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ABSTRACT

Traditional ranking systems optimize offline proxy objectives that rely on oversim-
plified assumptions about user behavior, often neglecting factors such as position
bias and item diversity. Consequently, these models fail to improve true counter-
factual utilities such as such as click-through rate or purchase probability, when
evaluated in online A/B tests. We introduce RewardRank, a data-driven learning-
to-rank (LTR) framework for counterfactual utility maximization. RewardRank
first learns a reward model that predicts the utility of any ranking directly from
logged user interactions, and then trains a ranker to maximize this reward using a
differentiable soft permutation operator. To enable rigorous and reproducible eval-
uation, we further propose two benchmark suites: (i) Parametric Oracle Evaluation
(PO-Eval), which employs an open-source click model as a counterfactual oracle
on the Baidu-ULTR dataset, and (ii) LLM-as-User Evaluation (LAU-Eval), which
simulates realistic user behavior via large language models on the Amazon-KDD-
Cup dataset. RewardRank achieves the highest counterfactual utility across both
benchmarks and demonstrates that optimizing classical metrics such as NDCG
is sub-optimal for maximizing true user utility. Finally, using real user feedback
from the Baidu-ULTR dataset, RewardRank establishes a new state of the art in
offline relevance performance. Overall, our results show that learning-to-rank
can be reformulated as direct optimization of counterfactual utility, achieved in a
purely data-driven manner without relying on explicit modeling assumptions such
as position bias.

1 INTRODUCTION

The goal of any ranking system is to model human decision-making in a way that maximizes user
engagement and utility. However, real-world user behavior is shaped by subtle, context-dependent
cognitive biases that traditional ranking losses fail to capture. Engagement often drops when users
are presented with redundant or overly similar items, whereas introducing diversity or strategically
positioning items can significantly enhance interest. For example, the decoy effect—where the
presence of a less-attractive item increases preference for a similar alternative—has been observed in
search interactions and shown to meaningfully influence user choices (Wang et al.,[2025a). Other
well-documented biases include position bias (Chen et al., 2024} [Hager et al., 2024; [ Zou et al.,
2022), brand bias (Li et al.,[2025)), and similarity aversion (Tversky & Simonson, |2004)). In online
advertising, the goal is often to maximize the probability that a user clicks on any item in the list,
rather than just the top-ranked one. If data shows that users tend to click on the second position, it
may be optimal to place the most engaging ad there to improve overall performance. Likewise, in
recommendation scenarios, users may prefer a diverse mix of product styles or brands over a cluster of
nearly identical, albeit highly relevant, items. Traditional ranking losses, which emphasize relevance
at individual positions (typically the top), are ill-suited for modeling such list-level behaviors (Figure
[I). They overlook the fact that user utility depends not just on which items are shown, but how they
are arranged, highlighting the limitations of handcrafted objectives in capturing the interactive and
comparative nature of real user decision-making.

A natural way to model user behavior is by learning preferences over full permutations of items
within a query group (i.e., a query and its associated items). The ideal objective is to identify
and rank those permutations that are most likely to drive user engagement, which can be for-
mulated as a likelihood maximization problem: maximizing the probability of observing high-
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engagement permutations while minimizing that of unengaged ones. However, the combinatorial
explosion of the permutation space quickly renders this approach intractable; for instance, ranking
10 items results in 10! (over 3.6 million) possible arrangements. To address this, recent approaches
adopt a utility-based framework (Feng et al., [2021} [Shi et al.l 2023; Xi et al.| 2024; Ren et al.,
2024; [Wang et al., [2025b)), where a utility model is trained to score permutations based on user
preferences, and a ranker is subsequently optimized to generate item orders that maximize the
predicted utility. While this framework reduces the combinatorial burden, it introduces two key
challenges. First is the classic exploration—exploitation dilemma: the ranker must leverage known
high-utility arrangements while also exploring novel permutations that may yield higher engagement.
Second is utility model misspecification (akin to re-

ward misspecification|Clark & Amodei| (2016)); |Coste reD v w i 5]

et al.|(2023)): if the learned reward model fails to ac-  sorteany \
curately reflect true user preferences, the ranker may ™ = P
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overall performance.
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query "laptop bag" are observed, constituting the fac- oiversity |

tual space. These observed interactions define the

factual/observed space, whereas the vast majority of Figure 1: Counterfactual ranking with
unexposed, yet potentially high-utility, permutations  ¢.;e learning-to-rank utility. Three arrange-
form the counterfactual/unobserved space. The op- ot for the query "laptop bag", with item
timal arrangement that maximizes user engagement relevance/rating scores (0-5%). The top row
may exist anywhere within the full permutation space ., 1< purely by relevance but suffers from
of 120 arrangements. One of the major challenges in similarity aversion due to identical color and
counterfactual ranking lies in reliably evaluating un- style, lowering engagement. The middle row
observed permutations. Even if the full permutation improves diversity but surfaces low-relevance
space is modeled, evaluating ranking strategies under jtopm. early, which may deter clicks. The
counterfactual settings remains challenging due t0 i itom row balances diversity and relevance,
the lack of explicit supervision (Agarwal et al., 2019; placing distinct yet relevant items in top posi-
Gupta et .al., .2024b;a; Buchholz et al., ,2024)' For  tjons, leading to higher predicted utility and
instance, in Figure[I] 117 out of 120 possible arrange- user engagement. (Figures are generated by
ments remain unobserved, making their evaluation GpT. 40)

inherently counterfactual. Existing approaches, such

as offline A/B testing, inverse propensity scoring, or

other debiasing techniques, are often costly, statistically unstable, or difficult to scale, making
counterfactual evaluation a central bottleneck in listwise utility optimization.

To address these challenges, we propose REWARDR ANK, a counterfactual utility maximization frame-
work that models user behavior over full item permutations. Rather than scoring items in isolation,
we learn a permutation-aware utility function that captures user preferences at the list level. To enable
differentiable optimization over permutations, we employ the SoftSort operator (Prillo & Eisenschlos,
2020) to construct soft item embeddings, allowing end-to-end training of the ranking model with
respect to utility gradients. To mitigate the effects of reward model misspecification—where the
learned utility may diverge from actual user preferences—we introduce a correction term in the
ranker’s training objective that improves robustness during optimization. For evaluation, we present
two scalable, fully automated protocols that assess counterfactual performance without requiring
human labels. Parametric Oracle Evaluation (PO-Eval) uses a pretrained, position-aware oracle to
provide soft supervision and serve as a proxy for user behavior. LLM-As-User Evaluation (LAU-Eval)
leverages large language models to simulate user preferences and assess ranking quality across
unobserved permutations. Together, these methods enable efficient benchmarking of counterfactual
ranking strategies and help align learned rankings with actual or simulated user utility.

Our key contributions can be summarized as:
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* We introduce REWARDRANK, a framework for counterfactual utility maximization that
learns a permutation-aware reward model, capturing human list-level preferences and behav-
ioral biases without any explicit modeling assumptions such as position bias.

* We enable end-to-end ranking optimization using differentiable soft permutation operators,
and incorporating a per-item auxiliary loss along with a misspecified reward correction term
to aid counterfactual space exploration.

» We propose two large-scale automated evaluation protocols: PO-Eval (parametric oracle) and
LAU-Eval (LLM-as-user), and construct reproducible testbeds for scalable counterfactual
ranking evaluation. Experiments on these testbeds reveal that optimizing standard offline
ranking metrics such as NDCG do not reliably maximize true user utility.

* In both proposed counterfactual testbeds, REWARDRANK consistently achieves the highest
learning-to-rank (LTR) utility compared to existing and widely adopted ranking methods.
When trained on real click signals from an industry-scale dataset, REWARDRANK further
establishes a new state-of-the-art in relevance performance.

2 RELATED WORK

Traditional ranking methods. Traditional learning-to-rank (LTR) methods are typically categorized
into three classes: point-wise, pair-wise, and list-wise approaches. Point-wise methods treat ranking
as a regression or classification problem by independently assigning relevance scores to each item
(Burges et al.| [2005aib)). While computationally efficient, they neglect interactions among items in the
ranked list. Pair-wise approaches, including RankSVM (Joachims, [2002), RankBoost (Freund et al.,
2003)), and LambdaMART (Burges, [2006; ' Wu et al., |2010)), aim to learn relative preferences between
item pairs, improving over point-wise methods but still failing to capture full list-level dependencies.
In contrast, list-wise methods optimize objectives over the entire ranking, such as NDCG (Cao et al.|
2007; Xia et al.,2008), offering better alignment with evaluation metrics.

Recent large-scale datasets such as Baidu-ULTR (Zou et al.,[2022) have enabled realistic benchmark-
ing of ranking algorithms under user-interaction-driven settings, facilitating systematic studies on
position bias, distribution shift, and counterfactual evaluation in LTR (Hager et al., 2024). Building
on these advances, modern approaches have expanded beyond purely supervised objectives toward
data-driven and representation-rich formulations. Pretraining-based LTR models leverage large
language or multimodal corpora to learn transferable ranking priors (Hou et al., [2024), while latent
cross-encoding methods (Luo et al.l 2022) and set-aware transformers |Qin et al.|(2021) jointly embed
queries and items to capture fine-grained contextual dependencies.

Counterfactual Learning-to-Rank. Prior work in counterfactual learning-to-rank (CLTR) primar-
ily addresses position bias in implicit feedback using methods such as inverse propensity scoring
(IPS) (Joachims et al., |2017)) and doubly robust estimation (Oosterhuis, |[2023)). Extensions include
modeling trust bias (Agarwal et al.,2019) and jointly correcting for both position and trust biases (Var+
dasbi et al., [2020). Recent approaches explore policy optimization via proximal updates (Gupta et al.|
2024b)) and extend this to trust-aware CLTR through proximal ranking objectives (Gupta et al.|[2024a)).
While effective, these methods often focus narrowly on position bias or make strong assumptions,
underscoring the need for broader utility-driven ranking frameworks, as pursued in this work.

