Under review as a conference paper at ICLR 2026

REWARDRANK: OPTIMIZING TRUE LEARNING-TO-
RANK UTILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Traditional ranking systems optimize offline proxy objectives that assume simplis-
tic user behaviors, overlooking factors such as position bias and item diversity. As a
result, they fail to improve desired counterfactual ranking utility like click-through-
rate or purchase probability computed during online A/B tests. We introduce Re-
wardRank, a data-driven learning-to-rank (LTR) framework for counterfactual util-
ity maximization. RewardRank first trains a reward model to predict the utility of
any ranking from logged data, then optimizes a ranker to maximize this reward via
a differentiable soft permutation operator. To address the absence of any large-scale
reproducible counterfactual LTR benchmarks, we propose two evaluation suites:
(i) Parametric Oracle Evaluation (PO-Eval), which uses an open-source click
model as the counterfactual oracle on Baidu-ULTR dataset, and (ii) LLM-As-User
Evaluation (LAU-Eval), which simulates realistic user interactions using a large
language model on Amazon-KDD-Cup dataset. RewardRank achieves the highest
counterfactual utility on both suites and sets a new state of the art in relevance per-
formance on Baidu-ULTR with real-click signals, demonstrating the feasibility of
directly optimizing ranking policies for counterfactual utility. Our code is available
at: https://anonymous.4open.science/r/RewardRank-EE46

1 INTRODUCTION

The goal of any ranking system is to model human decision-making in a way that maximizes user
engagement and utility. However, real-world user behavior is shaped by subtle, context-dependent
cognitive biases that traditional ranking losses fail to capture. Engagement often drops when users
are presented with redundant or overly similar items, whereas introducing diversity or strategically
positioning items can significantly enhance interest. For example, the decoy effect—where the
presence of a less-attractive item increases preference for a similar alternative—has been observed in
search interactions and shown to meaningfully influence user choices (Wang et al.,|2025a). Other
well-documented biases include position bias (Chen et al., 2024} [Hager et al., 2024; [Zou et al.,
2022), brand bias (Li et al.,[2025)), and similarity aversion (Tversky & Simonson, |2004)). In online
advertising, the goal is often to maximize the probability that a user clicks on any item in the list,
rather than just the top-ranked one. If data shows that users tend to click on the second position, it
may be optimal to place the most engaging ad there to improve overall performance. Likewise, in
recommendation scenarios, users may prefer a diverse mix of product styles or brands over a cluster of
nearly identical, albeit highly relevant, items. Traditional ranking losses, which emphasize relevance
at individual positions (typically the top), are ill-suited for modeling such list-level behaviors (Figure
[I). They overlook the fact that user utility depends not just on which items are shown, but how they
are arranged, highlighting the limitations of handcrafted objectives in capturing the interactive and
comparative nature of real user decision-making.

A natural way to model user behavior is by learning preferences over full permutations of items
within a query group (i.e., a query and its associated items). The ideal objective is to identify and
rank those permutations that are most likely to drive user engagement, which can be formulated
as a likelihood maximization problem: maximizing the probability of observing high-engagement
permutations while minimizing that of unengaged ones.

However, the combinatorial explosion of the permutation space quickly renders this approach in-
tractable; for instance, ranking 10 items results in 10! (over 3.6 million) possible arrangements. To

https://anonymous.4open.science/r/RewardRank-EE46

Under review as a conference paper at ICLR 2026

address this, recent approaches adopt a utility-based framework (Feng et al.| [2021} |Shi et al.| [2023} Xi
et al., 2024} Ren et al., 2024} |Wang et al., | 2025b)), where a utility model is trained to score permutations
based on user preferences, and a ranker is subsequently optimized to generate item orders that maxi-
mize the predicted utility. While this framework reduces the combinatorial burden, it introduces two
key challenges. First is the classic exploration—exploitation dilemma: the ranker must leverage known
high-utility arrangements while also exploring novel permutations that may yield higher engagement.
Second is the vulnerability to utility model misspec-

ification: if the learned reward model fails to accu- I 27

- 4.4% 4.1 3.5
rately reflect true user preferences, the ranker may be sortedny \
misled, resulting in poor exploration and degraded ™ — P
overall performance. - - .- W
In operational ranking systems, user interactions are setter \
logged for only a small fraction of the total permu- **** bt P;
tation space. For example, in Figure |1} only 3 out — L
of the 120 possible arrangements of 5 items for the -y =, e e ral
query "laptop bag" are observed, constituting the fac- relevance »\
tual space. These observed interactions define the Diversity "\'} {

factual/observed space, whereas the vast majority of
unexposed, yet potentially high-utility, permutations
form the counterfactual/unobserved space. The op-
timal arrangement that maximizes user engagement
may exist anywhere within the full permutation space
of 120 arrangements. One of the major challenges in
counterfactual ranking lies in reliably evaluating un-
observed permutations. Even if the full permutation
space is modeled, evaluating ranking strategies under
counterfactual settings remains challenging due to
the lack of explicit supervision (Agarwal et al.,[2019;
Gupta et al.l 2024bga; Buchholz et al., [2024). For
instance, in Figure|[I] 117 out of 120 possible arrange- tions, leading to higher predicted utility and
ments remain unobserved, making their evaluation user engagement. (Figures are generated by
inherently counterfactual. Existing approaches, such GpT. 40)

as offline A/B testing, inverse propensity scoring, or

other debiasing techniques, are often costly, statisti-

cally unstable, or difficult to scale, making counterfactual evaluation a central bottleneck in listwise
utility optimization.

