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Abstract

This article proposes LLM-based topic001
coherence metrics inspired by standard002
human topic evaluations, in a family of003
metrics called Contextualized Topic Coher-004
ence (CTC). These metrics allow human-005
centered evaluation of coherence while006
maintaining the efficiency of automated007
methods. We evaluate CTC relative to008
five metrics and discovered that it outper-009
forms automated topic coherence meth-010
ods on seven topic models. Notably, CTC011
aligns with human evaluation and demon-012
strates excellent performance with short013
documents, and is not susceptible to mean-014
ingless but high-scoring topics.015

1 Introduction016

Topic models are a family of text-mining algo-017

rithms that identify themes in a large corpus of018

text data (Blei, 2012). These models (Churchill019

and Singh, 2022) are widely used for exploratory020

data analysis with the aim of organizing, under-021

standing, and summarizing large amounts of text022

data (Abdelrazek et al., 2022). Numerous tech-023

niques, algorithms, and tools have been employed024

to develop a variety of topic models for differ-025

ent tasks and purposes (Srivastava and Sutton,026

2017) including much recent work on neural topic027

models (Grootendorst, 2022). However, due to028

their nature as unsupervised models, comparing029

topic outputs, hyperparameter settings, and over-030

all model quality has traditionally been difficult031

(Hoyle et al., 2022).032

Topic Coherence (TC) metrics measure the in-033

terpretability of topics generated by topic models.034

These metrics are categorized into two classes:035

automated TC metrics and human-annotated TC 036

metrics (Hoyle et al., 2021). Automated TC met- 037

rics estimate the interpretability of topic mod- 038

els with respect to various factors such as co- 039

occurrence or semantic similarity of topic words. 040

On the other hand, human-annotated TC metrics 041

are protocols for designing surveys that rate or 042

score the interpretability of topic models. Human 043

judgment is often used to validate topic coher- 044

ence metrics to provide an accurate assessment 045

of the semantic coherence and meaningfulness of 046

a given set of topics (Newman et al., 2009; Ale- 047

tras and Stevenson, 2013; Mimno et al., 2011). 048

While human-annotated TC metrics incorporate 049

subjective human judgments and provide a more 050

accurate and nuanced understanding of how well 051

topic models are performing (e.g. in terms of their 052

ability to capture the underlying themes in a text 053

corpus), they are expensive, time-consuming, and 054

require multiple human-subjects to avoid personal 055

biases. On the other hand, automated metrics are 056

more cost-effective than human-annotated meth- 057

ods, as they do not require the hiring and training 058

of human annotators, which results in their abil- 059

ity to evaluate large amounts of data and iterate 060

through many model comparisons. 061

Automated metrics are intended to align more 062

closely with human judgment, providing a bet- 063

ter measure of the interpretability of topic words. 064

The risk of such approximations, however, is that 065

they themselves become the target of optimiza- 066

tion rather than the underlying property they were 067

intended to measure. Several recent works sug- 068

gest that this has occurred especially in the con- 069

text of neural topic models. Doogan and Buntine 070

(2021) argue that interpretability is ambiguous 071
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and conclude that current automated topic coher-072

