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Abstract

Generalization methods offer a powerful solution to one of the key drawbacks
of randomized controlled trials (RCTs): their limited representativeness. By
enabling the transport of treatment effect estimates to target populations subject
to distributional shifts, these methods are increasingly recognized as the future of
meta-analysis, the current gold standard in evidence-based medicine. Yet most
existing approaches focus on the risk difference, overlooking the diverse range
of causal measures routinely reported in clinical research. Reporting multiple
effect measures—both absolute (e.g., risk difference, number needed to treat) and
relative (e.g., risk ratio, odds ratio)—is essential to ensure clinical relevance, policy
utility, and interpretability across contexts. To address this gap, we propose a
unified framework for transporting a broad class of first-moment population causal
effect measures under covariate shift. We provide identification results for both
continuous and binary outcome under two conditional exchangeability assumptions,
derive both classical and semiparametric estimators, and evaluate their performance
through theoretical analysis, simulations, and real-world applications. Our analysis
shows the specificity of different causal measures and thus the interest of studying
them all: for instance, two common approaches (one-step, estimating equation)
lead to similar estimators for the risk difference but to two distinct estimators for
the odds ratio.

1 Introduction

Generalization methods [33, 43, 12, 10, 14] have emerged as a powerful response to the restricted ex-
ternal validity [36] of RCTs: due to stringent inclusion and exclusion criteria, RCT populations often
exclude key segments of the real-world patient population—such as individuals with comorbidities,
pregnant women, or other vulnerable groups—resulting in trial samples that are poorly representative.
Consequently, the findings of many RCTs may lack relevance for broader clinical or policy applica-
tions. Generalization techniques address this gap by exploiting treatment effect heterogeneity—that
is, the fact that treatment efficacy can vary systematically with patient characteristics. By adjusting for
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differences in the distribution of these covariates between the trial population and a target population,
these methods can estimate treatment effects beyond the original study population. This is especially
valuable given the high costs, long timelines, and operational complexity of conducting new trials.
As such, generalization approaches are increasingly viewed as a pivotal step toward rethinking the
role of clinical trials in modern evidence generation. The implications are far-reaching. For instance,
when drug reimbursement decisions are partly tied to estimated real-world efficacy [17], the ability to
predict treatment benefits across diverse populations could influence pricing, access, and healthcare
policy. Moreover, recent works suggest that generalization methods may also redefine the role of
meta-analysis [11, 37, 20], traditionally viewed as the top of the pyramid of evidence-based medicine.

Most generalization methods are dedicated to estimating the average treatment effect (ATE) via the
risk difference (RD), owing to its linearity and analytical convenience. Yet this focus is incomplete.
Clinical guidelines and regulatory bodies explicitly recommend reporting both absolute and relative
effect measures [39, 31], as they capture complementary aspects of treatment impact. Among absolute
measures, the RD remains standard, but the number needed to treat (NNT), a direct, clinically intuitive
transformation of the RD, offers additional interpretability [29]. On the relative scale, measures such
as the risk ratio (RR), widely used in public health research [28], and the odds ratio (OR), very popular
in epidemiology [18], play a critical role in framing treatment efficacy. Presenting multiple causal
estimands is not simply recommended—it is essential. A treatment effect that appears homogeneous
on one scale may reveal heterogeneity on another, a phenomenon that may seem counterintuitive
but carries significant implications for personalized decision-making. Furthermore, the perceived
magnitude of benefit can shift dramatically depending on the baseline risk and the effect measure
used. Consider a treatment that reduces mortality from 3% to 1%: the RD of 0.02 may suggest a
minor effect, yet the RR reveals a threefold increase in risk for the untreated, reframing the impact
as clinically substantial. This striking contrast illustrates how the choice of causal measure directly
shapes interpretation and ultimately, policy and clinical decisions.

Contributions. In Section 2, we present a unified framework for transporting a broad class of
first-moment population causal effect measures, defined as functionals of the expectations of potential
outcomes. This class, composed of more than a dozen widely-used estimands, includes collapsible
(RD, RR, etc.) and non-collapsible measures (odds ratio-OR, NNT etc.) the latter posing unique
generalization challenges. Building on this formalism, we develop generic identification strategies
under two key assumptions: (i) exchangeability in mean (Section 3), and (ii) exchangeability in effect
measure (Section 4). The latter assumption, though weaker, requires access to control outcomes in the
target population—a condition met, for instance, when treatment has not yet been deployed. Crucially,
our identification results extend to non-collapsible measures even under this weaker condition, which
to our knowledge has not been previously derived. Within each setting, we derive two broad families
of estimators. The first approach adapts classical methods—such as weighting (Horvitz-Thompson)
and regression-based strategies (G-formula)—for which we establish asymptotic properties and derive
closed-form variance expressions. To the best of our knowledge, no prior work has formally studied
these properties using density ratio estimation. The second leverages semiparametric efficiency theory
to construct new doubly-robust estimators using either one-step or estimating equation approaches.
While these often coincide in the linear case (e.g., RD), we highlight that for nonlinear measures such
as the RR or OR, they diverge—leading to fundamentally different estimators. Finally, in Section 5
we conduct an extensive empirical evaluation of all estimators on synthetic and a real-world dataset.

Related work. Most generalization work focused on RD. While the idea of weighting randomized
controlled trials (RCTs) is not new, using external data can be traced back to the foundational work
of [5]. [14, 10] provided a comprehensive survey of generalization techniques, and [6] contributed
additional consistency results for the main classes of estimators: regression-based, weighting-based,
and hybrid approaches. [8] further investigated the inverse probability of sampling weighting (IPSW)
estimator, deriving finite-sample bias and variance, as well as an upper bound on its risk under the
assumption that the covariates X are categorical. Other studies have addressed the generalization
problem by modeling the outcome directly [27, 13]. [11] extended this line of research to settings
involving multiple source datasets (i.e., several RCTs) and a set of covariates drawn from a distinct
target distribution. They position this framework as a natural evolution of traditional meta-analysis,
highlighting its potential to unify evidence across studies. Although the present work focuses on
a single RCT and a single target population, all of our results seamlessly extend to the multi-RCT
case. This generality allows us to offer a compelling alternative to classical meta-analyses—one

2



that supports the generalization of both absolute and relative treatment effect measures in a unified
framework. We also highlight recent works on the analysis of externally controlled single-arm trials
and hybrid trials [2, 30], which aim to enhance the precision of RCT-based estimands by incorporating
external information. Similarly, [15] incorporate observational data to RCTs using the prediction-
powered inference framework. While these approaches address distinct inferential questions, they
share structural similarities with ours in using auxiliary data to improve estimation. Another line of
work has focused on estimating alternative causal effect measures beyond the risk difference. For
instance, [1] proposes several strategies for estimating the risk ratio (RR) in observational settings,
without addressing the generalization to a target population. [7] examined several key properties (e.g.,
collapsibility) of different causal effect measures (e.g., RD, RR, and OR) to identify which estimands
are less sensitive to distributional shifts. While their work emphasizes which causal estimands
are easier to identify and generalize, ours provides a unified framework that generalizes all first-
moment causal measures, focusing on estimation strategies and efficiency for practical deployment
with theoretical guarantees. Their focus is on distinguishing treatment effects from baselines; ours
highlights the shared structure among estimands, enabling unified identification and estimation.
[34, 44, 40] introduce methods for estimating conditional risk ratios, including approaches based
on causal forests. Yet, it is crucial to emphasize that due to the non-linearity of relative measures,
estimating the CATE does not directly yield the ATE.

2 Problem setting: notation and identification assumptions

Following the potential outcomes framework [38, 41], we consider random variables
(X,S,A, Y (0), Y (1)), where X ∈ Rp denotes patient covariates, S ∈ {0, 1} indicates sample
membership (S = 1 for the source population and S = 0 for the target population), and A ∈ {0, 1}
denotes treatment assignment (A = 1 if treatment is administered and A = 0 otherwise). Potential
outcomes Y (0) and Y (1) represent outcomes under control and treatment respectively, of which only
one is observed per individual depending on the assigned treatment, yielding the observed outcome

Y = AY (1) + (1−A)Y (0).

We observe data from two distinct populations: a Randomized Controlled Trial (RCT) dataset
(Xi, Ai, Yi)i∈[n] from the source population, where treatment assignments and outcomes are recorded,
and a target dataset (Xi)i∈[m], where only covariates are observed. This reflects the practical
constraint that treatment and outcome data are collected only for individuals enrolled in the trial,
while covariate information is available for both populations. We model this two datasets as stemming
from one probability distribution Pobs and we observe a N -sample:

(Zi)i∈[N ] := (Si, Xi, SiAi, SiYi)i∈[N ] ∼ P⊗N
obs ,

Let α be the Bernoulli parameter of the random variable S. Thus, (n,m) follow a multinomial
distribution with parameter N and probability (α, 1 − α). Let PS and PT denote the conditional
distributions of Z given S = 1 and S = 0, respectively, with corresponding expectations ES[·] and
ET[·].

2.1 Causal estimands of interest

Causal effect measures, as formalized by Pearl [32], are expressed in terms of the joint distribution of
potential outcomes. Individual-level causal effects rely on this joint distribution, which is generally
not identifiable from observed data. Therefore, in this paper, we focus on a specific subclass: the first-
moment population causal measures [16]. This class includes commonly employed estimands—such
as RD, RR, and OR—and less frequently used quantities, including the Switch Relative Risk [22],
Excess Risk Ratio (ERR) [4], Survival Ratio (SR), and Relative Susceptibility (RS), and Log Odds
Ratio (log-OR), see Appendix A for a detailed enumeration of measures falling into this class.
Definition 1 (First moment population causal measures). Let P denote the joint distribution of
potential outcomes (Y (0), Y (1)). The quantity τP is a first moment population causal measure if
there exists an effect measure Φ : DΦ → R, with DΦ ⊂ R2, such that for all distributions P with
(EP [Y (0)],EP [Y (1)]) ∈ DΦ,

τP := Φ
(
EP [Y (1)],EP [Y (0)]

)
. (1)
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We require that for all ψ0 ∈ R, the map ψ1 7→ Φ(ψ1, ψ0) is injective on its definition domain. It’s
inverse, when it exists, is denoted by Γ(·, ψ0) and is called the effect function. This definition extends
to subpopulations by conditioning on covariates X , yielding, when it exists, the conditional effect

τP (X) := Φ
(
EP [Y (1)|X],EP [Y (0)|X]

)
. (2)

Example 1. For these well-known causal measures, the effect measures and functions are given by:

Measure Effect Measure Φ Effect Function Γ

Risk Difference (RD) Φ(ψ1, ψ0) = ψ1 − ψ0 Γ(τ, ψ0) = ψ0 + τ

Risk Ratio (RR) Φ(ψ1, ψ0) =
ψ1

ψ0
Γ(τ, ψ0) = τ · ψ0

Odds Ratio (OR) Φ(ψ1, ψ0) =
ψ1

1−ψ1
· 1−ψ0

ψ0
Γ(τ, ψ0) =

τ ·ψ0

1+τ ·ψ0−ψ0

The existence of Γ ensures that for a fixed baseline, distinct treatment responses yield different
causal measures. In the following, we use τPΦ to denote any first moment population causal measure
evaluated under distribution P . Our objective is to estimate τTΦ := Φ

(
ET[Y

(1)],ET[Y
(0)]
)
, for all

effect measures Φ, where the expectations are taken with respect to the target population distribution.

2.2 Identification assumptions

Because the effect τTΦ is defined in terms of potential outcomes in the target population, it is not
directly identifiable from trial data alone. The core difficulty lies in the fact that while treatment
assignment in the trial is randomized, the trial sample may not be representative of the broader target
population. To ensure identification of the estimand from observed data, we introduce standard causal
inference assumptions (Assumption 1) and assume covariate overlap (Assumption 2).

Assumption 1 (Trial’s Internal Validity). The RCT is assumed to be internally valid, that is:
A. Ignorability: (Y (1), Y (0)) ⊥⊥ A | S = 1;
B. Stable Unit Treatment Value Assumption (SUTVA): Y = AY (1) + (1−A)Y (0);
C. Positivity and Randomized Assignment: A ∼ B(π), where 0 < π < 1 (typically π = 0.5).

Assumption 2 (Overlap). For all x ∈ supp(PT), we have P(S = 1 | X = x) > 0.

3 Generalization under exchangeability in mean

In addition to internal validity and covariate overlap, identification under this setting requires a
transportability condition that links the distribution of potential outcomes between the trial and target
populations. This condition can be expressed as conditional exchangeability in mean, which states
that, conditional on covariates, the average potential outcomes are the same across populations.

Assumption 3 (Exchangeability in mean). For all x ∈ supp(PS)∩ supp(PT) and for all a ∈ {0, 1},
we have µS

(a)(x) = µT
(a)(x) where µP(a)(x) = EP [Y (a) | X = x].

Leveraging observations from the randomized controlled trial and under Assumption 1 to 3, three
identification formulas that express ET[Y

(a)] in terms of source population quantities can be derived:

ET[Y
(a)] = ET

[
ES[Y

(a)|X]
]

(transporting conditional outcomes) (3)

= ES

[
PT(X)

PS(X)
Y (a)

]
(weighting outcomes) (4)

= ES

[
PT(X)

PS(X)
ES[Y

(a)|X]

]
(weighting conditional outcomes), (5)

see Appendix B.1 for details. In the next section, we present several estimators of any first moment
population causal measure, based on the three identification formulas above.
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3.1 Weighting and regression strategies under exchangeability in mean

The Horvitz–Thompson estimator [21] is probably one of the most simple estimators to use in a
RCT. Based on equation (4), we construct the weighted Horvitz-Thompson estimator. The following
assumption is also required for technical reasons.