Utility-oriented counterfactual reranking. Reranking methods enhance an initial ranked list by
applying a secondary model to better optimize downstream objectives such as user utility, fairness, or
diversity (Xi et al.| [2024;|Wang et al.,|2025b). Recent work in counterfactual ranking predominantly
follows a two-stage framework consisting of a generator and an evaluator (Xi et al., [2024; Shi
et al., 2023} Ren et al.| [2024; [Wang et al., 2025b)). For example, URCC (Xi et al., [2024) trains a
set-aware utility model and employs a context-sensitive pairwise Lambdal.oss to guide the ranker.
NLGR (Wang et al., 2025b)) leverages neighboring lists within a generator-evaluator setup for utility
optimization. PRS (Feng et al., |2021) adopts beam search to generate candidate permutations and
evaluates them using a permutation-wise scoring model, while PIER (Shi et al.| |2023)) uses SimHash
to select top-K candidates from the full permutation space efficiently.

Reranking approaches rely on a strong base ranker trained on logged data and typically explore
counterfactuals around its initial permutations Xi et al.| (2024); [Wang et al.| (2025b)), which constrains
exploration and limits discovery of globally optimal rankings. Importantly, these methods do not learn
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an explicit reward model; instead, they assume a predefined metric such as NDCG to serve as the
counterfactual reward (Joachims et al.|[2017; /Agarwal et al.||2019). While effective in certain settings,
this reliance on a fixed evaluation metric can hinder adaptability to more general or task-specific
reward signals.

Differential approximation to ranking. A key challenge in learning-to-rank is the mismatch
between evaluation metrics (e.g., NDCG, MAP) and surrogate loss functions amenable to gradient-
based optimization, due to the non-differentiable nature of sorting operations. To address this, prior
work has either proposed smooth approximations to the rank function (e.g., ApproxNDCG (Qin et al.}
2010)) or introduced differentiable approximations to argsort using soft permutation matrices (Grover
et al.,|2019; [Prillo & Eisenschlos| [2020); for instance, PiRank (Swezey et al., 2021 and NeuraINDCG
(Pobrotyn & Biatobrzeski, [2021) utilize NeuralSort as a temperature-controlled surrogate. Another
line of work leverages the Plackett—Luce distribution to model ranking policies in a differentiable
manner (Oosterhuis| 2021). Methods like PG-RANK (Gao et al., [2023) use policy gradients to
optimize the expected reward over the Plackett—Luce distribution based on REINFORCE, while
ListNet (Cao et al.| 2007 and ListMLE (Xia et al., 2008)) employ the Plackett—Luce framework to
derive smooth list-wise objectives.

Please refer to Appendix Section [A.3]for additional related work.

3 LEARNING-TO-RANK PROBLEM: UTILITY MAXIMIZATION VS SORTING

A data sample of an LTR problem is a query group (QG) consisting of a query, ¢, and a set of L items,
{asg}f:l, where L may vary. The query may represent, for example, a search string, a user profile, or
other contextual information like device type and page layout. The ifems are candidate entities like
webpages, songs, or products retrieved by an upstream system. We assume that the QGs are drawn
i.i.d. from a distribution P, i.e. (¢, {x¢}) ~ P. When a user is presented with a ranking/arrangement
(permutation), 7 : [L] — [L], of the items of a QG, i.e. (Zx(1),...,Zx(r)), they interact with the
ranked items, yielding a stochastic utility U(q, {z¢}, ) € R, which is a hidden function of the QG
and the ranking. In typical internet systems, the utility can represent outcomes such as whether a user
clicks or purchases any item, or continuous measures such as the total minutes of media consumed.
Our objective is to learn a ranking policy, f, mapping the QGs to permutations, that maximizes the
expected utility return, i.e.

= argljrcnaxE(q,{u})Np[U(q, {ze},m = fg:{ze})] M

Based on the choice of the utility, this objective corresponds to business metrics like click-through
rate, units sold, or streamed minutes. The main challenge here is that the hidden stochastic utility
function U is not directly observable. Instead we are given a training dataset, D, consisting of N
QGs (indexed by ¢) and their observed utility {«;} under some logged rankings {r;}, i.e. D =
{(¢ {Ii,t’}zL;p i, U;) }ic[n])- We assume that similar hold-out test and validation dataset are also
available. This setting can be viewed as an offline one-step reinforcement-learning problem in which
the state space is comprised of all possible QGs in the support of P, the action space is comprised of
all item permutations, and the reward is the observed utility.

In practice, most QGs are unique, so we observe only one out of L! possible rankings for each.
Consequently, even if we propose a better alternative ranking for a given QG, the counterfactual
utility it would have obtained remains unknown. To address this, traditional LTR algorithms optimize
heuristic offline ranking metrics like Normalized Discounted Cumulative Gain (NDCG) (Jarvelin &
Kekalainen, 2002; Burges, [2006), averaged over a test set. When a user interacts with a ranked QG,
we also obtain per-item feedback signals {y, > 0} (e.g. whether an item was clicked or purchase,
or how many minutes it was streamed). Usually, the overall QG-level utility « is some function of
these per-item signals. Then, the NDCG of any new ranking 7, on a QG with feedbacks {y,} can be
defined as

o DCG(7, {ye})

NDCG( {yeh) = 5ea (e ()

€ [0,1], where DCG(r, {y¢}) = Z m i

@)
DCG assigns a gain 2¥¢ — 1 for the item ¢ in a test QG, but its contribution to the metric is discounted
by its position 7 ~*(¢) under the ranking 7. Thus, NDCG is maximized when the items are ranked
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in the descending order of their feedback values, i.e., under the optimal ranking 7*. Traditional
LTR methods (Burges| 20065 Swezey et al., 2021)), aim to maximize NDCG by optimizing various
continuous relaxations of it. This heuristic of learning to move items with higher feedback signal
to the top of list have been highly successful, potentially because (i) items with positive feedback
are usually relevant, and (ii) users tend to focus their attention on the top of the list. However, such
offline metrics are now well-known to be sub-optimal as they do not perfectly align with the true
(hidden) utility @) we aim to maximize (Wang et al.l 2023} Jeunen et al.l 2024). A key advantage of
REWARDRANK over traditional LTR methods is its ability to leverage data without click/purchase
labels. Whereas standard pipelines often discard sessions with no purchases/clicks (or treat them as
uninformative negatives), our approach can still extract signal from these interactions via its utility
modeling and preference estimation. This aligns with recent evidence that leveraging unlabeled or
weakly labeled interaction data—e.g., through pretraining or preference modeling—improves ranking
quality (Hou et al.,2024). In the next section, we introduce REWARDRANK, a data-driven ranking
framework that directly maximizes the true LTR utility without relying on heuristics or specific
user-behavior assumptions.

4 REWARDRANK: DATA-DRIVEN LTR UTILITY MAXIMIZATION

In this section, we present the REWARDRANK framework, which aims to maximize the true (hidden)
LTR utility defined in (2). At a high level, REWARDRANK proceeds in two stages. First, using the
logged training data D, it learns a reward model that predicts the counterfactual utility for any QG
and permutation. Then it trains a ranker using the reward model’s predictions as supervision, so as to
maximize the expected counterfactual LTR utility of the ranker’s item arrangement (ranking) policy.

4.1 STAGE 1: LEARNING THE UTILITY USING A REWARD MODEL

Let g(q,{x¢},m; @) denote the reward model (parameterized with ¢) to predict the scalar utility
for the QG (¢, {x¢}) and a ranking 7. It is trained solely on the logged query groups, rankings
and observed utilities in the training dataset D. When the utility U € {0, 1} is a binary random
variable (e.g. click, purchase), we train g € [0, 1] by minimizing the average binary cross-entropy
loss between the observed w; and the predicted utilities @;(¢) := g(q;, {zi¢}, 7i; @) over all i € [N]:

N
m(;n RewardLoss(¢) 2 f% Zl[ul log(u(¢)) + (1 — ;) log(1 — u(e))]] - 3)

When the true utility is a continuous random variable (e.g. minutes a song is streamed) we can
use regression losses such mean squared error (MSE) min,(1/N) Zivzl lu; — wi(9)||?. In our
experiments, the reward model is instantiated with a transformer encoder, Enc, due to its ability to
model functions over sequences (ranked list of items). Before passing a QG into Enc each query-item
pair [¢, z¢] is embedded using a text encoder to create the token embedding ey. Next, the ranking
of the items 7 is encoded through position encodings {px }. Then the position encoded tokens are
passed to the transformer Enc. Finally, the predicted utility is computed as the sigmoid of a linear
function of the [CLS] token output. This can be succinctly represented as:

L
9(¢, {ze}iey, m @) =0 [VTEDCJS%EEJ ({ew(k) + pk}k:1> } , 4)

where e ) is the token embedding of the query and the k-th ranked item. During the second stage
of training the ranker, we freeze the reward model parameters ¢.

Auxiliary per-item predictor: Typically the observed utility u is a byproduct of user’s interaction
with the items. So, we hypothesize that predicting the per-item feedback signals {y,} as an auxiliary
task would improve the overall quality of the LTR utility prediction. Thus we include an auxiliary
prediction head on the item tokens’ outputs to predict the feedback signal observed at each ranked
position k € [L]. When y, € {0, 1} is binary, the predictions can be instantiated as

9e(6) = o[ Enc s ({en + i}y, ) | VEELL, 5)
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Figure 2: REWARDRANK. A ranker scores the items in a query group. These scores are used to
compute soft item embeddings via a soft permutation matrix. Position encoded soft item embeddings
are passed into a reward to estimate its utility. Finally, the ranker is optimized to maximize the
predicted utility.

where Encr(f‘zard is the output token at the k-th position and o is the sigmoid function. We can learn

Uk (¢) alongside u(¢) by adding the average cross-entropy loss between i and ¥/ (i)

N L;
B 3 ket 08 (G(9) + (L= i) o8 (1 = Fa(0))]- ©
1 =1 k=1

as an additional regularizer to RewardLoss (3). Note that during the training of the ranker in the next
stage, these auxiliary predictions can be discarded. Our ablation in Section[5.1|shows that the per-item
loss provides a moderate boost in performance. We also apply the per-item loss to query groups
(QGs) with no purchases (i.e., no positive labels). This enables us to exploit otherwise discarded
sessions and stabilize learning in sparse-feedback regimes by providing item-level signals even when
list-level purchase supervision is absent.