ence metrics are unreliable for evaluating topic073

models in short-text data collections and may be074

incompatible with newer neural topic models. In075

a similar study, Hoyle et al. (2021) show that top-076

ics generated by neural models are often qualita-077

tively distinct from traditional topic models while078

they receive higher scores from current automated079

topic coherence metrics. Hoyle et al. (2021) con-080

clude that the validity of the results produced by081

fully automated evaluations, as currently prac-082

ticed, is questionable, and they only help when083

human evaluations cannot be performed. Hoyle084

et al. (2022) in another recent work shows that085

neural topic models fail to improve on the tradi-086

tional topic models such as Gibbs LDA (Griffiths087

and Steyvers, 2004; McCallum, 2002) and con-088

sider neural topic broken as they do not function089

well for their intended use.090

To address these problems, we introduce091

Contextualized Topic Coherence (CTC) metrics092

which are a context-aware family of topic co-093

herence metrics based on the pre-trained Large094

Language Models (LLM). Taking Advantage of095

LLMs elevates the understanding of language at a096

very sophisticated level incorporating its linguis-097

tic nuances, contexts, and relationships. CTC is098

much less susceptible to being fooled by mean-099

ingless topics that often receive high scores with100

traditional topic coherence metrics.101

2 Automated Topic Coherence Metrics102

Topic coherence (TC) metrics measure the con-103

sistency of words in a given topic to evaluate the104

interpretability and meaningfulness of a topic by105

computing the level of semantic similarity among106

words that are included in the topic. A high TC107

value indicates that the words in the topic are se-108

mantically similar and are likely to co-occur in109

the same circumstances.110

The authors of (Newman et al., 2009, 2010b)111

claim that a method based on the Point-wise Mu-112

tual Information (PMI) gives the largest corre-113

lations with human ratings. They define UCI,114

which measures the strength of the association be-115

tween pairs of words based on their co-occurrence116

in a sliding window of length-l words. (Mimno 117

et al., 2011) proposes UMass, an asymmetric con- 118

firmation measure that estimates the degree of 119

coherence between words within a given topic 120

by calculating the log ratio frequency of their co- 121

occurrences in the corpus of documents. UMass 122

counts the number of times a pair of words co- 123

occur in a given corpus and compares this number 124

to the expected number of co-occurrences where 125

words are randomly distributed across the whole 126

corpus. (Aletras and Stevenson, 2013) proposes 127

context vectors for each topic word w to generate 128

the frequency of word co-occurrences within win- 129

dows of ±1 words surrounding all instances of 130

w. They showed that NPMI (Bouma, 2009) has a 131

larger correlation with human topic ratings com- 132

pared to UCI and UMass. Additionally, NPMI 133

takes into account the fact that some words are 134

more common than others and adjusts the fre- 135

quency of individual words accordingly(Lau et al., 136

2014). While NPMI is generally more sensitive to 137

rare words and can handle small datasets, UMass 138

focuses on fast computation of coherence scores 139

over large corpora. (Stevens et al., 2012) showed 140

that a smaller value of ϵ tends to yield better 141

results than the default value of ϵ = 1 used in 142

the original paper since it emphasizes more the 143

word combinations that are completely unattested. 144

(Röder et al., 2015) proposes a unifying frame- 145

work of coherence measures that can be freely 146

combined to form a configuration space of co- 147

herence definitions, allowing their main elemen- 148

tary components to be combined in the context 149

of coherence quantification. For example, they 150

propose the CV metric, which uses a variation of 151

NPMI to compute topic coherence over a sliding 152

window of size N and adds a weight γ to assign 153

more strength to more related words. According 154

to (Campagnolo et al., 2022), the CV metric is 155

more sensitive to noisy information and dirty data 156

than CUMass and CUCI. (Nikolenko, 2016) and 157

(Schnabel et al., 2015) propose the metric TCDWR 158

based on the Distributed Word Representations 159

(DWR) (Mikolov et al., 2013b,a) which are better 160

correlated to human judgment. Similarly, (Ram- 161

rakhiyani et al., 2017) presents a coherence mea- 162

sure based on grouping topic words into buckets 163
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and using Singular Value Decomposition (SVD)164

and integer linear programming-based optimiza-165

tion to create coherent word buckets from the gen-166

erated embedding vectors. (Korenčić et al., 2018)167

proposes several topic coherence metrics based on168

topic documents rather than topic words. The ap-169

proach essentially extracts topic documents, vec-170

torizes them using several methods such as word171

embedding aggregation, and computes a coher-172

ence score based on the document vectors. (Lund173

et al., 2019) proposes an automated evaluation174

metric for local-level topic models by introduc-175

ing a task designed to elicit human judgment and176

reflect token-level topic quality.177

3 Contextualised Topic Coherence178

In this article, we introduce Contextualized Topic179

Coherence (CTC) to refer to a new family of topic180

coherence metrics that benefit from the recent de-181

velopment of Large Language Models (LLM).182

This paper presents two approaches using LLMs183

for defining CTC metrics. The first approach uses184

LLMs to compute contextualized estimates of the185

pointwise mutual information (CPMI) between186

topic words. In the second approach, we use Chat-187

GPT (OpenAI, 2022) to evaluate topic coherence188

similar to human-annotated metrics.189

3.1 Automated CTC190

CPMI. Recent work by (Hoover et al., 2021)191

uses conditional PMI estimates to analyze the re-192

lationship between linguistic dependencies and193

statistical dependencies between words. They194

propose Contextualized PMI (CPMI) as a new195

method for estimating the conditional PMI be-196

tween words in context using a pre-trained lan-197

guage model. As illustrated in Figure 1, the CPMI198

between two words wi and wj in a sentence s is199

defined as200

CPMI(wi, wj | s) = log
p(wi | s−wi)

p(wi | s−wij )
(1)201

where p is an estimate for the probability of words202

in context based on a pre-trained masked language203

model (MLM), such as BERT. Here, s−wi rep-204

resents the sentence with word wi masked, and205

Figure 1: Calculating CPMI for two topic words in a
segment of a document.

s−wij is the sentence with both words wi and wj 206

masked. 207

We adopt CPMI to introduce a new automated 208

Contextualized Topic Coherence (CTC) metric. 209

Automated CTC estimates the statistical depen- 210

dence within a topic in a corpus by computing the 211

CPMI value for each pair of topic words along a 212

sliding window applied to the dataset. For this, 213

the corpus is divided into a set of window seg- 214

ments of length w that have k words intersecting 215

with adjacent window segments to compute the 216

average CPMI between each pair of words within 217

each topic over all window segments, giving the 218

following expression for CTC: 219

1

n ∗
(
m
2

) n∑
i=1

m∑
r=2

r−1∑
s=1

CPMI(wr
i , w

s
i | cu) (2) 220

where cu ⊂ corpus D is a window segment with 221

length of w that has k words overlapping with its 222

adjacent window segments, n is the number of 223

topics and m is the number of topic words. 224

3.2 Semi-automated CTC 225

Intrusion. (Chang et al., 2009) studied the topic 226

words intrusion task to assess topic coherence by 227

identifying a coherent latent category for each 228

topic and discovering the words that do not be- 229

long to that category. These intruder words are 230

detected by human subjects to assess the quality 231

of topic models and to measure a coherence score 232
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that assigns a low probability for intruder words233

