highlight the potential of XBT, showing improved performance when old model
outputs are matched with the XBT-learned new model.

4.1 SETUP

Model Training. Our XBT process involves two distinct training stages: text-only pretraining
(See Sec. 3.2) and image-text supervised training (See Sec. 3.3). For the text-only pretraining
stage, we utilize the text samples from a subset of the 115M filtered web-collected image-text paired
dataset from BLIP Li et al. (2022a), comprising around 67M available pairs (58.2% of the total).
We construct a text corpus DT in Eqn. 3 using these text samples. For the subsequent image-text
supervised training stage, we use a smaller subset of 4M image-text pairs from the same dataset to
construct a supervised dataset D in Eqn. 5. It is important to note that these subsets are significantly
smaller than the dataset scale (400M, 2B or more) used to build CLIP models Radford et al. (2021);
Schuhmann et al. (2022).

We utilize 8-A100-80GB GPUs to train and evaluate the models. For the text-only pretraining stage
in Sec. 3.2, the batch size is set to 8,192 (1,024 batch per GPU) and during this stage, the entire
set of trainable parameters of ϕ are trained while both VLP text encoders are fixed. Moving on
to the image-text supervised training in Sec. 3.3, the batch size is reduced to 1,024 (128 batch
per GPU), and in this stage, layer normalization is set to be the only trainable component for all
VLP image and text encoders with ϕ. Temperature hyper-parameters τpre, τX , and τN are fixed
at 2.6592. We employ the AdamW optimizer Loshchilov & Hutter (2017) with a fixed learning
rate of 1e-4 and a weight decay of 0.01. For soft prompts, we use 10 prompts and apply 100 times
larger learning rate, 1e-2. The training iteration is determined by the dataset size, and the entire
pipeline is trained for a single epoch. For image augmentation, we begin with a random resized
crop, adjusting the image scale between 0.5 and 1.0. Additionally, we apply a random horizontal
flip and make random adjustments to the image’s contrast, brightness, and sharpness. To incorporate
different perspectives and angles, we modify the image’s translation and rotation. The pretrained
weights provided by HuggingFace1 Wolf et al. (2020) are applied to baseline VLP models. We em-
ploy as: openai/clip-vit-base-patch32, openai/clip-vit-larget-patch14,
laion/CLIP-ViT-H-14-laion2B-s32B-b79K.

Model Evaluation. We validate the effectiveness of XBT with a benchmark comprising three
popular image-text paired datasets for cross-modal retrieval evaluation. The first is the nocaps dataset

1https://huggingface.co/models
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Table 1: Cross-modal retrieval results on nocaps. Note that for comparison, the B32/L14 case should
be compared with B32, and the L14/H14 case should be compared with L14, respectively.

Old Model /
New Model Method Text Query(w, w̄)/Image Gallery(v) Image Query(v, v̄)/Text Gallery(w)

Case R@1 R@5 R@10 R@50 Case R@1 R@5 R@10 R@50

Original

CLIP-ViT-B32 - w/v 45.14 74.98 84.51 96.00 v/w 71.38 92.02 96.33 99.67

CLIP-ViT-L14 - w/v 47.77 76.50 85.13 95.95 v/w 73.29 93.24 97.40 99.78

Cross-modal Backward Compatible Training

CLIP-ViT-B32 /
CLIP-ViT-L14

Full-tune

w̄new/vold

41.60 73.54 84.26 96.45

v̄new/wold

63.76 87.00 93.51 99.09
LoRA-only 43.40 74.66 84.94 96.73 68.82 90.87 96.00 99.76

Base 43.48 74.87 85.04 96.74 69.78 91.31 96.02 99.78
XBT 48.02 79.00 88.21 97.66 75.02 93.27 97.31 99.91

Full-tune

w̄new/v̄new

48.92 79.31 88.26 97.64

v̄new/w̄new

61.22 85.89 92.62 99.04
LoRA-only 55.44 83.82 91.24 98.34 70.11 91.13 96.49 99.73