ItemLoss(¢)

4.2 STAGE 2: RANKER REWARD MAXIMIZATION THROUGH SOFT SORTING

Typically, rankers are modeled as scoring functions that assign a score to each item in a QG. Then the
items are ordered in the descending order of their scores to obtain the final ranking. We follow the
same pattern and define f(q, {z/};0) as a scoring-based ranker which maps a QG (¢, {x,}) to a set
of item scores {s;}. Following our reward model design, we instantiate f using the same transformer
backbone architecture. Since QG has an unordered set of items, we do not use position encoding.
Finally the score is computed as the linear function of the output item tokens, i.e.

se 2 fulg. {weyi0) 2 wiBnely, (feekiy) » W e [L], ™)

where Encffgker is the output token of the ¢-th item. Our goal is to optimize the effective ranking 7

induced by these scores so that it maximizes the expected counterfactual utility, which is a hidden
from us. This is where the reward model comes in handy, as it helps us predict the counterfactual
utility as u := g(q, {z¢}, 7). However, since sorting (of the scores) is a discontinuous operation, it is
challenging to optimize the scores to maximize the reward. To enable an end-to-end optimization of
the scorer f, we resort to a continuous relaxation of the sorting operation.

Soft Permutation via SoftSort. SoftSort (Prillo & Eisenschlos, [2020) is a continuous relaxation
of sorting operation. It defines a unimodal row-stochastic matrix (Swezey et al.,|2021)) as the soft

permutation matrix nm e [0, 1]¥* L, Row k of this matrix corresponds to a probability distribution
of the k-the ranked item over the set of all items. Formally, we define

o exp (=g s —szw))

Ypyexp (=L ]se — sam)

, Yk tel[l], 8)
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where 7 is a temperature parameter and 7 (k) is the k-th ranked items when (hard) sorting by the
scores {s¢}. TI(7) is a continuous function of the scores {s;} and when 7 — 0, TI{") tends to the
binary hard-permutation matrix II, where

lim T1{7) = Ty, Sm(k) =}, Yk (e [L], ©)
T— ’

assuming the scores are unique. Using this soft permutation matrix, we can compute a soft item

embedding Eg) at position k as the following convex combination of the true item embeddings

e 23 M. (10)
Le[L)

It is easy to verify that /e\](J) — ez(x) when 7 — 0. Note that there are alternate soft permutation

matrices like NeuralSort (Grover et al.,|2019)), but we adopt SoftSort for its simplicity and state of
the art performance (Prillo & Eisenschlos} 2020). We then compute a soft reward for these soft item
embeddings using

-~ A = A T ~ L

3002 o e, 1) £ o |vTencliy ({o7 e}, )| v
This allows us to compute an approximate predicted reward (TT) as a continuous function over the
ranker scores {sy} through the SoftSort matrix. Finally, we optimize the parameters of scorer f to
maximize the average approximate reward over the training set in an end-to-end manner:

N
. A 1 ~
min [RankerLoss(G) =N ;:1 gi(ﬁ)} . (12)

Even though REWARDRANK is maximizing the predicted utility of the soft ranking, we hypothesize
that it generalizes well and produces rankings with higher expected counterfactual utility than prior
LTR methods.

An alternative to soft-permutation matrices is the Plackett-Luce (PL) model, which offers efficient,
closed-form gradients for ranking. However, counterfactual learning with PL requires Monte Carlo
sampling, leading to high-variance estimates in large action spaces. While variance reduction
helps (Gao et al.| 2023)), unbiased learning fundamentally depends on stochastic logging, which is
incompatible with real-world deterministic rankers designed for stability and trust. Soft permutation
relaxations like SoftSort (Prillo & Eisenschlos, |2020) approximate permutations in continuous space,
enabling gradient-based optimization without sampling. Though computationally more expensive,
they reduce variance and support end-to-end utility maximization. We pair SoftSort with a learned
reward model that generalizes over logged data, enabling scalable training under deterministic logs.
This approach trades unbiasedness for stability and practicality in real-world ranking systems.

Mitigating reward misspecification. One challenge of reward modeling the hidden counterfactual
utility is model misspecification, i.e. a gap between the predicted and the true utilities. A misspecified
reward can misguide the ranker into wrong ranking policies |Coste et al.|(2023); |Clark & Amodei
(2016). To mitigate this issue we propose a sample reweighting scheme which modifies the ranker
loss as

N
1
RankerLoss™") (6) 2 N Zwl -9i(0), where w; =1 — A|u; — u;| € [0,1] and A € [0,1], V1.
i=1
(13)

Above loss is a pessimistic upperbound to RankerLoss(#) (12)). This reward down-weighting scheme
is motivated by a conjecture that when the observed utility u; for the i-th training QG and the
corresponding prediction 4, (#) are different, the utility prediction on new ranking of this QG would
also be less reliable. Through an ablation in Section [5.1] we show that reward misspecification
correction slightly improves the REWARDRANK performance.



Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

Datasets. Public large-scale datasets for learning-to-rank (LTR), especially in counterfactual settings,
are scarce. To the best of our knowledge, we propose the first reproducible testbeds for counterfactual
ranking evaluation. We utilize two existing large-scale LTR datasets: Baidu-ULTR (Hager et al.,
2024; Zou et al.| 2022) and Amazon KDD-Cup (Reddy et al.,[2022)), to construct these testbenches,
enabling rigorous evaluation of permutation-aware ranking policies. Baidu-ULTR contains 1.8M
query groups (11.7M query-document pairs) and 590K validation/test sessions. Amazon KDD-Cup
comprises 130K queries and 2.6M annotated query-product pairs with rich textual metadata. We
generate 400K training and 50K validation/test query groups by sampling permutations of products
per query. See Appendix [B.1|for further details.

Implementation Details and Baselines. Our reward models and rankers are based on a transformer
architecture with 12 layers, 768 hidden dimensions, 12 attention heads, and roughly 110M parameters.
We set 7 = 0.5 and A = 0.7 for all REWARDRANK experiments, based on tuning over a held-out
set. Ablations with varying values and further implementation details are provided in Appendix
For comparison, we implement two utility-based counterfactual ranking methods: URCC (Xi et al.,
2024), which uses a Lambdal.oss-based pairwise objective, and PG-rank (Gao et al.| 2023)), which
applies Plackett—Luce modeling with policy gradients. Our variants, URCC* and PG-rank*, replace
their offline metric utility (e.g. NDCG) with our transformer-based reward model for improved
counterfactual performance. Additionally, we train standard LTR baselines: ListNet (Cao et al.|
2007), ListMLE (Xia et al.,|2008), LambdaRank (Wang et al., [2018)), and PiRank (Swezey et al.,
2021)), all using the same transformer architecture for fair comparison across supervision methods.

5.1 LARGE-SCALE REPRODUCIBLE TESTBENCHES FOR COUNTERFACTUAL LTR

To enable reproducible evaluation of ranking policies without online A/B testing, we introduce
two complementary testbeds: PO-Eval, which leverages a parametric click model, and LAU-Eval,
which simulates human-like shopping behavior via LLM reasoning. Together, they enable holistic,
counterfactual assessment of ranking algorithms under both statistical and behavioral lenses.

Parametric Oracle Evaluation (PO-Eval). To simulate a click-based counterfactual recommen-
dation setting, we build a testbed from the Baidu-ULTR dataset (Hager et al.,[2024)), employing a
pretrained parametric IPS model as the oracle for supervision. This model estimates the click proba-
bility at position ¢ as P(C) = P(E;) - P(Ry,;), where P(E;) is the position-dependent examination
probability and P(R, ;) is the click probability given examination We use this oracle to sample binary
clicks for training and later reuse it for counterfactual evaluation of new ranking policies. For each
ranked query group (QG), we compute the expected utility as the probability of at least one click and
the observed utility as a binary indicator of at least one sampled click. This setup provides a realistic
and repeatable framework for evaluating how well learned rankers align with user behavior modeled
by the IPS-oracle. See Appendix [A.T|for details on the parametric model and the derivation of utility
metrics.

Table [/ reports counterfactual evaluation results using PO-Eval, where we leverage a pre-trained
parametric IPS-Oracle to simulate user clicks and assess ranking quality. The IPS-based utility
Pr(#Clicks > 1) captures the expected probability of at least one click per ranked list, while
NDCGgjicx measures how high are the originally clicked items in the test dataset ranked. The
Upper-Bound is computed by ranking items in descending order of P(R), which maximizes utility
due to the rearrangement inequality (Day] [1972) (see Appendix [A)). Traditional LTR baselines
(ListNet, ListMLE, LambdaRank, PiRank), trained with per-item IPS—sampled clicks, achieve strong
offline/surrogate metrics under Eq. [2| (e.g., NDCG_jicx) but fail to capture the true user utility in
Eq.[l|(e.g., Pr(#Clicks > 1)). URCC* yields the lowest performance, as it relies heavily on a strong
pretrained ranker to initialize its search; without such initialization, its effectiveness diminishes
significantly (see Appendix D). In particular, URCC* explores only the neighborhood of the current
permutations via pairwise position swaps, which (i) induces quadratic complexity and (ii) leads
to pessimistic exploration that can miss superior rankings outside this local region. In contrast,
REWARDRANK does not require any pretrained ranker and performs counterfactual optimization
directly, enabling broader exploration beyond the data rankings from logged data. For PG-Rank*,
we observe that increasing the number of Monte Carlo samples (MC = 1, 5, 10) reduces variance in
its estimates, which improves performance, albeit at the cost of longer training time (see Appendix
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Table 1: Counterfactual and surrogate evaluation across two settings. The table compares ranking
methods under (i) PO-Eval and (ii) LAU-Eval. For each setting we report a counterfactual metric:
Pr(#Clicks > 1) for PO-Eval and Pr(#Purchases>1) for LAU-Eval, reflecting the probability of
at least one positive user action; and an offline/surrogate metric: NDCGyiick and NDCGpyrchases
respectively, computed from logged labels (Eq.[2). While most baselines achieve high surrogate
scores, these gains do not consistently translate into higher counterfactual utility (Eq.[I). Notably,
URCC* and PG-rank* attain competitive NDCG yet underperform on the counterfactual metric,
whereas REWARDRANK delivers the highest purchase rate in LAU-Eval while remaining competitive
on surrogate metrics. The policy_in_data row reflects the original logged ordering.