to belong to a topic. We apply this idea to chat-234

bots with a prompt (see Appendix B.1), which235

provides the topic words to ChatGPT (OpenAI,236

2022) and asks for a category and intruder words.237

Rating. While human topic ratings are expen-238

sive to produce, they serve as the gold standard239

for coherence evaluation (Röder et al., 2015). For240

example, (Syed and Spruit, 2017) uses human241

ratings to explore the coherence of topics gener-242

ated by LDA topics across full texts and abstracts.243

(Newman et al., 2010a) provides human anno-244

tators with a rubric and guidelines for judging245

whether a topic is useful or useless. The annota-246

tors evaluate a randomly selected subset of topics247

for their usefulness in retrieving documents on a248

given topic and score each topic on a 3-point scale,249

where 3=highly coherent and 1=useless (less co-250

herent). Following (Newman et al., 2010a), (Ale-251

tras and Stevenson, 2013) presented topics with-252

out intruder words to Amazon Mechanical Turk253

to score them on a 3-point ordinal scale. We adapt254

this method to chatbots with a prompt (see Ap-255

pendix B.2), which provides the topic words to256

ChatGPT and asks to rate the usefulness of the257

topic words for retrieving documents on a given258

topic. The CTCRating for a topic model is then259

obtained by the average sum of all ratings over all260

topics.261

4 Experiments262

In this section, we expect to observe that the base-263

line metrics (UCI, UMass, NPMI, CV , DWR)264

rank topic models differently from CTC. We also265

expect CTC rankings favor interpretable topics266

and handle short text datasets more effectively267

than the baseline metrics (Doogan and Buntine,268

2021; Hoyle et al., 2021). This implies that base-269

line metrics often yield high scores for incoherent270

topics, while conversely assigning low scores to271

well-interpretable topics. In contrast, CTC has a272

better model of language and can better evaluate273

topical similarity as it would appear to a human274

reader. Therefore, we expect to see that base-275

line metrics and CTC would differ at extremes of276

highest or lowest coherency.277

4.1 Experimental setup 278

Datasets. The experiments incorporate two 279

datasets including the 20Newsgroups dataset 280

(Lang, 1995) and a collection of 17K tweets by 281

Elon Musk published between 2017 and 2022 by 282

(Raza, 2023). 283

Topic Models. The experiments involve six 284

different topic models including Gibbs LDA 285

(Griffiths and Steyvers, 2004), Embedded Topic 286

Model (ETM) (Dieng et al., 2020), Adversarial- 287

neural Topic Models (ATM) (Wang et al., 2019), 288

Top2Vec (Angelov, 2020), and Contextualized 289

Topic Model (CTM) (Bianchi et al., 2021), and 290

BERTopic (Grootendorst, 2022). 291

Topic Coherence Metrics. The topics gener- 292

ated by the topic models are evaluated using 293

the proposed Contextualized Topic Coherence 294

(CTC) metrics, which are then compared to the 295

well-established automated topic coherence met- 296

rics CV, UCI, UMass, NPMI, and DWR. For 297

CTCCPMI, we segmented the 20Newsgroup and 298

Elon Musk’s Tweets datasets into chunks of 15 299

and 20 words, respectively, without intersections. 300

We then extracted the CPMI for all word pairs in 301

each segment using the pre-trained language mod- 302

els bert-base-uncased and Tesla K80 15 GB GPU 303

from Google Colab (Bisong and Bisong, 2019). 304

This pre-computing step took about 7 hours but 305

allowed us to compute CTCCPMI for any topic 306

model in the order of a few seconds. For evaluat- 307

ing CTCIntrusion and CTCRating, we made a request 308

for each topic to ChatGPT with GPT 3.5 Turbo, 309

which cost less than a dollar for all the experi- 310

ments. 311

4.2 Results 312

Tables 1 and 2 represent the results of the eval- 313

uation of the topic models obtained from the 314

20Newsgroup and Elon Musk’s Tweets datasets, 315

respectively, using CTC and the baseline met- 316

rics. To allow us to compare the models in terms 317

of topic coherence metrics, the highest value for 318

each metric is shown in bold. the highest values 319

for each metric within each topic model are noted 320

in italic font. This helps us determine the optimal 321
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Table 1: Scores of Topic Coherence Metrics on 20Newsgroup dataset.

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA (2003)
20 0.260 -2.338 0.043 0.512 0.211 1.3 0.225 9.92
50 -0.121 -2.771 0.023 0.479 0.191 1.16 0.220 5.99
100 -0.690 -3.030 0.002 0.450 0.149 1.14 0.267 3.25

ETM (2020)
20 0.478 -2.08 0.067 0.563 0.292 0.7 0.452 19.16
50 0.380 -1.903 0.054 0.532 0.330 1.22 0.348 20.35
100 0.351 -1.962 0.049 0.522 0.312 1.23 0.41 22.58

ATM (2019)
20 -1.431 -3.014 -0.059 0.338 0.151 0.92 0.305 0.03
50 -0.940 -2.902 -0.046 0.342 0.077 1.15 0.275 0.18
100 -0.735 -2.741 -0.032 0.362 0.053 1.12 0.340 1.72

CTM (2021)
20 -1.707 -4.082 0.005 0.601 0.268 1.25 0.385 5.93
50 -0.724 -3.008 0.046 0.590 0.236 1.56 0.380 7.02
100 -0.926 -3.118 0.027 0.561 0.210 1.31 0.392 6.16

