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Abstract001

Large Language Models (LLMs) have demon-002
strated impressive reasoning abilities, but their003
generated rationales often suffer from issues004
such as reasoning inconsistency and factual005
errors, undermining their reliability. Prior006
work has explored improving rationale quality007
via multi-reward fine-tuning or reinforcement008
learning (RL), where models are optimized for009
diverse objectives. While effective, these ap-010
proaches train the model in a fixed manner and011
do not have any inference-time adaptability,012
nor can they generalize reasoning requirements013
for new test-time inputs. Another approach014
is to train specialized reasoning experts using015
reward signals and use them to improve gen-016
eration at inference time. Existing methods017
in this paradigm are limited to using only a018
single expert and cannot improve upon mul-019
tiple reasoning aspects. To address this, we020
propose MIXIE, a novel inference-time expert-021
mixing framework that dynamically determines022
mixing proportions for each expert, enabling023
contextualized and flexible fusion. We demon-024
strate the effectiveness of MIXIE on improving025
chain-of-thought reasoning in LLMs by merg-026
ing commonsense and entailment reasoning ex-027
perts finetuned on reward-filtered data. Our028
approach outperforms existing baselines on029
three question-answering datasets: StrategyQA,030
CommonsenseQA, and ARC, highlighting its031
potential to enhance LLM reasoning with effi-032
cient, adaptable expert integration.033

1 Introduction034

Recent success in NLP is primarily attributed to035

the progress in scaling the pre-training of large lan-036

guage models (LLMs), enabling them to learn a037

variety of tasks using a few “in-context” demon-038

strations as model input (Brown et al., 2020; Ope-039

nAI, 2023). Recently, the chain-of-thoughts (CoTs)040

style of prompting techniques (Wei et al., 2022;041

Zhou et al., 2023; Yao et al., 2023) has made the042

Agent

User

Between bank and office, bank is a place 
that requires more security. So, the 
answer is bank.

Q: Where is a security guard most likely to 
be posted? (a) bank (b) office

Deciding between “more” 
or “less” requires 
understanding that “bank 
requires more security” 
is more plausible

Predicting the answer as 
“bank” requires understanding 
that “bank” is the correct 
completion that is consistent 
with the previous sentence.

Figure 1: Motivation for token-level mixing. Predicting dif-
ferent tokens in the CoT rationale requires different reasoning
skills. For instance, predicting some tokens need to make
common sense while others might need to be consistent with
the overall generation.

reasoning process more transparent, but the gener- 043

ated reasoning steps can sometimes be unreliable. 044

Ye and Durrett (2022) attribute this unreliability 045

majorly to two aspects: factuality, whether the ex- 046

planation is correctly grounded in the input and 047

consistency, whether the explanation entails the 048

model’s prediction. Improving LLMs on these as- 049

pects is crucial since using such unreliable reason- 050

ing in downstream tasks can further impact user 051

trust and overall performance. 052

One approach to improve upon these reasoning 053

aspects is to train LLMs on different reward signals 054

using reinforcement learning techniques (Ouyang 055

et al., 2022; Schulman et al., 2017), creating a holis- 056

tic reasoning expert. However, effectively using 057

multiple rewards corresponding to different reason- 058

ing aspects remains challenging. Another way is 059

to train multiple experts using preference data or 060

reward signals corresponding to different aspects, 061

and then merging them into a unified model. Ex- 062

isting techniques (Lu et al., 2023; Ramnath et al., 063

2024) are either not capable of using multiple re- 064

wards or use the reward signals very passively. 065

For instance, as shown in Figure 2(b), IPA can 066

merge only two experts in equal proportions, mak- 067

ing it a bit rigid for scenarios where mixing experts 068

in different proportions is required. Lastly, other 069
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Figure 2: Overview of MIXIE and baselines. (a) We create multiple experts from a base LLM via finetuning on different
datasets. (b) IPA tailors the base LLM’s logits using a single expert at inference time. (c) In MIXIE, all the base and expert
LLMs are kept frozen and only the logit mixer module is trained to mix the final layer logits in an adaptive manner. Please refer
to Section 3 for more details.