PO-Eval LAU-Eval
Counterfactual (V') Offline (X) Counterfactual (V') Offline (X)

Method Pr(#Clicks > 1) NDCG_jick Pr(#Purchases > 1)  NDCGpurchase
Upper-Bound 0.553 £ 0.0007 - - -

Policy in data 0.475 + 0.0004 0.211 £ 0.0003 0.497 £ 0.009 0.496 + 0.009
ListNet (Cao et al.|[2007) 0.523 + 0.0007 0.376 £ 0.0002 0.521 + 0.009 0.405 + 0.009
ListMLE (Xia et al.||2008) 0.522 4+ 0.0007 0.377 + 0.0002 0.522 + 0.008 0.402 £ 0.008
LambdaRank (Wang et al.|[2018) 0.524 + 0.0007 0.378 £ 0.0002 0.523 + 0.009 0.406 + 0.009
PiRank (Swezey et al.|[2021) 0.525 + 0.0007 0.378 + 0.0002 0.528 + 0.007 0.408 + 0.009
URCC* (Xi et al.|[2024) 0.462 + 0.0005 0.315 + 0.0004 0.471 + 0.008 0.401 + 0.007
PG-rank* (Gao et al.||2023) 0.501 + 0.0005 0.327 £ 0.0002 0.489 + 0.007 0.402 + 0.008
REWARDRANK 0.536 + 0.0007 0.370 £ 0.0002 0.561 + 0.008 0.401 + 0.007

Section for details). In contrast REWARDRANK attains the highest utility under IPS-Oracle,
despite slightly lower NDCGj;cx than some baselines. This reflects a key distinction: proxy metrics,
such as NDCG (Eqn. [2), may not fully align with the true user utility (Eqn. [T). By directly optimizing
counterfactual reward, REWARDRANK better aligns with behavioral objectives beyond conventional
ranking accuracy.

LLM-based User Simulation (LAU-Eval). While PO-Eval captures position bias via IPS-Oracle
supervision, it does not account for broader behavioral patterns such as brand bias, similarity aversion,
or irrelevance bias. To complement PO-Eval and more fully assess human-centered ranking behavior,
we introduce the LAU-Eval framework. In this setup, a large language model (LLM) is prompted
to simulate user shopping behavior given a query and its associated product list from the Amazon
KDD-Cup dataset. The prompt incorporates behavioral factors such as position bias, brand bias,
irrelevance bias, and color bias (full details are provided in Appendix[C.2). The LLM generates a
binary purchase decision D(purchase) € {0, 1}, which serves as the reward signal for training a
reward model and optimizing rankers. For evaluation, the same prompt is used: each ranker’s ranked
item list is assesed by the LLM, and performance is reported as the average purchase decision rate on
a held-out test set. For LTR methods that do not rely on reward modeling, we instead use the per-item
binary LLM-purchase decision as the training signal. Higher values indicate stronger alignment with
human-centered behavioral criteria. Refer to the Appendix Section [C.2] for implementation details.

Under LAU-Eval, which measures binary purchase decisions made by the LLM, we observe clear
differences across methods. The policy_in_data baseline (original item order) attains an
average purchase rate of 0.497. Classical listwise approaches—ListNet, ListMLE, LambdaRank,
and PiRank—yield only modest gains on the true utility Pr(#Purchase > 1), reaching 0.500-0.513,
while achieving very high scores on the offline/surrogate utility (NDCGpumhase). These LTR methods
largely succeed by moving the purchased item to the top, which inflates surrogate metrics but does
not faithfully capture true preferences under the LLM-Oracle, such as brand or color bias among
the items, and therefore does not consistently increase purchases. This underscores the need to
optimize counterfactual utility as the primary metric for modeling human ranking behavior. We
also observe a clear mismatch between surrogate and counterfactual objectives for counterfactual
baselines: both PG-rank® and URCC* attain a strong NDCGpyrchase (formulated by Eqn , yet both
methods yield lower values on the counterfactual metric (purchase rate as formulated by Eqn [I).
This indicates that optimizing the ranking-aware surrogate alone can overfit to list reshuffling (e.g.,
moving a known purchased item to the top) without improving the actual decision outcome measured
by Pr(#Purchase >1).



Under review as a conference paper at ICLR 2026

w =10 w
=0.97 1.0] =0.97
0.8 0.90
—~0.6
0.90 E
W 0.4
02| i
| Ea . N . . 0.90 - R . . 0.79 0.0.- N 0.58
0.00 025 050 075 1.00 . 025 050 075 1.00 0.00 025 050 0.75 1.00
E(u) E(u) E(u)

Figure 3: Reward misspecification correction on PO-Eval. Each point represents a ranked list with
true utility (u: estimated by IPS-Oracle) and predicted utility (u: estimated by utility model) from the
ranker. Colors indicate (w = 1 — )\|u10gged — alogged\), showing how increasing (\) down-weights
overconfident or misaligned samples to emphasize well-calibrated predictions.

Ablations. We ablate the per-item regularizer and the two parameters of REWARDRANK: the
SoftSort temperature 7, which controls the sharpness of the permutation approximation (8)), and the
misspecification correction strength A, which down-weights rewards on QGs with high prediction
error (I3). Removing the auxiliary item-level reward loss (Eqn [6) decreased the final expected
counterfactual utility of the learned ranker. This indicates that learning to predict the per-item feedback
enhances the reward model’s generalization and hence improves downstream ranking performance.
As shown in Figure [3] increasing X progressively reduces the influence of unreliable reward estimates
by lowering their instance weights, leading to more stable learning. As A increases, the influence of
low-confidence predictions (lower w) diminishes, effectively down-weighting misspecified instances.
This correction improves stability by emphasizing samples with well-aligned predicted rewards. For
illustration, we display soft utility scores from Eqn however, all experiments use binary utility
signals as defined in Eqn[I6] We find that 7 = 0.5 and X\ = 0.7 achieve the best trade-off between
stability and performance. Full details of these ablations are reported in Appendix

5.2 BAIDU-ULTR DATASET WITH REAL USER CLICKS

While we previously used the Baidu-ULTR dataset within the PO-Eval framework under IPS-
Oracle supervision, here we instead rely directly on the real click signals provided in the data.
Following the protocol in (Hager et al.,

Table 2: Baidu-ULTR with real clicks. RE- [2024), models are trained with a binary
WARDRANK achieves SOTA performance. T metrics are ~ click labels for each query groups (u = 1

taken from [Hager et al| (2024) if any item is clicked, otherwise 0). Since
counterfactual evaluation is not feasible
Method DCG,y@5 DCGga10 here, we follow (Hager et al., 2024) and
- : report Relevance DCG at 5 and 10, com-
Point IPST (Hager et al.|[2024) 4.79 7.43 p
List IPS' (Hager et al.| 2024) 5.20 7.88 puted on the human-assigned relevance la-
LambdaRank' (Hager et al|2024)  5.45 8.23 bels provided with the test sef’} As shown
ListNet {Cag et 2112007) 505 ~od in Table[2] our method achieves a new state
ListMLE (Xia et al.| 2008) 513 738 of the art DC'G@5 and DCG@Q10 across
PiRank (Swezey et al.]2021) 5.3 8.01 all baselines. Importantly, these improve-
URCC™ X ot al|(2024) 501 7 a4 ments are observed on human-assigned rel-
PG-rank*[Gao et al.|(2023) 5.09 762 evance labels that were never used in train-
REWARDRANK 5.83 8.42 ing by any method. This is particularly

noteworthy given that our method is not op-
timized for relevance DCG. These results
highlight both the robustness of our approach and its ability to generalize to real human feedback in
large-scale search settings.

6 CONCLUSION

We present REWARDRANK, a counterfactual ranking framework that directly optimizes a behaviorally
grounded utility instead of relying on proxy click-based surrogates. Notably, our approach accom-

"We report DCG rather than NDCG for consistency with (Hager et al.|[2024)
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plishes this without imposing any explicit modeling assumptions. Architecturally, REWARDRANK
uses SoftSort to produce a differentiable soft permutation matrix, enabling end-to-end learning with
soft item embeddings (convex combinations over items) that feed a utility model. To guard against
reward model misspecification, we include a misspecification regularization term which is an explicit
A-weighted correction that penalizes over-reliance on noisy preference signals and stabilizes updates
against spurious gains. Through the proposed PO-Eval and LAU-Eval protocols, we showed a system-
atic mismatch between offline/surrogate metrics (e.g., NDCGpurchase) and true decision outcomes, and
demonstrated that REWARDRANK achieves the highest purchase rates while remaining competitive
on surrogate metrics. Unlike URCC*, REWARDRANK does not require a pretrained ranker and
can leverage sessions without purchase labels, extracting useful signal in sparse-feedback regimes.
Ablations further indicate that auxiliary per-item losses (including on purchase-free QGs) provide
consistent, moderate gains. Overall, aligning training and evaluation with counterfactual utility yields
models that better capture decision-relevant user behavior than traditional LTR or locally exploratory
counterfactual baselines.
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A PROOFS AND CONCEPTUAL DETAILS

A.1 CLICK-BASED UTILITY FOR PO-EVAL.