Base 56.18 84.31 91.44 98.37 71.07 91.44 96.22 99.76
XBT 63.48 88.61 93.98 98.86 77.22 94.56 97.91 99.89

CLIP-ViT-L14 /
CLIP-ViT-H14

Full-tune

w̄new/vold

45.18 77.82 85.34 97.65

v̄new/wold

66.38 88.55 93.59 98.90
LoRA-only 47.00 76.94 86.02 97.63 72.04 92.42 96.58 99.67

Base 47.06 77.15 86.12 97.64 73.00 92.86 96.60 99.69
XBT 51.14 80.82 88.93 98.72 76.62 94.11 97.58 99.84

Full-tune

w̄new/v̄new

54.39 82.26 89.06 98.95

v̄new/w̄new

65.57 87.52 93.51 99.13
LoRA-only 60.91 86.77 92.04 98.65 74.46 92.73 97.38 99.82

Base 61.65 87.26 92.24 98.68 75.42 93.04 97.11 99.85
XBT 66.47 90.21 94.92 99.05 80.02 96.11 98.87 100.0

Agrawal et al. (2019), which offers a diverse distribution of object names and facilitates a more
detailed analysis. We employ the validation split of this dataset, which consists of images each paired
with 10 relevant textual captions, totaling 4,500 images and 45,000 captions.

To evaluate XBT at a larger scale, we also include the Flickr Huiskes & Lew (2008) and COCO Lin
et al. (2014) datasets, which consist of images that are each paired with 5 relevant textual captions. For
the Flickr dataset, we use the entire dataset, encompassing 31,783 images and 158,915 captions. For
the COCO dataset, we use the validation split, which includes 35,136 images and 175,680 captions.
We notate the two datasets as Flickr-31K and COCO-35K respectively for the remainder of the paper.

For retrieval, we utilize all the samples in each dataset for both query and gallery, following the
cross-modal benchmark used in Radford et al. (2021); Li et al. (2022a). For evaluation purpose,
we adopt recall scores at top K retrieval results (R@K, %) to estimate the cross-modal backward
compatibility (See Eqn. 2).

Implementation Details. In our work, we primarily use the popular CLIP models Radford et al.
(2021), based on a Transformer Vaswani et al. (2017) backbone, as our baseline VLP models. The
models, listed in ascending order of scale and performance, are: CLIP-ViT-B32, CLIP-ViT-L14,
and CLIP-ViT-H14. For simplicity, we will refer to them as B32, L14, and H14, respectively.
Notably, while B32 and L14 are trained with the same dataset at 400M scale, H14 is trained with
a larger dataset at 2B scale. We apply additional LoRA Hu et al. (2021) parameters for each new
model encoder configured as follows: LoRAα = 16, rank = 16, and dropout = 0.1. The proposed
projection module ϕ consists of three Linear layers with layer normalization (LN) Ba et al. (2016) and
the GELU non-linearity function Hendrycks & Gimpel (2016). Detailed architecture is as follows:
Linear−LN−GELU−Linear−LN−GELU−Linear. Dropout is not applied as it was found
to degrade performance empirically. The intermediate hidden dimension of the Linear layer is set to
be four times the dimensionality of the output embedding.

4.2 MAIN RESULTS

Baseline Comparisons. To simplify notation, we use w/v to denote the retrieval results obtained
using w as the query embeddings and v as the gallery embeddings. We establish two protocols:
assessing cross-modal backward compatibility with new/old (w̄new/vold, v̄new/wold), and maintain-
ing the new VLP’s original performance with new/new (w̄new/v̄new, v̄new/w̄new). All of the above
are similarly applied to v/w.
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Table 2: Cross-modal retrieval results on Flickr-31K.
Old Model /
New Model Method Text Query(w, w̄)/Image Gallery(v) Image Query(v, v̄)/Text Gallery(w)