Top2Vec (2020) 85 0.910 -2.449 0.192 0.785 0.473 1.670 0.399 3.77

BERTopic (2022) 145 -1.023 -5.033 0.098 0.681 0.309 1.517 0.359 2.91

Table 2: Scores of Topic Coherence Metrics on Elon Musk’s Tweets dataset

Topic Models Baseline Metrics CTC Metrics

#T UCI UMass NPMI CV DWR Rating Intrusion CPMI

Gibbs LDA (2003)
10 -0.441 -3.790 0.016 0.498 0.838 1.6 0.29 2.19
20 -1.834 -5.415 -0.049 0.395 0.798 1.5 0.225 1.04
30 -3.068 -6.390 -0.099 0.336 0.783 1.466 0.33 0.86

ETM (2020)
10 0.205 -3.209 0.051 0.560 0.952 1.1 0.24 5.41
20 0.155 -3.079 0.028 0.538 0.974 1.433 0.233 4.48
30 0.025 -3.215 0.022 0.515 0.978 1.05 0.195 4.30

ATM (2019)
10 -9.021 -12.859 -0.324 0.364 0.730 1.2 0.211 -0.004
20 -7.967 -11.770 -0.283 0.343 0.694 1.1 0.177 0
30 -7.278 -11.301 -0.258 0.350 0.753 0.933 0.214 -0.03

CTM (2021)
10 -2.614 -7.049 -0.030 0.580 0.888 2.0 0.439 1
20 -3.720 -8.336 -0.070 0.534 0.880 1.45 0.185 3.04
30 -3.589 -8.063 -0.064 0.573 0.873 1.766 0.276 2.56

Top2Vec (2020) 164 -6.272 -10.536 -0.152 0.401 0.847 1.481 0.274 2.08

BERTopic (2022) 217 -4.131 -11.883 -0.020 0.432 0.541 1.539 0.276 1.52

number of topics for all models except Top2Vec322

and BERTopic, which don’t need this parameter323

as an input.324

General observations. Before analyzing the re-325

sults in Tables 1 and 2 in detail, we examine the326

relationship between the CTC metrics and the327

baseline metrics by performing Pearson’s correla-328

tion coefficient analysis (Sedgwick, 2012) on the329

results from Tables 1 and 2 similar to (Doogan330

and Buntine, 2021). As shown in Figure 2a (see331

Appendix C), for 20Newsgroup, the baseline met-332

rics UCI and UMass are highly correlated with333

CPMI but not with CTCRating and CTCIntrusion,334

which are more correlated with the baseline mea-335

sures NPMI and CV and DWR (which are also336

highly correlated). On the other hand, for the337

short text EM Tweets dataset, Figure 2b (see Ap-338

pendix C) shows that CPMI has a high correlation 339

with all baseline methods, while CTCIntrusion and 340

CTCRating are completely independent of CPMI 341

and the baseline measures. 342

Concerning our expectation that baseline met- 343

rics rank topic models differently from CTC met- 344

rics, Table 1 reports that the baseline metrics (ex- 345

cept for UMass) point to Top2Vec while CTC 346

metrics (except for CTCRating) point to ETM for 347

achieving the highest scores. Similarly, Table 2 348

reports that the baseline metrics (except for CV) 349

point to ETM while CTC metrics (except for 350

CTCCPMI) point to CTM for achieving the highest 351

scores. These contradictions between CTC and 352

baseline metrics are aligned with our expectations 353

and we will explore them with a meta-analysis of 354

topics generated by these topic models and the 355

scores they have received from CTC and baseline 356
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Table 3: Top-2 and bottom-2 topics of ETM(100) and Top2Vec on 20Newsgroup

Topic Model Ranked By Topics CV CPMI

ETM(100) (2020)

Highest CV

god, christian, people, believe, jesus 0.740 0.017
drive, card, scsi, disk, mb, 0.739 0.037

Lowest CV

book, number, problem, read, call 0.369 0.018
line, use, power, bit, high 0.458 0.018

Highest CPMI
year, time, day, one, ago, week 0.559 0.709
game, year, team, player, play 0.706 0.242

Lowest CPMI
new, number, also, well, call, order, used 0.340 -0.007
people, right, drug, state, world, country 0.529 -0.002

Top2Vec (2020)

Highest CV

dsl, geb, cadre, shameful, jxp 0.995 0.009
tor, nyi, det, chi, bos 0.989 0.012

Lowest CV

hacker, computer, privacy, uci, ethic 0.255 -0.0001
battery, acid, charged, storage, floor 0.344 0.006

