Mixing Inference-time Experts for Enhancing LLLM Reasoning

Anonymous ACL submission

Abstract

Large Language Models (LLMs) have demon-
strated impressive reasoning abilities, but their
generated rationales often suffer from issues
such as reasoning inconsistency and factual
errors, undermining their reliability. Prior
work has explored improving rationale quality
via multi-reward fine-tuning or reinforcement
learning (RL), where models are optimized for
diverse objectives. While effective, these ap-
proaches train the model in a fixed manner and
do not have any inference-time adaptability,
nor can they generalize reasoning requirements
for new test-time inputs. Another approach
is to train specialized reasoning experts using
reward signals and use them to improve gen-
eration at inference time. Existing methods
in this paradigm are limited to using only a
single expert and cannot improve upon mul-
tiple reasoning aspects. To address this, we
propose MIXIE, a novel inference-time expert-
mixing framework that dynamically determines
mixing proportions for each expert, enabling
contextualized and flexible fusion. We demon-
strate the effectiveness of MIXIE on improving
chain-of-thought reasoning in LLMs by merg-
ing commonsense and entailment reasoning ex-
perts finetuned on reward-filtered data. Our
approach outperforms existing baselines on
three question-answering datasets: StrategyQA,
CommonsenseQA, and ARC, highlighting its
potential to enhance LLM reasoning with effi-
cient, adaptable expert integration.

1 Introduction

Recent success in NLP is primarily attributed to
the progress in scaling the pre-training of large lan-
guage models (LLMs), enabling them to learn a
variety of tasks using a few “in-context” demon-
strations as model input (Brown et al., 2020; Ope-
nAl, 2023). Recently, the chain-of-thoughts (CoTs)
style of prompting techniques (Wei et al., 2022;
Zhou et al., 2023; Yao et al., 2023) has made the

0: Where is a security guard most likely to
be posted? (A) bank (B) office

User

Between bank and office, bank is a place
ot that requires more security. So, the
answer is (bank. * S~el

R4 Oy

- ~.

Agent

:Deciding between “more”
| “bank” requires understand.ing: yor “less” requires

Ithat “bank” is the correct I 'understanding that “bank
1 . . . Lo j .
Ic?mpletlon tbét is conszstentI | requires more security”
(with the previous sentence. o

N - N

N

is more plausible

Figure 1: Motivation for token-level mixing. Predicting dif-
ferent tokens in the CoT rationale requires different reasoning
skills. For instance, predicting some tokens need to make
common sense while others might need to be consistent with
the overall generation.

reasoning process more transparent, but the gener-
ated reasoning steps can sometimes be unreliable.
Ye and Durrett (2022) attribute this unreliability
majorly to two aspects: factuality, whether the ex-
planation is correctly grounded in the input and
consistency, whether the explanation entails the
model’s prediction. Improving LLMs on these as-
pects is crucial since using such unreliable reason-
ing in downstream tasks can further impact user
trust and overall performance.

One approach to improve upon these reasoning
aspects is to train LLMs on different reward signals
using reinforcement learning techniques (Ouyang
et al., 2022; Schulman et al., 2017), creating a holis-
tic reasoning expert. However, effectively using
multiple rewards corresponding to different reason-
ing aspects remains challenging. Another way is
to train multiple experts using preference data or
reward signals corresponding to different aspects,
and then merging them into a unified model. Ex-
isting techniques (Lu et al., 2023; Ramnath et al.,
2024) are either not capable of using multiple re-
wards or use the reward signals very passively.
For instance, as shown in Figure 2(b), IPA can
merge only two experts in equal proportions, mak-
ing it a bit rigid for scenarios where mixing experts
in different proportions is required. Lastly, other

(a) Train multiple

experts from a base LLM with one expert

(b) IPA: Tailors logits

Encoded €.

(c)MIXIE: Mixing Inference-time
Experts using learnable mixer module

I I
Input \fﬁ
: : apu Input ?
| Input 1 Logit @
oglts

Expert, | Tailored | —p Base LLM g—> Z]

1 Expert1 Policy | e}

Base LLM ! ! Logits g

Expert, T —p Expert, —p s °

I Base LLM —(—D—}E. I rogics. 8 2

! E —» Expert, ——p o —>§
Experty . . : 4’__:

| | Logits 81

. . > Experty > 3

I I

I I

1 1

| |

Figure 2: Overview of MIXIE and baselines. (a) We create multiple experts from a base LLM via finetuning on different
datasets. (b) IPA tailors the base LLM’s logits using a single expert at inference time. (¢) In MIXIE, all the base and expert
LLMs are kept frozen and only the logit mixer module is trained to mix the final layer logits in an adaptive manner. Please refer

to Section 3 for more details.

mixture-of-expert (MoE) approaches (Sukhbaatar
et al., 2024; Bansal et al., 2024) modify the trans-
former’s (Vaswani et al., 2017) layer-level details,
making it challenging to use out-of-the-box for a
new model family.

In this work, we propose MIXIE, a simple ap-
proach for mixing multiple experts at inference
time. We introduce a mixer module that dynami-
cally decides the mixing proportions of each expert
during inference, thus allowing for contextualized
weighted merging of the experts. Figure 2(c) de-
picts an overview of our mixing approach. This
approach improves over IPA as it can mix multiple
experts in unequal proportions, thus significantly
improving the overall flexibility. In contrast to
routers in standard MoEs, our inference-time mixer
module consists of limited parameters that don’t re-
quire extensive training on large data, thus making
the training process very efficient. Additionally, it
is simple to implement for any model family, mak-
ing it easy to use out of the box. Overall, we in-
troduce a simple technique to mix multiple experts
dynamically at inference time, thus addressing the
limitations of prior works on merging experts (Lu
et al., 2023; Sukhbaatar et al., 2024).

Next, we specifically motivate the need for token-
level mixing of experts to improve the reasoning of
LLMs. For example, in Figure 1, when generating
a CoT rationale for the given question, some tokens

“more”, in this example) need to be make common
sense, some need to be consistent with overall gen-
eration (“bank”, in this example), while others need
to be grammatically coherent. This shows that a
commonsense plausibility expert is more suited to
predict some tokens, a consistency expert for other
tokens, and so on. Thus, this further motivates the
MIixIE framework, which enables the mixing of

experts dynamically at a token level.