Assumption 4. For a ∈ {0, 1}, we assume that Y (a) and PT(X)Y (a)/PS(X) are square-integrable.
Definition 2 (Weighted Horvitz-Thompson). For any first moment population causal measure Φ, we
define the weighted Horvitz-Thompson estimator τ̂Φ,wHT as follows:

τ̂Φ,wHT = Φ

(
1

n

∑
Si=1

r̂(Xi)
AiYi
π

,
1

n

∑
Si=1

r̂(Xi)
(1−Ai)Yi

1− π

)
, (6)

where r̂(X) is any estimator of the density ratio between the target and source covariate distributions.

When r̂ is replaced by the oracle quantity r, we show that τ̂Φ,wHT is asymptotically normal and an
unbiased estimator of τTΦ (see Proposition 8 in Appendix B.2). Since

r(X) =
PT(X)

PS(X)
=

P(S = 1)P(S = 0|X = x)

P(S = 0)P(S = 1|X = x)
,

one can estimate r(X) by estimating P(S = 1 | X = x) via a logistic regression model. By doing so,
we avoid imposing a parametric model, such as a Gaussian distribution, on the distribution of X [see
also 24]. In this context, the M -estimation framework [42] can then be applied to derive asymptotic
variances for this estimator.
Logistic model. We assume E[XX⊤] is positive definite, X is Sub-Gaussian, and ∃β∞ =
(β0

∞, β
1
∞) ∈ Rp+1 s.t. P(S = 1|X) = σ(X,β∞) = {1 + exp(−X⊤β1

∞ − β0
∞)}−1, a.s.

Proposition 1 (asymptotic normality of weighted Horvitz-Thompson estimator). Grant Assumption 1
to 4. Let β̂N denote the maximum likelihood estimate (MLE) obtained from logistic regression of the
selection indicator S on covariates X . Define the estimated density ratio as

r(x, β̂N ) =
n

N − n
· 1− σ(x, β̂N )

σ(x, β̂N )
, with n =

N∑
i=1

Si. (7)

Under the logistic model, the Horvitz-Thompson estimator τ̂Φ,HT weighted by the estimated ratio

r(x, β̂N ) is asymptotically unbiased and satisfies
√
N
(
τ̂Φ,wHT − τTΦ

) d→ N (0, VΦ,HT).

Appendix B.3 provides full proofs and asymptotic variances for all first moment population causal
measures, including results for the Neyman estimator with estimated treatment probabilities—results
that, to our knowledge, are novel even for the RD.

Alternatively, using the identification results in equations (3) and (5), one can adapt the regression-
based approach of Robins [35] to derive weighted or transported G-formula estimators. While the
transported version appears in Dahabreh et al. [12] for the RD, the weighted version, to the best of
our knowledge, has not been previously presented.
Definition 3 (Weighted/Transported G-formula). For any first moment population causal measure Φ,
we define the weighted G-formula estimator τ̂Φ,wG and the transported G-formula estimator τ̂Φ,tG as:

τ̂Φ,wG = Φ

(
1

n

∑
Si=1

r̂(Xi) µ̂
S
(1)(Xi),

1

n

∑
Si=1

r̂(Xi) µ̂
S
(0)(Xi)

)
, (8)

τ̂Φ,tG = Φ

(
1

N − n

∑
Si=0

µ̂S
(1)(Xi),

1

N − n

∑
Si=0

µ̂S
(0)(Xi)

)
, (9)

where r̂, µ̂S
(1), µ̂

S
(0) are any estimators of r, µS

(1), µ
S
(0).

Using the M -estimation framework [42], one can derive asymptotic variance estimates for both G-
formula estimators. Furthermore, assuming a linear model for the outcomes, we prove that regression
adjustment leads to a lower asymptotic variance compared to the weighted Horvitz-Thompson.
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Linear model 1. For all a, s ∈ {0, 1}, let Y (a)
s = V ⊤β

(a)
s + ϵ

(a)
s , where V ⊤ = [1, X⊤] with

E[ϵ(a)s | X] = 0 and Var(ϵ(a)s | X) = σ2.

Proposition 2 (Asymptotic Normality of weighted and Transported G-formula Estimators). Let τ̂Φ,tG
and τ̂Φ,wG denote respectively the weighted G-formula where r̂ is a logistic regression estimator (7)
and µ̂S

(1), µ̂
S
(0) are ordinary least squares estimator. Then, under Assumptions 1 to 4,

√
N
(
τ̂Φ,wG − τTΦ

) d→ N
(
0, V OLSΦ,wG

)
,

√
N
(
τ̂Φ,tG − τTΦ

) d→ N
(
0, V OLSΦ,tG

)
.

Besides, V OLS
Φ,tG ≤ V OLS

Φ,wG ≤ VΦ,HT, where all variances are explicit Appendix B.4.

Given these results, one might wonder whether it’s better to avoid estimating the density ratio
altogether, as the transported G-formula is more efficient under correct specification. However, when
models are misspecified, weighting the outcomes may perform better. This motivates doubly robust
estimators, which retain consistency if either model is correctly specified.

3.2 Semiparametric efficient estimators under exchangeability in mean

A common approach to constructing doubly robust estimators relies on semiparametric efficiency
theory. By deriving the efficient influence function (EIF) of the target parameter [see, e.g. 25], one
can build estimators that are not only robust to mispecification, but also achieve the lowest possible
asymptotic variance among unbiased estimators. We denote by φΦ(Z, η, ψ

T
1 , ψ

T
0 ) the EIF of τΦ,

which depends on (i) the nuisance parameters η = (µ(0), µ(1), r) and (ii) the values of ψT
1 and ψT

0 .

Based on estimators η̂, ψ̂T
1 , ψ̂

T
0 , one can use the EIF framework via one of the following two

techniques to build new estimators of τTΦ whose properties are described below:

(i) One-step estimators τ̂OS
Φ consist in applying a first-order bias correction to an initial plug-in

estimator τ̂TΦ = Φ(ψ̂T
1 , ψ̂

T
0 ), resulting in τ̂OS

Φ = τ̂TΦ + 1
N

∑N
i=1 φΦ(Zi, η̂, ψ

T
1 , ψ̂

T
0 ).

(ii) Estimating equation estimators are obtained by setting the empirical mean of the EIF to zero.
This amounts to finding an estimators τ̂EE

Φ = Φ(ψ̂T
1 , ψ̂

T
0 ) such that ψ̂T

1 , ψ̂
T
0 are solutions to∑N

i=1 φΦ(Zi, η̂, ψ̂
T
1 , ψ̂

T
0 ) = 0 (Estimating Equation).

In practice and in both case, it is usual to resort to crossfitted techniques [3] by estimating τ̂Φ and
η̂ and evaluating the EIF φΦ on two different datasets to enforce independence. We drop the T
superscript in the rest of this section for the sake of clarity. Both above approaches require knowing
the EIF φΦ. As τΦ = Φ(ψ1, ψ0), letting φ1 (resp. φ0) be the EIF of ψ1 (resp. ψ0), standard
calculations on EIF functions (see e.g. [26, Sec 3.4.3]) show that

φΦ(Z, η, ψ1, ψ0) = ∂1Φ(ψ1, ψ0)φ1(Z, η, ψ1) + ∂0Φ(ψ1, ψ0)φ0(Z, η, ψ0).

With this equality, and the following proposition, one can compute the influence function φΦ.

Proposition 3. Grant Assumption 1 to 3. For all a ∈ {0, 1}, we have

φa(Z, η, ψa) :=
1− S

1− α
(µ(a)(X)− ψa) +

S1{A = a}
αP (A = a)

r(X)(Y − µ(a)(X)).

The exact expressions of one-step and estimating equation estimators depend on φΦ, which in turns
depends on the effect measure Φ. While the first approach leads to explicit expressions, estimating
equation estimators are defined implicitly through the estimating equation in (ii), which writes

∂1Φ(ψ̂1, ψ̂0)
1

N

N∑
i=1

φ1(Z, η̂, ψ̂1) + ∂0Φ(ψ̂1, ψ̂0)
1

N

N∑
i=1

φ0(Z, η̂, ψ̂0) = 0. (10)

One way — though not the only — to satisfy (10) is to find two estimators ψ̂1, ψ̂0 that cancels
the empirical mean of their EIF (second and fourth term in (10)), that is the corresponding EE
estimator for ψ1 and ψ0. We end up with a plug-in estimator of the form Φ(ψ̂EE

1 , ψ̂EE
0 ), whose

precise expression is given below.
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Proposition 4 (Estimating equation estimators.). Given estimators µ̂(a) (resp. r̂) of µ(a) (resp. r), an
estimating equation estimator τ̂EE

Φ of τΦ is given by τ̂EE
Φ = Φ(ψ̂EE

1 , ψ̂EE
0 ) where for all a ∈ {0, 1}

ψ̂EE
a :=

1

m

∑
Si=0

µ̂(a)(Xi) +
1− α

mα

∑
Si=1

1{A = a}
P(A = a)

r̂(Xi)(Y − µ̂(a)(Xi)). (11)

A similar estimator already appears in [12]. We prove below that τ̂EE
Φ is (weakly) doubly-robust.

Proposition 5. Let µ̂(a) and r̂ be two estimators independent from Z1, . . . , Zn. Then, under bound-
edness of µ̂(a), r̂ and Y , and assuming that Φ is continuous, the estimator τ̂EE

Φ = Φ(ψ̂EE
1 , ψ̂EE

0 ) is
consistent as soon as either µ̂(a) = µ for all a ∈ {0, 1} or r̂ = r.

It would be easy to extend this result to a strong robustness property, meaning that
√
N(τ̂EE

Φ −τTΦ )
d→

N (0,VarφΦ(Z)) under mild convergence requirements of µ̂(a) and r̂ towards µ(a) and r. Concerning
the OS estimators, we cannot derive any formal robustness results in full generality, and this property
needs to be assessed on a case-by-case basis. For instance, [1] shows that the OS estimator for the
RR is doubly robust based on usual requirements on the estimation of the nuisance parameters and
some extra assumptions on ψ̂T

0 . In light of these observations, we recommend using EE estimators
rather than OS estimators, when possible, as they also usually lead to better results empirically, see
Figure 1.

When Φ is a linear functional (e.g., RD), the two approaches, one-step and estimating equations
yields the same estimators, up to a scaling term depending on α and N . For nonlinear functionals
however (such as the RR or OR), the estimators generally differ (see below and Appendix B.6).

(RD) For the risk difference, the estimating equation approach yields τ̂EE
RD = ψ̂EE

1 − ψ̂EE
0 . The

one step approach, based on initial estimators ψ̂1 and ψ̂0 yields an estimate of the form:

τ̂OS
RD =

m

N(1− α)
τ̂EE
RD +

(
1− m

N(1− α)

)
τ̂RD.

In particular, estimators ψ̂a of the form G-formula or weighted Horwitz-Thomson yield a
final one-step estimator that has the same structure as the estimating equation estimator.

(RR) For the risk ratio, the estimating equation approach yield τ̂EE
RR = ψ̂EE

1 /ψ̂EE
0 . In contrast, the

one-step approach, based on initial estimators ψ̂1 and ψ̂0 yields

τ̂OS
RR =

ψ̂1

ψ̂0

+
1

ψ̂0

m

N(1− α)
(ψ̂EE

1 − ψ̂1)−
ψ̂1

ψ̂2
0

m

N(1− α)
(ψ̂EE

0 − ψ̂0).

In general, τ̂OS
RR ̸= τ̂EE

RR , unless of course we initially picked ψ̂a = ψ̂EE
a .

4 Generalization under exchangeability in effect measure

Estimators in Section 3 were derived under the exchangeability in mean assumption (Assumption 3).
Under this assumption, generalizing necessitates full access to all prognostic covariates whose
distributions is shifted between the source and target populations [8]. A weaker assumption consists
in transportability of conditional treatment effects.
Assumption 5 (Exchangeability in effect measure). ∀x ∈ supp(PT) ∩ supp(PS), τSΦ(x) = τTΦ (x).

Under Assumption 5, the effect of the treatment depends on the patient’s features in the same way
in the source and target population. While exchangeability in mean implies exchangeability of the
effect measure for any Φ, the reverse does not generally hold.

4.1 Transporting causal measures under exchangeability in effect measure

To ensure identification, we typically require a relationship between the conditional average treat-
ment effect (CATE) and the average treatment effect (ATE). A classical concept that supports this
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relationship is collapsibility: a measure is said to be collapsible if it can be expressed as a weighted
average of conditional effects [see, e.g., 19, 23]. However, some measure (like OR) are not col-
lapsible, thus questioning their transportability under this Assumption 5. However, it turns out that
under Assumption 5, any first-moment causal measure is identifiable assuming access to the control
potential outcomes Y (0) for all individuals in the target population:

τTΦ = Φ
(
ET

[
Γ
(
τSΦ(X), µT

(0)(X)
)]
,ET

[
Y (0)

])
(transporting) (12)

= Φ

(
ES

[
pT(X)

pS(X)
Γ
(
τSΦ(X), µT

(0)(X)
)]
,ET

[
Y (0)

])
(weighting) (13)

where Γ is the effect function (see Definition 1). Note that for collapsible measures such as RD or RR,
expressions (12) and (13) reduce to the identification results derived by [7]. Thus, our framework can
be viewed as a natural extension of their approach to any first moment population causal measures
even non-collapsible measures such as the OR. The detailed identification results for RD, OR, and RR
are provided in Appendix C. Using the identification formula (12), we derive Γ-formula estimators,
which, to the best of our knowledge, are novel contributions.
Definition 4 (Transported Γ-formula). For any first moment population causal measure Φ, we define
the transported Γ-formula estimator τ̂Φ,tΓ as follows:

τ̂Φ,tΓ = Φ

(
1

N − n

∑
Si=0

Γ(τSΦ(Xi), µ
T
(0)(Xi)),

1

N − n

∑
Si=0

µT
(0)(Xi)

)
. (14)

We can also define, as before, a reweighted version of the Γ-formula (see Definition 3).