mixture-of-expert (MoE) approaches (Sukhbaatar070

et al., 2024; Bansal et al., 2024) modify the trans-071

former’s (Vaswani et al., 2017) layer-level details,072

making it challenging to use out-of-the-box for a073

new model family.074

In this work, we propose MIXIE, a simple ap-075

proach for mixing multiple experts at inference076

time. We introduce a mixer module that dynami-077

cally decides the mixing proportions of each expert078

during inference, thus allowing for contextualized079

weighted merging of the experts. Figure 2(c) de-080

picts an overview of our mixing approach. This081

approach improves over IPA as it can mix multiple082

experts in unequal proportions, thus significantly083

improving the overall flexibility. In contrast to084

routers in standard MoEs, our inference-time mixer085

module consists of limited parameters that don’t re-086

quire extensive training on large data, thus making087

the training process very efficient. Additionally, it088

is simple to implement for any model family, mak-089

ing it easy to use out of the box. Overall, we in-090

troduce a simple technique to mix multiple experts091

dynamically at inference time, thus addressing the092

limitations of prior works on merging experts (Lu093

et al., 2023; Sukhbaatar et al., 2024).094

Next, we specifically motivate the need for token-095

level mixing of experts to improve the reasoning of096

LLMs. For example, in Figure 1, when generating097

a CoT rationale for the given question, some tokens098

(“more”, in this example) need to be make common099

sense, some need to be consistent with overall gen-100

eration (“bank”, in this example), while others need101

to be grammatically coherent. This shows that a102

commonsense plausibility expert is more suited to103

predict some tokens, a consistency expert for other104

tokens, and so on. Thus, this further motivates the105

MIXIE framework, which enables the mixing of106

experts dynamically at a token level. 107

We demonstrate the effectiveness of MIXIE by 108

using it to improve the reasoning process of LLMs. 109

Specifically, inspired by the findings of Ye and 110

Durrett (2022), we aim to improve the plausibil- 111

ity and consistency of CoT rationales (Wei et al., 112

2022) generated by LLMs. For this, we first collect 113

high-quality CoT data using ChatGPT and filter out 114

the implausible and inconsistent rationales using 115

existing reward models (Liu et al., 2023; Sanyal 116

et al., 2024). These reward-filtered datasets are 117

then used to train expert LLMs by finetuning pre- 118

trained models. Then, we train our mixer module 119

to mix these experts under the MIXIE framework. 120

We find that MIXIE improves over existing base- 121

lines on three natural language question-answering 122

datasets: StrategyQA (Geva et al., 2021), Common- 123

senseQA (Talmor et al., 2019), and ARC (Clark 124

et al., 2018), indicating that mixing multiple ex- 125

perts using our framework is an effective way to 126

improve reasoning abilities in LLMs. 127

2 Background 128

2.1 Problem Statement 129

We focus on the text generation task, which gen- 130

erates the output sequence y given the input se- 131

quence x. We intend to tailor the generation pro- 132

cess to generate a sequence of high quality (e.g., 133

generated text should be self-consistent). Differ- 134

ent objectives can quantify such qualities of gen- 135

erative text. We assume that those objectives can 136

be measured using appropriate reward functions 137

R1(y), R2(y), . . . RN (y). Our goal is to adjust the 138

generation probability p(yt|y<t) so that the gen- 139

erated sequence improves on the various rewards 140

across the desirable aspects. 141
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2.2 Inference-time Policy Adapter142

Inference-time Policy Adapter (IPA) (Lu et al.,143

2023) tailors LLMs using a policy adapter to guide144

a base model’s generation during inference time.145

For a given base model B and an adapter model A,146

the tailored policy is as follows:147

p(yt|y<t) =
1

Z
pB(yt|y<t)pA(yt|y<t), (1)148

where p(·) is the language modeling probability149

and Z is a normalizing factor. The IPA workflow150

is depicted in Figure 2(b). The tailored policy is151

typically trained to optimize a specific user-defined152

objective (or reward) using RL algorithms (Schul-153

man et al., 2017; Rafailov et al., 2023; Lu et al.,154

2022). The key property of IPA is that only the155

adapter model is trainable during training, while156

the base model is kept frozen. This can be poten-157

tially beneficial in cases where the base model is158

significantly larger than the adapter.159

However, IPA is limited to being able to train a160

single adapter. This constraint of using only one161

adapter for mixing is limiting in scenarios where162

more than one aspect/reward needs to be optimized.163

Additionally, IPA trains the combined policy (Eq.164

1), which still requires loading both the base and165

adapter models while training the adapter model.166

This is potentially inefficient both in terms of com-167

puting and memory.168

3 Overview of MIXIE169

Through our proposed method MIXIE, we aim to170

address the various limitations of IPA that were171

discussed in Sections 2.2. First, we introduce the172

ability to use multiple reward signals in MIXIE.173

This is particularly important in real-world applica-174

tions such as improving the chain-of-thought (CoT)175

reasoning, where different aspects of generation176

need to be tailored using specific reward signals.177

We achieve this by mixing multiple experts trained178

on different reward signals instead of using the re-179

ward signals directly for training, as done in IPA.180

Next, we enable a weighted mixing of experts at181

inference time, ensuring that experts can have dy-182

namic weights depending on the specific context.183

This is crucial because if all experts contribute with184

the same strength at all steps, the more relevant185

expert might get dampened, leading to sub-optimal186

mixing and subsequent inferior generations. Figure187

2(c) depicts an overview of our approach. In the188

rest of the section, we describe different aspects189

of our model’s design and discuss the training and 190

inference steps for building a MIXIE model. 191

3.1 Allowing for Multiple Reward Signals 192

First, we observe that if we use trained expert 193

LLMs instead of adapters, we can extend the IPA 194

formulation (Eq. 1) to optimize for different ob- 195

jectives/rewards. Specifically, for a base model B 196

and N trained expert models E1, E2, . . . EN , the 197

tailored probability distribution can be defined as: 198

p(yt|y<t) =
1

Z
pB(yt|y<t)

N∏
i=1

pEi(yt|y<t), (2) 199

where the trained expert model Ei is optimized 200

for a user-defined objective (or reward) using RL 201

algorithms (Schulman et al., 2017; Rafailov et al., 202

2023; Lu et al., 2022). The key distinction between 203

this and IPA is that IPA initializes an adapter with 204

a pre-trained model. In contrast, here, the trained 205

expert model is already optimized for a specific 206

reward, enabling the stacking of different experts. 207

3.2 Need for Learnable Mixing Weights 208

Unlike the trainable adapter network in IPA, expert 209

models in the Eq. 2 are fixed. This can potentially 210

lead to subpar performance, as all the reward sig- 211

nals do not necessarily need to be mixed in equal 212

proportions. To mitigate this, we introduce learn- 213

able weights in Eq. 2, which is modified as follows: 214

p(yt|y<t) = 215

1

Z
pB(yt|y<t)