We demonstrate the effectiveness of MIXIE by
using it to improve the reasoning process of LLMs.
Specifically, inspired by the findings of Ye and
Durrett (2022), we aim to improve the plausibil-
ity and consistency of CoT rationales (Wei et al.,
2022) generated by LLMs. For this, we first collect
high-quality CoT data using ChatGPT and filter out
the implausible and inconsistent rationales using
existing reward models (Liu et al., 2023; Sanyal
et al., 2024). These reward-filtered datasets are
then used to train expert LLMs by finetuning pre-
trained models. Then, we train our mixer module
to mix these experts under the MIXIE framework.
We find that MIXIE improves over existing base-
lines on three natural language question-answering
datasets: StrategyQA (Geva et al., 2021), Common-
senseQA (Talmor et al., 2019), and ARC (Clark
et al., 2018), indicating that mixing multiple ex-
perts using our framework is an effective way to
improve reasoning abilities in LLMs.

2 Background

2.1 Problem Statement

We focus on the text generation task, which gen-
erates the output sequence y given the input se-
quence . We intend to tailor the generation pro-
cess to generate a sequence of high quality (e.g.,
generated text should be self-consistent). Differ-
ent objectives can quantify such qualities of gen-
erative text. We assume that those objectives can
be measured using appropriate reward functions
R1(y), R2(y), - .. Rn(y). Our goal is to adjust the
generation probability p(y:|y<:) so that the gen-
erated sequence improves on the various rewards
across the desirable aspects.

2.2 Inference-time Policy Adapter

Inference-time Policy Adapter (IPA) (Lu et al.,
2023) tailors LLLMs using a policy adapter to guide
a base model’s generation during inference time.
For a given base model B and an adapter model A,
the tailored policy is as follows:

Ply<t) = Zpsluly<dpatuly<), (D
where p(-) is the language modeling probability
and Z is a normalizing factor. The IPA workflow
is depicted in Figure 2(b). The tailored policy is
typically trained to optimize a specific user-defined
objective (or reward) using RL algorithms (Schul-
man et al., 2017; Rafailov et al., 2023; Lu et al.,
2022). The key property of IPA is that only the
adapter model is trainable during training, while
the base model is kept frozen. This can be poten-
tially beneficial in cases where the base model is
significantly larger than the adapter.

However, IPA is limited to being able to train a
single adapter. This constraint of using only one
adapter for mixing is limiting in scenarios where
more than one aspect/reward needs to be optimized.
Additionally, IPA trains the combined policy (Eq.
1), which still requires loading both the base and
adapter models while training the adapter model.
This is potentially inefficient both in terms of com-
puting and memory.

3 Overview of MIXIE

Through our proposed method MIXIE, we aim to
address the various limitations of IPA that were
discussed in Sections 2.2. First, we introduce the
ability to use multiple reward signals in MIXIE.
This is particularly important in real-world applica-
tions such as improving the chain-of-thought (CoT)
reasoning, where different aspects of generation
need to be tailored using specific reward signals.
We achieve this by mixing multiple experts trained
on different reward signals instead of using the re-
ward signals directly for training, as done in IPA.
Next, we enable a weighted mixing of experts at
inference time, ensuring that experts can have dy-
namic weights depending on the specific context.
This is crucial because if all experts contribute with
the same strength at all steps, the more relevant
expert might get dampened, leading to sub-optimal
mixing and subsequent inferior generations. Figure
2(c) depicts an overview of our approach. In the
rest of the section, we describe different aspects

of our model’s design and discuss the training and
inference steps for building a MIXIE model.

3.1 Allowing for Multiple Reward Signals

First, we observe that if we use trained expert
LLMs instead of adapters, we can extend the IPA
formulation (Eq. 1) to optimize for different ob-
jectives/rewards. Specifically, for a base model B
and N trained expert models Ey, Es, ... En, the
tailored probability distribution can be defined as:

N

1
P(Ytly<t) = EPB(yt’yd) EpEi(yt’y<t)7 (2)

where the trained expert model E; is optimized
for a user-defined objective (or reward) using RL
algorithms (Schulman et al., 2017; Rafailov et al.,
2023; Lu et al., 2022). The key distinction between
this and IPA is that IPA initializes an adapter with
a pre-trained model. In contrast, here, the trained
expert model is already optimized for a specific
reward, enabling the stacking of different experts.

3.2 Need for Learnable Mixing Weights

Unlike the trainable adapter network in IPA, expert
models in the Eq. 2 are fixed. This can potentially
lead to subpar performance, as all the reward sig-
nals do not necessarily need to be mixed in equal
proportions. To mitigate this, we introduce learn-
able weights in Eq. 2, which is modified as follows:

p(yely<t) =
1 b N i
w! w?
EPB(yt’yq) ¢ | |1pEi(yt\y<t) t, (3)
1=

where p(-) is the language modeling probability,
w?, wi are the learnable weights for base and ex-
pert models at time step ¢, respectively, and Z is a
normalizing factor. These weights are learned at the
token level, i.e., for each token being predicted at a
decoding step, MIXIE learns the optimal weights
for combining the base and expert models.

Rather than directly learning these weights, we
define a logit mixer module, G, that is used to pre-
dict the optimal weights at a token level. This mixer
module is modeled as a two-layer feed-forward
neural network (FFN), which predicts the weights
based on the previous token’s hidden state repre-
sentation from the base model, i.e.,

G(htfl) = WQ(O‘(Wl(htfl))). (4)

sampling

Merged . _____ > E—} increase
probality *®
N
Predicted
e token
i
i
i]
i
Weighted N 3 E !
product of __yi w [8
exponents i N 2 5 €
i w Y
i 1 S e
i (i)q— o
i ~ g
Next token’s
probability ----»
from base/
expert LLMs
Expert, Expert, Base LLM —}g
Input P
+y
b Last token

Inflation is high. The interest rate may encoding

Figure 3: Overview of the logit mixer module in MIXIE. The
input is passed through each of the base and expert models
to generate the next token’s probability. The mixer module
uses the last token’s representation from the base model to
determine the optimal weights for each of the experts. These
weights are used to merge the model outputs, according to
Equation 3. This merged probability is used to sample the
next token. Please refer to Section 3.2 for more details.

Here, h;—1 € R? is the hidden state representa-
tion of the token y,_; from the base model B,
Wy € RIXd/2 yy, ¢ RY2X(N+1) are learnable
weights, and o is a non-linear activation. Figure 3
depicts the overall workflow of the mixer module
for an example scenario with NV = 2 experts. It
essentially models the LLMs’ output probabilities
according to Equation 3, but uses the learnable 2-
layer FFN module to predict the mixing weights,
as described in Equation 4.

3.3 Training and Inference

Overall, MIXIE uses a learnable mixer module
G to mix a base model B with expert models
Ei,Es, ... Ey. To train the model, we finetune
MIXIE using the cross-entropy objective, as is typ-
ical for language modeling. During training, we
freeze all the LLM parameters and only optimize
the mixer module’s parameters. More specifically,

G* = fLM(MIXIE(B, El,EQ, Ce EN, G)), (5)

where fr s is the language modeling objective and
G™ is the trained optimal weights.