4.2 Semiparametric efficient estimators under exchangeability of treatment effect

Under Assumption 5, the identifiability formula (12) serves as the basis for constructing the EIF.
Given access to the target baseline distribution, µT

(0) and ψT
0 are known. To construct one-step and

estimating equation estimators (see Section 3.2), we require EIF of τTΦ , denoted φΦ(Z, η, τ
T
Φ ) which

is is related to φ1, the EIF of ψT
1 , via the chain rule:

φΦ(Z, η, τ
T
Φ ) = φ1(Z, η, ψ

T
1 )∂1Φ(ψ

T
1 , ψ

T
0 ),

where η = (µS
(0), τΦ, r) is the nuisance parameters.

Proposition 6. The influence function of ψT
1 at Pobs is given by

φ1(Z, η, ψ
T
1 ) :=

Sr(X)

α

(
A

π
(Y − Γ(τΦ(X), µS

(0)(X)))

)
− Sr(X)

α

(
1−A

1− π
(Y − µS

(0)(X))∂0Γ(τΦ(X), µT
(0)(X))

)
+

1− S

1− α

(
Γ(τΦ(X), µT

(0)(X))− ψT
1

)
.

As in Section 3.2, we can either find the estimating equation estimator of ψ1 and plug it into Φ

to obtain τ̂EE
Φ = Φ(ψ̂EE

1 , ψT
0 ), or apply a one step correction to a initial estimator ψ̂1 of the form

τ̂OS
Φ = Φ(ψ̂1, ψ

T
0 ) + (1/N)

∑N
i=1 φΦ(Zi, η̂, τ̂

T
Φ ). Like in Section 3.2, the estimating equation

estimators and one-step estimators have no reason to coincide in general. Exact computations of the
RD, RR and OR are provided in Appendix C.3.

5 Simulations

5.1 Synthetic data

We generate data (S,X,A, Y (0), Y (1)) using the following binary outcome model: for all a, s ∈
{0, 1}, P(Y (a) = 1 | X,S = s) = p

(a)
s (V ) where V ⊤ = [1, X⊤] and X|S = s ∼ N (νs, Id).

We set d = 5 and S ∼ B(0.3) to reflect limited RCT data relative to the target population, and
A | S = 1 ∼ B(0.5). We evaluate the estimators from Section 3 and 4, estimating nuisance
components—regression surfaces and density ratios—using parametric methods (linear/logistic

8



regression). The red (resp. gray, when displayed) dotted line represents the treatment effect in the
target (resp. source) population. A basic linear setting, in which all estimators perform well, is
presented in Appendix D.

Experiment 1 (Exchangeability in mean and non-linear/non-logistic response): We consider a
setting under which Assumption 3 holds and ∀a, s ∈ {0, 1}, p

(a)
s (V ) = σ(β⊤

0 V · (V ⊤β1)
a).

Both G-formula-based estimators exhibit substantial bias across all evaluation metrics, which is
expected given that the non-linear response surfaces are misspecified by using linear regression. In
contrast, the estimating equation–based estimators remain unbiased across all measures, benefiting
from their double robustness property. Among the one-step estimators, only the RD variant is
accurate in this setting. This is also anticipated, as one-step estimators generally do not retain
double robustness—except in cases where they coincide with the corresponding estimating equation
estimator, which holds true for the RD variant.

0.2 0.1 0.0 0.1 0.2
Risk Difference

W Horvitz-Thompson

W G-formula

T G-formula

Estimating-equation

One-step

0.8 1.0 1.2 1.4
Risk Ratio

0.0 0.5 1.0 1.5 2.0 2.5
Odds Ratio

Figure 1: Comparison of estimators across different causal measures under a non-linear outcome
model with a sample size of N = 50,000 and 3,000 repetitions. Source values are 0.45 / 3.2 / 7.5.

Experiment 2 (Exchangeability in effect and linear/logistic response): We now consider a setting
for which Assumption 5 holds and such that, depending on the causal measure: (RD) Model 1 and
β
(a)
T = β

(a)
S + θ, (RR) p(a)s (X) = σ(X⊤βs) · σ(X⊤γ)a, (OR) p(a)s (X) = σ(X⊤(βs + a · γ)). In

this setting, Assumption 3 is no longer satisfied, as the nuisance functions depend on S. However,
one can verify that Assumption 5 holds for each model. Estimators introduced in Section 3 still
converge for the RD, despite the violation of strong transportability, thanks to the linearity of the RD.
In contrast, the RR and OR estimators fail to converge, since these measures are nonlinear. On the
other hand, all estimators introduced in Section 4 remain unbiased, as expected.

0.15 0.10 0.05 0.00 0.05
Risk Difference

W Horvitz-Thompson

Estimating-equation

T -formula

W -formula

 Estimating-equation

 One-step

0.3 0.4 0.5 0.6 0.7 0.8
Risk Ratio

0.9 1.0 1.1 1.2 1.3 1.4 1.5
Odds Ratio

Figure 2: Comparison of estimators across different causal measures under a linear outcome model
with a sample size of N = 50,000 and 3,000 repetitions.

5.2 Real-World Experiment

We evaluate estimators using a case study on the effectiveness of tranexamic acid on mortality
for brain injury patients, combining data from the CRASH-3 trial and the Traumabase registry.
CRASH-3, is a RCT with over 9,000 TBI patients from 29 countries, while Traumabase provides
detailed clinical data on 8,000+ patients from 23 French trauma centers. Following [9] we consider
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six covariates (age, sex, injury time, systolic BP, GCS score, pupil reactivity). Since this is a real
dataset, the true treatment effect is unknown. Results are displayed in Figure 3. All estimators (except
one) indicate a positive treatment effect; however, the confidence intervals are wide and include the
null value (zero or one), preventing any definitive conclusions about the treatment’s effectiveness.

0.06 0.04 0.02 0.00 0.02 0.04
Risk Difference

W Horvitz-Thompson

W G-formula

T G-formula

Estimating-equation

One-step

T -formula

W -formula

 Estimating-equation

 One-step

0.7 0.8 0.9 1.0 1.1 1.2
Risk Ratio

0.6 0.7 0.8 0.9 1.0 1.1 1.2
Odds Ratio

Figure 3: Comparison of estimators across different causal measures on the combined CRASH-3 and
Traumabase dataset. Confidence intervals were estimated using stratified bootstrap resampling.

6 Conclusion

This article introduces a general framework for the generalization of first-moment, population-
level causal estimands from RCTs to broader target populations. We propose different estimators
(weighting based on density ratios, outcome regression methods, and approaches based on EIF) and
analyze their statistical properties. A central source of complexity lies in the inherent nonlinearity of
many causal estimands, which disrupts the alignment between two classical EIF techniques: one-step
and estimating equations. This divergence gives rise to a diverse landscape of possible estimators,
which differ depending on the underlying identification assumptions. While assuming exchangeability
in effect measure is less restrictive than exchangeability in mean, few estimating methods are available
in the former case, as most of them are based on CATE estimation, which is difficult for non-linear
measure. In practice, we recommend to resort to EE estimators, as they are provably doubly robust
and behave well in our controlled experimental setting. Further layers of complexity arise from the
selection of appropriate nuisance estimators, whether parametric or nonparametric, each with its
own trade-offs. Nevertheless, this work represents a step forward in enabling the computation of
both absolute and relative causal measures in new target populations, thereby contributing to more
informed clinical decision-making and external validity in causal research.
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A First Moment Causal Measures

Measure Effect Measure Φ(ψ1, ψ0) Effect Function Γ(τ, ψ0)

Risk Difference (RD) Φ(ψ1, ψ0) = ψ1 − ψ0 Γ(τ, ψ0) = ψ0 + τ

Risk Ratio (RR) Φ(ψ1, ψ0) =
ψ1

ψ0
Γ(τ, ψ0) = τ · ψ0

Odds Ratio (OR) Φ(ψ1, ψ0) =
ψ1

1−ψ1
· 1−ψ0

ψ0
Γ(τ, ψ0) =

τ ·ψ0

1+τ ·ψ0−ψ0

Number Needed to Treat
(NNT)

Φ(ψ1, ψ0) =
1

ψ1−ψ0
Γ(τ, ψ0) =

1
τ + ψ0

Switch Relative Risk
(GRRR)

Φ(ψ1, ψ0) =


1− 1−ψ1

1−ψ0
if ψ1 > ψ0

0 if ψ1 = ψ0

−1 + ψ1
ψ0

if ψ1 < ψ0

Γ(τ, ψ0) =


1 − (1 − τ)(1 − ψ0) if ψ0 > 0

τ if ψ0 = 0

τ(1 + ψ0) if ψ0 < 0

Excess Risk Ratio (ERR) Φ(ψ1, ψ0) =
ψ1−ψ0

ψ0
Γ(τ, ψ0) = τ(1 + ψ0)

Survival Ratio (SR) Φ(ψ1, ψ0) =
1−ψ1

1−ψ0
Γ(τ, ψ0) = 1− τ(1− ψ0)

Relative Susceptibility
(RS)

Φ(ψ1, ψ0) =
1−ψ0

1−ψ1
Γ(τ, ψ0) = 1− 1−τ

ψ0

Log Odds Ratio (log-OR) Φ(ψ1, ψ0) = log
(
ψ1(1−ψ0)
ψ0(1−ψ1)

)
Γ(τ, ψ0) = exp(ψ0) · τ

1−τ+exp(ψ0)·τ

Odds Product Φ(ψ1, ψ0) =
ψ1

1−ψ1
· ψ0

1−ψ0
Γ(τ, ψ0) =

√
τ · ψ0

1−ψ0

1+
√
τ · ψ0

1−ψ0

Arcsine Difference Φ(ψ1, ψ0) = arcsin(
√
ψ1) −

arcsin(
√
ψ0)

Γ(τ, ψ0) = sin(ψ0 + arcsin(
√
τ))2

Relative Risk Reduction
(RRR)

Φ(ψ1, ψ0) = 1− ψ1

ψ0
Γ(τ, ψ0) = τ(1− ψ0)

B Transporting/Reweighting a causal effect under exchangeability of
conditional outcome

B.1 Identification under exchangeability of conditional outcome

ET
[
Y (a)

]
:= ET

[
ET
[
Y (a) | X

]]
= ET

[
ES
[
Y (a) | X

]]
(Transportability)

= ES
[
ES
[
Y (a) | X

]
· PT (X)

PS(X)

]
(Overlap)

= ES
[
Y (a) · PT (X)

PS(X)

]
B.2 Oracle weighted Horvitz-Thompson

Proposition 7. For ease of notation, we let πa := PS(A = a) = πa(1− π)1−a. Let ψa = ET [Y (a)]
denote the target population mean potential outcome under treatment a ∈ {0, 1}. Define the oracle
estimator

ψ∗
a,wHT =

1

n

N∑
i=1

Si · r(Xi) ·
1{Ai = a}Yi

πa
,

where r(X) denotes the density ratio between the target and source covariate distributions and
n =

∑N
i=1 Si is the number of units in the source sample. Then, under Assumption 1 to 4 we have,

√
N
(
ψ∗
a,wHT − ψa

) d−→ N (0, V ∗
a,wHT),
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where the asymptotic variance V ∗
a,wHT is given by

V ∗
a,wHT =

1

α

(
1

πa
ET
[
r(X)(Y (a))2

]
− (ψa)

2

)
, (15)

Proof. Define

Zi = Si · r(Xi) ·
1{Ai = a}Yi

πa
,

so that

ψ∗
a,wHT =

1

N

N∑
i=1

Zi.

We first compute the expectations of Zi and Si. By the definition of Zi and using that Si ∼
Bernoulli(α),

E[Zi] = E
[
S · r(X) · 1{A = a}Y

πa

]
= αES

[
r(X) · 1{A = a}Y

πa

]
= αES

[
r(X) · Y (a)

]
= αET [Y (a)]

= αψa,

where we used the consistency assumption Y = Y (A), the randomization of A, and the density
ratio property. Since (Zi, Si) for i = 1, . . . , N are i.i.d., one can apply the multivariate central limit
theorem to (

1

N

N∑
i=1

Zi,
1

N

N∑
i=1

Si

)
,

which leads to
√
N

((
1
N

∑N
i=1 Zi

1
N

∑N
i=1 Si

)
−
(
E[Zi]
E[Si]

))
d−→ N (0,Σ),

where

Σ =

(
V[Zi] Cov(Zi, Si)

Cov(Si, Zi) V[Si]

)
.

Noting that ψ∗
a,wHT can be written as

ψ∗
a,wHT =

1
N

∑N
i=1 Zi

1
N

∑N
i=1 Si

,

one can apply the Delta method to the map h : (x, y) 7→ x/y, whose gradient evaluated at (αψa, α)
is

∇h(αψa, α) =
(
1

α
, −ψa

α

)
.

Thus, √
N
(
ψ∗
a,wHT − ψa

) d−→ N (0, V ∗
a,wHT),

where

V ∗
a,wHT = ∇h(αψa, α)⊤Σ∇h(αψa, α) (16)

=
1

α2
V[Zi] +

(ψa)
2

α2
V[Si]−

2ψa
α2

Cov(Zi, Si). (17)

It remains to compute each term. Since Si ∼ Bernoulli(α),

V[Si] = α(1− α).
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By direct computation,

V[Zi] = αET
[
r(X)(Y (a))2

πa

]
− (αψa)

2.