Highest CPMI
mailing, list, mail, address, send 0.792 0.154

icon, window, manager, file, application 0.770 0.076

Lowest CPMI
lc, lciii, fpu, slot, nubus, iisi 0.853 -0.004

ci, ic, incoming, gif, edu 0.644 -0.002

metrics.357

Meta-analysis. To check the performance of358

different coherence metrics, we will compare the359

intepretability of their high and low-scoring top-360

ics. Note that CTC metrics observe contextual361

patterns between topic words, and therefore, we362

expect them to provide more consistent coher-363

ence scores according to the interpretability of364

the generated topics for all topic models.365

To verify the consistency of some represen-366

tative scores in Table 1, we examine the topics367

for 20 Newsgroup generated by Top2Vec, which368

have high and low scores for baseline metrics, and369

ETM, which have high and low scores for CTC370

metrics. Table 3 compares the top-2 and bottom-2371

topics ranked by CV and CTCCPMI. The moti-372

vation behind choosing these metrics is from our373

correlation analysis in Figure 2a(see Appendix C),374

which in CTCCPMI and CV has the least correla-375

tion among CTC and baseline metrics. First, we376

notice that the top-2 topics returned by CV for377

Top2Vec are not readily interpretable but are sta-378

tistically meaningful: dsl, geb, cadre, shameful,379

jxp are fragments of an email signature that oc-380

curs 82 times, while tor, nyi, det, chi, bos are381

abbreviations for hockey teams. This is not sur-382

prising, since Top2Vec produces what we call383

“trash topics”, which is a common problem for384

clustering-based topic models that cannot handle385

so-called “trash clusters” (Giannotti et al., 2002).386

While CTCCPMI returns a more coherent ranking387

for Top2Vec (the top 2 topics appear coherent,388

while the bottom topics are incoherent for hu- 389

man evaluation). This supports our assumption 390

that traditional topic coherence metrics such as 391

CV fail to evaluate neural topic models and, in 392

this case, even give the highest scores to trash 393

topics. This happens because they only consider 394

the syntactic co-occurrence of words in a win- 395

dow of text and cannot observe the underlying 396

relationship between topic words. CTCCPMI, on 397

the other hand, can detect these trash topics and 398

score them more accurately because it is contex- 399

tual and accompanied by LLMs that have rich in- 400

formation about linguistic dependencies between 401

topic words. CTCCPMI then also could be a good 402

measure to filter out these topics. The second 403

observation in Table 3 is that all eight topics re- 404

turned for ETM are coherent. This is because 405

ETM, which is a semantically-enabled probabilis- 406

tic topic model, produces decent topics that are 407

overall highly ranked by CTCCPMI, as shown in 408

Figure 4b (see Appendix C). 409

In the same way, we check the consistency of 410

some representative scores in Table 2 by check- 411

ing the interpretability of topics for Elon Musk’s 412

tweets generated by ETM, which has high base- 413

line scores, and by CTM, which has high CTC 414

scores. As shown in Table 4, we compare the 415

top 2 and bottom 2 topics ranked by NPMI and 416

CTCRating. As shown in Figure 2b (see Ap- 417

pendix C), these metrics are among those with the 418

lowest correlation between CTC and baseline met- 419

rics. A notable finding for CTM topics is that top- 420
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Table 4: Top-2 and bottom-2 topics of ETM(30) and CTM(30) on Elon Musk’s Tweets

Topic Model Ranked By Topics NPMI Rating Intrusion

CTM(30) (2021)

Highest NPMI
erdayastronaut, engine, booster, starship, amp 0.122 3 0.1

year, week, next, month, wholemarsblog 0.057 2 0.1

Lowest NPMI
transport, backup, ensure, installed, transaction -0.480 2 0.1
achieving, transition, late, transport, precision -0.459 1 0.1

Highest Rating
tesla, rt, model, car, supercharger -0.152 3 0.5

spacex, dragon, launch, falcon, nasa -0.283 3 0.4

Lowest Rating
ppathole, soon, justpaulinelol, yes, sure -0.330 1 0.5

achieving, transition, late, transport, precision -0.459 1 0.1

ETM(30) (2020)

Highest NPMI
amp, time, people, like, would, many 0.001 2 0.7

engine, booster, starship, heavy, raptor -0.023 2 0.1

Lowest NPMI
amp, rt, tesla, im, yes -0.283 1 0.1

amp, tesla, year, twitter, work -0.228 1 0.1

Highest Rating
amp, twitter, like, tesla, dont -0.186 2 0.8

amp, time, people, like, would 0.001 2 0.7

Lowest Rating
amp, tesla, year, twitter, work -0.228 1 0.1

amp, tesla, one, like, time -0.204 1 0.1

Table 5: Topic Coherence Scores of Gibbs LDA, DVAE, ETM on NYT News

Topic Models Baseline Metrics Human Evaluation CTC Metrics

#T UCI UMass CV NPMI Intrusion Rating Intrusion Rating CPMI

Gibbs LDA 50 1.42 -7.6 0.69 0.15 0.71 2.66 2.12 0.62 4.18

DVAE 50 2.43 -15 0.84 0.25 0.74 2.48 2.05 0.67 0.61

ETM 50 1.01 -7.4 0.60 0.11 0.64 2.38 2.06 0.64 3.72

Table 6: Top-5 topics among the topics generated by Gibbs LDA, DVAE and ETM on NYT News

Top-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE inc, 9mo, earns, otc, qtr, rev 0.98 1.2 0.9

DVAE inc, 6mo, earns, otc, rev, qtr 0.98 1.2 1.3

DVAE inc, otc, qtr, earns, rev, 6mo 0.97 1.3 0.8

DVAE arafat, hamas, gaza, palestinians, west_bank 0.97 2.1 1.5

DVAE condolences, mourns, mourn, board_of_directors, heartfelt, deepest 0.97 0.6 1.3