wb
t

N∏
i=1

pEi(yt|y<t)
wi

t , (3) 216

where p(·) is the language modeling probability, 217

wb
t , w

i
t are the learnable weights for base and ex- 218

pert models at time step t, respectively, and Z is a 219

normalizing factor. These weights are learned at the 220

token level, i.e., for each token being predicted at a 221

decoding step, MIXIE learns the optimal weights 222

for combining the base and expert models. 223

Rather than directly learning these weights, we 224

define a logit mixer module, G, that is used to pre- 225

dict the optimal weights at a token level. This mixer 226

module is modeled as a two-layer feed-forward 227

neural network (FFN), which predicts the weights 228

based on the previous token’s hidden state repre- 229

sentation from the base model, i.e., 230

G(ht−1) = W2(σ(W1(ht−1))). (4) 231
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Figure 3: Overview of the logit mixer module in MIXIE. The
input is passed through each of the base and expert models
to generate the next token’s probability. The mixer module
uses the last token’s representation from the base model to
determine the optimal weights for each of the experts. These
weights are used to merge the model outputs, according to
Equation 3. This merged probability is used to sample the
next token. Please refer to Section 3.2 for more details.

Here, ht−1 ∈ Rd is the hidden state representa-232

tion of the token yt−1 from the base model B,233

W1 ∈ Rd×d/2,W2 ∈ Rd/2×(N+1) are learnable234

weights, and σ is a non-linear activation. Figure 3235

depicts the overall workflow of the mixer module236

for an example scenario with N = 2 experts. It237

essentially models the LLMs’ output probabilities238

according to Equation 3, but uses the learnable 2-239

layer FFN module to predict the mixing weights,240

as described in Equation 4.241

3.3 Training and Inference242

Overall, MIXIE uses a learnable mixer module243

G to mix a base model B with expert models244

E1, E2, . . . EN . To train the model, we finetune245

MIXIE using the cross-entropy objective, as is typ-246

ical for language modeling. During training, we247

freeze all the LLM parameters and only optimize248

the mixer module’s parameters. More specifically,249

G⋆ = fLM (MIXIE(B,E1, E2, . . . EN , G)), (5)250

where fLM is the language modeling objective and251

G⋆ is the trained optimal weights.252

Inference follows Equation 3, same as training,253

i.e., we use the mixing module to mix the base and254

the expert models’ output probabilities to deter-255

mine the combined language modeling probability,256

which is used for sampling the generations.257

4 Improving Natural Language 258

Reasoning using MIXIE 259

This section aims to improve LLMs on natural lan- 260

guage reasoning (NLR) tasks using MIXIE. We 261

mainly focus on question-answering (QA) datasets 262

to assess the reasoning capability of LLMs. Next, 263

we define the reward models and the experts used 264

for training MIXIE, along with the training proce- 265

dure for the expert model and our method. 266

4.1 Reward Models 267

Ye and Durrett (2022) find that existing LLMs of- 268

ten generate unreliable reasoning chains where the 269

explanation is either inconsistent with the final pre- 270

diction or not plausible w.r.t. the input or com- 271

monsense. To mitigate these, we use the following 272

reward models that are specifically trained to detect 273

such issues in model-generated explanations: 274

• Consistency (CONST): We measure consistency 275

between an explanation and the final prediction 276

by using a Flan-T5-xxl-based entailment verifi- 277

cation model (Sanyal et al., 2024), specifically 278

trained to handle multi-sentence premises, which 279

is common in model-generated explanations. It 280

grades consistency on a scale of 0 to 1. 281

• Plausibility (PLAUS): We measure plausibility 282

using VERA (Liu et al., 2023), which is a trained 283

commonsense verification model based on T5- 284

11B that estimates the plausibility of a declarative 285

sentence by scoring between 0 and 1. 286

4.2 Training Experts 287

First, we generate high-quality training data from 288

the training set of our QA dataset (described later 289

in Section 5.1) by sampling ChatGPT1 using chain- 290

of-though (CoT) (Wei et al., 2022) prompting. We 291

sample 40 CoT generations for each training in- 292

stance. This dataset is referred to as the DRAW. The 293

data creation process is depicted in Figure 4. 294

Next, DRAW is filtered based on the reward score 295

to create “reward-filtered” training data. For this, 296

we compute the reward score for each CoT instance 297

using the reward models described in Section 4.1 298

and only keep an instance if the score is above 299

a certain threshold. In this way, we create three 300

different reward-filtered datasets: DCONST, DPLAUS, 301

and DCONST+PLAUS (filter using both reward scores). 302

Finally, each dataset is used to finetune the base 303

model B to create a specific expert Ei. For in- 304

stance, supervised finetuning of B using DCONST 305

1ChatGPT refers to gpt-3.5-turbo-0125 by OpenAI.
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Figure 4: Workflow of training expert models. We use ChatGPT to sample CoTs from existing QA dataset, creating DRAW. This
is used to finetune the ERAW model. Concurrently, DRAW is filtered using CONST (or PLAUS) reward model to create DCONST

(or DPLAUS). This is then used to finetune the base model to create the corresponding expert ECONST (or EPLAUS). Please refer to
Section 4.2 for more details.