Moreover, since Si × Zi = Zi, we have

Cov(Zi, Si) = (1− α)αψa.

Substituting into the expression of V ∗
a,wHT, we find

V ∗
a,wHT =

1

α

(
1

πa
ET
[
r(X)(Y (a))2

]
− (ψa)

2

)
, (18)

as claimed.

Proposition 8 (Asymptotic Normality Oracle weighted Horvitz-Thompson). Let τ∗Φ,wHT denote the
oracle weighted Horvitz-Thompson estimator. Then under Assumption 1 to 4, we have:

√
N
(
τ∗Φ,wHT − τTΦ

) d→ N
(
0, V ∗

Φ,wHT

)
.

Proof. Noting that τ∗Φ,wHT = Φ(ψ∗
1,wHT, ψ

∗
0,wHT) and using Proposition 7, we know that

(ψ∗
1,wHT, ψ

∗
0,wHT) are jointly asymptotically normal. Specifically,

√
N

(
ψ∗
1,wHT − ψ1

ψ∗
0,wHT − ψ0

)
d→ N (0,Σ∗

π) ,

where Σ∗
π is the asymptotic covariance matrice. Applying the delta method to the smooth function

Φ : R2 → R, we have
√
N(τ∗Φ,wHT − τTΦ )

d→ N
(
0,∇Φ⊤Σ∗

π∇Φ
)
,

where ∇Φ denotes the gradient of Φ evaluated at (ψ1, ψ0). Moreover, because the treatment as-
signment A is binary (A ∈ {0, 1}), we have that for each unit, Ai(1− Ai) = 0, so the covariance
between ψ∗

1 and ψ∗
0 is

Cov(ψ∗
1,wHT, ψ

∗
0,wHT) = −ψ1ψ0.

Expanding the delta method variances and fully factorizing we get:

V ∗
Φ,wHT =

1

α

((
∂Φ

∂ψ1

)2

ET
[
r(X)(Y (1))2

PS(A = 1)

]
+

(
∂Φ

∂ψ0

)2

ET
[
r(X)(Y (0))2

PS(A = 0)

]

−
(
∂Φ

∂ψ1
ET
[
Y (1)

]
+

∂Φ

∂ψ0
ET
[
Y (0)

])2
)
.

Example 2.

Measure Variance

Risk Difference (RD)
1

α

(
ET
[
r(X)(Y (1))2

]
π

+
ET
[
r(X)(Y (0))2

]
1− π

− (τTRD)
2

)

Risk Ratio (RR)
(τTRR)

2

α

(
ET
[
r(X)(Y (1))2

]
πET

[
Y (1)

]2 +
ET
[
r(X)(Y (0))2

]
(1− π)ET

[
Y (0)

]2
)

Odds Ratio (OR)
(τTOR)

2

α

(
ET
[
r(X)(Y (1))2

]
π(ET [Y (1)])2

+
ET
[
r(X)(Y (0))2

]
(1− π)(ET [Y (0)])2

− 1

)
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B.3 Logistic weighted Horvitz-Thomson Estimator

Proposition 9. Let ψa = ET [Y (a)] denote the target population mean potential outcome under
treatment a ∈ {0, 1}. Define the estimator

ψ̂a,wHT =
1

n

N∑
i=1

Si · r(Xi, β̂N ) · 1{Ai = a}Yi
πa

, with r(x, β̂N ) =
n

N − n
· 1− σ(x, β̂N )

σ(x, β̂N )

where n =
∑N
i=1 Si and β̂N the maximum likelihood estimate (MLE) from logistic regression of the

selection indicator S on covariates X , and σ(x, β) = (1 + e−x
⊤β)−1 the logistic function. Then,

under Assumption 1 to 3.1,

√
N

(
ψ̂1,wHT − ψ1

ψ̂0,wHT − ψ0

)
d→ N (0,ΣwHT) , with ΣwHT =

(
V1,wHT CwHT
CwHT V0,wHT

)
,

where the asymptotic variance Va,wHT is given by

Va,wHT =
ET [r(X)(Y (a))2]

απa
− ET [Y (a)]2

1− α
(19)

− ET [Y (a)V ⊤]Q−1ET [Y (a)V ] + 2ET [Y (a)V ⊤]Q−1ET [σ(X)Y (a)V ], (20)

and CwHT = −ET [Y (1)]ET [Y (0)]

1− α
(21)

+ ET [Y (1)V ⊤]Q−1ET [σ(X)Y (0)V ] (22)

+ ET [Y (0)V ⊤]Q−1ET [σ(X)Y (1)V ] (23)

− ET [Y (1)V ⊤]Q−1ET [Y (0)V ] (24)

with V = (1, X) and Q = (1− α)ET
[
σ(X,β)V V ⊤] .

Proof. Let Z = (S,X, S×A,S×Y ) and define the parameter vector θ = (θ0, θ1, θ2, β). We define
the estimating function λ(Z, θ) and the estimator θ̂N as follows:

λ(Z, θ) =


1

1−θ2
1−σ(X,β)
σ(X,β)

S1{A=0}Y
PS(A=0) − θ0

1
1−θ2

1−σ(X,β)
σ(X,β)

S1{A=1}Y
PS(A=1) − θ1

S − θ2
V (S − σ(X,β))

 , θ̂N =


ψ̂0,wHT

ψ̂1,wHT

α̂ := 1
N

∑N
i=1 Si

β̂N

 .

Note that the reweighting function can be expressed as:

r(Xi, β̂N ) =
1− σ(Xi, β̂N )

σ(Xi, β̂N )
· α̂

1− α̂
.

Thus, we can rewrite the estimator as:

ψ̂a,wHT =
1

Nα̂

N∑
j=1

Sjr(Xj , β̂N )
1{Aj = a}Yj

πa
(25)

=
1

N

N∑
j=1

Sj
1− σ(Xj , β̂N )

σ(Xj , β̂N )(1− α̂)

1{Aj = a}Yj
πa

. (26)

Furthermore, the log-likelihood function of β is:

− lnLN (β) = −
N∑
i=1

si log σ(Xi;β) + (1− si) log(1− σ(Xi;β))
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where σ(X;β) = (1 + exp(−X⊤β1 − β0))
−1. Simple calculations show that

∂ lnLN
∂β0

(β) = −
N∑
i=1

(Si − σ(Xi;β)) and
∂ lnLN
∂β1

(β) = −
N∑
i=1

Xi(Si − σ(Xi;β)).

Recalling that V = (1, X), by definition of the MLE β̂N , we get
N∑
i=1

λ3(Zi, θ̂N ) =

N∑
i=1

Vi(Si − σ(Xi; β̂N )) = 0.

Gathering the previous equality and Equation (26), we obtain
N∑
i=1

λ(Zi, θ̂n) = 0, (27)

which proves that θ̂N is an M-estimator of type λ. Furthermore, letting θ∞ =
(ET

[
Y (0)

]
,ET

[
Y (1)

]
, α, β∞), we can compute the following quantities:

E
[

1− σ(X)

σ(X)(1− α)

S1{A = a}Y
πa

]
= E

[
r(X)

α

S1{A = a}Y (a)

πa

]
=

1

πaα
P(S = 1)E

[
r(X)1{A = a}Y (a)|S = 1

]
=

1

πa
ES
[
r(X)1{A = a}Y (a)

]
= ES

[
r(X)Y (a)

]
since r(X) = PT (X)/PS(X)

= ET
[
Y (a)

]
.

Thus, we have E [λ0(Z, θ∞)] = E [λ1(Z, θ∞)] = 0. Besides,

E [λ3(Z, θ∞)] = E [V (S − σ(X))]

= E [V · E [S − σ(X) | X]] (Law of Total Probability)
= E [V · (E [S | X]− σ(X))] (σ(X) is a function of X)
= 0 (Definition of σ(X))

Therefore, we have

E [λ(Z, θ∞)] = 0. (28)

Now, we show that θ∞ defined above is the unique value that satisfies (28). We directly have that
θ2 = α. Let

L(β) = −E
[
S ln

(
σ(X,β)

)
+
(
1− S

)
ln
(
1− σ(X,β)

)]
.

A direct calculation shows that

∇βL(β) = E
[
V
(
σ(X,β)− S

)]
and ∇2

βL(β) = E
[
V V ⊤σ(X,β)

(
1− σ(X,β)

)]
.

Since E[S | X] = σ(X,β∞), and V = (1, X),

∇βL(β∞) = E
[
V
(
e(X,β∞)− S

)]
= 0

making β∞ a stationary point. Furthermore, using overlap we have σ(X,β)
(
1 − σ(X,β)

)
≥ η2

therefore ∀v ∈ Rp+1:

v⊤∇2
βL(β)v = E

[
||V ⊤v||22 σ(X,β)

(
1− σ(X,β)

)]
≥ η2E

[
||V ⊤v||22

]
≥ η2v⊤E

[
V V ⊤

]
v.
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Since we assumed that E[XX⊤] is positive-definite, the Hessian ∇2
βL(β) is positive-definite, so

L(β) is strictly convex. Hence there is a unique global minimizer of L(β); since β∞ is a critical
point, it must be that unique minimizer. Consequently, any solution to

E
[
V
(
σ(X,β)− S

)]
= 0

must equal β∞. Since β, θ2 are now fixed and since the first two components of ψ are linear
with respect to θ0 and θ1, θ∞ is the only value satisfying (28). We want to show that for every
θ in a neighborhood of θ∞, all the components of the second derivatives are integrable for all
k ∈ {0, . . . , 3}: ∣∣∣∣ ∂2∂2θλk(z, θ)

∣∣∣∣
While this holds trivially for most components, the integrability of the following specific terms
requires closer attention:

∣∣∣∣ ∂2

∂θ2∂β
λa(z, θ)

∣∣∣∣ , ∣∣∣∣ ∂2

∂β∂β
λa(z, θ)

∣∣∣∣ , ∣∣∣∣ ∂2

∂β∂β
λ3(z, θ)

∣∣∣∣ for all a ∈ {0, 1}.

First, consider the mixed partial derivative with respect to θ2 and β:∣∣∣∣ ∂2

∂θ2∂β
λa(z, θ)

∣∣∣∣ = 1

(1− θ2)2
· 1− σ(X,β)

σ(X,β)
· S1{A = a}Y

πa
V ⊤.

For each coordinate i ∈ {1, . . . , d}, the expectation is bounded as follows:

E
[∣∣∣∣ ∂2

∂θ2∂β
λa(z, θ)

∣∣∣∣
i

]
=

1

(1− θ2)2
E
[
1− σ(X,β)

σ(X,β)
· S1{A = a}Y

πa
Vi

]

≤ 1

(1− θ2)2

(
E

[(
1− σ(X,β)

σ(X,β)

)2

· S1{A = a}Y 2

π2
a

]
· E[V 2

i ]

)1/2

,

using the Cauchy–Schwarz inequality. The first expectation is finite under the assumption that Y
is square-integrable, and due to the exponential tail behavior of the logistic function. The sub-
Gaussianity of X implies that all moments of V are finite, ensuring integrability of E[V 2

i ].

Second, consider the pure second derivative with respect to β:∣∣∣∣ ∂2

∂β∂β
λa(z, θ)

∣∣∣∣ = 1

1− θ2
· 1− σ(X,β)

σ(X,β)
· S1{A = a}Y

πa
V V ⊤.

Each entry of this matrix takes the form C · ViVj for some random coefficient C, and the integrability
of these entries follows from the same reasoning as above.

Third, the second derivative of λ3 is given by∣∣∣∣ ∂2

∂β∂β
λ3(z, θ)

∣∣∣∣ = |VkVlVm · σ(X,β)(1− σ(X,β))(1− 2σ(X,β))| ≤ |VkVlVm|.

By applying Hölder’s inequality, the following bound is obtained:

E [|VkVlVm|] ≤ E[V 2
k ]

1/2 · E[V 4
l ]

1/4 · E[V 4
m]1/4,

which is finite due to the sub-Gaussianity of X . Consequently, each second derivative component∣∣∣∣ ∂2∂2θλk(z, θ)
∣∣∣∣

is integrable for all k ∈ {0, . . . , 3}, in the neighborhood of θ∞. Define

A (θ∞) = E

[
∂λ

∂θ

∣∣∣∣
θ=θ∞

]
and B(θ∞) = E

[
λ(Z, θ∞)λ(Z, θ∞)T

]
.
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Next, we verify the conditions of Theorem 7.2 in [42]. To do so, we compute A (θ∞) and B (θ∞).
Since

∂λ

∂θ
(Z, θ) =


−1 0 1

(1−θ2)2
1−σ(X,β)
σ(X,β)

S1{A=0}Y
PS(A=0)

−1
1−θ2

1−σ(X,β)
σ(X,β)

S1{A=0}Y
PS(A=0) V

⊤

0 −1 1
(1−θ2)2

1−σ(X,β)
σ(X,β)

S1{A=1}Y
PS(A=1)

−1
1−θ2

1−σ(X,β)
σ(X,β)

S1{A=1}Y
PS(A=1) V

⊤

0 0 −1 0
0 0 0 −σ(X,β)(1− σ(X,β))V V ⊤

 ,

(29)

We obtain with θ∞ = (ET
[
Y (0)

]
,ET

[
Y (1)

]
, α, β∞)

A (θ∞) =


−1 0

ET [Y (0)]
1−α −ET

[
Y (0)V ⊤]

0 −1
ET [Y (1)]

1−α −ET
[
Y (1)V ⊤]

0 0 −1 0
0 0 0 −Q

 ,

where Q = E
[
σ(X,β∞) (1− σ(X,β∞))V V ⊤], which using Schur complement leads to:

A(θ∞)−1 =


−1 0 −ET [Y (0)]

1−α ET [Y (0)V ⊤]Q−1

0 −1 −ET [Y (1)]
1−α ET [Y (1)V ⊤]Q−1

0 0 −1 0

0 0 0 −Q−1


Regarding B (θ∞), elementary calculations show that

B(θ∞) =


ET

[
r(X)(Y (0))2

]
αPS(A=0)

− ET
[
Y (0)

]2
−ET

[
Y (0)

]
ET

[
Y (1)

]
(1 − α)ET

[
Y (0)

]
ET

[
(1 − σ(X))V ⊤Y (a)

]
−ET

[
Y (0)

]
ET

[
Y (1)

] ET
[
r(X)(Y (1))2

]
αPS(A=1)

− ET
[
Y (1)

]2
(1 − α)ET

[
Y (1)

]
ET

[
(1 − σ(X))V ⊤Y (1)

]
(1 − α)ET

[
Y (0)

]
(1 − α)ET

[
Y (1)

]
α(1 − α) (1 − α)ET

[
σ(X)V ⊤

]
ET

[
(1 − σ(X))V Y (0)

]
ET

[
(1 − σ(X))V Y (1)

]
(1 − α)ET [σ(X)V ] Q

 .