The IPS-Oracle simulates user clicks as a probabilistic function of both position-dependent examina-
tion and item-specific relevance. Specifically, the click probability for item (¢ at position £ under
ranking 7 is modeled as:

P(quﬂ(e),@) = P(E,) 'U(waw(z)) (14)

where P(E;) denotes the examination probability at position £, and (R, »_,, ) is the probability of
a click given examination. Given a query group (g, {z¢}}_,, ), the click indicator for each item is

sampled as:
Cqanipyl ™~ Bernoulli(P(C’qu(zM)) (15)

We define the group-level utility under the logged policy as a binary signal indicating whether at least
one item in the list was clicked:

1, if 0 ¢ (>0
U ; ) — ’ =1 "9:Tx=(0), ’ 16
(g {we}, m) {0, otherwise. (16)

The corresponding observed utility in the dataset, u, is a realization of U(q, {x¢}, mog) under the
logged ranking miqg.

To obtain a differentiable approximation, we define the expected probability of at least one click as:

L

Uws (g, {we},m) =1 — H (1 — P(E,) .O—<qux7r(l))) (17)
=1

This smoothed utility represents the expected engagement for ranking 7 and serves as a continuous
training signal. The reward model is trained to predict the binary group-level utility v € {0, 1} from
the logged policy, while the ranker maximizes the expected soft utility Urps under its own predicted
rankings. This formulation bridges synthetic click modeling with realistic counterfactual feedback,
enabling effective utility-based optimization even without direct supervision on full permutations.

A.2 IDEAL IPS-ORACLE: REARRANGEMENT INEQUALITY

Theorem 1 (Ideal Ranking Maximizes Utility via Rearrangement Inequality). Letr = (r1,...,7,) €
RZ, be a vector of predicted relevance scores, and let e = (eq, . .., e,) € RZ, be a non-increasing
sequence of examination probabilities: e; > ex > ... > e,. Let * be the permutation that sorts r
in descending order: 11y 2 T'xe(2) 2 ... 2 T'ne (). Then, for any permutation m € Sy, we have:

n n
Zei T (i) 2 Zei T (i)
i=1 i=1

Proof. This is a direct consequence of the classical rearrangement inequality (Dayl} [1972). Among all
permutations 7 of the relevance scores, the weighted sum ). e; - Tx(i) 18 maximized when the 7 ;)
are ordered in the same way as the e;, i.e., both decreasing. Hence, sorting r in descending order and
aligning it with the already sorted e gives the maximal utility. O

Above analysis shows that ideal ranking order under the IPS Oracle is ordering the items such the
sorting of item relevance scores and examination probabilities result in the same permutation.

A.3 DETAILS OF BASELINES

A.3.1 PG-RANK* : PG-RANK WITH LEARNED REWARD MODEL.

We extend the PG-Rank framework (Gao et al., 2023) by replacing the handcrafted reward (e.g.,
NDCG) with a learned reward model g(q, {i}1, ) that scores entire permutations based on user
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utility. The goal is to maximize the expected reward under the Plackett-Luce distribution induced by
the ranker’s scores:

EPG»reward(g) = E‘ITN]PQ [g(qa {i}La ’/T)} (18)
where Py (7) is the Plackett—Luce distribution over permutations, parameterized by model scores
$1,...,s for each item in the query group. To enable backpropagation through the sampled

permutations, we adopt the Gumbel-Softmax trick as in the original PG-Rank implementation, which
provides a continuous relaxation of the discrete sampling process.

The gradient of this objective is estimated using the REINFORCE trick with a baseline b for variance
reduction (adopted from PG-rank (Gao et al.,[2023; Kool et al.,[2019)):

VoLraaea ~ = D [ ((x®) ) - Vo log By(x®) (19)

k=1

where 7(¥) ~ Py are K Monte Carlo samples drawn from the Plackett—Luce model.

The log-probability of a sampled permutation 7 under this model is given by:

L L
log Pg(?‘r) = Z Sw(k) — logZexp(sﬂ(j)) (20)
k=1 j=k

This formulation allows us to train the ranking model directly on learned, utility-aligned reward
signals using fully differentiable, sample-based policy gradients.

A.3.2 URCC* WITH LEARNED REWARD MODEL.

URCC (Xi et al.| 2024)) proposes a two-stage counterfactual reranking framework that jointly learns
a set-aware utility function and a context-aware reranker. The utility model in URCC is itself
learned from data and used to guide the optimization of the reranker via a pairwise ranking loss
over permutations. Since the official implementation of URCC is not publicly available, we re-
implemented the method using our own architecture.

In our version of URCC* , we retain the core two-stage structure but implement the utility model
9(q,{i} 1, ™) as a Transformer-based encoder trained to predict user utility over full permutations.
Given a query ¢ and a set of items {4}, the reward model assigns a scalar score to a permutation 7:

Sﬂ' :g(qa {Z-}Laﬂ-) (21)

Following URCC, we then train the ranker fy to maximize this learned reward by optimizing a context-
aware pairwise loss. For a pair of permutations (7, 7~ ) such that g(q, {i}r,7") > g(q, {i}L, 7).
we minimize the following objective:

Lurccreward(0) = E(rt z—yp [log (1 + exp (= (Sr+ — Sr-)))] (22)

Here, P denotes the set of sampled permutation pairs with preference orderings induced by the reward
model. Our implementation uses neighborhood-based sampling (e.g., pairwise swaps) to construct
7T and 7~ from the base ranking.

Thus, while our training procedure is structurally consistent with the original URCC framework, we
employ a more expressive Transformer-based reward model to capture user behavior better and align
optimization with utility-oriented objectives.

A.4 COMPARISON OF TIME COMPLEXITY AND COUNTERFACTUAL SPACE EXPLORATION

Table [3| compares the time complexity of three methods: URCC* , PG-rank* , and REWARDRANK.
The per-iteration time complexity is analyzed based on the number of calls to the reward model.
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Table 3: Comparison of Time Complexity for URCC* , PG-rank* , and REWARDRANK in term of
number of calls to the reward model per iteration on Baidu-ULTR dataset.

Method Time Complexity = Wall-Clock Time Description

PiRank 1 ~6 hours No call to the reward model
URCC* n? ~34 hours Neighborhood search, pessimistic
PG-rank* k ~16 hours (k = 10) Needs large k for convergence
RewardRank 1 ~7 hours Full counterfactual space exploration

« URCC* : n?, where n is the number of items in the list. URCC* explores the neighborhood
of factual permutations, leading to quadratic complexity due to pairwise comparisons.
URCC* only explores the neighborhood of factual permutations, meaning it performs
limited counterfactual exploration. This approach is considered pessimistic because it
does not explore the entire space of possible rankings, which could miss potentially better
arrangements.

* PG-rank* : k, where £ is the number of Monte Carlo (MC) samples. While & is typically
smaller than n, PG-rank™ requires large k values and variance reduction baselines to con-
verge. PG-Rank uses Monte Carlo (MC) sampling to explore a broader counterfactual space,
but this approach requires large MC samples to converge effectively. To ensure stable and
accurate exploration, PG-Rank relies on variance-reduction baselines. However, it still faces
challenges in accurately capturing all potential counterfactual configurations without a very
large number of samples.

* REWARDRANK: 1, as it performs a single call to the reward model. RewardRank explores
the entire counterfactual space efficiently and can focus on more certain regions with reward
misspecification mitigation.

In Table 3] we also provide the overall wall-clock time to train the model under the above method for
the Baidu-ULTR dataset. Each model is trained for 21 epochs.

A.5 EXTENDED RELATED WORK

Unbiased Learning to Rank (ULTR). Unbiased Learning to Rank aims to correct biases in user
interaction data such as position bias and examination bias. Classical methods rely on inverse
propensity weighting or dual learning schemes to debias logged clicks Joachims et al.|(2017); A1 et al.
(2018)). Model-based ULTR introduces explicit click models to recover unbiased relevance estimates
Luo et al.|(2020). A recent survey provides a comprehensive comparison of online and offline ULTR
frameworks |A1 et al.| (2021)), and more recent work applies distributionally robust optimization to
improve stability under click-model misspecification Niu et al.| (2025a). A reproducibility study
further examines the robustness of counterfactual LTR methods under various click models [Niu et al.
(2025b). These ULTR methods focus primarily on correcting biased relevance signals under specific
click models, whereas our work aims to learn and optimize a utility function that captures list-level
behavior beyond pointwise relevance.

Reinforcement Learning To Rank (RLTR). RL-based ranking methods optimize listwise rewards
using stochastic policies and importance weighting. Coarse-grained RLTR methods learn from
session-level reward signals Tu et al.|(2022), and other approaches apply policy gradients to optimize
top-k or click-based objectives |Chen et al.[|(2019). However, RLTR methods require behavior-policy
estimation, suffer from high variance, and cannot evaluate permutations outside the support of the
logged policy. In contrast, our framework evaluates arbitrary permutations deterministically through
SoftSort, without requiring a stochastic policy or behavior-policy estimation.

Utility-Based and List-Level Modeling. Utility-based or list-level modeling has a long history in
learning-to-rank, especially in RL-based frameworks that optimize listwise reward signals directly
Tu et al.| (2022). Beyond classical RLTR, several recent approaches focus explicitly on modeling
list-level interactions, such as multi-generator reranking systems that capture global list structure
Yang et al.|(2025) and utility-oriented reranking models that aim to directly optimize user utility rather
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than relevance Xi et al.|(2024)). Policy-gradient—based ranking approaches such as PG-Rank |Gao et al.
(2023) and PiRank |Swezey et al.|(2021) similarly optimize listwise objectives using differentiable
sorting or sampled permutations. Other differentiable listwise frameworks—such as NeuraNDCG
Pobrotyn & Biatobrzeski| (2021), stochastic relaxations of sorting networks |Grover et al.|(2019), and
permutation-level re-ranking systems Shi et al.| (2023)); [Feng et al.|(2021)); Ren et al.| (2024)—also
emphasize modeling dependencies across the entire slate.