creates an expert ECONST. Similarly, we create306

EPLAUS, ECONST+PLAUS, and ERAW using DPLAUS,307

DCONST+PLAUS, and DRAW, respectively. Figure 4308

depicts the workflow of creating the reward-filtered309

datasets and how they are used to train the experts.310

Please refer to Appendix B for more details on the311

CoT data sampling, reward computation, filtering,312

and training experts.313

4.3 Training MIXIE314

To train MIXIE, we chose the base model as ERAW,315

which is trained using DRAW and the expert models316

as ECONST and EPLAUS, trained using DCONST and317

DPLAUS, respectively. Overall, these three models318

are mixed according to Equation 3. As discussed in319

Section 3.3, training MIXIE only involves optimiz-320

ing the mixer module’s parameters. We finetune321

the composite model using the DCONST+PLAUS.322

5 Experimental Setup323

Here, we discuss the QA datasets we use for our324

reasoning experiments, the different baselines we325

compare with MIXIE, and details on the evaluation326

setup. Please refer to Appendix F for the prompts327

used for each QA dataset.328

5.1 Datasets329

We mainly focus on three question-answering (QA)330

datasets: CSQA (Talmor et al., 2019), StrategyQA331

(Geva et al., 2021), and ARC (Clark et al., 2018).332

Researchers widely use these to assess the reason-333

ing capability of LLMs.334

CommonsenseQA (CSQA) (Talmor et al., 2019)335

This is a multiple-choice QA dataset that requires336

different types of commonsense knowledge to pre-337

dict the correct answers.338

StrategyQA (Geva et al., 2021) In this dataset, 339

the required reasoning steps are implicit in the ques- 340

tion and should be inferred using a strategy. Ques- 341

tions in StrategyQA are short, topic-diverse, and 342

cover various strategies. 343

ARC (Clark et al., 2018) This is a multiple- 344

choice QA dataset containing questions from 345

science exams from grade 3 to grade 9. The dataset 346

is split into two partitions: Easy and Challenge, 347

where the latter partition includes the more difficult 348

questions that require reasoning. 349

350

We merge all the train splits from each dataset into 351

a combined train split, which is further processed 352

and used in training the experts (Section 4.2) and 353

our method (Section 4.3). Please refer to Appendix 354

A for dataset statistics. 355

5.2 Baselines 356

We compare our MIXIE with the following base- 357

lines described below. 358

FLMs Foundation language models are off-the- 359

shelf LLMs trained for a wide variety of natural 360

language auto-regressive tasks. We compare with 361

LLAMA2-7B and LLAMA3-8B-INSTRUCT. 362

SFT In this, the FLM is further finetuned on ei- 363

ther the DRAW or the DCONST+PLAUS to create differ- 364

ent SFT baselines. SFT with DRAW evaluates the 365

effect of distilling ChatGPT-sampled knowledge 366

into an FLM. Likewise, SFT using DCONST+PLAUS 367

evaluates the effectiveness of having high-quality 368

reward-filtered training data for distillation. 369

Model Merging Here, we directly combine the 370

parameters of the expert models and the base model 371

into a single model, giving it the combined abilities 372

of each model without any additional training. We 373
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Model
Task Accuracy Reward Score

ARG
StrategyQA CSQA ARC-e ARC-c Avg CONST PLAUS

LLAMA2-7B 0.555 0.518 0.613 0.406 0.523 0.737 0.545 0

SFT w/
- DRAW 0.696 0.643 0.756 0.500 0.649 0.840 0.570 14.15
- DCONST+PLAUS 0.687 0.635 0.746 0.535 0.651 0.850 0.582 15.48

TIES 0.692 0.654 0.749 0.512 0.652 0.844 0.574 14.76
DARE 0.640 0.661 0.740 0.553 0.649 0.847 0.572 14.62

IPA w/ DCONST+PLAUS 0.695 0.656 0.746 0.531 0.657 0.848 0.578 15.54
MARIO 0.592 0.641 0.646 0.468 0.587 0.811 0.561 8.34

MIXIE 0.730 0.674 0.789 0.600 0.698 0.871 0.589 19.87

Table 1: Comparisons between MIXIE and baselines using LLAMA2-7B. Under task accuracy, we report the
accuracy for the test set of each QA dataset and the average accuracy. Additionally, we report the CONST and PLAUS
reward scores, and the average relative gain score. We find that MIXIE outperforms all baselines consistently,
demonstrating the superiority of our approach in mixing experts. Please refer to Section 6.1 for more details.