Based on the previous calculations, we have:

• λ(z, θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the
neighborhood of θ∞.

• For each θ in the neighborhood of θ∞, we have for all k ∈ {0, 3}
∣∣∣ ∂2

∂2θλk(z, θ)
∣∣∣ is integrable.

• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

We also have
n∑
i=1

λ(Zi, θ̂N ) = 0 and θ̂N
p→ θ∞.

Then the conditions of Theorem 7.2 in Stefanski and Boos [42] are satisfied, and we can conclude
that √

n
(
θ̂N − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

Letting ν⊤0 and ν⊤1 be respectively the first and second row of A(θ∞)−1:

ν⊤0 =

(
−1, 0, −ET [Y (0)]

1− α
, ET [Y (0)V ⊤]Q−1

)
,

and

ν⊤1 =

(
0, −1, −ET [Y (1)]

1− α
, ET [Y (1)V ⊤]Q−1

)
.
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Expanding the quadratic form explicitly, and using Lemma 1, we get:

Va,wHT = ν⊤a B(θ∞)νa =
ET [r(X)(Y (a))2]

απa
− ET [Y (a)]2

1− α

− ET [Y (a)V ]⊤Q−1ET [Y (a)V ] + 2ET [Y (a)V ]⊤Q−1ET [σ(X)V Y (a)].

and:

CwHT = ν⊤a B(θ∞)ν1−a = −ET [Y (1)]ET [Y (0)]

1− α
+ ET [Y (1)V ⊤]Q−1ET [Y (0)V ]

− ET [Y (1)V ⊤]Q−1ET [(1− σ(X))Y (0)V ]

− ET [Y (0)V ⊤]Q−1ET [(1− σ(X))Y (1)V ]

Lemma 1. We have ET [σ(X)V ]⊤Q−1 = u1(d+1)⊤

1−α and Q = (1− α)ET
[
σ(X,β)V V ⊤].

Proof.

Q = E
[
σ(X,β) (1− σ(X,β))V V ⊤]

= P(S = 1)ES
[
σ(X,β) (1− σ(X,β))V V ⊤]+ P(S = 0)ET

[
σ(X,β) (1− σ(X,β))V V ⊤]

= (1− α)ES
[
σ(X,β)2r(X)V V ⊤]+ (1− α)ET

[
σ(X,β) (1− σ(X,β))V V ⊤]

= (1− α)ET
[
σ(X,β)2V V ⊤]+ (1− α)ET

[
σ(X,β) (1− σ(X,β))V V ⊤]

= (1− α)ET
[
σ(X,β)V V ⊤]

Therefore using using the block inverse matrix formula:

Q−1 =
1

1− α

(
S−1 −S−1ET [σ(X)X]⊤P−1

−S−1P−1ET [σ(X)X] P−1 + P−1ET [σ(X)X]ET [σ(X)X]⊤P−1S−1

)
,

where P = ET [σ(X)XX⊤] and S = ET [σ(X)]− ET [σ(X)X]⊤P−1ET [σ(X)X].

Expanding
[
ET [σ(X)] ET [σ(X)X]⊤

]
(1− α)Q−1, we get:

ET [σ(X)]S−1 − S−1ET [σ(X)X]⊤P−1ET [σ(X)X] = S−1(ET [σ(X)]− ET [σ(X)X]⊤P−1ET [σ(X)X]︸ ︷︷ ︸
S

) = 1

and

−ET [σ(X)]S−1ET [σ(X)X]⊤P−1 + ET [σ(X)X]⊤P−1 + ET [σ(X)X]⊤P−1ET [σ(X)X]ET [σ(X)X]⊤P−1S−1 = 0

Hence:

ET [σ(X)V ]⊤Q−1 =
u1(d+ 1)⊤

1− α

Proposition 10 (asymptotic normality of weighted Horvitz-Thompson estimator). Let σ(x, β) =(
1 + exp(−x⊤β1 − β0)

)−1
denote the logistic function, where β̂N is the maximum likelihood esti-

mate (MLE) obtained from logistic regression of the selection indicator S on covariates X . Define
the estimated density ratio as:

r(x, β̂N ) =
n

N − n
· 1− σ(x, β̂N )

σ(x, β̂N )
, with n =

N∑
i=1

Si.

Let τ̂Φ,wHT denote the weighted Horvitz-Thompson estimator constructed using the estimated ratio
r(x, β̂N ). Then, under Assumption 1 to 3.1:

√
N
(
τ̂Φ,wHT − τTΦ

) d→ N (0, VΦ,wHT) .
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Proof. We begin by observing that the estimator of interest can be written as smooth transformations
of its vector-valued estimator:

τ̂Φ,wHT = Φ(ψ̂1,wHT, ψ̂0,wHT).

By Propositions 9, the pair (ψ̂1,wHT, ψ̂0,wHT) is jointly asymptotically normal. Specifically,

√
N

(
ψ̂1,wHT − ψ1

ψ̂0,wHT − ψ0

)
d−→ N (0,ΣwHT) ,

where ΣwHT is the asymptotic covariance matrices, with entries determined by the variances and
covariances of the components ψ̂1,wHT and ψ̂0,wHT. Since Φ : R2 → R is assumed to be a smooth
function, we can apply the delta method to each estimator. Let ∇Φ denote the gradient of Φ, evaluated
at the true parameter vector (ψ1, ψ0). Then:

√
N(τ̂Φ,wHT − τTΦ )

d−→ N (0, VΦ,wHT),

where the asymptotic variance is given by the quadratic form:

VΦ,wHT = ∇Φ⊤ΣwHT∇Φ.

Proposition 11. Let ψa = ET [Y (a)] denote the target population mean potential outcome under
treatment a ∈ {0, 1}. Define the estimator

ψ̂a,N =
1

n

N∑
i=1

Si · r(Xi, β̂N ) · 1{Ai = a}Yi
π̂a

, with r(x, β̂N ) =
n

N − n
· 1− σ(x, β̂N )

σ(x, β̂N )
,

where

π̂a =
1

n

∑
Si=1

1{Ai = a}, n =

N∑
i=1

Si,

β̂N is the MLE from logistic regression of S on X , and σ(x, β) = (1 + e−x
⊤β)−1 is the logistic

function. Then, under regularity conditions,

√
N

[
ψ̂1,N − ψ1

ψ̂0,N − ψ0

]
d−→ N (0,ΣN) , with ΣN =

[
V1,N CN
CN V0,N

]
,

where

Va,N =
ET
[
r(X) (Y (a))2

]
απa

+ ET [Y (a)]2
(
2

α
− 1

α(1− α)
− 1

απa

)
− ET [Y (a)V ]⊤Q−1ET [Y (a)V ] + 2ET [Y (a)V ]⊤Q−1ET [σ(X)V Y (a)],

CN = ET [Y (a)]ET [Y (1−a)] · 1− 2α

α(1− α)

− ET [Y (a)V ⊤]Q−1ET [(1− σ(X))Y (1−a)V ]

− ET [Y (1−a)V ⊤]Q−1ET [(1− σ(X))Y (a)V ]

+ ET [Y (a)V ⊤]Q−1ET [Y (1−a)V ],

with V = (1, X) ∈ Rp+1 and

Q = (1− α)ET [σ(X,β)V V ⊤].

Proof. We follow the same initial setup and notation as in the proof of the Re-weighted Horvitz-
Thomson estimator. The key difference is the empirical estimation of πa, introducing an additional
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estimating equation for θ3. The remainder of the proof—existence, uniqueness, M-estimation
structure, and regularity conditions—follows identically. Define here:

λ(Z,θ) =



θ2
1−θ2

1−σ(X,β)
σ(X,β)

S 1{A=0}Y
θ3

− θ0
θ2

1−θ2
1−σ(X,β)
σ(X,β)

S 1{A=1}Y
θ4

− θ1
S − θ2

S1{A = 0} − θ3
S1{A = 1} − θ4
V (S − σ(X,β))

 θ̂N =



ψ̂0,N

ψ̂1,N

α̂ := 1
N

∑N
i=1 Si

1
N

∑N
i=1 Si1{Ai = 0}

1
N

∑N
i=1 Si1{Ai = 1}

β̂N


We now rewrite the estimator using this notation. Recall

r(Xj , β̂N ) =
1− σ(Xj , β̂N )

σ(Xj , β̂N )
· α̂

1− α̂
.

Then:

ψ̂a,π̂ =
1

Nα̂

N∑
j=1

Sjr(Xj , β̂N ) · 1{Aj = a}Yj
π̂a

,

and

π̂a =
1

Nα̂

N∑
i=1

Si1{Ai = a}.

Substituting in gives:

ψ̂a,π̂ =
1

N

N∑
j=1

Sj ·
1− σ(Xj , β̂N )

σ(Xj , β̂N )
· α̂

1− α̂
· 1{Aj = a}Yj

1
N

∑N
i=1 Si1{Ai = a}

.

Let A(θ∞) be the Jacobian of λ(Z, θ) at the population limit θ∞, and B(θ∞) the corresponding
covariance matrix where

θ∞ = [ET [Y (0)],ET [Y (1)], α, απ0, απ1, β∞]T

Let
Q = ET [σ(X,β∞)(1− σ(X,β∞))V V ⊤].

The inverse Jacobian block A(θ∞)−1 is block lower-triangular, with expressions for rows ν⊤0 , ν⊤1
given by:

ν⊤a =
[
−1{a = 0} −1{a = 1} −ET [Y (a)]

(1−α)α
ET [Y (a)]
απa

0 ET [V Y (a)]⊤Q−1
]
.

We then compute the asymptotic variance as

Va,π̂ = ν⊤a B(θ∞)νa, Cπ̂ = ν⊤0 B(θ∞)ν1,

where the expansion of ν⊤a B(θ∞)νb yields the desired closed-form expressions for Va,N and CN
stated in the proposition.

B.4 Weighted and transported G-formula

Proposition 12. Let ψa = ET [Y (a)] denote the target population mean potential outcome under
treatment a ∈ {0, 1}. Define the oracle estimators

ψ∗
a,wG =

1

n

N∑
i=1

Si · r(Xi) · µS(a)(Xi), and ψ∗
a,tG =

1

N − n

N∑
i=1

(1− Si) · µS(a)(Xi)

where r(X) denotes the density ratio between the target and source covariate distributions and
n =

∑N
i=1 Si is the number of units in the source sample. Then, under Assumption 1 to 3,

√
N
(
ψ∗
a,tG − ψa

) d−→ N (0, V ∗
a,tG),
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Furthermore under Section 3.1:
√
N
(
ψ∗
a,wG − ψa

) d−→ N (0, V ∗
a,wG),

where the asymptotic variances are given by

V ∗
a,wG =

1

α

(
ET
[
r(X)(µS(a)(X))2

]
− ET [Y (a)]2

)
and

V ∗
a,tG =

1

1− α

(
ET
[(
µS(a)(X)

)2]
− ET [Y (a)]2

)
.

Proof. Transported G-formula. Define

Zi = (1− Si) · µS(a)(X),

so that

ψ∗
a,tG =

1
N

∑N
i=1 Zi

1
N

∑N
i=1 1− Si

.

We first compute the expectations of Zi and Si. By the definition of Zi and using that Si ∼
Bernoulli(α),

E[Zi] = E
[
(1− S) · µS(a)(X)

]
= (1− α)ET

[
µS(a)(X)

]
= (1− α)ψa,

where we used the consistency assumption Y = Y (A), the randomization of A, and the density ratio
property. Since the (Zi, Si) for all i = 1, . . . , N are i.i.d., we can apply the multivariate central limit
theorem to (

1

N

N∑
i=1

Zi,
1

N

N∑
i=1

1− Si

)
,

to obtain
√
N

((
1
N

∑N
i=1 Zi

1
N

∑N
i=1 1− Si

)
−
(

E[Zi]
E[1− Si]

))
d−→ N (0,Σ),

where

Σ =

(
V[Zi] Cov(Zi, Si)

Cov(Si, Zi) V[Si]

)
.

since ψ∗
a,tG can be written as

ψ∗
a,tG =

1
N

∑N
i=1 Zi

1
N

∑N
i=1 1− Si

,

we apply the Delta method to the map h : (x, y) 7→ x/y, whose gradient evaluated at ((1−α)ψa, 1−
α) is

u = ∇h((1− α)ψa, 1− α) =

(
1

1− α
, − ψa

1− α

)
.