In counterfactual settings, recent work has explored utility-aware optimization under safety constraints
Gupta et al.| (2024bja) and introduced affine or doubly-robust corrections to improve stability of
listwise estimators [Vardasbi et al.|(2020); [Saito & Joachims|(2022). However, these methods typically
rely on stochastic exploration, importance weighting, or sampling-based reranking to traverse the
space of permutations. In contrast, our approach learns a parametric utility model that can score
arbitrary counterfactual permutations and couples this with deterministic SoftSort-based optimization.
This enables full-permutation exploration without the variance, behavior-policy dependence, or
sampling overhead characteristic of RL-based and counterfactual reranking approaches.

Transformer-Based Ranking Models. Transformer architectures have become standard in large-
scale retrieval, re-ranking, and recommendation systems. Modern neural rankers such as Non-
Autoregressive Re-ranking models |Ren et al.| (2024), UniRank |Pei et al.| (2021), DASALC Qin et al.
(2021)), DeepRank |Pang et al.| (2017), and MatRank [Luo et al.| (2022) leverage self-attention or
attention-inspired mechanisms to capture rich query—item and item—item interactions. These models
typically optimize relevance-oriented objectives or matching scores at the item level. Our work differs
in focus: instead of modeling pointwise or pairwise relevance, we use a transformer to parameterize
a list-level utility function and combine it with a differentiable ranking operator, allowing direct
optimization toward counterfactual utility rather than traditional relevance-based objectives.

Counterfactual Evaluation Protocols. ULTR research often evaluates on BaiduULTR using
simulated click models such as PBM, DCM, and cascade models |A1 et al.[(2021); Niu et al.[(2025b).
These simulations test bias correction under predefined user-behavior assumptions. In contrast, PO-
Eval provides a parametric oracle for evaluating counterfactual utility, and LAU-Eval uses LLM-based
list-level assessments to capture behavioral preferences (e.g., redundancy aversion, brand consistency)
that cannot be expressed with pointwise human labels. These evaluation methods complement, rather
than replace, traditional ULTR simulations by focusing on list-level utility rather than click-model
fidelity.

While prior model-based ULTR and coarse-grained RL methods also learn reward estimates, they
differ from our approach in key ways. Model-based ULTR focuses on bias-correcting click signals and
then optimizes standard relevance-based objectives, whereas RewardRank learns a permutation-aware
utility function that captures list-level behavioral effects beyond relevance and directly optimizes this
utility through a differentiable soft-permutation operator. Coarse-grained RL approaches still rely on
stochastic policies and importance weighting, limiting them to permutations explored by the behavior
policy; RewardRank removes this dependence entirely by using a deterministic SoftSort-based
optimization that can evaluate and optimize any permutation. Finally, prior ULTR methods optimize
traditional metrics on BaiduLTR, while RewardRank introduces a misspecification-robust objective
and two counterfactual evaluation suites (PO-Eval and LAU-Eval). These components provide
capabilities not present in existing work and lead to consistent improvements in our experiments.

B EXPERIMENTATION DETAILS

B.1 DATASETS

Baidu-ULTR Reranking Dataset. The Baidu-ULTR dataset (Hager et al., [2024), a large-scale
subset of the Baidu-ULTR corpus (Zou et al., | 2022)), contains user click interactions over web search
queries. It includes 1.8M query groups (11.7M query-document pairs) and 590K validation/test
sessions (4.8M pairs).The authors of (Hager et al., 2024) provide BERT-based CLS embeddings for
each query-document pair.

We use the large-scale reranking dataset introduced by (Hager et al| [2024): publicly
available at: https://huggingface.co/datasets/philipphager/baidu-ultr_
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uva-mlm-ctr, derived from the original Baidu-ULTR corpus (Zou et al}|2022). This dataset is
constructed from real-world user interactions on Baidu’s production search engine and is designed to
support robust evaluation of learning-to-rank models in counterfactual settings.

Each session consists of a user query, a candidate list of documents retrieved by an upstream ranker,
the original presented ranking, and user interaction logs (e.g., clicks and dwell time). For each
query-document pair, the dataset provides both sparse lexical features (e.g., BM25, TF-IDF, query
likelihood) and dense semantic representations.

To generate the dense features, the authors pretrain a BERT-style model, referred to as MonoBERT,
from scratch using masked language modeling (MLM) on the full Baidu corpus. This model is trained
in a mono-encoder configuration and outputs a [CLS] token embedding for each query-document pair.
These CLS embeddings are included in the dataset and serve as fixed, high-quality dense features for
downstream reranking. The pretrained MonoBERT model and inference code are publicly available
at: https://github.com/philipphager/baidu-bert-modell

Amazon KDD-cup. The KDD-Cup dataset (Reddy et al.,2022) contains 130K queries and 2.6M
annotated query-product pairs in English, Japanese, and Spanish. Each query is linked to up to 40
products with rich textual metadata (titles, descriptions, bullet points), making it well-suited for LLM-
based evaluation, unlike Baidu-ULTR. Although the presentation order is not recorded, the dataset
primarily consists of relevant query-product pairs that were shown to users. For training, validation,
and testing, we sample five random permutations of length 8 per query, resulting in 400,000 training
and 50,000 validation/test groups. We use the English subset of the product search dataset released as
part of the KDD Cup 2022 challenge (Reddy et al. |2022)), which contains real-world queries and
associated candidate products from Amazon. Each query-product pair is annotated using the ESCI
labeling scheme: Exact match, Substitute, Complement, or Irrelevant.

Each query group is identified by a unique query_id and paired with 10-40 product candidates.
For each product, the dataset provides structured metadata including:

e product_title,

 product_brand,

e product_color

* product_description,

* product_bullet_point (optional fields)

* product_id,

* product_locale, and

* ESCI relevance label
To construct our training and evaluation sets, we sample 5 random permutations of length 8 from
each query group. Note that we do not use the human-annotated ESCI labels provided in the
dataset. Instead, we leverage the LLM’s capability for contextual understanding to generate relevance
labels automatically. Ideally, the relevance judgments produced by the LLM should align closely
with those of human annotators. This yields approximately 392K query groups for training and
20K for validation, and 20K for testing. For a given query group, we encode each query-item
pair into sentence embeddings using the a11-MiniIM-L6-v2: https://huggingface.co/

sentence-transformers/all-MiniLM-L6-v2 /model from Sentence Transformers. The
input format for the sentence transformer is constructed as:

Table 4: Statistics of the Baidu-ULTR reranking dataset (Hager et al.| [2024).

Split #Query Groups #Query-Document Pairs
Training 1,857,248 11,738,489
Validation/Test 590,612 4,797,378
Total 2,447,860 16,535,867
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{query} [SEP] {product_title} Brand: {brand}
Color:{color}

Table 5: Statistics of the Amazon KDD Cup (ESCI) dataset (English subset).

Split #Query groups #Query-Product Pairs
Training 78,447 627,576
Validation 4,000 32,000

Test 4,000 32,000

Total 86,447 691,576

Total (including 5 random permutations) 392,235 3,137,880

B.2 IMPLEMENTATION DETAILS

We use a transformer architecture for both the reward model and the ranker across all methods to
ensure a consistent architectural backbone. The model contains 12 transformer layers, 768 hidden
dimensions, 12 attention heads, and approximately 110M parameters. All models are trained with a
learning rate of 2 x 10~° using the AdamW optimizer (Loshchilov & Hutter, [2017) with a weight
decay of 1072, We use a batch size of 512 and train for 21 epochs, applying a learning rate decay at
epoch 12 via a step-based learning rate scheduler. All experiments are conducted using 2 NVIDIA
A100 GPUs (40GB each).

For our method, REWARDRANK, we use a soft permutation temperature 7 = 0.5 and reward
correction term A = 0.7. In the PG-rank™ baseline, which replaces the handcrafted NDCG utility with
our learned reward model, we apply Gumbel-Softmax sampling with temperature 0.1 to approximate
permutation sampling from the Plackett—Luce distribution. We report PG-rank* results for different
Monte Carlo samples (MC = 1, 5, 10) to evaluate variance in reward estimation.

In our URCC* implementation, we follow the original two-stage design: a set-aware utility model
and a pairwise ranker. The utility model is trained with a binary cross-entropy loss computed over
per-item logits derived from the transformer encoder outputs. Specifically, for each item in the
permutation, we pool its embedding from the encoder, apply dropout, and project it through a shared
per-item classifier. The per-item predictions are matched to click labels, and their aggregated loss
forms the utility supervision.

As an additional baseline, we include a Naive-ranker trained with a relaxed NDCG objective following
the PiRank formulation (Swezey et al.}[2021)), allowing listwise supervision using soft permutation
matrices. All baselines are trained using the same reward data and input embeddings to isolate the
impact of the learning objective.

Representative code for our implementations of REWARDRANK, PG-rank* , URCC* baselines, and
evaluation procedures is included in the supplementary material.

C COUNTERFACTUAL EVALUATION PROTOCOLS

C.1 PO-EVAL DETAILS

PO-Eval provides a click-based framework for counterfactual evaluation of ranking models. Using the
pre-trained Inverse Propensity Scoring model (IPS-Oracle) (Hager et al., 2024ﬂ on the Baidu-ULTR
dataset, it generates soft click probabilities for items in a ranked query group. These probabilities
serve as counterfactual labels, enabling the evaluation of how effectively a ranker can model user
engagement patterns reflected in clicks.