Inference follows Equation 3, same as training,
i.e., we use the mixing module to mix the base and
the expert models’ output probabilities to deter-
mine the combined language modeling probability,
which is used for sampling the generations.

4 Improving Natural Language
Reasoning using MIXIE

This section aims to improve LLMs on natural lan-
guage reasoning (NLR) tasks using MIXIE. We
mainly focus on question-answering (QA) datasets
to assess the reasoning capability of LLMs. Next,
we define the reward models and the experts used
for training MIXIE, along with the training proce-
dure for the expert model and our method.

4.1 Reward Models

Ye and Durrett (2022) find that existing LLMs of-
ten generate unreliable reasoning chains where the
explanation is either inconsistent with the final pre-
diction or not plausible w.r.t. the input or com-
monsense. To mitigate these, we use the following
reward models that are specifically trained to detect
such issues in model-generated explanations:

* Consistency (CONST): We measure consistency
between an explanation and the final prediction
by using a Flan-T5-xxl-based entailment verifi-
cation model (Sanyal et al., 2024), specifically
trained to handle multi-sentence premises, which
is common in model-generated explanations. It
grades consistency on a scale of O to 1.

* Plausibility (PLAUS): We measure plausibility
using VERA (Liu et al., 2023), which is a trained
commonsense verification model based on T5-
11B that estimates the plausibility of a declarative
sentence by scoring between 0 and 1.

4.2 Training Experts

First, we generate high-quality training data from
the training set of our QA dataset (described later
in Section 5.1) by sampling ChatGPT' using chain-
of-though (CoT) (Wei et al., 2022) prompting. We
sample 40 CoT generations for each training in-
stance. This dataset is referred to as the Dgaw. The
data creation process is depicted in Figure 4.
Next, Draw is filtered based on the reward score
to create “reward-filtered” training data. For this,
we compute the reward score for each CoT instance
using the reward models described in Section 4.1
and only keep an instance if the score is above
a certain threshold. In this way, we create three
different reward-filtered datasets: Dconsts PrLauss
and Dconst+praus (filter using both reward scores).
Finally, each dataset is used to finetune the base
model B to create a specific expert F;. For in-
stance, supervised finetuning of B using Dconst

! ChatGPT refers to gpt-3.5-turbo-0125 by OpenAL

oA
Datasets

Sampling

ChatGPT

LLaMA2

consT-filtered

Dataset (Dgonst)

Reward Model

RAW SFT
CONST Score and OMeta ——p E
Dataset Reward Model Threshold % > Loz ConsT
(Draw)
ey PLAUS

Score and 0QOMeta _>SF T E
Threshold 'g > raaz PLAUS

SFT
00O Meta
1 _> ERAW

PLAus-filtered

Dataset (‘DPLAUS)

Figure 4: Workflow of training expert models. We use ChatGPT to sample CoTs from existing QA dataset, creating Draw. This
is used to finetune the Eraw model. Concurrently, Draw is filtered using CONST (or PLAUS) reward model to create Dconst
(or Dpraus). This is then used to finetune the base model to create the corresponding expert Econst (0r Eppaus). Please refer to

Section 4.2 for more details.

creates an expert Econst. Similarly, we create
Eppavss Econst+praus, and Eraw using Dppaus,
Dconst+PLaus, and Dgaw, respectively. Figure 4
depicts the workflow of creating the reward-filtered
datasets and how they are used to train the experts.
Please refer to Appendix B for more details on the
CoT data sampling, reward computation, filtering,
and training experts.

4.3 Training MIXIE

To train MIXIE, we chose the base model as Fraw,
which is trained using Dgw and the expert models
as Econst and Epp aus, trained using Deonst and
Dpyaus, respectively. Overall, these three models
are mixed according to Equation 3. As discussed in
Section 3.3, training MIXIE only involves optimiz-
ing the mixer module’s parameters. We finetune
the composite model using the Dconst+PLaus-

S Experimental Setup

Here, we discuss the QA datasets we use for our
reasoning experiments, the different baselines we
compare with MIXIE, and details on the evaluation
setup. Please refer to Appendix F for the prompts
used for each QA dataset.

5.1 Datasets

We mainly focus on three question-answering (QA)
datasets: CSQA (Talmor et al., 2019), StrategyQA
(Geva et al., 2021), and ARC (Clark et al., 2018).
Researchers widely use these to assess the reason-
ing capability of LLMs.

CommonsenseQA (CSQA) (Talmor et al., 2019)
This is a multiple-choice QA dataset that requires
different types of commonsense knowledge to pre-
dict the correct answers.

StrategyQA (Geva et al., 2021) In this dataset,
the required reasoning steps are implicit in the ques-
tion and should be inferred using a strategy. Ques-
tions in StrategyQA are short, topic-diverse, and
cover various strategies.

ARC (Clark et al., 2018) This is a multiple-
choice QA dataset containing questions from
science exams from grade 3 to grade 9. The dataset
is split into two partitions: Easy and Challenge,
where the latter partition includes the more difficult
questions that require reasoning.

We merge all the train splits from each dataset into
a combined train split, which is further processed
and used in training the experts (Section 4.2) and
our method (Section 4.3). Please refer to Appendix
A for dataset statistics.

5.2 Baselines

We compare our MIXIE with the following base-
lines described below.

FLMs Foundation language models are off-the-
shelf LLMs trained for a wide variety of natural
language auto-regressive tasks. We compare with
LLAMAZ2-7B and LLAMA3-8B-INSTRUCT.

SFT In this, the FLM is further finetuned on ei-
ther the Dgaw or the Dconst+pLaus to create differ-
ent SFT baselines. SFT with Dgw evaluates the
effect of distilling ChatGPT-sampled knowledge
into an FLM. Likewise, SFT using Dconst+PLaUs
evaluates the effectiveness of having high-quality
reward-filtered training data for distillation.