Case R@1 R@5 R@10 R@50 Case R@1 R@5 R@10 R@50

Original

CLIP-ViT-B32 - w/v 21.54 41.24 50.72 72.69 v/w 40.35 64.42 73.39 89.91

Cross-modal Backward Compatible Training

CLIP-ViT-B32 /
CLIP-ViT-L14

Base 19.02 37.25 46.63 69.32 36.74 60.61 70.22 88.34
XBT w̄new/vold 22.38 42.71 52.41 74.80 v̄new/wold 42.47 66.04 74.87 90.79
Base 32.29 55.18 64.68 83.60 36.10 59.80 69.95 89.01
XBT w̄new/v̄new 39.59 62.89 71.75 88.13 v̄new/w̄new 43.50 68.50 77.99 93.21

CLIP-ViT-B32 /
CLIP-ViT-H14

Base 20.27 39.17 48.59 70.67 35.53 59.44 69.06 87.67
XBT w̄new/vold 23.70 44.47 54.19 76.03 v̄new/wold 41.09 65.18 74.32 90.16
Base 32.94 55.94 65.26 83.77 34.81 59.55 69.96 88.81
XBT w̄new/v̄new 40.42 63.90 72.74 88.47 v̄new/w̄new 46.35 71.18 80.01 94.08

To the best of our knowledge, since this paper presents the first method that aims to solve the XBT
problem, there are no direct previous works to compare to. Nevertheless, we compare our XBT
against three baselines: Full-tune, LoRA-only, and Base, which we elaborate on below.

Naïve solution - Direct backward contrastive learning: The pretrained ϕ in Eqn. 3, which maps the
new embeddings to the old via text based contrastive learning, constitutes a major contribution of
XBT. We therefore would like to compare with a solution that does not utilize such a pretrained ϕ.
A straightforward solution for this is to fine-tune the new VLP encoders (EI

new and ET
new) to be

compatible with the old ones by minimizing the following loss:

LDirect = Ex,t∼D[Lc(v̄new, wold; τN )

+Lc(w̄new, vold; τN )]
(6)

where Lc(·, ·) is the same contrastive loss used in Eqn. 5, and τN is a temperature. Here, we apply a
randomly initialized ϕ with the same configuration as XBT for projection, as per Eqn. 4, to generate
cross-modal backward compatible embeddings, w̄ and v̄.

Different training options: Based on Eqn. 6, we consider multiple training setups: (1) full fine-tuning
of all trainable components (Full-tune), (2) tuning LoRA parameters-only (LoRA-only), and (3)
starting from LoRA-only, adding an extra learnable prompt (Base). Models produced by Base would
therefore be akin to XBT without the pretrained ϕ. For these, we train the EI

new, ET
new and ϕ using

LDirect with 4M image-text pairs. Note that, XBT only trains layer-normalization layers including
pretrained ϕ, however, Full-tune, LoRA-only and Base setups are training entire parameters of ϕ since
it is not trained before. The results of these baselines are presented in Table 1, tested with nocaps
dataset. The performance of the original VLP models is also reported for a clear comparison. We
highlight our XBT method.

In the context of cross-modal backward compatibility, where recall scores of w̄new/vold and
v̄new/wold should be higher than those of w/v and v/w of old model, respectively, Full-tune
significantly underperforms compared to the old VLP’s. This indicates that full fine-tuning is not
an appropriate solution. While both LoRA-only and Base improve performance over Full-tune,
they still fall short of the old VLP’s performance and fail to meet the criterion. In contrast, XBT
significantly outperforms these baselines and even surpasses the old VLP’s performance, satisfying
the cross-modal backward compatibility for all recall metrics (see Eqn. 2).

In terms of maintaining new VLP’s performance, where recall scores of w̄new/vnew and v̄new/wnew

could be similar to those of w/v and v/w of new model, respectively, all baselines show decent
performance in w̄new/vnew case but only XBT achieves better performance than new VLP model
in v̄new/wnew case. These results support that XBT not only maintains the performance of the new
VLP model but also enhances it in certain cases. The superior performance of XBT in both cases
underscores its promise as a robust solution for cross-modal retrieval tasks.