Thus, √
N
(
ψ∗
a,tG − ψa

) d−→ N (0, V ∗
a,tG),

where
V ∗
a,tG = u⊤Σu.

Expanding, we obtain

V ∗
a,tG =

1

(1− α)2
V[Zi] +

(ψa)
2

(1− α)2
V[Si]−

2ψa
(1− α)2

Cov(Zi, Si).
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It remains to compute each term. Since Si ∼ Bernoulli(α),

V[Si] = α(1− α).

By direct computation,

V[Zi] = (1− α)ET
[(
µS(a)(X)

)2]
− ((1− α)ψa)

2.

Moreover, since (1− Si)× Zi = Zi, we have

Cov(Zi, Si) = (1− α)αψa.

Substituting into the expression for V ∗
a,tG, we find

V ∗
a,tG =

1

1− α

(
ET
[(
µS(a)(X)

)2]
− (ψa)

2

)
.

weighted G-formula. Define
Zi = Si · r(Xi) · µS(a)(Xi),

so that

ψ∗
a,wG =

1
N

∑N
i=1 Zi

1
N

∑N
i=1 Si

=
Z̄N
S̄N

.

We first compute the expectations of Zi and Si. Using the definition of Zi and that S is binary,

E[Zi] = E
[
Si · r(X) · µS(a)(X)

]
= αES

[
r(X) · µS(a)(X)

]
= αET

[
µS(a)(X)

]
= αψa,

where we used the importance sampling identity ES [r(X)f(X)] = ET [f(X)]. By the multivariate
central limit theorem,

√
N

((
Z̄N
S̄N

)
−
(
αψa
α

))
d−→ N (0,Σ),

where

Σ =

(
V[Zi] Cov(Zi, Si)

Cov(Zi, Si) V[Si]

)
.

The gradient of the map h : (x, y) 7→ x/y evaluated at (αψa, α) is

u = ∇h(αψa, α) =
(
1

α
, −ψa

α

)
.

By the Delta method, √
N
(
ψ∗
a,wG − ψa

) d−→ N (0, V ∗
a,wG),

where

V ∗
a,wG = u⊤Σu =

1

α2
V[Zi] +

ψ2
a

α2
V[Si]−

2ψa
α2

Cov(Zi, Si).

We compute each term:

V[Zi] = E[Z2
i ]− (E[Zi])2 = αET

[
r(X)

(
µS(a)(X)

)2]
− α2ψ2

a,

V[Si] = α(1− α),

Cov(Zi, Si) = E[ZiSi]− E[Zi]E[Si] = αET
[
µS(a)(X)

]
− α2ψa = α(1− α)ψa.
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Substituting into the expression for V ∗
a,wG, we get:

V ∗
a,wG =

1

α2

(
αET

[
r(X)(µS(a)(X))2

]
− α2ψ2

a

)
+
ψ2
a

α2
α(1− α)− 2ψa

α2
α(1− α)ψa

=
1

α
ET
[
r(X)(µS(a)(X))2

]
− ψ2

a +
ψ2
a(1− α)

α
− 2ψ2

a(1− α)

α

=
1

α
ET
[
r(X)(µS(a)(X))2

]
− ψ2

a

α
.

Proposition 13. Grant Assumption 1 to 1 defining β(a) := [c(a), γ(a)], V := [1, X]. We rearrange
the source Yi and Vi so that the first n1 observations of correspond to A = 1. We then define
Y1 = (Y1, . . . , Yn1

)⊤ and Y0 = (Yn1+1, . . . , Yn)
⊤, as well as V1 = (V1, . . . , Vn1

)⊤ and V0 =
(Vn1+1, . . . , Vn)

⊤. Letting α̂ = (
∑n
i=1 Si)/N and for all a ∈ {0, 1},

V̄ (0) =
1∑n

i=1 1Si=0

n∑
i=1

1Si=0Vi and β̂(a) =

(
1

na
V⊤
a Va

)−1
1

na
V⊤
a Ya.

Defining ν = ES [X] and Σ = Var(X|S = 1), we have
√
N(θ̂N − θ∞)

d→ N (0,Σ) ,

where

θ̂N =

V̄(0)β̂(0)

β̂(1)

 , θ∞ =

ET [V ]
β(0)

β(1)

 , Σ =


Var[V |S=0]

(1−α) 0 0

0 σ2M−1

α(1−π) 0

0 0 σ2M−1

απ

 ,

with M−1 =

[
1 + νTΣ−1ν −νTΣ−1

−Σ−1ν Σ−1

]
.

Proof. Using M-estimation theory to prove asymptotic normality of the θN , we first define the
following:

λ(Z, θ) =

(
λ1(Z, θ)
λ2(Z, θ)
λ3(Z, θ)

)
:=

 (1− S)(V − θ0)
S(1−A)

(
V ϵ(0) − V V ⊤ (θ1 − β(0)

))
SA

(
V ϵ(1) − V V ⊤ (θ2 − β(1)

))


where θ = (θ0, θ1, θ2, θ3). We still have that θ̂N is an M-estimator of type λ [see 42] since
N∑
i=1

λ(Zi, θ̂N ) = 0.

Note that

E [λ1(Z, θ∞)] = E [(1− S) (V − ET [V ])]

= (1− α)ET [(V − ET [V ])]

= 0.

We also have

E [λ2(Z, θ∞)] = E
[
S(1−A)V ϵ(0)

]
= αES

[
(1−A)V ϵ(0)

]
= α(1− π)ES

[
V ϵ(0)

]
= α(1− π)ES

[
V ES

[
ϵ(0)|V

]]
= 0.
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Similarly, we can show that E [λ3(Z, θ∞)] = 0. Since λ(Z, θ) is a linear function of θ, θ∞ is the
only value of θ such that E [λ(Z, θ)] = 0 Define

A (θ∞) = E
[
∂λ

∂θ

∣∣∣
θ=θ∞

]
and B(θ∞) = E

[
λ(Z, θ∞)λ(Z, θ∞)T

]
.

Next, we check the conditions of Theorem 7.2 in Stefanski and Boos [42]. First, we compute A (θ∞)
and B (θ∞). Since

∂λ

∂θ
(Z, θ) =

 −(1− S) 0 0
0 −S(1−A)V V ⊤ 0
0 0 −SAV V ⊤

 ,

we obtain

A (θ∞) =

( −(1− α) 0 0
0 −α(1− π)M 0
0 0 −απM

)
,

where M = ES
[
V V ⊤], which leads to

A−1 (θ∞) =

 − 1
1−α 0 0

0 − M−1

α(1−π) 0

0 0 −M−1

απ

 .

Regarding B(θ∞), since we have A(1−A) = 0 and S(1− S) = 0, elementary calculations show
that:

B(θ∞)2,3 = B(θ∞)3,2 = 0 and B(θ∞)1,2 = B(θ∞)2,1 = 0
B(θ∞)1,3 = B(θ∞)3,1 = 0.

Besides

B(θ∞)1,1 = E
[
(1− S)2(V − ET [V ])(V − ET [V ])⊤

]
= (1− α)Var [V |S = 0] ,

We can also note that:

B(θ∞)3,3 = E
[
S2A2V V ⊤(ϵ(1))2

]
= απES

[
V V ⊤(ϵ(1))2|A = 1

]
= απσ2M

and similarly,
B(θ∞)2,2 = α(1− π)σ2M.

Gathering all calculations, we have

B(θ∞) =

 (1− α)Var [V |S = 0] 0 0
0 α(1− π)σ2M 0
0 0 απσ2M

 ,

Based on the previous calculations, we have:

• λ(z, θ) and its first two partial derivatives with respect to θ exist for all z and for all θ in the
neighborhood of θ∞.

• For each θ in the neighborhood of θ∞, we have for all i, j, k ∈ {1, 3}:∣∣∣∣ ∂2

∂θi∂θj
λk(z, θ)

∣∣∣∣ ≤ 1.

28



• A(θ∞) exists and is nonsingular.

• B(θ∞) exists and is finite.

Since we have:
n∑
i=1

λ(Ti, Zi, θ̂N ) = 0 and θ̂N
p→ θ∞.

Then, the conditions of Theorem 7.2 in Stefanski and Boos [42] are satisfied, we have:
√
n
(
θ̂N − θ∞

)
d→ N

(
0, A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤

)
,

where:

A(θ∞)−1B(θ∞)(A(θ∞)−1)⊤ =


Var[V |S=0]

(1−α) 0 0

0 σ2M−1

α(1−π) 0

0 0 σ2M−1

απ

 .

Corollary 1. For all a ∈ {0, 1}, let τ̂OLS
a,tG denote the transported G-formula estimator where linear

regressions are used to estimate µS(a). Then, under Assumption 1 to 3 and 1:

√
N

(
τ̂OLS
1,tG − ψ1

τ̂OLS
0,tG − ψ0

)
d→ N

(
0,ΣOLS

tG

)
,

with

ΣOLS
tG =

(
(β(1))⊤Var[V |S=0]

1−α β(1) + ET [V ]⊤ σ2M−1

απ ET [V ] (β(1))⊤Var[V |S=0]
1−α β(0)

(β(1))⊤Var[V |S=0]
1−α β(0) (β(0))⊤Var[V |S=0]

1−α β(0) + ET [V ]⊤ σ2M−1

α(1−π)ET [V ]

)
,

Proof. Recall that for a ∈ {0, 1}, we have:

τ̂OLS
a,tG = (β̂(a))⊤V̄(0)

From Proposition 13, we know that:
√
N(θ̂N − θ∞)

d−→ N (0,Σ),

with θ̂N = (V̄ ⊤
(0), (β̂

(0))⊤, (β̂(1))⊤)⊤ ∈ R3p+3, and where Σ is the block-diagonal covariance matrix.
By applying the delta method to the map

g(V̄(0), β̂
(0), β̂(1)) =

(
(β̂(1))⊤V̄(0)
(β̂(0))⊤V̄(0)

)
,

the asymptotic distribution of
√
N(τ̂OLS

a,tG − ψa) is multivariate normal with covariance matrix:

ΣOLS
tG = JΣJ⊤,

where J is the Jacobian of g evaluated at (ET [V ], β(0), β(1)):

J =

(
(β(1))

⊤ 0 ET [V ]⊤

(β(0))
⊤ ET [V ]⊤ 0

)
.

we obtain:

ΣOLS
tG =

(
(β(1))⊤Var[V |S=0]

1−α β(1) + ET [V ]⊤ σ2M−1

απ ET [V ] (β(1))⊤Var[V |S=0]
1−α β(0)

(β(1))⊤Var[V |S=0]
1−α β(0) (β(0))⊤Var[V |S=0]

1−α β(0) + ET [V ]⊤ σ2M−1

α(1−π)ET [V ]

)
,

(30)
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Proposition 14. For all a ∈ {0, 1}, let τ̂OLS
a,wG denote the weighted G-formula estimators where the

density ratio is estimated using a logistic regression and linear regressions are used to estimate µS(a).
Then, under Assumption 1 to 1:

√
N

((
ψ̂OLS
0,wG

ψ̂OLS
1,wG

)
−
(
ψ0

ψ1

))
d−→ N (0,ΣOLS

wG).

Proof. Let Z = (S,X, S×A,S× Y ) and define θ = (θ1, θ2, θ3, β, θ4, θ5). Consider the estimating
function λ(Z, θ) defined as:

λ(Z, θ) =



1−σ(X,β)
σ(X,β)

Sθ⊤4 V
1−θ3 − θ1,

1−σ(X,β)
σ(X,β)

Sθ⊤5 V
1−θ3 − θ2,

S − θ3,
V (S − σ(X,β)),

S(1−A)
(
V ϵ(0)− V V ⊤(θ4 − β(0))

)
,

SA
(
V ϵ(1)− V V ⊤(θ5 − β(1))

)


Define θ̂N = (ψ̂OLS

0,wG, ψ̂
OLS
1,wG, α̂, β̂N , β̂

(0), β̂(1)), where β̂N is the MLE from the logistic regression

of S on X , and r(Xi, β̂N ) = 1−σ(Xi,β̂N )

σ(Xi,β̂N )
· α̂
1−α̂ . Then, the estimators ψ̂OLS

a,wG take the form:

ψ̂OLS
a,wG =

1

N

N∑
i=1

Si ·
1− σ(Xi, β̂N )

σ(Xi, β̂N )(1− α̂)
· (β̂(a))⊤Vi.

The estimator θ̂N solves the estimating equation:
N∑
i=1

λ(Zi, θ̂N ) = 0.

This setup is structurally identical to that of proposition 9 and 13, and the M-estimation theory in
Stefanski and Boos [42] applies directly. Specifically, the regularity conditions (e.g., smoothness of
λ, identifiability, uniqueness of root) are satisfied.