Model Merging Here, we directly combine the
parameters of the expert models and the base model
into a single model, giving it the combined abilities
of each model without any additional training. We

Task Accuracy

Reward Score

Model ARG
StrategyQA CSQA ARC-e ARC-c Avg CONST PLAUS

LLAMA2-7B 0.555 0.518 0.613 0.406 0.523 0.737 0.545 0
SFT w/

- Draw 0.696 0.643 0.756 0.500 0.649 0.840 0.570 14.15

- DconsT+PLAUS 0.687 0.635 0.746 0.535 0.651 0.850 0.582 15.48
TIES 0.692 0.654 0.749 0.512 0.652 0.844 0.574 14.76
DARE 0.640 0.661 0.740 0.553 0.649 0.847 0.572 14.62
IPA W/ Dconst+PLaus 0.695 0.656 0.746 0.531 0.657 0.848 0.578 15.54
MARIO 0.592 0.641 0.646 0.468 0.587 0.811 0.561 8.34
MIxIE 0.730 0.674 0.789 0.600 0.698 0.871 0.589 19.87

Table 1: Comparisons between MIXIE and baselines using LLAMA2-7B. Under task accuracy, we report the
accuracy for the test set of each QA dataset and the average accuracy. Additionally, we report the CONST and PLAUS
reward scores, and the average relative gain score. We find that MIXIE outperforms all baselines consistently,
demonstrating the superiority of our approach in mixing experts. Please refer to Section 6.1 for more details.

consider two prominent model-merging techniques,
TIES-Merging (Yadav et al., 2023) and DARE (Yu
et al., 2024), as our baselines.

IPA As introduced in Section 2.2, IPA trains an
adapter to tailor the model generations to improve
a specific reward. Here, we finetune the adapter
model using Dconst+pLaus to include the effect of
both the reward models into the single adapter.

MARIO (Ramnath et al., 2024) This is a
controlled-generation framework that uses separate
control tokens for different reward signals, training
the model to produce generations that score highly
on all targeted properties.

5.3 Evaluation

We evaluate the baselines and MIXIE on the test
sets of the QA datasets described in Section 5.1
by generating CoT completions (Wei et al., 2022)
and computing accuracy by checking if the model-
generated response correctly predicts the correct an-
swer choice. Additionally, we compute the CONST
and PLAUS reward scores for the generated CoT
response. Please refer to Appendix B.2 for further
details on reward computations. Lastly, we com-
pute the Average Relative Gain (ARG) (Ye et al.,
2021) metric to quantify the average improvement
across all metrics relative to a baseline. This helps
quantify the overall performance of both task ac-
curacy and reward scores under a single metric.
Please refer to Appendix C for further details on
how the ARG metric is computed.

6 Results

In this section, we evaluate MIXIE on the three
reasoning datasets described in Section 5.1 and
compare them with the baselines mentioned in Sec-
tion 5.2. We also perform various ablation studies
of MIXIE to evaluate the design choices.

6.1 Performance of MIXIE

In Tables 1 and 2, we evaluate MIXIE and the base-
lines on the three QA datasets. Specifically for
the ARC dataset, we report separate numbers for
the ARC-easy and ARC-challenge subsets. For
each dataset, we report the accuracy metric on the
test set. Additionally, we report the average accu-
racy (column Acc) across all datasets, the average
CONST and PLAUS reward scores, and the average
relative gain score (column ARG) that computes
the average gains across all metrics relative to the
base model, as discussed in Section 5.3.

Overall Results From Tables 1 and 2, we ob-
serve that MIXIE outperforms all the baselines in
terms of the mean score. We find that our method
outperforms the existing baselines on all met-
rics, except for LLAMA3-8B-INSTRUCT-based
DARE, which beats MIXIE on CSQA dataset. No-
tably, there is a 7.5% improvement in accuracy of
LLAMAZ2-7B-based MIXIE over the SFT baseline.
Thus, this demonstrates the effectiveness of our
model mixing strategy in improving both task accu-
racy and reward scores, compared to current base-
lines such as model merging, IPA, and MARTO.

Task Accuracy

Reward Score

Model ARG
StrategyQA CSQA ARC-e ARC-c Avg CONST PLAUS

LLAMA3-8B-INSTRUCT 0.711 0.732 0.892 0.741 0.769 0.859 0.598 0
SFT w/

- Draw 0.730 0.755 0.889 0.738 0.778 0.892 0.610 237

- Dconst+PLAUS 0.734 0.737 0.882 0.734 0.772 0.893 0.612 2.21
TIES 0.713 0.729 0.892 0.726 0.765 0.891 0.607 1.63
DARE 0.692 0.766 0.894 0.756 0.777 0.890 0.608 2.14
IPA W/ Dconst+PLaus 0.715 0.735 0.890 0.740 0.770 0.893 0.610 2.05
MARIO 0.739 0.740 0.897 0.729 0.776 0.897 0.607 2.32
MIXIE 0.768 0.760 0.902 0.785 0.804 0.903 0.615 4.14

Table 2: Comparisons between MIXIE and baselines using LLAMA3-8B-INSTRUCT. Under the task accuracy
column, we report the accuracy for the test set of each QA dataset and the average accuracy. We also report the
CONST and PLAUS reward scores, and the average relative gain score. Please refer to Section 6.1 for more details.

Model Avg Acc CONST PLAUS ARG
LLAMA2-7B 0.523 0.737 0.545 0
SFT w/
- Draw 0.649 0.840 0570 14.15
- Dconst 0.624 0.852 0572 1324
- DpLaus 0.654 0.843 0.580 15.26
- DconsT-+PLAUS 0.651 0.850 0.582 15.48

Table 3: Comparisons between SFT runs using different
reward-filtered datasets. We find that reward filtering
helps improve the corresponding reward score. Please
refer to Sections 4.2 and 6.2 for details.

Comparisons within SFT First, we observe that
using Dgw for supervised finetuning of the base
model is helpful. The gains are more prominent
for LLAMAZ2-7B since it is a weaker model and
thus benefits more from the ChatGPT-sampled data.
Next, we find that using reward-filtered data for
SFT leads to further performance improvements,
demonstrating the effectiveness of our reward-
filtering strategy. Here, the main improvements are
in the reward scores, which is expected since the
filtering essentially creates a reward-rich dataset.

6.2 Ablation Studies

Here, we ablate the following three design choices
of MIXIE: the effect of using different reward-
filtered data for creating experts, the choice of ex-
pert models for mixing, and the effectiveness of the
mixing module for mixing the experts.

Effect of Reward Filtering In Table 3, we eval-
uate the effect of using different reward-filtered
data for supervised finetuning the LLAMA?2-7B
model. Compared to the pre-trained model, we ob-
serve that finetuning using the ChatGPT-sampled

Draw significantly improves performance on all
the metrics. Next, we find that using the training
data filtered by the CONST reward model leads
to improvements in the CONST reward score, as
shown in bold. We see a similar trend when using
Dpy aus- This demonstrates that reward filtering im-
proves the respective reward scores, thus justifying
using these models as the expert models in MIXIE.
Lastly, we find that using the Dconst+pLaus leads
to a further improvement in performance, indicated
by ~1.3% improvement in the average relative gain
score over using Draw.