Human Score

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

DVAE skirts, dresses, chanel, couture, fashion 0.91 3 1.3

DVAE tenants, tenant, zoning, rents, landlords, developers 0.86 3 1.2

DVAE paintings, sculptures, galleries, picasso, sculpture, drawings, 0.91 2.9 2.1

DVAE television, network, news, cable, nbc, year, cbs 0.68 2.8 1.9

CTC

Gibbs LDA film, theater, movie, play, director, films 0.73 3 2.7

ETM court, judge, law, case, federal, lawyer, trial 0.80 2.8 2.6

Gibbs LDA court, law, judge, case, state, federal, legal, 0.72 2.6 2.2

Gibbs LDA music, dance, opera, program, work, orchestra, performance 0.73 1.1 2.1

ETM film, movie, story, films, directed, movies, star, character 0.79 2.7 2.1
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ics ranked highest by the CTCRating metric tend to421

be more interpretable compared to those ranked422

highest by NPMI, and similarly, topics ranked423

lowest by the CTCRating metric tend to be less in-424

terpretable compared to those ranked lowest by425

NPMI. The above observation also holds true for426

ETM, as the CTCRating metric is not affected by427

the scarcity of short text records. This is because428

CTCRating is complemented by a chatbot that mit-429

igates the impact of limited data availability. It is430

also interesting to note that the topics generated431

by CTM are overall more interpretable and coher-432

ent than those generated by ETM. This demon-433

strates the validity of CTCRating and CTCIntrusion434

over baseline metrics, as we observed in Table 2.435

It also reveals the superiority of CTM over ETM,436

as shown in Figure 4d (see Appendix C), in short437

text datasets as a result of a contextualized ele-438

ment in its architecture.439

5 Human Evaluation440

The goal of automated topic coherence metrics441

is to accurately approximate human reactions442

to topics without the need for expensive, time-443

consuming studies that require multiple annota-444

tors to avoid bias. In this section we compare the445

proposed metric with published human evaluation446

metrics based on data provided by Hoyle et al.447

(2021). This data includes three topic models448

(Gibbs LDA (McCallum, 2002), DVAE (Srivas-449

tava and Sutton, 2017), and ETM (Dieng et al.,450

2020)) models with 50 topics generated on the451

(New York Times) dataset, along with human eval-452

uation (intrusion and ranking). We evaluate the453

generated topics with CTCCPMI, CTCintrusion and454

CTCranking, which are comparable to human intru-455

sion and human ranking.456

As shown in Table 5, human evaluators tend to457

see little quantifiable difference between Gibbs458

LDA and DVAE, while traditional metrics show459

pronounced differences. In contrast, we find that460

CTC metrics more closely match human prefer-461

ences (or lack thereof). It is possible that this462

result is simply due to a miscalibration of rela-463

tive scores. To show that humans and CTC rank464

topics similarly, we also report Spearman’s Rank465

Correlation (Myers and Sirois, 2004) to assess the 466

strength and direction of the monotonic relation- 467

ship between the ranking of topics in each metric. 468

As shown in Figure 3, the CTC metrics have an 469

overall higher correlation with human ratings than 470

the baselines. 471

We also examine the consistency of the scores 472

obtained by different coherence metrics and com- 473

pare the coherence of high and low scoring topics 474

from different topic models and CTC metrics. As 475

shown in Table 6, Table 7, CV is not able to score 476

topics correctly. For example, the topic inc, 9mo, 477

earns, otc, qtr, rev gets the highest score, even 478

though it has little clear interpretability and has 479

been rated relatively low by human evaluators. 480

On the other hand, CTC metrics score topics rela- 481

tive to their contextual relationship and are very 482

close to human scores. For example, the topic film, 483

theater, movie, play, director, movies receives the 484

highest score by both CTC and human scoring. 485

6 Conclusion 486

This paper introduces a new family of topic coher- 487

ence metrics called Contextualized Topic Coher- 488

ence Metrics (CTC) that benefits from the recent 489

development of Large Language Models (LLM). 490

CTC includes two approaches that are motivated 491

to offer flexibility and accuracy in evaluating neu- 492

ral topic models under different circumstances. 493

Our results show automated CTC outperforms 494

the baseline metrics on large-scale datasets while 495

semi-automated CTC outperforms the baseline 496

metrics on short-text datasets. After a compre- 497

hensive comparison between recent neural topic 498

models and dominant classical topic models, the 499

results indicate that some neural topic models, 500

which optimize traditional topic coherence met- 501

rics, often receive high scores for topics that are 502

overly sensitive to idiosyncrasies such as repeated 503

text, and lack face validity. We show with our 504

experiments that CTC is not susceptible to being 505

deceived by these meaningless topics by leverag- 506

ing the abilty of LLMs to better model human ex- 507

pectations for language and evaluate topics within 508

and outside their contextual framework. 509
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Limitations510

CTC metrics come with several limitations, such511

as latency, accuracy, and the potential for bi-512

ased results. For instance, CPMI can be a time-513

consuming process, as it involves running all sen-514

tences through LLMs and calculating word co-515

occurrences for every pair of words across all516

topics. Additionally, the results for Rating and517

Intrusion may vary with each query to LLMs.518

Therefore, it is necessary to configure the LLM’s519

temperature and iterate through multiple queries520

to obtain normalized values. Furthermore, it’s521

important to be aware that LLMs can exhibit bias,522

and their utilization in this application could po-523

tentially perpetuate such biases.524
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A Automated Coherence Metrics716