As before, the asymptotic distribution of the M-estimator is:
√
N(θ̂N − θ∞)

d−→ N (0, A−1B(A−1)⊤),

where A and B are the Jacobian of the estimating function and its variance, respectively, evaluated at
θ∞ = (ψ0, ψ1, α, β∞, β

(0), β(1)). Focusing on the top-left 2× 2 block of the sandwich covariance
matrix—corresponding to (ψ̂OLS

0,wG, ψ̂
OLS
1,wG)—we denote this block by ΣOLS

wG , and conclude:

√
N

(
ψ̂OLS
0,wG − ψ0

ψ̂OLS
1,wG − ψ1

)
d−→ N (0,ΣOLS

wG ) where ΣOLS
wG =

(
V OLS
0,wG COLS

wG

COLS
wG V OLS

1,wG

)
,

where using Lemma 1, we simplify the expression to:

V OLS
a,wG =

(β(a))⊤∆β(a)

α
− ψ2

a

1− α
+ 2

(β(a))⊤ET [V V ⊤]β(a)

1− α
− (β(a))⊤ET [V V ⊤]Q−1ET [V V ⊤]β(a)

(31)

+ σ2 · ET [V ]⊤M−1ET [V ]

απa
. (32)

For the covariance terms we get:

COLS
wG =

(β(0))⊤∆β(1)

α
− ψ1ψ0

1− α
+ 2

(β(1))⊤ET [V V ⊤]β(0)

1− α
− (β(0))⊤ET [V V ⊤]Q−1ET [V V ⊤]β(1),

(33)

where ∆ = ET [r(X)V V ⊤].
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Lemma 2. Grant Assumption 1 to Linear model 1, then:

• the matrix ΣOLS
wG − ΣOLS

tG is semi-definite positive,

• the matrix ΣwHT − ΣOLS
wG is semi-definite positive.

Consequently, V OLS
Φ,tG ≤ V OLS

Φ,wG ≤ VΦ,wHT.

Proof. First statement We first start with ΣwHT − ΣOLS
wG . Under Linear model 1

Y (a) = (β(a))⊤V + ϵ(a), where E[ϵ(a) | X] = 0, Var(ϵ(a) | X) = σ2,

we can express the variances Va,wHT and the covariance term CwHT defined in 19 of the weighted
Horvitz-thompson in terms of the model parameters and the distribution of X . Starting with Va,wHT,
we expand each expectation by substituting the linear form of Y (a). The first term of Va,wHT becomes

ET [r(X)(Y (a))2] = ET
[
r(X)

(
((β(a))⊤V )2 + 2(β(a))⊤V ϵ(a) + (ϵ(a))2

)]
.

Taking expectations and applying the assumptions E[ϵ(a) | X] = 0 and Var(ϵ(a) | X) = σ2, this
simplifies to

ET [r(X)(Y (a))2] = ET [r(X)((β(a))⊤V )2] + σ2ET [r(X)].

The second term, becomes (ET [(β(a))⊤X])2, since the error has mean zero. Moving to the third
term, we use linearity to write

ET [Y (a)V ⊤] = (β(a))⊤ET [V V ⊤],

and thus the quadratic form becomes

ET [Y (a)V ⊤]Q−1ET [Y (a)V ] = (β(a))⊤ET [V V ⊤]Q−1ET [V V ⊤]β(a).

For the fourth term, we compute

ET [σ(X)Y (a)V ] = ET [σ(X)V V ⊤]β(a),

which leads to

2ET [Y (a)V ⊤]Q−1ET [σ(X)Y (a)V ] = 2 (β(a))⊤ET [V V ⊤]Q−1ET [σ(X)V V ⊤]β(a).

Noting that Q = (1− α)ET
[
σ(X,β)V V ⊤], this further simplifies to:

2ET [Y (a)V ⊤]Q−1ET [σ(X)Y (a)V ] =
2 (β(a))⊤ET [V V ⊤]β(a)

1− α
.

Combining all components, using linearity and the definition of ∆, we have

Va,wHT =
1

απa

(
(β(a))⊤∆β(a) + σ2ET [r(X)]

)
− (ET [(β(a))⊤V ])2

1− α

− (β(a))⊤ET [V V ⊤]Q−1ET [V V ⊤]β(a) + 2
(β(a))⊤ET [V V ⊤]β(a)

1− α
.

Turning to the cross-covariance term CwHT, we proceed similarly. Noting that

ET [Y (a)] = ET [(β(a))⊤V ],

ET [Y (a)V ⊤] = (β(a))⊤ET [V V ⊤],

ET [σ(X)Y (a)V ] = ET [σ(X)V V ⊤]β(a),

we substitute these into the original definition to obtain

CwHT = − ET [(β(1))⊤V ] · ET [(β(0))⊤V ]

1− α
+ 2

(β(1))⊤ET [V V ⊤]β(0)

1− α

− (β(1))⊤ET [V V ⊤]Q−1ET [V V ⊤]β(0).
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Now, we can compute the following quantities:

Va,wHT − V OLS
a,wG =

1− πa
απa

(β(a))⊤∆β(a) +
σ2

απa

(
ET [r(X)]− ET [V ]⊤M−1ET [V ]

)
and

CwHT − COLS
wG =− (β(0))⊤∆β(1)

α
.

Since 0 < πa < 1, we immediately have that

1− πa
απa

(β(a))⊤∆β(a) ≥ 0.

Now, turning to the second term in the expression for Va,wHT − V OLS
a,wG, observe that

ET [r(X)]− ET [V ]⊤M−1ET [V ]

can be rewritten using the fact that the target distribution T is defined via reweighting from the source
distribution S, with r(X). This yields:

ET [r(X)]− ET [V ]⊤M−1ET [V ] = ES [r(X)2]− ES [r(X)V ]⊤ES [V V ⊤]−1ES [r(X)V ].

To interpret this expression, we recognize it as a variance-type quantity. In particular, we can rewrite
it as:

ES [r(X)2]− 2ES [r(X)V ]⊤ES [V V ⊤]−1ES [r(X)V ]

+ ES [r(X)V ]⊤ES [V V ⊤]−1ES [V V ⊤]ES [V V ⊤]−1ES [r(X)V ],

which simplifies to:
ES
[(
r(X)− ES [r(X)V ]⊤ES [V V ⊤]−1V

)2]
.

This is the expected squared residual from projecting r(X) onto the linear span of V , and is therefore
nonnegative. Hence,

ET [r(X)]− ET [V ]⊤M−1ET [V ] ≥ 0.

Combining this result with the earlier inequality, we conclude that

Va,wHT − V OLS
a,wG ≥ 0.

Since this holds for both a = 0 and a = 1, and noting that

CwHT − COLS
wG = − (β(0))⊤∆β(1)

α
,

we now analyze the overall matrix difference. The trace satisfies:

tr(ΣwHT − ΣOLS
wG ) = (V1,wHT − V OLS

1,wG) + (V0,wHT − V OLS
0,wG) ≥ 0,

and the determinant becomes:

det(ΣwHT − ΣOLS
wG ) = (V1,wHT − V OLS

1,wG)(V0,wHT − V OLS
0,wG)− (CwHT − COLS

wG )2

≥ 1

α2

(
(β(1))⊤∆β(1) · (β(0))⊤∆β(0) − ((β(1))⊤∆β(0))2

)
≥ 0,

where the final inequality follows from Cauchy–Schwarz. Since both the trace and determinant of
ΣwHT − ΣOLS

wG are nonnegative, we conclude that the matrix ΣwHT − ΣOLS
wG is positive semi-definite.

Second statement Now, we want to prove that ΣOLS
wG − ΣOLS

tG is semi-definite positive. Observe that
using the expression defined in 19, 31 and 30 we have

V OLS
a,wG − V OLS

a,tG = (β(a))⊤Hβ(a) and COLS
wG − COLS

tG = (β(1))⊤Hβ(0),

where the matrix H is defined as

H :=
1

1− α

(
ET
[
1− σ(X,β)

σ(X,β)
V V ⊤

]
+ ET [V V ⊤]− ET [V V ⊤]

(
ET [σ(X,β)V V ⊤]

)−1 ET [V V ⊤]

)
.
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This can be rewritten more compactly as:

H =
1

1− α
(C −AB−1A),

where we define:

C = ET
[

1

σ(X,β)
V V ⊤

]
, A = ET [V V ⊤], B = ET [σ(X,β)V V ⊤].

First, we define the vector:

Ṽ :=

[√
σ(X,β)V

1√
σ(X,β)

V

]
∈ R2d.

(Note that here we changed the definition of Ṽ to simplify later steps.)

Then the outer product Ṽ Ṽ ⊤ is:

Ṽ Ṽ ⊤ =

[
σ(X,β)V V ⊤ V V ⊤

V V ⊤ 1
σ(X,β)V V

⊤

]
.

Taking expectation, we define the matrix:

M := ET [Ṽ Ṽ ⊤] =

[
B A
A⊤ C

]
.

We now show that M is PSD. For any z ∈ R2d, we have:

z⊤Mz = ET
[
z⊤Ṽ Ṽ ⊤z

]
= ET

[
(z⊤Ṽ )2

]
≥ 0,

since each term in the expectation is a square. Therefore, M ⪰ 0. By the Schur Complement Lemma
for block matrices, provided that B is invertible and square and B ⪰ 0 and M ⪰ 0, we get that

H =
1

1− α
(C −AB−1A) ⪰ 0.

Now, by definition:

ΣOLS
wG − ΣOLS

tG =

[
(β(0))⊤Hβ(0) (β(1))⊤Hβ(0)

(β(1))⊤Hβ(0) (β(1))⊤Hβ(1)

]
.

Since this matrix is a Gram matrix induced by H ⪰ 0, it follows that ΣOLS
wG − ΣOLS

tG ⪰ 0.

Proposition 15. Grant Assumption 1 to 1, and let τ̂OLS
Φ,tG denote the transported G-formula estimators

where linear regressions are used to estimate µS(a). Then, τ̂OLS
Φ,tG is asymptotically normal:

√
N
(
τ̂OLS
Φ,tG − τTΦ

) d→ N
(
0, V OLS

Φ,tG

)
,

where

V OLS
Φ,tG =

1

1− α

∥∥∥∥ ∂Φ∂ψ1
β(1) +

∂Φ

∂ψ0
β(0)

∥∥∥∥
Var[V |S=0]

+
σ2ET [V ]⊤M−1ET [V ]

α

[
1

1− π

(
∂Φ

∂ψ0

)2

+
1

π

(
∂Φ

∂ψ1

)2
]
.

Proof. We begin by analyzing the transported OLS estimator, defined as

τ̂OLS
Φ,tG = Φ

(
(β̂(1))⊤V̄(0), (β̂

(0))⊤V̄(0)

)
,

where V̄(0) is the empirical mean of covariates in the target population. Under Linear model 1, the
corresponding population estimand is

τTΦ = Φ
(
(β(1))⊤ET [V ], (β(0))⊤ET [V ]

)
,
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where ET [V ] is the expectation of covariates under the target distribution.

To study the asymptotic behavior of the estimator, we perform a first-order Taylor expansion of Φ
around the point (ψ∗

1 , ψ
∗
0) :=

(
(β(1))⊤ET [V ], (β(0))⊤ET [V ]

)
. This yields:

τ̂OLS
Φ,tG − τTΦ = Φ

(
(β̂(1))⊤V̄(0), (β̂

(0))⊤V̄(0)

)
− Φ

(
(β(1))⊤ET [V ], (β(0))⊤ET [V ]

)
=

∂Φ

∂ψ1

∣∣∣
(ψ∗

1 ,ψ
∗
0 )

(
(β̂(1))⊤V̄(0) − (β(1))⊤ET [V ]

)
+

∂Φ

∂ψ0

∣∣∣
(ψ∗

1 ,ψ
∗
0 )

(
(β̂(0))⊤V̄(0) − (β(0))⊤ET [V ]

)
+ op

(∥∥∥∥((β̂(1))⊤V̄(0) − (β(1))⊤ET [V ]

(β̂(0))⊤V̄(0) − (β(0))⊤ET [V ]

)∥∥∥∥) .
To further decompose the linear terms, note that for each a ∈ {0, 1}, we can write:

(β̂(a))⊤V̄(0) − (β(a))⊤ET [V ] = (β̂(a) − β(a))⊤ET [V ] + (β̂(a))⊤
(
V̄(0) − ET [V ]

)
.

Combining these expressions, we obtain:

τ̂OLS
Φ,tG − τTΦ =

∂Φ

∂ψ1

∣∣∣
(ψ∗

1 ,ψ
∗
0 )

[
(β̂(1) − β(1))⊤ET [V ] + (β̂(1))⊤

(
V̄(0) − ET [V ]

)]
+

∂Φ

∂ψ0

∣∣∣
(ψ∗

1 ,ψ
∗
0 )

[
(β̂(0) − β(0))⊤ET [V ] + (β̂(0))⊤

(
V̄(0) − ET [V ]

)]
+ op(N

−1/2).

By the multivariate Central Limit Theorem, the Law of Large Numbers, and Slutsky’s theorem—along
with 13—we conclude: √

N
(
τ̂OLS
Φ,tG − τTΦ

) d→ N
(
0, α⊤

∞Σα∞
)
,

where Σ is defined in 30 and the influence vector α∞ is given by

α∞ =
∂Φ

∂ψ1

∣∣∣
(ψ∗

1 ,ψ
∗
0 )
α1,∞ +

∂Φ

∂ψ0

∣∣∣
(ψ∗

1 ,ψ
∗
0 )
α0,∞,

and each αa,∞ ∈ Rp is defined as

α⊤
a,∞ =

(
(β(a))⊤, ET [V ]⊤ · 1{a=0}, ET [V ]⊤ · 1{a=1}

)
∈ R3p+3.

Combining this with the block-diagonal form of Σ, we obtain the explicit asymptotic variance:

α⊤
∞Σα∞ =

1

1− α

∥∥∥∥ ∂Φ∂ψ1
β(1) +

∂Φ

∂ψ0
β(0)

∥∥∥∥
Var[V |S=0]

+
σ2ET [V ]⊤M−1ET [V ]

α

[
1

1− π

(
∂Φ

∂ψ0

)2

+
1

π

(
∂Φ

∂ψ1

)2
]
.