Figure 1: Counterfactual ranking with
true learning-to-rank utility. Three arrange-
ments for the query "laptop bag", with item
relevance/rating scores (0—5%). The top row
ranks purely by relevance but suffers from
similarity aversion due to identical color and
style, lowering engagement. The middle row
improves diversity but surfaces low-relevance
items early, which may deter clicks. The
bottom row balances diversity and relevance,
placing distinct yet relevant items in top posi-

To address these challenges, we propose REWARDRANK, a counterfactual utility maximization frame-
work that models user behavior over full item permutations. Rather than scoring items in isolation,
we learn a permutation-aware utility function that captures user preferences at the list level. To enable
differentiable optimization over permutations, we employ the SoftSort operator (Prillo & Eisenschlos,
2020) to construct soft position embeddings, allowing end-to-end training of the ranking model with
respect to utility gradients. To mitigate the effects of reward model misspecification—where the
learned utility may diverge from actual user preferences—we introduce a correction term in the
ranker’s training objective that improves robustness during optimization. For evaluation, we present
two scalable, fully automated protocols that assess counterfactual performance without requiring
human labels. Parametric Oracle Evaluation (PO-Eval) uses a pretrained, position-aware oracle to
provide soft supervision and serve as a proxy for user behavior. LLM-As-User Evaluation (LAU-Eval)
leverages large language models to simulate user preferences and assess ranking quality across
unobserved permutations. Together, these methods enable efficient benchmarking of counterfactual
ranking strategies and help align learned rankings with actual or simulated user utility.

Our key contributions can be summarized as:
* We introduce REWARDRANK, a framework for counterfactual utility maximization that

learns a permutation-aware reward model capturing human list-level preferences and behav-
ioral biases.

* We enable end-to-end ranking optimization using differentiable soft permutation operators,
and incorporate a reward correction term to mitigate reward model misspecification.

Under review as a conference paper at ICLR 2026

* We propose two automated evaluation protocols: PO-Eval (parametric oracle) and LAU-Eval
(LLM-as-user), and construct reproducible testbeds for scalable counterfactual ranking
evaluation.

2 RELATED WORK

Traditional ranking methods. Traditional learning-to-rank (LTR) methods are typically categorized
into three classes: point-wise, pair-wise, and list-wise approaches. Point-wise methods treat ranking
as a regression or classification problem by independently assigning relevance scores to each item
(Burges et al.,[2005aib)). While computationally efficient, they neglect interactions among items in the
ranked list. Pair-wise approaches, including RankSVM (Joachims|, [2002), RankBoost (Freund et al.|
2003)), and LambdaMART (Burges, [2006; Wu et al.,|2010), aim to learn relative preferences between
item pairs, improving over point-wise methods but still failing to capture full list-level dependencies.
In contrast, list-wise methods optimize objectives over the entire ranking, such as NDCG (Cao et al.|
2007; Xi1a et al., 2008), offering better alignment with evaluation metrics.

Counterfactual Learning-to-Rank. Prior work in counterfactual learning-to-rank (CLTR) primar-
ily addresses position bias in implicit feedback using methods such as inverse propensity scoring
(IPS) (Joachims et al., | 2017)) and doubly robust estimation (Oosterhuis, |2023). Extensions include
modeling trust bias (Agarwal et al.,2019) and jointly correcting for both position and trust biases (Var+
dasbi et al., |2020). Recent approaches explore policy optimization via proximal updates (Gupta et al.,
2024b) and extend this to trust-aware CLTR through proximal ranking objectives (Gupta et al.l|2024a)).
While effective, these methods often focus narrowly on position bias or make strong assumptions,
underscoring the need for broader utility-driven ranking frameworks, as pursued in this work.

Utility-oriented counterfactual reranking. Reranking methods enhance an initial ranked list by
applying a secondary model to better optimize downstream objectives such as user utility, fairness, or
diversity (X1 et al.| [2024; |Wang et al.,|2025b). Recent work in counterfactual ranking predominantly
follows a two-stage framework consisting of a generator and an evaluator (Xi et al.l 2024; |Shi
et al., |2023; |Ren et al.| [2024; [Wang et al.|, 2025b)). For example, URCC (X et al.| [2024) trains a
set-aware utility model and employs a context-sensitive pairwise Lambdal.oss to guide the ranker.
NLGR (Wang et al.| 2025b)) leverages neighboring lists within a generator-evaluator setup for utility
optimization. PRS (Feng et al., 2021)) adopts beam search to generate candidate permutations and
evaluates them using a permutation-wise scoring model, while PIER (Shi et al., [2023) uses SimHash
to select top-K candidates from the full permutation space efficiently.