consider two prominent model-merging techniques,374

TIES-Merging (Yadav et al., 2023) and DARE (Yu375

et al., 2024), as our baselines.376

IPA As introduced in Section 2.2, IPA trains an377

adapter to tailor the model generations to improve378

a specific reward. Here, we finetune the adapter379

model using DCONST+PLAUS to include the effect of380

both the reward models into the single adapter.381

MARIO (Ramnath et al., 2024) This is a382

controlled-generation framework that uses separate383

control tokens for different reward signals, training384

the model to produce generations that score highly385

on all targeted properties.386

5.3 Evaluation387

We evaluate the baselines and MIXIE on the test388

sets of the QA datasets described in Section 5.1389

by generating CoT completions (Wei et al., 2022)390

and computing accuracy by checking if the model-391

generated response correctly predicts the correct an-392

swer choice. Additionally, we compute the CONST393

and PLAUS reward scores for the generated CoT394

response. Please refer to Appendix B.2 for further395

details on reward computations. Lastly, we com-396

pute the Average Relative Gain (ARG) (Ye et al.,397

2021) metric to quantify the average improvement398

across all metrics relative to a baseline. This helps399

quantify the overall performance of both task ac-400

curacy and reward scores under a single metric.401

Please refer to Appendix C for further details on402

how the ARG metric is computed.403

6 Results 404

In this section, we evaluate MIXIE on the three 405

reasoning datasets described in Section 5.1 and 406

compare them with the baselines mentioned in Sec- 407

tion 5.2. We also perform various ablation studies 408

of MIXIE to evaluate the design choices. 409

6.1 Performance of MIXIE 410

In Tables 1 and 2, we evaluate MIXIE and the base- 411

lines on the three QA datasets. Specifically for 412

the ARC dataset, we report separate numbers for 413

the ARC-easy and ARC-challenge subsets. For 414

each dataset, we report the accuracy metric on the 415

test set. Additionally, we report the average accu- 416

racy (column Acc) across all datasets, the average 417

CONST and PLAUS reward scores, and the average 418

relative gain score (column ARG) that computes 419

the average gains across all metrics relative to the 420

base model, as discussed in Section 5.3. 421

Overall Results From Tables 1 and 2, we ob- 422

serve that MIXIE outperforms all the baselines in 423

terms of the mean score. We find that our method 424

outperforms the existing baselines on all met- 425

rics, except for LLAMA3-8B-INSTRUCT-based 426

DARE, which beats MIXIE on CSQA dataset. No- 427

tably, there is a 7.5% improvement in accuracy of 428

LLAMA2-7B-based MIXIE over the SFT baseline. 429

Thus, this demonstrates the effectiveness of our 430

model mixing strategy in improving both task accu- 431

racy and reward scores, compared to current base- 432

lines such as model merging, IPA, and MARIO. 433
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Model
Task Accuracy Reward Score

ARG
StrategyQA CSQA ARC-e ARC-c Avg CONST PLAUS

LLAMA3-8B-INSTRUCT 0.711 0.732 0.892 0.741 0.769 0.859 0.598 0

SFT w/
- DRAW 0.730 0.755 0.889 0.738 0.778 0.892 0.610 2.37
- DCONST+PLAUS 0.734 0.737 0.882 0.734 0.772 0.893 0.612 2.21

TIES 0.713 0.729 0.892 0.726 0.765 0.891 0.607 1.63
DARE 0.692 0.766 0.894 0.756 0.777 0.890 0.608 2.14

IPA w/ DCONST+PLAUS 0.715 0.735 0.890 0.740 0.770 0.893 0.610 2.05
MARIO 0.739 0.740 0.897 0.729 0.776 0.897 0.607 2.32

MIXIE 0.768 0.760 0.902 0.785 0.804 0.903 0.615 4.14

Table 2: Comparisons between MIXIE and baselines using LLAMA3-8B-INSTRUCT. Under the task accuracy
column, we report the accuracy for the test set of each QA dataset and the average accuracy. We also report the
CONST and PLAUS reward scores, and the average relative gain score. Please refer to Section 6.1 for more details.

Model Avg Acc CONST PLAUS ARG

LLAMA2-7B 0.523 0.737 0.545 0

SFT w/
- DRAW 0.649 0.840 0.570 14.15
- DCONST 0.624 0.852 0.572 13.24
- DPLAUS 0.654 0.843 0.580 15.26
- DCONST+PLAUS 0.651 0.850 0.582 15.48

Table 3: Comparisons between SFT runs using different
reward-filtered datasets. We find that reward filtering
helps improve the corresponding reward score. Please
refer to Sections 4.2 and 6.2 for details.

Comparisons within SFT First, we observe that434

using DRAW for supervised finetuning of the base435

model is helpful. The gains are more prominent436

for LLAMA2-7B since it is a weaker model and437

thus benefits more from the ChatGPT-sampled data.438

Next, we find that using reward-filtered data for439

SFT leads to further performance improvements,440

demonstrating the effectiveness of our reward-441

filtering strategy. Here, the main improvements are442

in the reward scores, which is expected since the443

filtering essentially creates a reward-rich dataset.444

6.2 Ablation Studies445

Here, we ablate the following three design choices446

of MIXIE: the effect of using different reward-447

filtered data for creating experts, the choice of ex-448

pert models for mixing, and the effectiveness of the449

mixing module for mixing the experts.450

Effect of Reward Filtering In Table 3, we eval-451

uate the effect of using different reward-filtered452

data for supervised finetuning the LLAMA2-7B453

model. Compared to the pre-trained model, we ob-454

serve that finetuning using the ChatGPT-sampled455

DRAW significantly improves performance on all 456

the metrics. Next, we find that using the training 457

data filtered by the CONST reward model leads 458

to improvements in the CONST reward score, as 459

shown in bold. We see a similar trend when using 460

DPLAUS. This demonstrates that reward filtering im- 461

proves the respective reward scores, thus justifying 462

using these models as the expert models in MIXIE. 463

Lastly, we find that using the DCONST+PLAUS leads 464

to a further improvement in performance, indicated 465

by ∼1.3% improvement in the average relative gain 466

score over using DRAW. 467

Model Avg Acc CONST PLAUS ARG

LLAMA2-7B 0.523 0.737 0.545 0

MIXIE w/o mixer 0.675 0.865 0.581 17.68

MIXIE
B + ECONST 0.683 0.869 0.587 18.69
B + EPLAUS 0.691 0.867 0.589 19.20
B + ECONST + EPLAUS 0.698 0.871 0.589 19.87

Table 4: Ablation of MIXIE without logit mixer mod-
ule and using different expert models. Please refer to
Section 6.2 for further details.