Large Scale Retrieval. In this experiment, we assess the performance of cross-modal backward
compatibility in more practical use cases. We use larger datasets, namely Flickr-31K and COCO-35K,
as shown in Tables 2 and 3. These datasets provide more than six times the number of samples
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Table 3: Cross-modal retrieval results on COCO-35K.
Old Model /
New Model Method Text Query(w, w̄)/Image Gallery(v) Image Query(v, v̄)/Text Gallery(w)

Case R@1 R@5 R@10 R@50 Case R@1 R@5 R@10 R@50

Original

CLIP-ViT-B32 - w/v 14.44 30.20 38.96 62.30 v/w 28.62 50.17 59.67 80.22

Cross-modal Backward Compatible Training

CLIP-ViT-B32 /
CLIP-ViT-L14

Base 12.97 28.14 36.48 59.78 26.32 46.91 56.54 77.86
XBT w̄new/vold 15.55 32.27 41.34 65.11 v̄new/wold 30.73 52.58 62.30 81.83
Base 22.16 41.65 50.98 73.06 27.26 48.16 57.80 79.57
XBT w̄new/v̄new 27.61 48.69 58.08 78.83 v̄new/w̄new 32.92 55.37 64.89 84.67

CLIP-ViT-B32 /
CLIP-ViT-H14

Base 13.88 29.55 38.23 61.57 26.19 46.75 56.30 77.96
XBT w̄new/vold 15.82 32.79 41.84 65.45 v̄new/wold 30.33 51.28 59.97 81.66
Base 23.20 43.22 52.70 74.68 27.31 48.56 58.60 80.09
XBT w̄new/v̄new 28.14 49.48 58.88 79.32 v̄new/w̄new 34.54 57.29 66.79 85.92

Table 4: Ablation study tested on nocaps,
with B32 as old and L14 as new model.

Method w̄(text)/v(image) v̄(image)/w(text)

R@1 R@10 R@1 R@10

(a) Baseline 48.02 79.00 75.02 93.27

(b) w.o noise 47.24 78.05 73.31 92.49

(c) 0.25×DT 46.89 77.91 73.20 92.18

(d) 0.5×DT 47.68 78.00 73.89 92.00

(e) 2×D 47.63 78.69 74.98 93.98

(f) 0.5×D 46.80 77.89 71.69 92.00

(g) D=CC3M 46.44 77.76 71.33 91.84

(h) Image-only 45.32 76.92 74.02 92.35

Table 5: Cross-modal retrieval results on nocaps, using
BLIP-Base and BLIP-Large.

Method Text Query/Image Gallery Image Query/Text Gallery

Case R@10 R@50 Case R@10 R@50

Original

- w/v 69.56 91.86 v/w 85.44 97.89

Cross-modal Backward Compatible Training

Base 67.61 91.56 81.42 97.38
XBT w̄new/vold 69.90 92.52 v̄new/wold 85.83 98.04
Base 69.02 90.57 79.29 95.98
XBT w̄new/v̄new 73.17 93.27 v̄new/w̄new 89.16 98.88

typically used in image-text retrieval literature Wan et al. (2014); Chen et al. (2023), which make the
retrieval process more challenging. We use the second-best performing Base method from Table 1 as
a basis for comparison. To validate the applicability of XBT across various VLP models, we utilize
three CLIP baselines: B32, L14, and H14. Additionally, we explore different combinations, such as
B32/L14 and B32/H14, to further analyze the effectiveness of XBT, beyond the comparisons made in
Table 1 (B32/L14 and L14/H32).

When comparing B32/L14 with B32/H14, it is observed that every retrieval cases of improved models
(L14 and H14) successfully maintain cross-modal backward compatibility, regardless of their scale.
Especially, retrieval performance of B32/H14 is better than that of B32/L14, which demonstrates
XBT’s ability to preserve and align original model’s power with old gallery.

Upon examining the results, we consistently observe that XBT outperforms the Base model across all
instances and both retrieval scenarios, often by a significant margin. Furthermore, XBT maintains
the performance of new VLPs better than Base, achieving even larger margins for w̄new/v̄new and
v̄new/wold. In summary, XBT consistently demonstrates robust and superior retrieval performance,
even in large-scale scenarios.