Reranking methods rely on a strong base ranker trained on factual data and typically explore coun-
terfactuals near these initial permutations, leading to conservative exploration that limits discovery
of globally optimal rankings. Moreover, they often overlook correcting for reward misspecification,
which is crucial for reliable counterfactual learning.

Differential approximation to ranking. A key challenge in learning-to-rank is the mismatch
between evaluation metrics (e.g., NDCG, MAP) and surrogate loss functions amenable to gradient-
based optimization, due to the non-differentiable nature of sorting operations. To address this, prior
work has either proposed smooth approximations to the rank function (e.g., ApproxNDCG (Q1n et al.}
2010)) or introduced differentiable approximations to argsort using soft permutation matrices (Grover
et al.| |2019; |Prillo & Eisenschlos| [2020); for instance, PiRank (Swezey et al.,2021) and NeuraNDCG
(Pobrotyn & Bialobrzeskil 2021)) utilize NeuralSort as a temperature-controlled surrogate. Another
line of work leverages the Plackett—Luce distribution to model ranking policies in a differentiable
manner (Oosterhuis| 2021). Methods like PG-RANK (Gao et al.| 2023) use policy gradients to
optimize the expected reward over the Plackett—Luce distribution based on REINFORCE, while
ListNet (Cao et al.| 2007 and ListMLE (Xia et al.l 2008)) employ the Plackett—Luce framework to
derive smooth list-wise objectives.

The Plackett—Luce (PL) model offers efficient, closed-form gradients for ranking, but counterfactual
learning with PL requires Monte Carlo sampling, leading to high-variance estimates in large action
spaces. While variance reduction helps (Gao et al.,2023)), unbiased learning fundamentally depends
on stochastic logging, which is incompatible with real-world deterministic rankers designed for
stability and trust. Soft permutation relaxations like SoftSort (Prillo & Eisenschlos| [2020) approximate
permutations in continuous space, enabling gradient-based optimization without sampling. Though

Under review as a conference paper at ICLR 2026

computationally more expensive, they reduce variance and support end-to-end utility maximization.
We pair SoftSort with a learned reward model that generalizes over logged data, enabling scalable
training under deterministic logs. This approach trades unbiasedness for stability and practicality in
real-world ranking systems.

3 LEARNING-TO-RANK PROBLEM: UTILITY MAXIMIZATION VS SORTING

A data sample of an LTR problem is a query group (QG) consisting of a query, ¢, and a set of L items,
{xg}eLzl, where L may vary. The query may represent, for example, a search string, a user profile, or
other contextual information like device type and page layout. The ifems are candidate entities like
webpages, songs, or products retrieved by an upstream system. We assume that the QGs are drawn
i.i.d. from a distribution P, i.e. (¢, {z¢}) ~ P. When a user is presented with a ranking/arrangement
(permutation), 7 : [L] — [L], of the items of a QG, i.e. (1), ..., Z~(r)), they interact with the
ranked items, yielding a stochastic utility U(q, {z¢},7) € R, which is a hidden function of the QG
and the ranking. In typical internet systems, the utility can represent outcomes such as whether a user
clicks or purchases any item, or continuous measures such as the total minutes of media consumed.
Our objective is to learn a ranking policy, f, mapping the QGs to permutations, that maximizes the
expected utility return, i.e.

.f* = arg;naXE(q,{w})NP[U(Qa {.’t[},’]‘(= f(Q7 {l’z})] ()]

Based on the choice of the utility, this objective corresponds to business metrics like click-through
rate, units sold, or streamed minutes. The main challenge here is that the hidden stochastic utility
function U is not directly observable. Instead we are given a training dataset, D, consisting of N
QGs (indexed by 4) and their observed utility {u;} under some logged rankings {r;}, i.e. D =

{(gis {zi e}y, mi, ;) }ie[n]- We assume that similar hold-out test and validation dataset are also
available. This setting can be viewed as an offline one-step reinforcement-learning problem in which
the state space is comprised of all possible QGs in the support of P, the action space is comprised of
all item permutations, and the reward is the observed utility.