Proposition 16. Let τ̂OLS
Φ,wG denote the weighted G-formula estimators where the density ratio is

estimated using a logistic regression and linear regressions are used to estimate µS(a). Then, under
Assumption 1 to 1, τ̂OLS

Φ,wG is asymptotically normal:

√
N
(
τ̂OLS
Φ,wG − τTΦ

) d→ N
(
0, V OLS

Φ,wG

)
,

where

V OLS
Φ,wG =

(
∂Φ

∂ψ1

)2

V OLS
1,wG +

(
∂Φ

∂ψ0

)2

V OLS
0,wG + 2

(
∂Φ

∂ψ1

)(
∂Φ

∂ψ0

)
COLS

wG .
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Proof. Using 14, we apply the delta method to τ̂OLS
Φ,wG = Φ(ψ̂OLS

1,wG, ψ̂
OLS
0,wG) of the two-dimensional

asymptotically normal vector. By the delta method:
√
N
(
τ̂OLS
Φ,wG − Φ(ψ1, ψ0)

) d−→ N
(
0,∇Φ(ψ1, ψ0)

⊤ ΣOLS
wG ∇Φ(ψ1, ψ0)

)
,

where ∇Φ(ψ1, ψ0) =
(
∂Φ
∂ψ1

, ∂Φ∂ψ0

)⊤
is the gradient of Φ evaluated at the population means. Therefore

we get:

V OLS
Φ,wG =

(
∂Φ

∂ψ1

)2

V OLS
1,wG +

(
∂Φ

∂ψ0

)2

V OLS
0,wG + 2

(
∂Φ

∂ψ1

)(
∂Φ

∂ψ0

)
COLS

wG .

B.5 Semiparametric Efficient Estimators under Exchangeability of conditional outcome

Proof of Proposition 3. In this proof, we use the usual machinery of influence function computation,
as described for instance in [26]. In particular, we will for the sake of the computation, assume that
X is a categorical variable taking value in a countable space. We first recall that if

ψ(Pobs) := EPobs
[h(Z)|A] (34)

for some measurable function h and some event of positive mass A, then the influence function of ψ
at Pobs is given by

IF(ψ)(Z) :=
1{A}
Pobs(A)

(h(Z)− ψ). (35)

We now rewrite ψa using functional of the form (34):

ψa := EP [Y (a)|S = 0]

= EPobs
[EP [Y (a)|X,S = 0]|S = 0]

= EPobs
[EP [Y (a)|X,S = 1]|S = 0]

= EPobs
[EPobs

[Y |X,S = 1, A = a]|S = 0]

=
∑
x∈X

EPobs
[1{X = x}|S = 0]× EPobs

[Y |X = x, S = 1, A = a].

Using (35), and usual properties of the influence functions [26, Sec 3.4.3], we find

IF(ψa)(Z) =
∑
x∈X

1− S

1− α
(1{X = x} − EPobs

[1{X = x}|S = 0])× EPobs
[Y |X = x, S = 1, A = a]

+
∑
x∈X

EPobs
[1{X = x}|S = 0]× 1{X = x, S = 1, A = a}

Pobs(X = x, S = 1, A = a)
(Y − EPobs

[Y |X = x, S = 1, A = a]).

The first sum simply rewrites

1− S

1− α
(µ(a)(X)−Ψa(P )),

and for the second, notice that, using that A and S are independent:

EPobs
[1{X = x}|S = 0]

P (X = x, S = 1, A = a)
=

r(X)

αP (A = a)
,

so that the sum rewrites
1{S = 1, A = a}
αP (A = a)

r(X)(Y − µ(a)(X)).

In the end, we indeed find

IF(ψa)(Z) =
1− S

1− α
(µ(a)(X)− ψa) +

S1{A = a}
αP (A = a)

r(X)(Y − µ(a)(X)).
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Proof of Proposition 5. By conditioning with respect to the randomness of µ̂(a) and r̂, we can treat
these functions as deterministic. By using the law of large number, we see that m/N goes to 1− α

and that ψ̂(a) converges towards

1

1− α
E[(1− S)µ̂(a)(X)] +

1

α
E
[
Sr̂(X)(Y a − µ̂(a)(X)

]
.

If µ̂(a) = µ(a), then the second term in the above formula cancels and we are left with

1

1− α
E[(1− S)µ̂(a)(X)] = E[µ̂(a)(X)|S = 0] = ψa.

If r̂ = r, then the second term yields

E
[
r(X)(Y − µ̂(a)(X)|S = 1

]
= E

[
Y a − µ̂(a)(X)|S = 0

]
= ψa − E

[
µ̂(a)(X)|S = 0

]
,

which also yields the results. Using continuity of Φ allows to conclude.

B.6 Computations of one-step estimators and estimating equation estimators for the OR.

Note that ψ̂EE
a is solution to

∑
φa(Zi, η̂, ψ̂

EE
a ) = 0. Then, given the expression of φa in Proposi-

tion 3, it holds that for any other estimator ψ̂a:

N∑
i=1

φa(Zi, η̂, ψ̂a) = − m

1− α
(ψ̂a − ψ̂EE

a ).

We will use this observation in the subsequent computations.

(RD) For the risk difference, the estimating equation approach yields:

τ̂EE
RD = ψ̂EE

1 − ψ̂EE
0 .

The one step approach, based on initial estimators ψ̂1 and ψ̂0 yields an estimate of the form:

τ̂OS
RD = ψ̂1 − ψ̂0 +

m

N(1− α)
(ψ̂EE

1 − ψ̂1)−
m

N(1− α)
(ψ̂EE

0 − ψ̂0)

=
m

N(1− α)
τ̂EE
RD +

(
1− m

N(1− α)

)
τ̂RD

In particular, we see that starting from estimators ψ̂a of the form
∑
Si=0 µ̂(a)(Xi) yields a

final estimator that has the same structure as the estimating equation estimator, up to scaling
factors depending on α,N and m that are asymptotically close to 1.

(RR) For the risk ratio, the estimating equation approach yields:

τ̂EE
RR =

ψ̂EE
1

ψ̂EE
0

.

In contrast, the one step approach, based on initial estimators ψ̂1 and ψ̂0 yields an estimate
of the form:

τ̂OS
RR =

ψ̂1

ψ̂0

+
1

ψ̂0

m

N(1− α)
(ψ̂EE

1 − ψ̂1)−
ψ̂1

ψ̂2
0

m

N(1− α)
(ψ̂EE

0 − ψ̂0).

In particular, we see that in general, τ̂OS
RR ̸= τ̂EE

OR, unless of course we initially picked ψ̂EE
a

to apply the one-step correction.

(OR) For the odds ratio, the estimating equation approach yields:

τ̂EE
OR =

ψ̂EE
1

1− ψ̂EE
1

1− ψ̂EE
0

ψ̂EE
0

.
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In contrast, the one step approach, based on initial estimators ψ̂1 and ψ̂0 yields an estimate
of the form:

τ̂OS
OR =

ψ̂1

1− ψ̂1

1− ψ̂0

ψ̂0

+
1

(1− ψ̂1)2

1− ψ̂0

ψ̂0

m

N(1− α)
(ψ̂1 − ψ̂EE

1 )

− ψ̂1

1− ψ̂1

1

ψ̂2
0

m

N(1− α)
(ψ̂0 − ψ̂EE

0 ).

In particular, we see that in general, τ̂OS
OR ̸= τ̂EE

OR, unless of course we initially picked ψ̂EE
a

to apply the one-step correction.

C Transporting/Reweighting a causal effect under exchangeability of CATE

C.1 Identification under exchangeability of conditional outcome

Risk Difference (RD)
τTRD = ET

[
τSRD(X)

]
Risk Ratio (RR)

τTRR =
ET

[
τSRR(X) · µT

(0)(X)
]

ET

[
Y (0)

]
Odds Ratio (OR)

τTOR =

(
ET

[
Y (0)

]
1− ET

[
Y (0)

])−1

·
ET

[
τS
OR(X)·µT

(0)(X)

1+τS
OR(X)·µT

(0)
(X)−µT

(0)
(X)

]
1− ET

[
τS
OR(X)·µT

(0)
(X)

1+τS
OR(X)·µT

(0)
(X)−µT

(0)
(X)

]
C.2 Semiparametric efficient estimators under exchangeability of treatment effect

Proof of Proposition 6. We use the same tricks as in the proof of Proposition 3. We first notice that

ψT
1 =

∑
x∈X

Pobs(X = x|S = 0)Γ(τΦ(x), µ
T
(0)(x)),

so that, with a slight abuse of notation

IF(ψT
1 ) =

∑
x∈X

1− S

1− α
(1{X = x} − Pobs(X = x|S = 0))Γ(τΦ(x), µ

T
(0)(x))

+
∑
x∈X

Pobs(X = x|S = 0)IF(τΦ(x))∂1Γ(τΦ(x), µ
T
(0)(x)).

Using that τΦ(x) = Φ(E[Y |A = 1, S = 1, X = x],E[Y |A = 0, S = 1, X = x]), we further find
that

IF(τΦ(x)) =
1{A = 1, S = 1, X = x}
P (A = 1, S = 1, X = x)

(Y − µS
(1)(x))∂1Φ(µ

S
(1)(x), µ

S
(0)(x))

+
1{A = 0, S = 1, X = x}
P (A = 0, S = 1, X = x)

(Y − µS
(0)(x))∂0Φ(µ

S
(1)(x), µ

S
(0)(x))

Again, we know that

P (A = a,X = x, S = 1) = απP (X = x|S = 1) = απr(X)P (X = x|S = 0).

Furthermore, since Γ(Φ(a, b), b) = a for all a, b, differentiating with respect to a or b yields
∂0Φ(a, b)∂1Γ(Φ(a, b), b)) + ∂0Γ(Φ(a, b), b) = 0 and ∂1Φ(a, b)∂1Γ(Φ(a, b), b) = 1. Patching all of
this together yields the result.
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C.3 Computations of one-step estimators and estimating equation estimators under
exchangeability of CATE

Example 3 (Application to the usual causal measures.). We give the expression of ψ̂EE
1 for the most

usual causal measures.

(RD) For the risk difference, we find

ψ̂EE
1 =

1

m

∑
Si=0

µT
(0)(Xi) + τ̂Φ(Xi)

+
1− α

αm

∑
Si=1

r̂(Xi)

(
Ai
π
(Yi − τ̂Φ(Xi)− µ̂S

(0)(Xi))−
1−Ai
1− π

(Yi − µ̂S
(0)(Xi))

)
.

(RR) For the risk ratio, we find:

ψ̂EE
1 =

1

m

∑
Si=0

µT
(0)(Xi)τ̂Φ(Xi)

+
1− α

αm

∑
Si=1

r̂(Xi)

(
Ai
π
(Yi − µ̂S

(0)(Xi)τ̂Φ(Xi))−
1−Ai
1− π

(Yi − µ̂S
(0)(Xi))τ̂Φ(Xi)

)
.

(OR) For the odds ratio, we find:

ψ̂EE
1 =

1

m

∑
Si=0

µT
(0)(Xi)τ̂Φ(Xi)

1− µT
(0)(Xi) + µT

(0)(Xi)τ̂Φ(Xi)

+
1− α

αm

∑
Si=1

r̂(Xi)

(
Ai
π

(
Yi −

µS
(0)(Xi)τ̂Φ(Xi)

1− µS
(0)(Xi) + µS

(0)(Xi)τ̂Φ(Xi)

)
− 1−Ai

1− π
(Yi − µ̂S

(0)(Xi))
τ̂Φ(Xi)

(1− µ̂S
(0)(Xi) + µ̂S

(0)(Xi)τ̂Φ(Xi))2

)
.

D Simulation

For the simulations we have implemented all estimators in Python using Scikit-Learn for our regres-
sion and classification models. All our experiments were run on a 8GB M1 Mac.

Linear setting under Assumption 3: we evaluate estimators under a linear response surface:

µ(a)
s (V ) = β⊤

a V with β1 = (0.5, 1.2, 1.1, 3.3, −0.6) and β0 = (−0.2, −0.6, 0.6, 1.7, 0.3).

Since β0 and β1 remain unchanged across the source and target domains, Assumption 3 is satisfied,
results are depicted in Figure 4. As expected from the linear generative process, all estimators perform
well across all measures, with the transported and weighted G-formula exhibiting particularly low
variance in this setting—outperforming the influence function–based estimators.
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Figure 4: Comparison of estimators across different causal measures under a linear outcome model
with a sample size of N = 50,000 and 3,000 repetitions.
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NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

B. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss (mainly in the conclusion) the limitation of our work.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.
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• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

C. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Rigorous proofs are provided in the Appendix, with references to the theorems
and lemmas upon which our proofs rely.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
D. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We described in the paper or appendix the settings of the model we use and
parameters we used for our simulations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

E. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: Experiments are considered simple enough to be reproduced without providing
open acces to our code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

F. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental Setting/Details are fully provided in the paper or in Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
G. Experiment statistical significance
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We used boxplots to report our estimations.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

H. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, the paper does indicate the type of compute used for the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

I. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We made sure to preserve anonymity in our paper.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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J. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed the impact of our findings to better estimate treatment effects.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

K. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

L. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All theorems as well as the data used for real world experiment are properly
credited.
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Guidelines:
• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

M. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

N. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

O. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer:[Yes]
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Justification: The TraumaBase© obtained approval from the Institutional Review Board
(Comité de Protection des Personnes, Paris VI,) from the Advisory Committee for Informa-
tion Processing in Health Research (CCTIRS, 11.305bis) and from the National Commission
on Informatics and Liberties (CNIL, 911461).
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

P. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not used for any relevant parts of this paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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