Effect of Expert Models In Table 4, we ablate 468

the choice of the expert models used in MIXIE. 469

As our method can mix one or more experts, we 470

choose to test variants of our model with a single ex- 471

pert to test the impact of individual experts. We find 472

that using the expert EPLAUS leads to stronger accu- 473

racy results than using the ECONST expert. This is 474

likely because in Table 3, we find that using DPLAUS 475

for SFT creates a stronger expert with higher av- 476

erage accuracy than using DCONST. Additionally, 477

we hypothesize that model-generated explanations 478

tend to be more improbable than inconsistent, thus 479

7



benefiting more from EPLAUS. This is also consis-480

tent with the findings of Ye and Durrett (2022).481

Lastly, we find that combining both experts leads482

to the best performance, demonstrating the comple-483

mentary nature of both experts.484

Effect of Mixer Module Next, we evaluate the485

benefits of having a learnable mixer module in486

MIXIE. For this, we ablate versions of our model487

where the mixer module is replaced by constant488

mixing weights, i.e., no “learnable” weights. These489

results are shown in Table 4. We observe that490

“MIXIE w/o mixer module” underperforms com-491

pared to our method. Notably, MIXIE has an im-492

provement of ∼2.2% on ARG compared to the ver-493

sion with fixed mixing weights. This demonstrates494

the effectiveness of having a learnable mixing mod-495

ule in our MIXIE framework.496

7 Related Work497

7.1 Multi Reward Training of Single Model498

To exploit the potential of a single model and make499

it suitable for multiple fields, researchers infuse500

more than one reward objective into model training501

(Yang et al., 2024; He et al.; Shi et al., 2024). As502

an extension of Quark (Lu et al., 2022), Ramnath503

et al. (2024) propose to employ multiple reward504

tokens that indicate the quality of the generation505

in different aspects. The model learns to associate506

those reward tokens with the quality of the data to507

which it is assigned in training and yields better508

generations by explicitly providing reward tokens509

with the highest quality. Lu et al. (2023) propose510

Inference-time Policy Adapters (IPA), which use511

reinforcement learning to train a lightweight policy512

adapter and steer a model’s output toward user-513

defined objectives.514

7.2 Fusion of Reward-Specific Experts515

Instead of adapting one model to several objectives,516

merging models trained with different objectives is517

another approach to improve performance.518

Mixture of Experts Mixture of Experts (MoE)519

is one of the strategies to train multiple experts si-520

multaneously. It is composed of separate neural521

networks, each of which is an expert in handling522

one subtask. With the rise of large language mod-523

els (LLM), MoE has experienced a revival (Abdin524

et al., 2024; Sun et al., 2024; Jiang et al., 2024; Dai525

et al., 2024). It distributes the model’s capacity in526

multiple specialized experts by adopting a learned527

gating mechanism that selectively activates only 528

the relevant experts for each input (Fedus et al., 529

2022). 530

Branch-Train Mix Proposed by (Sukhbaatar 531

et al., 2024), it first trains multiple domain-specific 532

LLMs from a base LLM separately. Then, it stacks 533

feed-forward networks on top of these dense ex- 534

perts to instantiate a sparse MoEs module, followed 535

by further fine-tuning to learn token-level routing. 536

CALM CALM (Bansal et al., 2024), on the other 537

hand, uses cross-attention layers to blend represen- 538

tations from different models and leverage their 539

combined strengths across varied neural network 540

structures. 541

Model Merging Given that expert models are es- 542

sentially sets of parameters, merging these into one 543

model is another approach. Branch-Train-Merge 544

(Li et al., 2022) independently trains expert models 545

tailored to a specific domain within the training 546

corpus. These experts are then ensembled at infer- 547

ence time to coalesce into a single model. TIES 548

(Yadav et al., 2023) addresses the parameter’s direc- 549

tion conflicts and merges only the parameters that 550

align with the final agreed-upon sign. DARE (Yu 551

et al., 2024) sparsifies by parameter magnitude and 552

highlights the importance of further performing 553

rescaling on sparse models. 554

8 Conclusion 555

In this paper, we introduced MIXIE, a novel 556

inference-time expert-mixing framework. It trains 557

experts from one base LLM specializing in differ- 558

ent aspects by finetuning on appropriate datasets. 559

Then, it trains a logit mixer module to dynami- 560

cally merge the logits from different expert models 561

to yield a better token prediction. We conducted 562

experiments on merging commonsense and entail- 563

ment reasoning experts to demonstrate the effec- 564

tiveness of our method in improving the chain-of- 565

thought reasoning abilities of LLMs. Our merged 566

model surpasses SFT, model merging, and IPA 567

baselines on three QA datasets. 568

Limitations 569

Although our implementation of MIXIE performs 570

quite well and significantly saves computation 571

costs, there is still potential that has not been fully 572

exploited in this paper, and imperfections that can 573

be improved. Our current implementation forces 574

all experts to be loaded into one single GPU during 575

8



inference, making our method relatively memory576

inefficient. In addition, it also restricts the scale577

of our expert models and potentially compromises578

performance. In a more optimized implementation,579

expert models can generate probabilities across dif-580

ferent GPUs, and the logit mixing module could581

mix all logits in the master GPU. This parallel com-582

putation can significantly reduce the inference time583

and also allow larger expert models to be mixed584

efficiently.585

In contrast to traditional MoE methods, we only586

experiment with dense mixing, i.e., the weight of587

each expert model during inference is nonzero by588

design. However, taking inspiration from MoE se-589

tups like sparse routing (Fedus et al., 2022) can590

potentially benefit our mixer module. A sparse591

mixer module can selectively activate some experts592

during decoding instead of aggregating the logits593

from every expert. This can further make the infer-594

ence more efficient. We leave this to future work.595

A key assumption of MIXIE is that we have596

access to the logits of the LLMs during token gen-597

eration. Hence, any serverless API models that598

do not provide logits (Brown et al., 2020; OpenAI,599

2023) cannot be easily implemented within this600

framework. A possible way to circumvent this is601

to distill knowledge from these serverless models,602

but this does not fully address the concern.603

Lastly, our framework can work with any expert604

model. Thus, users can potentially steer genera-605

tion to malicious content by using “bad” experts606

built using harmful reward signals. Currently, we607

do not safeguard against such scenarios. Neverthe-608

less, we highly recommend avoiding such negative609

applications of our framework.610
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A QA Data Collection 801

This section introduces the process of collating the 802

QA dataset we use to train and evaluate MIXIE. 803

As discussed in Section 5.1, we mainly focus on 804

CSQA, StrategyQA, and ARC datasets. We create 805

the training dataset by integrating the train splits 806

of CSQA and StrategyQA and the train and val- 807

idation splits of the ARC dataset. By doing so, 808

our final training split contains 15, 583 data points. 809

Similarly, we combine the test split of ARC and 810

StrategyQA and the validation split of CSQA into 811

our overall test set. Through this, we collect 5, 456 812

data points for our test set, which is used in all eval- 813

uations. The dataset statistics of each QA dataset 814

we consider are presented in Table 5. 815

Dataset
Statistics StrategyQA CSQA ARC-e ARC-c

Train 1,603 9,741 2,251 1,119
Validation - 1,221 570 299
Test 687 - 2,376 1,172

Table 5: Statistics of train/validation/test split of differ-
ent QA datasets. Please refer to Appendix A for more
details.