In practice, most QGs are unique, so we observe only one out of L! possible rankings for each.
Consequently, even if we propose a better alternative ranking for a given QG, the counterfactual
utility it would have obtained remains unknown. To address this, traditional LTR algorithms optimize
heuristic offline ranking metrics like Normalized Discounted Cumulative Gain (NDCG) (Jarvelin &
Kekdldinen, 2002; Burges| 2006), averaged over a test set. When a user interacts with a ranked QG,
we also obtain per-item feedback signals {y, > 0} (e.g. whether an item was clicked or purchase,
or how many minutes it was streamed). Usually, the overall QG-level utility u is some function of
these per-item signals. Then, the NDCG of any new ranking 7, on a QG with feedbacks {y,} can be
defined as

NDCG(R, {ue}) 2 pe)

m S [O, 1} y where DCG {yg} Z %

log (14—t (Z))

@)
DCG assigns a gain 2¥¢ — 1 for the item x4 in a test QG, but its contribution to the metric is discounted
by its position 7~ (¢) under the ranking r. Thus NDCG is maximized when the items are ranked
in the descending order of their feedback values. Traditional LTR methods (Burges, 2006; Swezey:
et al., 2021), aim to maximize NDCG by optimizing various continuous relaxations of it. This
heuristic of learning to move items with higher feedback signal to the top of list have been highly
successful, potentially because (i) items with positive feedback are usually relevant, and (ii) users
tend to focus their attention on the top of the list. However, such offline metrics are now well-known
to be sub-optimal as they do not perfectly align with the true (hidden) utility (I) we aim to maximize
(Wang et al.,[2023; Jeunen et al., 2024)). In the next section, we propose REWARDRANK, a novel
ranking framework designed to maximize the true LTR utility in a purely data-driven manner without
the aid of any heuristics or user behavior assumptions.

4 REWARDRANK: DATA-DRIVEN LTR UTILITY MAXIMIZATION

In this section, we present the REWARDRANK framework, which aims to maximize the true (hidden)
LTR utility defined in (). At a high level, REWARDRANK proceeds in two stages. First, using the

Under review as a conference paper at ICLR 2026

— »items Utility Per-item
predictions
0.04 0.70 0.26 §
Soft T

: r N\
Permutation pos| 0:09 024 067
0.85 0.04 0.11 I T T
T [Reward (Transformer) ’
scores
- AL N Position Encoding 4»:';(
Soft
T T T item 3
‘ Ranker (Transformer) ’
| [Query; Item 1] | | [Query; Item 2] ‘ | [Query; Item 3] | | [Query; Item 1] | | [Query; Item 2] | | [Query; Item 3] ‘

Figure 2: REWARDRANK. A ranker scores the items in a query group. These scores are used to
compute soft item embeddings via a soft permutation matrix. Position encoded soft item embeddings
are passed into a reward to estimate its utility. Finally, the ranker is optimized to maximize the
predicted utility.

logged training data D, it learns a reward model that predicts the counterfactual utility for any QG
and permutation. Then it trains a ranker using the reward model’s predictions as supervision, so as to
maximize the expected counterfactual LTR utility of the ranker’s item arrangement (ranking) policy.

4.1 STAGE 1: LEARNING THE UTILITY USING A REWARD MODEL

Let g(q, {x¢}, 7; ¢) denote the reward model (parameterized with ¢) to predict the scalar utility for
the QG (q, {z,}) and a ranking 7 using. It is trained solely on the logged query groups, rankings
and observed utilities in the training dataset D. When the utility U € {0, 1} is a binary random
variable (e.g. click, purchase), we train g € [0, 1] by minimizing the average binary cross-entropy
loss between the observed w; and the predicted utilities @;(¢) := g(qi, {zir}, mi; @) over all i € [N]:

N

5 Dluslog(@(@) + (- w)logl —a(@)]| . @)

mqgn RewardLoss(¢) 2

When the true utility is a continuous random variable (e.g. minutes a song is streamed) we can
use regression losses such mean squared error (MSE) min,(1/N) Zivzl lu; — wi(@)||?. In our
experiments, the reward model is instantiated with a transformer encoder, Enc, due to its ability to
model functions over sequences (ranked list of items). Before passing a QG into Enc each query-item
pair [¢, z¢] is embedded using a text encoder to create the token embedding ey. Next, the ranking
of the items 7 is encoded through position encodings {p }. Then the position encoded tokens are
passed to the transformer Enc. Finally, the predicted utility is computed as the sigmoid of a linear
function of the [CLS] token output. This can be succinctly represented as:

L
olar (o¥is, 7 0) = o |V TEne S5 ({en + 1)) | @

where e (1) is the token embedding of the query and the k-th ranked item. During the second stage
of training the ranker, we freeze the reward model parameters ¢.