Model Avg Acc CONST PLAUS ARG
LLAMAZ2-7B 0.523 0.737 0.545 0
MIXIE w/o mixer 0.675 0.865 0.581 17.68
MIXIE
B + Econst 0.683 0.869 0.587 18.69
B + Epaus 0.691 0.867 0.589 19.20
B+ Econst + EpLaus 0.698 0.871 0.589 19.87

Table 4: Ablation of MIXIE without logit mixer mod-
ule and using different expert models. Please refer to
Section 6.2 for further details.

Effect of Expert Models In Table 4, we ablate
the choice of the expert models used in MIXIE.
As our method can mix one or more experts, we
choose to test variants of our model with a single ex-
pert to test the impact of individual experts. We find
that using the expert Fp; 5us leads to stronger accu-
racy results than using the Econst expert. This is
likely because in Table 3, we find that using Dpy oys
for SFT creates a stronger expert with higher av-
erage accuracy than using Dconsr. Additionally,
we hypothesize that model-generated explanations
tend to be more improbable than inconsistent, thus

benefiting more from E'p; 5ys. This is also consis-
tent with the findings of Ye and Durrett (2022).
Lastly, we find that combining both experts leads
to the best performance, demonstrating the comple-
mentary nature of both experts.

Effect of Mixer Module Next, we evaluate the
benefits of having a learnable mixer module in
MIXIE. For this, we ablate versions of our model
where the mixer module is replaced by constant
mixing weights, i.e., no “learnable” weights. These
results are shown in Table 4. We observe that
“MIxIE w/o mixer module” underperforms com-
pared to our method. Notably, MIXIE has an im-
provement of ~2.2% on ARG compared to the ver-
sion with fixed mixing weights. This demonstrates
the effectiveness of having a learnable mixing mod-
ule in our MIXIE framework.

7 Related Work
7.1 Multi Reward Training of Single Model

To exploit the potential of a single model and make
it suitable for multiple fields, researchers infuse
more than one reward objective into model training
(Yang et al., 2024; He et al.; Shi et al., 2024). As
an extension of Quark (Lu et al., 2022), Ramnath
et al. (2024) propose to employ multiple reward
tokens that indicate the quality of the generation
in different aspects. The model learns to associate
those reward tokens with the quality of the data to
which it is assigned in training and yields better
generations by explicitly providing reward tokens
with the highest quality. Lu et al. (2023) propose
Inference-time Policy Adapters (IPA), which use
reinforcement learning to train a lightweight policy
adapter and steer a model’s output toward user-
defined objectives.

7.2 Fusion of Reward-Specific Experts

Instead of adapting one model to several objectives,
merging models trained with different objectives is
another approach to improve performance.

Mixture of Experts Mixture of Experts (MoE)
is one of the strategies to train multiple experts si-
multaneously. It is composed of separate neural
networks, each of which is an expert in handling
one subtask. With the rise of large language mod-
els (LLM), MoE has experienced a revival (Abdin
et al., 2024; Sun et al., 2024; Jiang et al., 2024; Dai
et al., 2024). It distributes the model’s capacity in
multiple specialized experts by adopting a learned

gating mechanism that selectively activates only
the relevant experts for each input (Fedus et al.,
2022).

Branch-Train Mix Proposed by (Sukhbaatar
et al., 2024), it first trains multiple domain-specific
LLMs from a base LLM separately. Then, it stacks
feed-forward networks on top of these dense ex-
perts to instantiate a sparse MoEs module, followed
by further fine-tuning to learn token-level routing.

CALM CALM (Bansal et al., 2024), on the other
hand, uses cross-attention layers to blend represen-
tations from different models and leverage their
combined strengths across varied neural network
structures.

Model Merging Given that expert models are es-
sentially sets of parameters, merging these into one
model is another approach. Branch-Train-Merge
(Li et al., 2022) independently trains expert models
tailored to a specific domain within the training
corpus. These experts are then ensembled at infer-
ence time to coalesce into a single model. TIES
(Yadav et al., 2023) addresses the parameter’s direc-
tion conflicts and merges only the parameters that
align with the final agreed-upon sign. DARE (Yu
et al., 2024) sparsifies by parameter magnitude and
highlights the importance of further performing
rescaling on sparse models.

8 Conclusion

In this paper, we introduced MIXIE, a novel
inference-time expert-mixing framework. It trains
experts from one base LLM specializing in differ-
ent aspects by finetuning on appropriate datasets.
Then, it trains a logit mixer module to dynami-
cally merge the logits from different expert models
to yield a better token prediction. We conducted
experiments on merging commonsense and entail-
ment reasoning experts to demonstrate the effec-
tiveness of our method in improving the chain-of-
thought reasoning abilities of LLMs. Our merged
model surpasses SFT, model merging, and IPA
baselines on three QA datasets.

Limitations

Although our implementation of MIXIE performs
quite well and significantly saves computation
costs, there is still potential that has not been fully
exploited in this paper, and imperfections that can
be improved. Our current implementation forces
all experts to be loaded into one single GPU during

inference, making our method relatively memory
inefficient. In addition, it also restricts the scale
of our expert models and potentially compromises
performance. In a more optimized implementation,
expert models can generate probabilities across dif-
ferent GPUs, and the logit mixing module could
mix all logits in the master GPU. This parallel com-
putation can significantly reduce the inference time
and also allow larger expert models to be mixed
efficiently.

In contrast to traditional MoE methods, we only
experiment with dense mixing, i.e., the weight of
each expert model during inference is nonzero by
design. However, taking inspiration from MoE se-
tups like sparse routing (Fedus et al., 2022) can
potentially benefit our mixer module. A sparse
mixer module can selectively activate some experts
during decoding instead of aggregating the logits
from every expert. This can further make the infer-
ence more efficient. We leave this to future work.

A key assumption of MIXIE is that we have
access to the logits of the LLMs during token gen-
eration. Hence, any serverless API models that
do not provide logits (Brown et al., 2020; OpenAl,
2023) cannot be easily implemented within this
framework. A possible way to circumvent this is
to distill knowledge from these serverless models,
but this does not fully address the concern.

Lastly, our framework can work with any expert
model. Thus, users can potentially steer genera-
tion to malicious content by using “bad” experts
built using harmful reward signals. Currently, we
do not safeguard against such scenarios. Neverthe-
less, we highly recommend avoiding such negative
applications of our framework.

References

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed
Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat
Behl, and 1 others. 2024. Phi-3 technical report: A
highly capable language model locally on your phone.
arXiv preprint arXiv:2404.14219.