B Reward Data Collection and Expert 816

Training 817

In this section, we briefly introduce the reward data 818

collection pipeline. We sample generations from 819

ChatGPT first, then use reward models to compute 820

the reward scores for those generations. Finally, we 821

filter out bad generations based on some thresholds 822

to create the “reward-filtered” training data. 823

B.1 Creating DRAW dataset using ChatGPT 824

As discussed in Section 4.2, we collect chain-of- 825

thought (CoT) generations by sampling outputs 826

from ChatGPT2 using prompts mentioned in Ap- 827

pendix F. To encourage diversified generations, we 828

set the temperature at 0.5 and the top_p at 0.8. In 829

total, 40 rationales are sampled for every instance. 830

After eliciting responses for each question, we 831

conduct a data cleaning process to de-duplicate 832

redundant responses. This results in 297, 553 in- 833

stances in the final DRAW training data. 834

2ChatGPT refers to gpt-3.5-turbo-0125 in the OpenAI API.
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B.2 Computing Reward Scores using Reward835

Models836

The DRAW data is fed to reward models and gets837

numerical scores for each instance. For PLAUS, we838

directly provide the generation to the VERA com-839

monsense model (Liu et al., 2023), and the model840

provides a score based on the plausibility of the841

sentence. However, we first convert the question842

into a hypothesis for the consistency score. Then,843

the question-modified hypothesis and the generated844

CoT (premise) are fed to the entailment verification845

model (Sanyal et al., 2024) to get the consistency846

score in a format shown in Box 1. The PLAUS847

and CONST reward scores estimate the plausibil-848

ity of the explanation in the generated CoT and849

the consistency between the CoT and the model’s850

prediction, respectively.851

Premise: {question}
Hypothesis: {generation}
Question: Given the premise, is the hypothesis
correct?
Answer:

Box 1: Converted input data format for Flan-T5-xxl-
based entailment verification model. Please refer to
Appendix B.2 for more details.

B.3 Filtering and Creating Reward Data852

After computing the reward scores, we manually853

set some reward thresholds to filter out bad gen-854

erations and get high-quality data. For the VERA855

model, any generation receiving a score higher than856

0.85 is regarded as a good generation, while oth-857

ers are treated as bad and discarded. This results858

in DPLAUS dataset. Similarly, we set a threshold859

of 0.99 for the CONST reward scores since con-860

sistency is crucial for a good generation. Filter-861

ing based on this threshold creates DCONST. This862

workflow is also depicted in Figure 4. Further, we863

also filter using both the reward scores to create864

DCONST+PLAUS. For different filtering strategies, the865

exact number of examples in the training set after866

filtering is listed in Table 6.867

B.4 Hyperparameter in Training Expert868

Model869

As shown in Figure 4, we finetune the expert mod-870

els using “reward-filtered” data. During finetuning,871

we explicitly use the parameter efficient finetuning872

algorithm LoRA (Hu et al., 2021). Specifically,873

the load_in_4bit is activated. The lora_r is set to874

Data Statistics Remaining Percentage

DRAW 297,553 100%
DCONST 184,957 62%
DPLAUS 62,845 21%
DCONST+PLAUS 32,937 11%

Table 6: Data statistics of different reward-filtered
datasets and their corresponding percentage share of
original raw data DRAW. Please refer to Appendix B.3
for more details.

be 16, and the lora_alpha is set to be 8. We also 875

set the lora_dropout value to be 0.05. We set the 876

learning rate to 1e−5, the gradient accumulation 877

step to 4, and the per-device batch size to 3. Train- 878

ing an expert on a Quadro RTX 8000 GPU takes 879

approximately 24 hours on average. 880

C Computing the Average Relative Gain 881

metric 882

The Average Relative Gain (ARG) (Ye et al., 2021) 883

metric is used to quantify the average improvement 884

across all metrics relative to a baseline. This helps 885

quantify the overall performance of both task ac- 886

curacy and reward scores under a single metric. 887

We use the FLMs as the baselines for this met- 888

ric. The metric essentially computes how much 889

a specific method improves on average across the 890

three metrics: accuracy (Acc), CONST reward score 891

(CONST), and PLAUS reward score (PLAUS). Con- 892

cretely, for a method M based on an FLM F , the 893

ARG metric is defined as follows: 894

ARG =
1

3

[
AccM −AccF

AccF
895

+
CONSTM − CONSTF

CONSTF
896

+
PLAUSM − PLAUSF

PLAUSF

]
∗100. 897

D Hyperparameters for Training MIXIE 898

To achieve better performance while training the 899

mixer module, we choose 7e−5 as the learn- 900

ing_rate and 0.1 as the weight_decay. Besides, 901

the per-device batch size is set at 8, and we use a 902

2-layer FFN as the router network during training. 903

E Effect of CoT data source 904

In Table 7, we evaluate the effect of using a dif- 905

ferent model as the source for sampling DRAW. 906

Here we use gpt-4o-mini as another data source 907
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Model Avg Acc CONST PLAUS ARG