Auxiliary per-item predictor: Typically the observed utility u is a byproduct of user’s interaction
with the items. So, we hypothesize that predicting the per-item feedback signals {y,} as an auxiliary
task would improve the overall quality of the LTR utility prediction. Thus we include an auxiliary
prediction head on the item tokens’ outputs to predict the feedback signal observed at each ranked
position k € [L]. When y, € {0, 1} is binary, the predictions can be instantiated as

MOEE: [GTEncﬁe’?m ({ent +Prtiy)] . Vkelr], §)

Under review as a conference paper at ICLR 2026

where Encr(fvaard is the output token at the k-th position. We can learn g (¢) alongside %(¢) by adding
the average cross-entropy loss between ¥ and (i),

2

N L
1 - ~ ~

S 1, DD Wintr 08 (@i (0)) + (1 = Yin(y) log(1 = Gin(0))]. (6)
1 =1 k=1

as an additional regularizer to RewardLoss (3). Note that during the training of the ranker in the next

stage, these auxiliary predictions can be discarded. Our ablation study in Section [5.1|shows that the

per-item loss provides a moderate boost in performance.

ItemLoss(¢)

4.2 STAGE 2: RANKER REWARD MAXIMIZATION THROUGH SOFT SORTING

Typically, rankers are modeled as scorers which assigns scores to the items in a QG. Then the items
are ordered in the descending order of their scores to obtain the final ranking. We follow the same
pattern and define f(q,{xz,};) as a scoring-based ranker which maps a QG (¢, {z,}) to a set of
item scores {sy}. Following our reward model design, we instantiate f using the same transformer
backbone architecture. Since QG has an unordered set of items, we do not use position encoding.
Finally the score is computed as the sigmoid of a linear function of the output item tokens, i.e.

se 2 fola, {we}:0) = o [w Enely, ({ediy) | vee (L, ™
(0

where Enc_,, .. is the output token of the ¢-th item. Our goal is to optimize the effective ranking 7
induced by these scores so that it maximizes the expected counterfactual utility, which is a hidden
from us. This is where the reward model comes in handy, as it helps us predict the counterfactual
utility as @ := g(q, {z,}, 7). However, since sorting (of the scores) is a discontinuous operation, it is
challenging to optimize the scores to maximize the reward. To enable an end-to-end optimization of
the scorer f, we resort to a continuous relaxation of the sorting operation.

Soft Permutation via SoftSort. SoftSort (Prillo & Eisenschlos,|2020) is a continuous relaxation
of sorting operation. It defines a unimodal row-stochastic matrix (Swezey et al.,|2021) as the soft
permutation matrix e e [0, 1]¥* L, Row k of this matrix corresponds to a probability distribution
of the k-the ranked item over the set of all items. Formally, we define

o e (=7 |se—sww))
k.t L 1
Yp—rexp (=7 [se = sagn|)
where 7 is a temperature parameter and 7 (k) is the k-th ranked items when (hard) sorting by the
scores {sy}. TI(7) is a continuous function of the scores {s,} and when 7 — 0, TI(") tends to the
binary hard-permutation matrix II, where

, Vktel[l], 8)

lim T1{7) = Ty, Sk =7(0)}, Yk (€[],)
T— ’

assuming the scores are unique. Using this soft permutation matrix, we can compute a soft item
embedding @g) at position k as the following convex combination of the true item embeddings

e £ 3 1. (10)
Le[L)

It is easy to verify that /e\,(;) — ez) Wwhen 7 — 0. Note that there are alternate soft permutation

matrices like NeuralSort (Grover et al., 2019)), but we adopt SoftSort for its simplicity and state of
the art performance (Prillo & Eisenschlos| 2020). We then compute a soft reward for these soft item
embeddings using

gy A ~ A (r L
3716) 2 sta. (00).) 2 o [vTene Gy ({60 40}) | an
This allows us to compute an approximate predicted reward (TT) as a continuous function over the

ranker scores {sy} through the SoftSort matrix. Finally, we optimize the parameters of scorer f to
maximize the average approximate reward over the training set in an end-to-end manner:

N
. a1l .
min [RankerLoss(@) =~ -E,l gi(ﬁ)} . (12)

Under review as a conference paper at ICLR 2026

Even though REWARDRANK is maximizing the predicted utility of the soft ranking, we hypothesize
that it generalizes well and produces rankings with higher expected counterfactual utility than prior
LTR methods.

Mitigating reward misspecification. One challenge of reward modeling the hidden counterfactual
utility is model misspecification, i.e. a gap between the predicted and the true utilities. A misspecified
reward can misguide the ranker into wrong ranking policies. To mitigate this issue we propose a
sample reweighting scheme which modifies the ranker loss as

N
1
RankerLoss™ (0) 2 S Do wiGi6) where w; =1 = Mu; —@(6)}, m)| . Vi€ [N]. (13)

i=1

Above loss is a pessimistic lowerbound to RankerLoss(6) (I2). This reward down-weighting scheme
is motivated by a conjecture that when the observed utility u; for the i-th training QG and the
corresponding prediction @;(#) are different, the utility prediction on new ranking of this QG would
also be less reliable. Through an ablation in Section [5.1] we show that reward misspecification
correction slightly improves the REWARDRANK performance.