As the Baidu-ULTR dataset is derived from user interaction logs, click activity is heavily concentrated
in the top-ranked positions, reflecting strong position bias (see Figure [db)). In contrast, the distilled
soft utility () generated by the IPS-Oracle exhibits a more uniform distribution across positions

https://github.com/philipphager/baidu-bert-model
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(Figure[4d), indicating that the oracle has successfully learned to correct for position bias. Under the
PO-Eval protocol, ranking methods aim to implicitly learn position debiasing from the IPS-Oracle’s
soft utility, as indicated by high Upps.o(q, {i} L, 7).

Training and evaluating ranking schemes. Using the learned reward model, any ranker f can
be optimized via the reward maximization objective defined in Eqn[I2} To evaluate its performance
under the IPS-Oracle, we define the following metric: Given a query group (g, {i}.) and predicted
relevance scores s = [s1, ..., sy ], the induced permutation is 7# = argsort(s). For each position 7,
the examination probability is P(E?%,), and the associated relevance score R, ;, is provided by the
IPS-Oracle. The overall utility is computed as the probability of at least one click: Uwps(q, {i} 5, 7),
which serves as the primary evaluation metric. It reflects how well f aligns with the user behavior
modeled by the IPS-Oracle; higher values indicating better alignment. Additionally, we report
NDCG @10, which measures how much the predicted ranking respects the relevance scores R, ;.

We incorporate the examination probabilities from (Hager et al., [2024), which are defined as:

P(E)=1{1:1.0000,2:0.6738,3:0.4145,4 : 0.2932,5 : 0.2079,6 : 0.1714,7: 0.1363,8 : 0.1166}

C.2 LAU-EVAL DETAILS

We use Claude 3.5 Sonnet v2 with a temperature of 0.5 and a context window of 5,000 tokens. The
LLM is prompted using a consistent instruction template, as illustrated in Figure[6] To evaluate a
ranker with LAU-Eval, its predicted scores are converted into item positions, which are then used to
reorder the input list. This reordered list is passed to the LLLM alongside the original query, and the
LLM outputs a binary decision regarding purchase. We include representative query groups and the
corresponding LLM responses to demonstrate this pipeline.

To assess the robustness of LAU-Eval under different sampling conditions, we examine how varying
the temperature of the LLM decoding process affects its outputs. Figure [3] shows the distribu-
tions of LLM-simulated purchase decisions and selected item positions at temperatures 0.1, 0.5,
and 0.75. While purchase rates exhibit slight variation, the LLM consistently favors top-ranked
items—reflecting realistic user behavior in shopping scenarios.

Instruction prompt for LLM. We design the LLM-Eval instruction to incorporate behavioral
biases such as position bias, brand preference, irrelevance filtering, similarity aversion, and color bias,
guiding the LLM to consider both relevance and context-dependent preferences. Given a query and
an ordered product list, the LLM estimates (i) the probability of purchasing at least one item and (ii)
the selected item, without explicit relevance constraints. We illustrate the instruction prompt using an
example from the Amazon KDD-Cup dataset (Reddy et al.,|2022), as shown in Figure @

Ranking Evaluations. We present the LLM’s response to the initial list in Figure [/} including the
full reasoning behind the response. It is noteworthy how the LLM is able to reason about the biases
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Figure 4: Distributions extracted from IPS-Oracle analysis on Baidu-ULTR.
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Figure 5: Effect of Sampling Temperature on LLM-Simulated Behavior in LAU-Eval. We
visualize the distribution of binary purchase decisions (top) and item positions (bottom) generated by
Claude Sonnet 3.5 v2 under three sampling temperatures: 0.1, 0.5, and 0.75. Each sample corresponds
to a ranked list generated during LAU-Eval. As temperature increases, the purchase signal slightly
diversifies, while positional biases remain consistent across settings. These results suggest that
LAU-Eval is robust to moderate sampling variability, with LLMs producing stable user-like behavior
under soft prompting.

Table 6: Counterfactual vs. surrogate evaluation of ranking methods (LAU-Eval only). We
report performance on the true counterfactual utility (Eq.[I) and offline/surrogate metrics (Eq. [2).
While most methods score highly on surrogate metrics, these gains often fail to align with true user
utility.

LAU-Eval
Counterfactual (V') Offline (X)

Method Pr(#Purchases > 1) NDCGpurchase NDCGgscrt

Policy in data 0.497 £ 0.009 0.496 £ 0.009  0.995 4 0.009
ListNet (Cao et al.| 0.521 £ 0.009 0.405 £ 0.009 0.8611 4 0.009
ListMLE (Xia et al./[2008) 0.522 £ 0.008 0.402 £ 0.008 0.8610 4 0.003
LambdaRank (Wang et al.|[2018) 0.523 £ 0.009 0.406 £ 0.009 0.8610 £ 0.009
PiRank (Swezey et al.|2021) 0.528 + 0.007 0.408 £0.009 0.8623 £ 0.005
URCC* (Xi et al.|[2024] 0.471 £ 0.008 0.401 £0.007 0.8621 £ 0.009
PG-rank* (Gao et al.|[2023] 0.489 £ 0.007 0.402 £ 0.008 0.8630 £ 0.009
REWARDRANK 0.561 4+ 0.008 0.401 +0.007  0.8628 + 0.009

present in the query groups effectively. For each initial list, we also show the LLM’s response to the
rearranged list generated by Claude, depicted in Figure[8] As seen, the initial arrangements in Figure
[7lead to a no purchase decision, whereas REWARDRANK generates arrangements that increase
the likelihood of purchase according to the LLM. Furthermore, the LLM’s response enhances the
interpretability of LLM-Eval, demonstrating how REWARDRANK’s ranking capabilities align with
the LLM’s reasoning process.

Initially, we experimented with smaller language models such as Llama-3.1-8B:
meta-1llama/Llama-3.1-8B-Instruct and DeepSeek-R1-Distill: |deepseek-ai/
DeepSeek-R1-Distill-Llama-8B. However, these models were unable to generate
appropriate responses to the instructions. Our experiments revealed that larger models were better at
understanding the context.

It is important to note that LAU-Eval is used to simulate user behavior dynamics that may influence
user decisions. Our selection of biases and instruction prompt serves as a proof-of-concept demon-
strating that an LLM can be used as a proxy user to study counterfactual ranking strategies. We
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acknowledge that there are likely many variants of instruction prompts that could be designed to
simulate user behavior. This area of exploration could be a direction for future work.
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LLM Prompt (Probability Estimation Task)

You are shopping for a given query. Your task is to estimate the likelihood of purchasing any item
in a provided list. Please answer yes or no, indicating whether you wish to purchase any item from
the given list. Consider the relative relevance of items in the list when making your decisions.
Be frugal, as a typical human user would be—most users buy when the list is highly relevant,
and often make no purchase when following behavioral criteria are not met. You enter a ’query’
into the shopping system, and it returns some items mentioned in the ’products’. The items are
presented in the given order, with 1st item shown at the top of the list and the last item shown at
the bottom.

Your query-products shopping list:

Query: 11 iphone pro screen protector

Products:

{"BO9CGJ8RW1":"title":"JETech Screen Protector and Camera Lens",
"brand":"JETech", "color": "Transparent",
"BO7515P7PT":"title" :"JETech Screen Protector for iPhone 11 Pro",

"brand":"JETech", "color": "Clear",

"B075S8Vv728":"title":"Ailun for Apple iPhone 11 Pro/iPhone",
"brand":"Ailun", "color":NA,

"BO7STC633H":"title" :"UNBREAKcable Screen Protector for iPhone 11",
"brand" : "UNBREAKcable", "color":NA,

"BO7D6XR7FM" :"title":"TETHYS Glass Screen Protector for iPhone 11",
"brand":"TETHYS", "color":"Transparent",

"BO73DLZWX7":"title":"Maxboost Screen Protector for Apple iPhone",
"brand":"Maxboost", "color":"Clear",

"BO7FP41MC5":"title":"Trianium (3 Packs) Screen Protector",
brand:"Trianium",color:"Clear",

"BO9BQRWG15":"title" :"YRMJK Screen Protector Compatible iPhone",
brand:"YRMJK", color: NA}

Relevance Score: The relevance score shows how relevant the item is given the query. For every
query-item pair, it is a numerical value between O and 1. You should consider the following
criteria:

1. Position bias: where the items appearing near the top are more likely to be clicked. The position
score decreases based on the following examination probabilities: position_scores = { 1: 1.0000,
2: 0.6738, 3: 0.4145, 4: 0.2932, 5: 0.2079, 6: 0.1714, 7: 0.1363, 8: 0.1166 } If the relevant item is
not near the top, it will reduce the probability of purchase irrespective of its relevance.

2. Brand bias: If items from the same brand are placed adjacent to each other, the user is less
likely to make a purchase. High brand bias means adjacent items are from the same brand.

3. Irrelevance bias: Multiple irrelevant items near the top reduce the chance of purchasing any
item. This measures contextual dissimilarity at top positions.

4. Color bias: A lack of visual diversity (e.g., similar-colored items grouped together) discourages
purchases.

Note that high brand-bias, irrelevance-bias, or color-bias harms the user experience and should
lower the chance of purchasing. Act like a frugal user: only purchase if all criteria are satisfied;
otherwise, do not purchase.

Task: Given a query and its candidate product list, decide whether any item should be purchased
and report the decision (no exact totals needed). Use a strict policy: purchase only if all criteria
are satisfied; otherwise, output no purchase. Decision rule: Determine the Final decision (yes/no)
by jointly considering relevance score, position bias, brand bias, irrelevance bias, and color bias.
Proceed to purchase only if all criteria are satisfactorily met. If not, do not purchase. Be especially
cautious about brand and color biases—purchase only when the biases are very low. If the decision
is yes, select exactly one item to purchase.