4.3 FURTHER ANALYSIS

Ablation Study. To validate XBT, we conduct further analysis as shown in Table 4. By comparing
(a) and (b), we observe that introducing noise during ϕ training aids in generalization. The comparison
between (c) and (d) demonstrates that the scale of DT is important, supporting our assumption that
a sufficient number of text samples can help build a robust ϕ. (e) outperforms (a), confirming that
utilizing more image-text pairs can enhance XBT. The lower performance of (f) also aligns with the
notion that the number of image-text pairs is crucial. In (g), when we replace D with CC3M Sharma
et al. (2018), from which we can obtain around 2.4M, the performance is similar to (f), suggesting
that XBT can be effectively applied with other datasets. In (h), we replace text-only pretraining with
image-only pretraining of the same scale and observe that text-only pretraining performs better in
both retrieval scenarios, demonstrating its efficiency and superiority.
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Table 6: Continual learning scenario experimental results with XBT on nocaps. Note that for H14
training, we use L14, which has been previously adapted with B32, and H14 never encounters B14.

Old Model /
New Model

Text Query(w, w̄)/Image Gallery(v) Image Query(v, v̄)/Text Gallery(w)

Case R@1 R@5 R@10 R@50 Case R@1 R@5 R@10 R@50

CLIP-ViT-B32 /
CLIP-ViT-L14

w̄new/vold 47.68 78.00 88.00 97.50 v̄new/wold 73.89 92.00 97.22 99.86
w̄new/v̄new 62.22 86.18 93.00 98.12 v̄new/w̄new 76.27 92.90 96.76 99.11

CLIP-ViT-L14 /
CLIP-ViT-H14

w̄new/vold 50.97 80.68 88.98 97.72 v̄new/wold 77.38 94.82 97.80 99.84
w̄new/v̄new 66.09 89.78 94.77 99.01 v̄new/w̄new 80.60 96.36 98.71 99.96

CLIP-ViT-B32 /
CLIP-ViT-H14

w̄new/vold 49.14 79.88 88.59 97.67 v̄new/wold 74.84 93.73 97.22 99.80
w̄new/v̄new 65.95 89.68 94.68 98.99 v̄new/w̄new 80.96 96.00 98.71 99.96

R#1 - A dog with colorful sunglasses on and a bandanna.
R#2 - A happy dog is wearing a blue bandanna and sunglasses.
R#3 - A dog wearing sunglasses and a blue and white bandanna.
R#4 - An old brown dog is wearing mirrored sunglasses and a blue bandana.
R#5 - A dog has its tongue out as it wears sunglasses and bandana.

Retrieved from Old Text Gallery

R#1 R#2 R#3 R#4 R#5 

Retrieved from Old Image GalleryNew Query Image

The cute brown 
tabby and white 
ki2en, sits on the 
hard wood floor.

New Query Text

Figure 4: New query vs. Old gallery retrieval results on nocaps. B32 as old, and L14 as new model.

Different VLP models. To further explore the capacity of the VLP model architec-
ture’s generalization of XBT, we evaluate it using BLIP Li et al. (2022a) Base and
Large models. We employ checkpoints of Salesforce/blip-itm-base-coco and
Salesforce/blip-itm-large-coco from the Huggingface library. We apply XBT on old
and new BLIP models in the same fashion with our CLIP applications, and the results appear in Table
5. From the results, we confirm that XBT provides cross-modal backward-compatibility to the BLIP
models too.

Continual learning. In line with the literature on BT works Shen et al. (2020); Ramanujan et al.
(2022), we set up a continual learning scenario for a sequence of model updates (old model B32,
new model L14, and better new model H14) and present the retrieval results in Table 6. Initially,
we apply XBT to L14 to ensure compatibility with B32. Subsequently, we apply XBT to H14 to
ensure compatibility with the previously learned L32, which is already compatible with B32. For
this process, we divide both the image-text pairs and the text-only pretraining train sets into two
halves, using each separately for each case. A comparison with the original results reported in Table 6
confirms that our XBT performs well in the continual learning scenario either. It achieves cross-modal
backward compatibility while leveraging the power of the improved new model.