5 EXPERIMENTAL RESULTS

Datasets. Public large-scale datasets for learning-to-rank (LTR), especially in counterfactual settings,
are scarce. To the best of our knowledge, we propose the first reproducible testbeds for counterfactual
ranking evaluation. We utilize two existing large-scale LTR datasets: Baidu-ULTR (Hager et al.,
2024; Zou et al.| 2022) and Amazon KDD-Cup (Reddy et al.,[2022)), to construct these testbenches,
enabling rigorous evaluation of permutation-aware ranking policies. Baidu-ULTR contains 1.8M
query groups (11.7M query-document pairs) and 590K validation/test sessions. Amazon KDD-Cup
comprises 130K queries and 2.6M annotated query-product pairs with rich textual metadata. We
generate 400K training and 50K validation/test query groups by sampling permutations of products
per query. See Appendix for further details.

Implementation Details and Baselines. Our reward models and rankers are based on a transformer
architecture with 12 layers, 768 hidden dimensions, 12 attention heads, and roughly 110M parameters.
We set 7 = 0.5 and A = 0.7 for all REWARDRANK experiments, based on tuning over a held-out
set. Ablations with varying values and further implementation details are provided in Appendix [B.2]
For comparison, we implement two utility-based counterfactual ranking methods: URCC (Xi et al.,
2024), which uses a Lambdal.oss-based pairwise objective, and PG-rank (Gao et al., [2023)), which
applies Plackett—Luce modeling with policy gradients. Our variants, URCC* and PG-rank*, replace
the original architectures with our transformer-based reward model for improved performance. While
PG-rank was originally explored with known NDCG utility, PG-rank* uses the same learned reward
model as REWARDRANK. Additionally, we train standard LTR baselines: ListNet (Cao et al., | 2007),
ListMLE (Xia et al., 2008)), LambdaRank (Wang et al., 2018), and PiRank (Swezey et al.}2021), all
using the same transformer architecture for fair comparison across supervision methods.

5.1 LARGE-SCALE REPRODUCIBLE TESTBENCHES FOR COUNTERFACTUAL LTR

To enable reproducible evaluation of ranking policies without online A/B testing, we introduce two
complementary testbeds: PO-Eval, which leverages a parametric click model, and LAU-Eval, which
simulates human-like shopping behavior via LLM reasoning. Together, they enable holistic, offline
assessment of ranking algorithms under both statistical and behavioral lenses.

Parametric Oracle Evaluation (PO-Eval). To simulate a click-based counterfactual recommen-
dation setting, we build a testbed from the Baidu-ULTR dataset (Hager et al.| [2024)), employing
a pretrained parametric IPS model as the oracle for supervision. This model estimates the click
probability at position ¢ as P(C) = P(Ey) - P(R,,;), where P(E;) is the position-dependent ex-
amination probability and P(R, ;) is the relevance-conditioned click probability, independent of
position. We use this oracle to sample binary clicks for training and later reuse it for counterfactual
evaluation of new ranking policies. For each ranked query group (QG), we compute the expected
utility as the probability of at least one click and the observed utility as a binary indicator of at least

Under review as a conference paper at ICLR 2026

Table 1: Comparison of counterfactual ranking methods under two evaluation settings. Left partition:
IPS-Oracle-based utility and relevance-aware NDCG metrics. Right partition: LLM-Eval purchase prediction

metric.

Method

PO-Eval

LAU-Eval

‘ E[UIPS-O((L {L}L)} NDCGclick ‘]E[l{PurChan? = 1}] NDCGpurchase
Upper-Bound 0.553 1.000 - -

Policy in data 0.501 - 0.497 £ 0.008 1.00 + 0.000
ListNet (Cao et al.|[2007) 0.523 £0.0007 0.376 £ 0.0002 0.521 £ 0.009 0.8611 £ 0.009
ListMLE (Xia et al.|[2008) 0.522 £0.0007 0.377 £ 0.0002 0.522 4+ 0.008 0.8610 £ 0.003
LambdaRank (Wang et al.[[2018) 0.524 +£ 0.0007 0.378 £ 0.0002 0.523 £ 0.009 0.8610 £ 0.009
PiRank (Swezey et al.[[2021) 0.525 £ 0.0007 0.378 £+ 0.0002 0.528 £ 0.007 0.8623 £ 0.005
URCC* (Xi et al.||2024) 0.462 £ 0.0005 0.315 £+ 0.0004 0.471 £ 0.008 0.8621 £ 0.009
PG-rank* (Gao et al.|[2023) 0.501 =+ 0.0005 0.327 £+ 0.0002 0.489 £ 0.007 0.8630 £ 0.009
REWARDRANK ‘ 0.536 £ 0.0007 0.370 £ 0.0002 ‘ 0.561 + 0.008 0.8628 + 0.009