Topic Models were initially evaluated with held-717

out perplexity as an automated metric (Blei et al.,718

2003). Perplexity quantifies how well a statistical719

model predicts a sample of unseen data and is720

computed by taking the inverse probability of the721

test set, normalized by the number of words in the722

dataset. According to (Chang et al., 2009), per-723

plexity has been found to be inconsistent with724

human interpretability. As a result, the field725

shifted towards adopting automated topics coher-726

ence metrics that rely on word co-occurrence-727

based methods like Point-wise Mutual Informa-728

tion (PMI) (Cover, 1999).729

A.1 Definition730

As defined as follows, Topic coherence over PMI731

(TCUCI) is defined as the average of the log2 ratio732

of co-occurrence frequency of word wr
i and ws

i733

within a given topic i.734

TCUCI =
1

n

n∑
i=1

1(
m
2

) m∑
r=2

r−1∑
s=1

PMI(wr
i , w

s
i ) (3)735

with736

PMI(wi, wj) = log2
P (wi, wj) + ϵ

P (wi)P (wj)
(4)737

where n is the number of topics with m topic 738

words and PMI represents the pointwise mutual 739

information between each pair of words (wr
i and 740

ws
i ) in the topic i. PMI is computed by taking 741

the logarithm of the ratio of the joint probability 742

of two words P (wr
i , w

s
i ) appearing together to 743

the individual probabilities of the words P (wr
i ), 744

P (ws
i ) occurring separately. Note that ϵ = 1 is 745

added to avoid the logarithm of zero. 746

On the other hand, UMass (Mimno et al., 2011) 747

computes the co-document frequency of word wr
i 748

and ws
i divided by the document frequency of 749

word ws
i . 750

UMass(wr
i , w

s
i ) = log

D(wr
i , w

s
i ) + ϵ

D(ws
i )

(5) 751

where n and m are the numbers of topics and 752

topic words respectively. The smoothing param- 753

eter ϵ was initially introduced to be equal to one 754

and avoid the logarithm of zero. 755

Similarly, (Aletras and Stevenson, 2013) pro- 756

poses context vectors for each topic word w to 757

generate the frequency of word co-occurrences 758

within windows of ±1 words surrounding all in- 759

stances of w. 760

NPMI(wr
i , w

s
i ) =

log2
P (wr

i ,w
s
i )+ϵ

P (wr
i )P (ws

i )

− log2(P (wr
i , w

s
i ) + ϵ)

(6) 761

(Röder et al., 2015) proposes CV , which is a vari- 762

ation of NPMI. 763

CV(w
r
i , w

s
i ) = NPMIγ(wr

i , w
s
i ) (7) 764

One way to estimate TCDWR is to compute the 765

average pairwise cosine similarity between word 766

vectors in a topic as follows. 767

DWR(wr
i , w

s
i ) =

wr
i · ws

i

∥wr
i ∥ · ∥ws

i ∥
(8) 768

B LLM Prompts 769

In this section, we present LLM prompts used in 770

our experiments. The descriptions of the prompts 771

for the ratings and intrusion task are as follows. 772
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B.1 Intrusion773

System prompt: I have a topic that is described by the fol-774

lowing keywords: [ topic-words ]. Provide a one-word topic775

based on this list of words and identify all intruder words776

in the list with respect to the topic you provided. Results777

be in the following format: topic: <one-word>, intruders:778

<words in a list>779

The number of intrusion words (|Ii|) returned780

by chatbot for each topic i, is used to define781

CTCIntrusion as follows:782

CTCIntrusion =

n∑
i=1

1− |Ii|
m

n
(9)783

where n is the number of topics and m is the784

number of topic words.785

B.2 Rating786

System prompt: I have a topic that is described by787

the following keywords: [topic-words]. Evaluate the inter-788

pretability of the topic words on a 3-point scale where 3 =789

“meaningful and highly coherent” and 0 = “useless” as topic790

words are usable to search and retrieve documents about a791

single particular subject. Results be in the following format:792

score: <score>793

B.3 Normalized CPMI794

To improve comparability, we also propose a nor-795

malized version of CPMI that extend its generaliz-796

ability and allows to mitigate potential biases that797

may arise due to specific dataset characteristics or798

idiosyncrasies. Additionally, it facilitates thresh-799

old determination and provides a consistent scale800

that allows researchers to set thresholds based on801

desired coherence levels, ensuring the metric is802

effectively utilized in practical applications.803

B.3.1 Definition804

Given a set of n topics TM 7→ {t1, t2, . . . , tn}805

with m words ti 7→ {wi
1, w

i
2, . . . , w

i
m} as an out-806

put of topic model TM on the corpus of e docu-807

ments D = {d1, d2, . . . , de}, the CTC based on808

Normalized CPMI (NCPMI) called CTCNCPMI is809

defined as follows.810

1

e ∗ n ∗m

e∑
d=1

n∑
i=1

m∑
j=1

NCPMI(wi
j , t

i | cd)

(10) 811

while NCPMI(wi
j , t

i | cd) is: 812

log
P (wi

j |cd−wi
j

)

P (wi
j |cd−ti

)