Rachit Bansal, Bidisha Samanta, Siddharth Dalmia,
Nitish Gupta, Shikhar Vashishth, Sriram Ganap-
athy, Abhishek Bapna, Prateek Jain, and Partha
Talukdar. 2024. Llm augmented llms: Expanding
capabilities through composition. arXiv preprint
arXiv:2401.02412.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda

Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens
Winter, and 12 others. 2020. Language models are
few-shot learners. In Advances in Neural Informa-
tion Processing Systems, volume 33.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question
answering? try arc, the ai2 reasoning challenge.
Preprint, arXiv:1803.05457.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu,
Huazuo Gao, Deli Chen, Jiashi Li, Wangding Zeng,
Xingkai Yu, Y Wu, and 1 others. 2024. Deepseek-
moe: Towards ultimate expert specialization in
mixture-of-experts language models. arXiv preprint
arXiv:2401.06066.

William Fedus, Barret Zoph, and Noam Shazeer. 2022.
Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. Journal of
Machine Learning Research, 23(120):1-39.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
Dan Roth, and Jonathan Berant. 2021. Did Aristo-
tle Use a Laptop? A Question Answering Bench-
mark with Implicit Reasoning Strategies. Transac-
tions of the Association for Computational Linguis-
tics (TACL).

Qiang He, Yucheng Yang, Tianyi Zhou, Meng Fang,
and Setareh Maghsudi. One model for all: Multi-
objective controllable language models.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Albert Q Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas,
Emma Bou Hanna, Florian Bressand, and 1 oth-
ers. 2024. Mixtral of experts. arXiv preprint
arXiv:2401.04088.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike
Lewis, Tim Althoff, Noah A Smith, and Luke Zettle-
moyer. 2022. Branch-train-merge: Embarrassingly
parallel training of expert language models. arXiv
preprint arXiv:2208.03306.

Jiacheng Liu, Wenya Wang, Dianzhuo Wang, Noah A.
Smith, Yejin Choi, and Hanna Hajishirzi. 2023. Vera:
A general-purpose plausibility estimation model for
commonsense statements. ArXiv, abs/2305.03695.

Ximing Lu, Faeze Brahman, Peter West, Jachun Jung,
Khyathi Chandu, Abhilasha Ravichander, Prithviraj
Ammanabrolu, Liwei Jiang, Sahana Ramnath, Nouha
Dziri, Jillian Fisher, Bill Lin, Skyler Hallinan, Lian-
hui Qin, Xiang Ren, Sean Welleck, and Yejin Choi.
2023. Inference-time policy adapters (IPA): Tailoring

https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457
https://doi.org/10.18653/v1/2023.emnlp-main.424
https://doi.org/10.18653/v1/2023.emnlp-main.424

extreme-scale LMs without fine-tuning. In Proceed-
ings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 6863—-6883,
Singapore. Association for Computational Linguis-
tics.

Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang,
Lianhui Qin, Peter West, Prithviraj Ammanabrolu,
and Yejin Choi. 2022. QUARK: Controllable text
generation with reinforced unlearning. In Advances
in Neural Information Processing Systems.

OpenAl. 2023. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Car-
roll L. Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, John
Schulman, Jacob Hilton, Fraser Kelton, Luke Miller,
Maddie Simens, Amanda Askell, Peter Welinder,
Paul Christiano, Jan Leike, and Ryan Lowe. 2022.
Training language models to follow instructions with
human feedback. Preprint, arXiv:2203.02155.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Thirty-seventh
Conference on Neural Information Processing Sys-
tems.

Sahana Ramnath, Brihi Joshi, Skyler Hallinan, Ximing
Lu, Liunian Harold Li, Aaron Chan, Jack Hessel,
Yejin Choi, and Xiang Ren. 2024. Tailoring self-
rationalizers with multi-reward distillation. In The
Twelfth International Conference on Learning Repre-
sentations.

Soumya Sanyal, Tianyi Xiao, Jiacheng Liu, Wenya
Wang, and Xiang Ren. 2024. Are machines better at
complex reasoning? unveiling human-machine infer-
ence gaps in entailment verification. In Findings of
the Association for Computational Linguistics: ACL
2024, pages 10361-10386, Bangkok, Thailand. As-
sociation for Computational Linguistics.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Prox-
imal policy optimization algorithms. Preprint,
arXiv:1707.06347.

Ruizhe Shi, Yifang Chen, Yushi Hu, Alisa Liu, Hanna
Hajishirzi, Noah A Smith, and Simon S Du. 2024.
Decoding-time language model alignment with mul-
tiple objectives. Advances in Neural Information
Processing Systems, 37:48875-48920.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma,
Hu Xu, Xi Victoria Lin, Baptiste Roziere, Jacob
Kahn, Daniel Li, Wen tau Yih, Jason Weston, and
Xian Li. 2024. Branch-train-mix: Mixing ex-
pert llms into a mixture-of-experts llm. Preprint,
arXiv:2403.07816.

Xingwu Sun, Yanfeng Chen, Yiqing Huang, Ruob-
ing Xie, Jiaqi Zhu, Kai Zhang, Shuaipeng Li, Zhen

10

Yang, Jonny Han, Xiaobo Shu, and 1 others. 2024.
Hunyuan-large: An open-source moe model with
52 billion activated parameters by tencent. arXiv
preprint arXiv:2411.02265.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and
Jonathan Berant. 2019. CommonsenseQA: A ques-
tion answering challenge targeting commonsense
knowledge. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4149-4158, Minneapolis, Minnesota. Association for
Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9,
2017, Long Beach, CA, USA, pages 5998—-6008.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Prateek Yadav, Derek Tam, Leshem Choshen, Colin
Raffel, and Mohit Bansal. 2023. Resolving in-
terference when merging models. arXiv preprint
arXiv:2306.01708, 1(3).

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han
Zhong, Dong Yu, and Jianshu Chen. 2024. Rewards-
in-context: Multi-objective alignment of foundation
models with dynamic preference adjustment. arXiv
preprint arXiv:2402.10207.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. 2023. Tree of thoughts: Deliber-
ate problem solving with large language models.
Preprint, arXiv:2305.10601.

Qinyuan Ye, Bill Yuchen Lin, and Xiang Ren. 2021.
CrossFit: A few-shot learning challenge for cross-
task generalization in NLP. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 7163—7189, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Xi Ye and Greg Durrett. 2022. The unreliability of ex-
planations in few-shot prompting for textual reason-
ing. In Advances in Neural Information Processing
Systems.

Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin
Li. 2024. Language models are super mario: Absorb-
ing abilities from homologous models as a free lunch.
In Forty-first International Conference on Machine
Learning.

https://doi.org/10.18653/v1/2023.emnlp-main.424
https://openreview.net/forum?id=5HaIds3ux5O
https://openreview.net/forum?id=5HaIds3ux5O
https://openreview.net/forum?id=5HaIds3ux5O
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://arxiv.org/abs/2203.02155
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=HPuSIXJaa9
https://openreview.net/forum?id=t8eO0CiZJV
https://openreview.net/forum?id=t8eO0CiZJV
https://openreview.net/forum?id=t8eO0CiZJV
https://doi.org/10.18653/v1/2024.findings-acl.618
https://doi.org/10.18653/v1/2024.findings-acl.618
https://doi.org/10.18653/v1/2024.findings-acl.618
https://doi.org/10.18653/v1/2024.findings-acl.618
https://doi.org/10.18653/v1/2024.findings-acl.618
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2403.07816
https://arxiv.org/abs/2403.07816
https://arxiv.org/abs/2403.07816
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://doi.org/10.18653/v1/N19-1421
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.10601
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://doi.org/10.18653/v1/2021.emnlp-main.572
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S
https://openreview.net/forum?id=Bct2f8fRd8S

Denny Zhou, Nathanael Schirli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Claire Cui, Olivier Bousquet, Quoc V Le, and Ed H.
Chi. 2023. Least-to-most prompting enables com-
plex reasoning in large language models. In The
Eleventh International Conference on Learning Rep-
resentations.

11

A QA Data Collection

This section introduces the process of collating the
QA dataset we use to train and evaluate MIXIE.
As discussed in Section 5.1, we mainly focus on
CSQA, StrategyQA, and ARC datasets. We create
the training dataset by integrating the train splits
of CSQA and StrategyQA and the train and val-
idation splits of the ARC dataset. By doing so,
our final training split contains 15, 583 data points.
Similarly, we combine the test split of ARC and
StrategyQA and the validation split of CSQA into
our overall test set. Through this, we collect 5, 456
data points for our test set, which is used in all eval-
uations. The dataset statistics of each QA dataset
we consider are presented in Table 5.

Dataset

Statistics StrategyQA CSQA ARC-e ARC-—c
Train 1,603 9,741 2,251 1,119
Validation - 1,221 570 299
Test 687 - 2,376 1,172

Table 5: Statistics of train/validation/test split of differ-
ent QA datasets. Please refer to Appendix A for more
details.

B Reward Data Collection and Expert
Training

In this section, we briefly introduce the reward data
collection pipeline. We sample generations from
ChatGPT first, then use reward models to compute
the reward scores for those generations. Finally, we
filter out bad generations based on some thresholds
to create the “reward-filtered” training data.

B.1 Creating Dg,w dataset using ChatGPT

As discussed in Section 4.2, we collect chain-of-
thought (CoT) generations by sampling outputs
from ChatGPT? using prompts mentioned in Ap-
pendix F. To encourage diversified generations, we
set the temperature at 0.5 and the top_p at 0.8. In
total, 40 rationales are sampled for every instance.

After eliciting responses for each question, we
conduct a data cleaning process to de-duplicate
redundant responses. This results in 297, 553 in-
stances in the final D,y training data.

2ChatGPT refers to gpt-3.5-turbo-0125 in the OpenAlI API.

https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM
https://openreview.net/forum?id=WZH7099tgfM

B.2 Computing Reward Scores using Reward
Models

The Draw data is fed to reward models and gets
numerical scores for each instance. For PLAUS, we
directly provide the generation to the VERA com-
monsense model (Liu et al., 2023), and the model
provides a score based on the plausibility of the
sentence. However, we first convert the question
into a hypothesis for the consistency score. Then,
the question-modified hypothesis and the generated
CoT (premise) are fed to the entailment verification
model (Sanyal et al., 2024) to get the consistency
score in a format shown in Box 1. The PLAUS
and CONST reward scores estimate the plausibil-
ity of the explanation in the generated CoT and
the consistency between the CoT and the model’s
prediction, respectively.

Premise: {question}

Hypothesis: {generation}

Question: Given the premise, is the hypothesis
correct?

Answer:

Box 1: Converted input data format for Flan-T5-xxI-
based entailment verification model. Please refer to
Appendix B.2 for more details.

B.3 Filtering and Creating Reward Data

After computing the reward scores, we manually
set some reward thresholds to filter out bad gen-
erations and get high-quality data. For the VERA
model, any generation receiving a score higher than
0.85 is regarded as a good generation, while oth-
ers are treated as bad and discarded. This results
in Dp, zys dataset. Similarly, we set a threshold
of 0.99 for the CONST reward scores since con-
sistency is crucial for a good generation. Filter-
ing based on this threshold creates Dconsr. This
workflow is also depicted in Figure 4. Further, we
also filter using both the reward scores to create
Dconst+pLaus- For different filtering strategies, the
exact number of examples in the training set after
filtering is listed in Table 6.

B.4 Hyperparameter in Training Expert
Model

As shown in Figure 4, we finetune the expert mod-
els using “reward-filtered” data. During finetuning,
we explicitly use the parameter efficient finetuning
algorithm LoRA (Hu et al., 2021). Specifically,
the load_in_4bit is activated. The lora_r is set to

12

Data Statistics Remaining Percentage
Draw 297,553 100%
DCONST 184,957 62%
Dppaus 62,845 21%
Dconst+PLaus 32,937 11%

Table 6: Data statistics of different reward-filtered
datasets and their corresponding percentage share of
original raw data Dr,w. Please refer to Appendix B.3
for more details.

be 16, and the lora_alpha is set to be 8. We also
set the lora_dropout value to be 0.05. We set the
learning rate to le >, the gradient accumulation
step to 4, and the per-device batch size to 3. Train-
ing an expert on a Quadro RTX 8000 GPU takes
approximately 24 hours on average.

C Computing the Average Relative Gain
metric

The Average Relative Gain (ARG) (Ye et al., 2021)
metric is used to quantify the average improvement
across all metrics relative to a baseline. This helps
quantify the overall performance of both task ac-
curacy and reward scores under a single metric.
We use the FLMs as the baselines for this met-
ric. The metric essentially computes how much
a specific method improves on average across the
three metrics: accuracy (Acc), CONST reward score
(CONST), and PLAUS reward score (PLAUS). Con-
cretely, for a method M based on an FLM F, the
ARG metric is defined as follows:

1] Aceps — Acer

ARG =
3

Accr
CONSTpq — CONST £
CONSTr
PLAUS A — PLAUS £
PLAUS

+x100.

D Hyperparameters for Training MIXIE

To achieve better performance while training the
mixer module, we choose 7e~® as the learn-
ing_rate and 0.1 as the weight_decay. Besides,
the per-device batch size is set at 8, and we use a
2-layer FFN as the router network during training.