Qualitative Results. We facilitate retrieval by utilizing new query embeddings and old gallery
embeddings. The results in Figure 4 demonstrate accurate cross-modal backward-compatible retrieval.

5 DISCUSSION & CONCLUSION

Potential Broader Impact and Limitation. This paper highlights our efforts to enhance the field of
Machine Learning, particularly in the area of multi-modal embedding-based representation learning.
Although our work may have societal implications, we do not believe there are any that require
specific emphasis in this context. A potential limitation of the XBT system is that, despite the efficient
learning approach reducing the need for image-caption pairs, its performance may still be limited by
the quality, diversity, and representational richness of the data during training.

Conclusion. In this paper, we introduced Cross-modal Backward-compatible Training (XBT),
a novel task for cross-modal retrieval that focuses on the compatibility between image and text
embeddings of different Vision-Language Pretraining (VLP) models. We proposed an efficient
solution using a text-only pretrained projection module, ϕ, to align the new model’s embeddings
with those of the old model, thereby enhancing training efficiency. By integrating parameter-efficient
training schemes into the XBT framework, we were able to accelerate the model’s training while
preserving the original VLP’s zero-shot capabilities. Our approach, demonstrated on various cross-
modal benchmarks, effectively builds cross-modal retrieval systems without backfilling, offering an
efficient and environmentally friendly solution in response to the VLP improvements.
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A APPENDIX

A.1 DATASET EXAMPLES, MORE VISUALIZATION

In Figure 5, we use a t-SNE map to examine the actual distribution of embeddings in the VLP space.
It’s evident that the image and text embeddings are distinct. Furthermore, the intra-distribution within
both image and text embeddings is similar, suggesting that they are supposed to mirror each other.

Figure 5: A tSNE visualization of 5,000 paired image-text embeddings from COCO Lin et al. (2014)
dataset, using two different CLIP models Radford et al. (2021), and two different BLIP models Li
et al. (2022a). Five pairs are marked as examples. The distinct distributions of image and text samples
in each VLP space are observed.

A.2 FURTHER ANALYSIS & DISCUSSION

Table 7: Computational analysis on baselines. We evaluate with B32 as old and L14 as new model.

Method Training
Time (h)

Trainable
Parameters (M)

Memory
Load (GB)

Number of
Samples (M)

Text-only Pretraining 1.55 6.82 0.61 67

Full-tune 5.71 434.45 1.13 4
LoRA-only 5.42 8.34 1.13 4
Base 5.66 8.35 1.13 4
XBT 2.84 8.36 0.84 4

Computational Analysis. In Table 7, we calculate the required training cost for each baseline.
Despite XBT handling a larger number of training samples, the total training time (Text-only
pretraining + XBT) is less than that of the other methods. Furthermore, since XBT does not
utilize the old VLP model during training, it significantly reduces the memory load.
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Table 8: Zero-shot classification results on ImageNet Russakovsky et al. (2015), ImageNet-R
Hendrycks et al. (2021), and ImageNet-Sketch Wang et al. (2019). w̄ and v̄ are used to com-
pute scores, and accuracy (%) is metric.

Method ImageNet ImageNet-R ImageNet-Sketch

CLIP-ViTB-32 55.23 40.66 35.53
CLIP-ViTL-14 66.63 62.30 52.52

XBT trained by 4M 55.44 59.21 45.67
XBT trained by 8M 55.91 61.27 47.02
XBT trained by 16M 57.99 63.53 48.69

Research question: Zero-shot Classification. As we incorporate VLP models, an intriguing
research question emerges: How do VLP models, fine-tuned with XBT, perform as zero-shot
classifiers? To investigate this, we conduct a zero-shot classification using the text prompt ‘a photo of
class name’. As demonstrated in Table 8, XBT outperforms the old VLP in classification performance,
though it falls short of the new VLP. Interestingly, we observe that as the number of supervised
training samples increases, so does the classification performance. This suggests the potential for
XBT-tuned models to function as zero-shot classifiers given sufficient training samples. This opens
up a new research direction towards not only achieving backward compatibility, but also comparable
performance to zero-shot classifiers.
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