−log(P (wi
j | cd−wi

j
)× P (ti | cd−ti

))
(11) 813

where P is an estimate for the probability of 814

words given context based on language model 815

LM. The cd−wi
is the document d with word wi 816

masked, and cd−tj is the document d with words 817

of topic ti masked. 818

C Correlation Study 819

Pearson correlation is a statistical measure used 820

to assess the degree of linear association between 821

sets of data. As shown Figure 2, we applied this 822

method to the results of topic coherence metrics 823

on the topic models to evaluate how closely re- 824

lated or similar the quality of topics generated by 825

these models is. A high positive Pearson corre- 826

lation coefficient indicates that the topic models 827

produce similar results in terms of topic coher- 828

ence, suggesting that they are consistent and re- 829

liable. Conversely, a low or negative correlation 830

suggests inconsistency or divergence in the qual- 831

ity of topics generated by the different models. 832

On the other hand, Spearman’s rank correla- 833

tion coefficient is a statistical measure used to 834

assess the strength and direction of the monotonic 835

relationship between sets of data. As show in 836

Figure 3, we applied this method to evaluation 837

topic coherence metrics for human evaluation to 838

determine if there is a consistent ranking of these 839

models in terms of their performance across dif- 840

ferent metrics. A high positive Spearman’s rank 841

correlation coefficient suggests that the rankings 842

of the three models across the evaluation metrics 843

are similar, indicating consistency in their perfor- 844

mance. Conversely, a low or negative correlation 845

suggests variability in the rankings, indicating 846

that different metrics may lead to different model 847

preferences. 848
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(a) 20Newsgroup (b) Elon Musk Tweets

Figure 2: Pearson’s correlation coefficient on CTC and baseline
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Figure 3: Spearman’s rank correlation coefficients between evaluation metrics for three topic models

(a) 20Newsgroup | CV (b) 20Newsgroup | CPMI (c) Twitter | NPMI (d) Twitter | Intrusion

Figure 4: Comparison Between Topic Models based on Topic Coherence Evaluation
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Table 7: Bottom-5 topics among the topics generated by Gibbs LDA, DVAE and ETM on NYT News

Botton-5
Sorted by Model Topic Scores

CV Human CTC

CV

DVAE spade, derby, belmont, colt, spades, dummy, preakness 0.23 1.5 0.4

ETM like, making, important, based, strong, including, recent 0.35 2 0.3

ETM time, half, center, open, away, place, high 0.37 1.6 0.2

ETM today, group, including, called, led, known, began, built, early, 0.37 2 0.3

Gibbs LDA people, editor, time, world, good, years, public, long, 0.37 0.1 1.1

Human Score

Gibbs LDA people, editor, time, world, good, years, public, 0.37 0.1 1.1

ETM week, article, page, march, tuesday, june, july 0.57 0.4 1.3

Gibbs LDA street, tickets, sunday, avenue, information, free 0.75 0.4 0.3

ETM new_york, yesterday, director, manhattan, brooklyn, received 0.49 0.4 1

Gibbs LDA bedroom, room, bath, taxes, year, market, listed, kitchen, broker 0.72 0.4 1.3

CTC

Gibbs LDA city, mayor, state, new_york, new_york_city, officials 0.61 2.5 0.1

ETM power, number, control, according, increase, large 0.44 0.9 0.2

Gibbs LDA officials, board, report, union, members, agency, yesterday 0.51 0.8 0.3

ETM time, half, center, open, away, place, high, day, run 0.37 1.2 0.3

ETM net, share, inc, earns, company, reports, loss, lead 0.73 1.8 0.3

D More Results849

Figure 4 compares overall rating of the mentioned850

topic models in Section 4 over 20Newsgroup and851

the twitter dataset based on CV , CPMI, NPMI,852

and Intrusion. The details of this figure are ex-853

plained in Section 4.2.854

Table 7 presents bottom-5 topics among the855

topics generated by Gibbs LDA, DVAE, and ETM856

on the NYT News dataset for better comparison857

between scores generated by CTC metrics against858

baseline and human evaluation.859

E Python Package860

CTC is implemented as a service for researchers861

and engineers who aim to evaluate and fine-tune862

their topic models1. The source code of this863

python package is provided in ./ctc and a note-864

book named example.ipynb is prepared to explain865

how to use this python package as follows.866

E.0.1 Automated CTC867
868

1 from ctc.main import Auto_CTC869

2 #initiating the metric870

3 eval=Auto_CTC(segments_length871

=15, min_segment_length =5,872

segment_step =10, device="mps")873

1https://anonymous.4open.science/r/CTC-39DB

4 874

5 # segmenting the documents 875

6 docs=documents 876

7 eval.segmenting_documents(docs) 877

8 878

9 # creating cpmi tree including 879

all co-occurence values 880

between all pairs of words 881

10 eval.create_cpmi_tree () 882

11 #eval.load_cpmi_tree () 883

12 884

13 # topics =[[" game","play "],["man 885

","devil "]] for instance 886

14 eval.ctc_cpmi(topics) 887888

E.0.2 Semi-automated CTC 889
890

1 from ctc.main import 891

Semi_auto_CTC 892

2 893

3 openai_key="YOUR OPENAI KEY" 894

4 895

5 y=Semi_auto_CTC(openai_key , 896

topics) 897

6 898

7 y.ctc_intrusion () 899

8 900

9 y.ctc_rating () 901902
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