LLAMA2-7B 0.523 0.737 0.545 0

MIXIE using DRAW from
- gpt-3.5-turbo-0125 0.698 0.871 0.589 19.87
- gpt-4o-mini-2024-07-18 0.696 0.840 0.588 18.26

Table 7: Ablation of the source of CoT data. Here
we compare between using ChatGPT and GPT-4o-mini
to sample the Chain-of-Thought data used for training
MIXIE. Please refer to Appendix E for further details.

and rerun the data generation, expert training, and908

MIXIE training pipeline. We observe that data909

sampled from gpt-3.5-turbo leads to better perfor-910

mance than gpt-4o-mini. However, we note that911

MIXIE performance is relatively robust and the per-912

formance gains are consistent even with a different913

data source.914

F Full Prompts915

In Tables 8, 9, and 10 we show the CoT prompts916

used for creating DRAW for CSQA, StrategyQA,917

and ARC datasets, respectively. We use the same918

CoT prompt for both easy and challenge sets of the919

ARC dataset.920
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PROMPT FOR COMMONSENSE QA
Q: What do people use to absorb extra ink from a fountain pen? (a) shirt pocket (b) calligrapher’s hand (c) inkwell (d)
desk drawer (e) blotter
A: The answer must be an item that can absorb ink. Of the above choices, only blotters are used to absorb ink. So the
answer is (e).

Q: What home entertainment equipment requires cable? (a) radio shack (b) substation (c) television (d) cabinet
A: The answer must require cable. Of the above choices, only television requires cable. So the answer is (c).

Q: The fox walked from the city into the forest, what was it looking for? (a) pretty flowers (b) hen house (c) natural
habitat (d) storybook
A: The answer must be something in the forest. Of the above choices, only natural habitat is in the forest. So the
answer is (b).

Q: Sammy wanted to go to where the people were. Where might he go? (a) populated areas (b) race track (c) desert (d)
apartment (e) roadblock
A: The answer must be a place with a lot of people. Of the above choices, only populated areas have a lot of people. So
the answer is (a).

Q: Where do you put your grapes just before checking out? (a) mouth (b) grocery cart (c)super market (d) fruit basket
(e) fruit market
A: The answer should be the place where grocery items are placed before checking out. Of the above choices, grocery
cart makes the most sense for holding grocery items. So the answer is (b).

Q: Google Maps and other highway and street GPS services have replaced what? (a) united states (b) mexico (c)
countryside (d) atlas
A: The answer must be something that used to do what Google Maps and GPS services do, which is to give directions.
Of the above choices, only atlases are used to give directions. So the answer is (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? (a) harder (b) anguish (c) bitterness (d)
tears (e) sadness
A: The answer should be the feeling of someone getting divorced who was doing all the work. Of the above choices,
the closest feeling is bitterness. So the answer is (c).

Table 8: Few-shot exemplars for full chain of thought prompt for CommonsenseQA.
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PROMPT FOR STRATEGY QA
Q: Do hamsters provide food for any animals? (a) true (b) false
A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for some animals. So the
answer is (a).

Q: Could Brooke Shields succeed at University of Pennsylvania? (a) true (b) false
A: Brooke Shields went to Princeton University. Princeton University is about as academically rigorous as the
University of Pennsylvania. Thus, Brooke Shields could also succeed at the University of Pennsylvania. So the answer
is (a).

Q: Hydrogen’s atomic number squared exceeds number of Spice Girls? (a) true (b) false
A: Hydrogen has an atomic number of 1.1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s atomic number
squared is less than 5. So the answer is (b).

Q: Is it common to see frost during some college commencements? (a) true (b) false
A: College commencement ceremonies can happen in December, May, and June. December is in the winter, so there
can be frost. Thus, there could be frost at some commencements. So the answer is (a).

Q: Could a llama birth twice during War in Vietnam (1945-46)? (a) true (b) false
A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more than 6 months.
Thus, a llama could not give birth twice during the War in Vietnam. So the answer is (b).

Q: Would a pear sink in water? (a) true (b) false
A: The density of a pear is about $0.6g/cm3, which is less than water. Objects less dense than water float. Thus, a pear
would float. So the answer is (b).

Table 9: Few-shot exemplars for full chain of thought prompt for StrategyQA.

PROMPT FOR ARC
Q: George wants to warm his hands quickly by rubbing them. Which skin surface will produce the most heat? (a) dry
palms (b) wet palms (c) palms covered with oil (d) palms covered with lotion
A: Dry surfaces will more likely cause more friction via rubbing than other smoother surfaces, hence dry palms will
produce the most heat. So the answer is (a).

Q: Which factor will most likely cause a person to develop a fever? (a) a leg muscle relaxing after exercise (b) a
bacterial population in the bloodstream (c) several viral particles on the skin (d) carbohydrates being digested in the
stomach
A: Bacterial population is the most likely cause for a person developing fever. So the answer is (b).

Q: Which change in the state of water particles causes the particles to become arranged in a fixed position? (a) boiling
(b) melting (c) freezing (d) evaporating
A: When water is freezed, the particles are arranged in a fixed position; the particles are still moving for all other
options. So the answer is (c).

Q: When a switch is used in an electrical circuit, the switch can (a) cause the charge to build (b) increase and decrease
the voltage (c) cause the current to change direction (d) stop and start the flow of current
A: The function of a switch is to start and stop the flow of a current. So the answer is (d).

Table 10: Few-shot exemplars for full chain of thought prompt for ARC dataset. Both ARC-easy and ARC-challenge
share the same prompt in the generation process.
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