one sampled click. This setup provides a realistic and repeatable framework for evaluating how well
learned rankers align with user behavior modeled by the IPS oracle. See Appendix [A.]for details on
the parametric model and the derivation of utility metrics. Table [6]reports counterfactual evaluation
results using PO-Eval, where we leverage a pre-trained parametric IPS-Oracle to simulate user clicks
and assess ranking quality. The IPS-based utility E[Ups.o(q, {i}1)] captures the expected probability
of at least one click per ranked list, while NDCGjicx measures how high are the originally clicked
items in the test dataset ranked. The Upper-Bound is computed by ranking items in descending order
of P(R), which maximizes utility due to the rearrangement inequality (Dayl|1972) (see Appendix B])
Among all methods, REWARDRANK achieves the best performance on true utility. Traditional LTR
baselines (ListNet, ListMLE, LambdaRank, PiRank), trained on per-item IPS-sampled clicks, fail to
fully capture permutation-level utility. URCC* performs poorly due to its reliance on initialization
quality, while PG-rank* improves over URCC* but remains suboptimal. Overall, REWARDRANK
consistently outperforms existing methods, highlighting the benefit of direct reward optimization and
counterfactual supervision. RewardRank attains the highest utility under IPS-Oracle, despite slightly
lower NDCGyjick than some baselines. This reflects a key distinction: proxy metrics like NDCG may
not fully capture listwise user utility. By directly optimizing counterfactual reward, RewardRank
better aligns with behavioral objectives beyond conventional ranking accuracy.

LLM-based User Simulation (LAU-Eval). While PO-Eval captures position bias via IPS-Oracle
supervision, it does not account for broader behavioral patterns such as brand bias, similarity aversion,
or irrelevance bias. To complement PO-Eval and more fully assess human-centered ranking behavior,
we introduce the LAU-Eval framework. In this setup, a large language model (LLM) is prompted
to simulate user shopping behavior given a query and its associated product list from the Amazon
KDD-Cup dataset. The prompt incorporates behavioral factors such as position bias, brand bias,
irrelevance bias, and color bias (full details are provided in Appendix [C.2). The LLM generates
a binary purchase decision D(purchase) € {0, 1}, which serves as the reward signal for training
a reward model and optimizing rankers. For evaluation, the same prompt is used: each ranker’s
re-ranked outputs are re-scored by the LLM, and performance is reported as the average purchase
decision rate on a held-out test set. For LTR methods that do not rely on reward modeling, we instead
use the LLM-selected item as the training signal. Higher values indicate stronger alignment with
human-centered behavioral criteria. Refer to the Appendix Section [C.2|for implementation details.
Under LAU-Eval, which evaluates binary purchase decisions produced by the LLM, we observe
notable differences across methods. The policy_in_data baseline, representing the original
item ordering, achieves an average purchase rate of 0.497. Classical listwise approaches such as
ListNet, ListMLE, and LambdaRank provide slight improvements, reaching 0.500-0.513, while
PiRank performs marginally better at 0.515, indicating advantages of modeling permutation-level
interactions. Interestingly, recent counterfactual methods like URCC* and PG-rank* underperform
even the baseline, suggesting that their learning objectives may not fully capture the nuanced user
behaviors emphasized in LAU-Eval. In contrast, REWARDRANK achieves the highest purchase rate at
0.561, significantly outperforming all baselines and prior methods. These results establish LAU-Eval
as a behaviorally grounded evaluation framework and demonstrate REWARDRANK s effectiveness in

Under review as a conference paper at ICLR 2026

capturing decision-relevant user dynamics beyond conventional ranking criteria. We observe that
a high NDCGy;chase score does not necessarily translate into high purchase decisions by the LLM.
Many baselines achieve similar NDCG values but vary significantly in actual predicted purchases.
This highlights that NDCGpuschase, While ranking-aware, may not faithfully reflect true listwise utility
as captured by the LLM. In contrast, RewardRank consistently achieves both high purchase rates and
competitive NDCG, demonstrating better alignment with user-centric objectives.

Ablations. We ablate the per-item regularizer and the two parameters of REWARDRANK: the
SoftSort temperature 7, which controls the sharpness of the permutation approximation (), and the
misspecification correction strength A, which down-weights rewards on QGs with high prediction
error (I3). Removing the auxiliary item-level reward loss (Eqn [6) decreased the final expected
counterfactual utility of the learned ranker. This indicates that learning to predict the per-item
feedback enhances the reward model’s generalization and hence improves downstream ranking
performance. We find that 7 = 0.5 and A = 0.7 achieve the best trade-off between stability and
performance. Full details of these ablations are reported in Appendix