E Effect of CoT data source

In Table 7, we evaluate the effect of using a dif-
ferent model as the source for sampling Dgraw-.
Here we use gpt-4o-mini as another data source

Model Avg Acc CONST PLAUS ARG

LLAMA2-7B 0.523 0.737 0.545 0
MIXIE using Dgaw from
- gpt-3.5-turbo-0125 0.698 0.871 0.589 19.87
- gpt-40-mini-2024-07-18 0.696 0.840 0.588 18.26

Table 7: Ablation of the source of CoT data. Here
we compare between using ChatGPT and GPT-40-mini
to sample the Chain-of-Thought data used for training
MIXIE. Please refer to Appendix E for further details.

and rerun the data generation, expert training, and
MIXIE training pipeline. We observe that data
sampled from gpt-3.5-turbo leads to better perfor-
mance than gpt-4o-mini. However, we note that
MIXIE performance is relatively robust and the per-
formance gains are consistent even with a different
data source.

F Full Prompts

In Tables 8, 9, and 10 we show the CoT prompts
used for creating Draw for CSQA, StrategyQA,
and ARC datasets, respectively. We use the same
CoT prompt for both easy and challenge sets of the
ARC dataset.

13

PROMPT FOR COMMONSENSE QA

Q: What do people use to absorb extra ink from a fountain pen? (a) shirt pocket (b) calligrapher’s hand (c) inkwell (d)
desk drawer (e) blotter

A: The answer must be an item that can absorb ink. Of the above choices, only blotters are used to absorb ink. So the
answer is (e).

Q: What home entertainment equipment requires cable? (a) radio shack (b) substation (c) television (d) cabinet
A: The answer must require cable. Of the above choices, only television requires cable. So the answer is (c).

Q: The fox walked from the city into the forest, what was it looking for? (a) pretty flowers (b) hen house (c) natural
habitat (d) storybook

A: The answer must be something in the forest. Of the above choices, only natural habitat is in the forest. So the
answer is (b).

Q: Sammy wanted to go to where the people were. Where might he go? (a) populated areas (b) race track (c) desert (d)
apartment (e) roadblock

A: The answer must be a place with a lot of people. Of the above choices, only populated areas have a lot of people. So
the answer is (a).

Q: Where do you put your grapes just before checking out? (a) mouth (b) grocery cart (c)super market (d) fruit basket
(e) fruit market

A: The answer should be the place where grocery items are placed before checking out. Of the above choices, grocery
cart makes the most sense for holding grocery items. So the answer is (b).

Q: Google Maps and other highway and street GPS services have replaced what? (a) united states (b) mexico (c)
countryside (d) atlas

A: The answer must be something that used to do what Google Maps and GPS services do, which is to give directions.
Of the above choices, only atlases are used to give directions. So the answer is (d).

Q: Before getting a divorce, what did the wife feel who was doing all the work? (a) harder (b) anguish (c) bitterness (d)
tears (e) sadness

A: The answer should be the feeling of someone getting divorced who was doing all the work. Of the above choices,
the closest feeling is bitterness. So the answer is (c).

Table 8: Few-shot exemplars for full chain of thought prompt for CommonsenseQA.

14

PROMPT FOR STRATEGY QA

Q: Do hamsters provide food for any animals? (a) true (b) false

A: Hamsters are prey animals. Prey are food for predators. Thus, hamsters provide food for some animals. So the
answer is (a).

Q: Could Brooke Shields succeed at University of Pennsylvania? (a) true (b) false

A: Brooke Shields went to Princeton University. Princeton University is about as academically rigorous as the
University of Pennsylvania. Thus, Brooke Shields could also succeed at the University of Pennsylvania. So the answer
is (a).

Q: Hydrogen’s atomic number squared exceeds number of Spice Girls? (a) true (b) false
A: Hydrogen has an atomic number of 1.1 squared is 1. There are 5 Spice Girls. Thus, Hydrogen’s atomic number
squared is less than 5. So the answer is (b).

Q: Is it common to see frost during some college commencements? (a) true (b) false
A: College commencement ceremonies can happen in December, May, and June. December is in the winter, so there
can be frost. Thus, there could be frost at some commencements. So the answer is (a).

Q: Could a llama birth twice during War in Vietnam (1945-46)? (a) true (b) false
A: The War in Vietnam was 6 months. The gestation period for a llama is 11 months, which is more than 6 months.
Thus, a llama could not give birth twice during the War in Vietnam. So the answer is (b).

Q: Would a pear sink in water? (a) true (b) false
A: The density of a pear is about $0.6g/cm?, which is less than water. Objects less dense than water float. Thus, a pear
would float. So the answer is (b).

Table 9: Few-shot exemplars for full chain of thought prompt for StrategyQA.

PROMPT FOR ARC

Q: George wants to warm his hands quickly by rubbing them. Which skin surface will produce the most heat? (a) dry
palms (b) wet palms (c) palms covered with oil (d) palms covered with lotion

A: Dry surfaces will more likely cause more friction via rubbing than other smoother surfaces, hence dry palms will
produce the most heat. So the answer is (a).

Q: Which factor will most likely cause a person to develop a fever? (a) a leg muscle relaxing after exercise (b) a
bacterial population in the bloodstream (c) several viral particles on the skin (d) carbohydrates being digested in the
stomach

A: Bacterial population is the most likely cause for a person developing fever. So the answer is (b).

Q: Which change in the state of water particles causes the particles to become arranged in a fixed position? (a) boiling
(b) melting (c) freezing (d) evaporating

A: When water is freezed, the particles are arranged in a fixed position; the particles are still moving for all other
options. So the answer is (c).

Q: When a switch is used in an electrical circuit, the switch can (a) cause the charge to build (b) increase and decrease
the voltage (c) cause the current to change direction (d) stop and start the flow of current
A: The function of a switch is to start and stop the flow of a current. So the answer is (d).

Table 10: Few-shot exemplars for full chain of thought prompt for ARC dataset. Both ARC-easy and ARC-challenge
share the same prompt in the generation process.

15

	Introduction
	Background
	Problem Statement
	Inference-time Policy Adapter

	Overview of MixIE
	Allowing for Multiple Reward Signals
	Need for Learnable Mixing Weights
	Training and Inference

	Improving Natural Language Reasoning using MixIE
	Reward Models
	Training Experts
	Training MixIE

	Experimental Setup
	Datasets
	Baselines
	Evaluation

	Results
	Performance of MixIE
	Ablation Studies

	Related Work
	Multi Reward Training of Single Model
	Fusion of Reward-Specific Experts

	Conclusion
	QA Data Collection
	Reward Data Collection and Expert Training
	Creating DRaw dataset using ChatGPT
	Computing Reward Scores using Reward Models
	Filtering and Creating Reward Data
	Hyperparameter in Training Expert Model

	Computing the Average Relative Gain metric
	Hyperparameters for Training MixIE
	Effect of CoT data source
	Full Prompts