Qutput: D(purchase) = <answer>

If decision = yes, then Item to be purchased = <answer>

Figure 6: LLM instructions for a sample taken from the Amazon KDD-Cup dataset (Reddy
et al.,[2022). A total of 8 products are displayed for the query "11 iphone pro screen protector". For
visual clarity, we have shortened the titles and product descriptions.
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LLM’s response to the initial item list

Let me analyze this shopping scenario step by step:

1. Relevance Analysis:- Most products are screen protectors for iPhone 11 Pro/X/XS (5.8-inch),
which is highly relevant to the query - Top items (JETech, Ailun) are particularly relevant as they
specifically mention iPhone 11 Pro.

Position Bias:- First few positions have higher probability of being selected- Top 3 positions
(JETech, JETech, Ailun) have the highest position scores.

Brand Bias:- First two positions are JETech brand (high brand bias at top)- This creates a negative
shopping experience- Having same brand adjacent to each other reduces purchase likelihood.
Irrelevance Bias:- Most items are relevant to the query- However, some products like Trianium
(4th position) is for iPhone 11 Pro Max (6.5"), which is incorrect size- Overall irrelevance bias is
low as most products match the query.

Color Bias:- Many items are listed as "Clear" or "Transparent"- High color similarity among
products- This creates a moderate color bias.

Final Analysis: Despite high relevance of products, there are several concerns: 1. High brand
bias at top positions (JETech repeated)2. High color bias (many transparent/clear options)3. The
position bias favors top items, but those have brand repetition 4. Some size mismatches in the list.
Given these factors, especially the high brand bias at top positions and color similarity, a frugal
user would likely be hesitant to make a purchase from this list.

D(purchase) = no; The brand repetition at top positions and lack of diversity in colors significantly
harm the shopping experience, making it less likely for a careful shopper to make a purchase, even
though the products themselves are relevant to the query.

Figure 7: LLM response to the initial list of items shown in Figure @

LLM'’s response to the ranked list provided by REWARDRANK

Let me analyze this shopping scenario carefully:

1. Relevance Analysis:- All products are screen protectors for iPhone 11 Pro/X/XS, which
matches the query perfectly- Most products offer multiple packs (2-3 pieces)- All are tempered
glass protectors- High relevance across items.

2. Position Bias:- Top positions have higher visibility- First three items (UNBREAKCcable,
TETHYS, Ailun) have strongest position advantage.

3. Brand Bias:- JETech appears twice (positions 5 and 6) - creates brand bias- Other brands are
well distributed- Moderate brand bias due to JETech repetition.

4. Irrelevance Bias:- Low irrelevance bias as all products are highly relevant to query- All
products are specifically designed for the requested phone model- Core features (tempered glass,
screen protection) are consistent.

5. Color Bias:- Most items are clear/transparent- Very similar color schemes across products-
High color bias due to lack of variety.

Final Decision Analysis:- While relevance is high and position bias favors top items- The high
color bias (all transparent) and moderate brand bias (JETech repetition) are concerning- However,
given this is a screen protector where transparency is expected/desired, color bias should be
weighted less heavily- The first three positions offer different brands and good specifications-
TETHYS (2nd position) offers 3-pack with edge-to-edge coverage and installation frame.

D(purchase) = yes; Item to be purchased = TETHYS Glass Screen Protector
(BO7D6XR7FM)Reasoning: Selected TETHYS due to good position (2nd), differentiated brand,

comprehensive features, and 3-pack value proposition. The high relevance and acceptable biases
make this a reasonable purchase despite some concerns.

Figure 8: LLM response to the ranked list generated by REWARDRANK.
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Table 7: Ablation studies for counterfactual evaluation of LTR methods. This table presents ablation results
for RewardRank under different configurations, including variations in SoftSort temperature 7, misspecification
correction regularization A, and the addition of the auxiliary reward loss term from Eqn[6] We also report
results for PG-rank™ using different numbers of Monte Carlo samples. The counterfactual evaluation metrics are:

Pr(#Clicks > 1) for PO-Eval and Pr(#Purchase > 1) for LAU-Eval.

PO-Eval LAU-Eval
Method Pr(#Clicks > 1) | Pr(#Purchase > 1)
Upper-Bound 0.553 -
ListNet|Cao et al.|(2007) 0.523 + 0.0007 0.521 £ 0.009
ListMLE|Xia et al.|{(2008) 0.522 + 0.0007 0.522 + 0.008
LambdaRank |Wang et al.|(2018) 0.524 + 0.0007 0.523 £ 0.009
PiRank |Swezey et al.|(2021) 0.525 4+ 0.0007 0.528 + 0.007
URCC* 0.462 + 0.0005 0.471 £ 0.008
PG-rank* (mc=1) 0.481 + 0.0006 0.441 £ 0.006
PG-rank* (mc=5) 0.495 £+ 0.0005 0.465 £ 0.007
PG-rank* (mc=10) 0.501 +£ 0.0005 0.489 + 0.007
NAR4Rec Ren et al.|(2024) 0.527 £0.0007 -
GRPO Xu et al.[(2022) 0.518 4 0.0005 -
SoftSort Temperature 7
RewardRank (7 = 0.1, A = 0.0) 0.531 4+ 0.0005 0.548 £ 0.008
RewardRank (7 = 0.2, A = 0.0) 0.532 +£ 0.0005 0.550 £ 0.008
RewardRank (7 = 0.5, A = 0.0) 0.533 +£ 0.0005 0.551 £ 0.007
RewardRank (7 = 0.7, A = 0.0) 0.531 + 0.0005 0.550 £ 0.008
RewardRank (7 = 1.0, A = 0.0) 0.530 £ 0.0005 0.549 + 0.009
Misspecification Correction A
RewardRank (7 = 0.5, A = 0.1) 0.532 +£ 0.0005 0.549 £ 0.007
RewardRank (7 = 0.5, A = 0.3) 0.534 + 0.0007 0.554 £ 0.007
RewardRank (7 = 0.5, A\ = 0.7) 0.536 + 0.0007 0.561 + 0.008
RewardRank (7 = 0.5, A = 1.0) 0.533 + 0.0007 0.553 £ 0.006
Auxiliary Per-Item Regularizer Eqn|6]
RewardRank (reward loss = Eqn 0.528 +£ 0.0005 0.553 £ 0.008
RewardRank (reward loss = Eqn 3|+ Eqn@ 0.536 £ 0.0005 0.561 + 0.008
Using pretrained ranker: PiRank

URCC* 0.521 + 0.0005 -
PG-rank* 0.503 £+ 0.0006 -
RewardRank 0.538 £ 0.0005 -

D FURTHER ABLATION STUDIES

We use the Baidu-ULTR dataset to study how the performance of REWARDRANK varies with two key
hyperparameters: the temperature 7 of the SoftSort operator, which controls permutation sharpness,
and the regularization strength \ for reward misspecification correction introduced in Eqn[I3] Varying
7€ {0.1,0.2,0.7,1.0} shows that moderate temperature (7 = 0.2 — 0.5) achieves the best utility and
relevance alignment. Too low a temperature leads to unstable gradients due to near-hard permutations,
while higher values oversmooth rankings, diluting learning signals. Fixing 7 = 0.5, we ablate the
correction term with A € {0.0,0.1,0.3,0.7,1.0}. As shown in Table[7and visualized in Figure
moderate correction (A = 0.5 — 0.7) yields the best trade-off, by down-weighting unreliable samples
without discarding informative ones. This results in higher IPS utility, confirming the benefit of
explicitly mitigating reward misspecification.

We explore the impact of incorporating an auxiliary item-level reward loss (Eqn[6)) into the training
objective of the reward model. As shown in Table[7} adding this auxiliary loss to the list-level cross-
entropy objective (Eqn [3) improves expected utility from 0.528 to 0.536. This indicates that learning
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to predict the per-item feedback as an auxiliary task enhances the reward model’s generalization and
improves the downstream utility-optimized ranking.

Table [7) presents the results for the pretrained ranker, which is the ranker trained with PiRank Swezey
et al.[(2021) LTR loss. URCC* , being dependent on the pretrained ranker, demonstrates larger
performance improvements. However, the gains from the pre-trained ranker are not as significant,
suggesting that URCC* ’s performance is more sensitive to the quality of the pretrained model. On
the other hand, REWARDRANK and PG-rank* show limited improvements when using the pretrained
ranker, as their performance is not heavily reliant on the presence of a strong pretrained model. These
methods are more robust in their ranking capabilities and do not exhibit substantial gains from a
pretrained ranker.

E INFERENCE COST AND LIMITATIONS

Inference Cost. The main inference cost in our work arises from using large language models
(LLMs) for ranking and purchase probability estimation. These models require significant computa-
tional resources, especially for large datasets and permutations of items. Optimizations like batch
processing and multi-GPU use help manage costs, but scalability remains a challenge. Caching
frequently accessed queries can further reduce repeated computation costs.

Limitations. While both PO-Eval and LAU-Eval provide valuable insights into ranking quality
and user preferences, there are inherent limitations in each approach. These limitations arise from
their reliance on specific biases and the quality of input data, which may affect their performance in
diverse real-world scenarios. Below, we outline the key limitations of each method:

* PO-Eval Limitations: While PO-Eval provides a robust baseline for position-debiasing,
it is limited in behavioral scope. It primarily focuses on mitigating position bias without
considering other nuanced user preferences, such as brand bias or contextual relevance,
which can lead to suboptimal performance in more complex scenarios.

* LAU-Eval Limitations: LAU-Eval captures richer heuristics and offers more context-aware
ranking, but it depends heavily on the quality and stability of the LLM outputs. Inconsistent
or noisy outputs from the LLM can negatively affect the reliability of the evaluation, as the
method assumes that the LLM accurately reflects user preferences in all scenarios.

These limitations highlight areas for future improvement, such as incorporating additional user
behavior modeling and enhancing the robustness of the LLM outputs.
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