5.2 BAIDU-ULTR DATASET WITH REAL USER CLICKS

While we previously used the Baidu-ULTR

Table 2: Baidu-ULTR with real clicks. Rg- dataset within the PO-Eval framework un-
WARDRANK achieves SOTA performance. T metrics are ~der IPS-Oracle supervision, here we in-

taken from [Hager et al| (2024) stead rely directly on the real click sig-
nals provided in the data. Following the
Method | DCGa@5 | DCGra@10 protocol in (Hager et al., 2024}, models

are trained with a binary click labels for

Point IPST (Hager et al.|[2024) 4.79 7.43 C . . .
List IPST (Hager et al.| 2024} 5.20 7.88 each query groups (u = 1 if any item is
LambdaRank [Hager et al. (2024} 545 823 clicked, otherwise 0). Since counterfac-
CsiNetlC 5o - 505 —ea tual evaluation is not feasible here, we fol-
ListML LIRS 2 el {008} 5.13 7.88 low (Hager et al} [2024) and report Rele-
PiRank [Swezey et al.[(2021) 5.23 8.01 vance DCG at 5 and 10, computed on the
y— — human-assigned relevance labels provided
Pgi&%)G(Lgteilz.ﬂ(2(%%42'3} 28; ;2; with the test se{’] As shown in Table
REWARDRANK 5.83 8.42 our method achieves a new state of the art

DCGE@Q@5 and DCG@Q10 across all base-
lines. Importantly, these improvements are observed on human-assigned relevance labels that were
never used in training by any method. This is particularly noteworthy given that our method is not
optimized for relevance DCGThese results highlight both the robustness of our approach and its
ability to generalize to real human feedback in large-scale search settings.

6 CONCLUSION

In this work, we introduced REWARDRANK, a general framework for counterfactual learning-to-rank
that uses a learned, permutation-aware reward model to optimize the ranker via a differentiable
soft permutation operator. To support reproducible counterfactual utility evaluation, we proposed
two large-scale evaluation suites: PO-Eval, which leverages a parametric IPS oracle to simulate
position-biased click behavior, and LAU-Eval, which uses large language models to capture richer,
human-aligned user preferences beyond position. Across these benchmarks REWARDRANK achieves
achieved the highest utility across all baselines. Further, it achieved a new state of the art per-
formance on Baidu-ULTR dataset with real clicks. Our findings underscore the value of learning
data-driven counterfactual utility models and enabling principled evaluation for building more robust
and behaviorally aligned ranking systems.

REFERENCES

Aman Agarwal, Kenta Takatsu, Ivan Zaitsev, and Thorsten Joachims. A general framework for
counterfactual learning-to-rank. In Proceedings of the 42nd International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 5-14, 2019.

'We report DCG rather than NDCG for consistency with (Hager et al.,|2024).

Under review as a conference paper at ICLR 2026

Alexander Buchholz, Ben London, Giuseppe Di Benedetto, Jan Malte Lichtenberg, Yannik Stein, and
Thorsten Joachims. Counterfactual ranking evaluation with flexible click models. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1200-1210, 2024.

Chris Burges. From ranknet to lambdarank to lambdamart: An overview. In Microsoft Research
Technical Report, 2006.

Chris Burges, Tal Ragno, and Quoc Viet Le. Learning to rank using gradient descent. In /CML,
2005a.

Chris JC Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and Greg
Hullender. Ranknet: Gradient descent learning for rank function optimization. In SIGIR, 2005b.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to rank: from pairwise
approach to listwise approach. In Proceedings of the 24th international conference on Machine
learning, pp. 129-136, 2007.

Yufei Chen, Wei Li, Jianyang Sun, and Ruiming Wang. Reducing popularity influence by addressing
position bias in recommender systems. arXiv preprint arXiv:2412.08780, 2024. URL https |
//arxiv.org/abs/2412.08780.

Peter W Day. Rearrangement inequalities. Canadian Journal of Mathematics, 24(5):930-943, 1972.

Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, and Wenwu Ou. Revisit recommender system in the
permutation prospective. arXiv preprint arXiv:2102.12057, 2021.

Yoav Freund, Raj Iyer, Robert E Schapire, and Yoram Singer. An efficient boosting algorithm for
combining preferences. In JMLR, 2003.

Ge Gao, Jonathan D Chang, Claire Cardie, Kianté Brantley, and Thorsten Joachim. Policy-gradient
training of language models for ranking. arXiv preprint arXiv:2310.04407, 2023.

Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
networks via continuous relaxations. arXiv preprint arXiv:1903.08850, 2019.

Shashank Gupta, Harrie Oosterhuis, and Maarten de Rijke. Practical and robust safety guarantees
for advanced counterfactual learning to rank. In Proceedings of the 33rd ACM International
Conference on Information and Knowledge Management, pp. 737-747, 2024a.

Shashank Gupta, Harrie Oosterhuis, and Maarten de Rijke. Proximal ranking policy optimization for
practical safety in counterfactual learning to rank. arXiv preprint arXiv:2409.09881, 2024b.

Philipp Hager, Romain Deffayet, Jean-Michel Renders, Onno Zoeter, and Maarten de Rijke. Unbiased
learning to rank meets reality: Lessons from baidu’s large-scale search dataset. In Proceedings
of the 47th International ACM SIGIR Conference on Research and Development in Information
Retrieval, pp. 1546—-1556, 2024.

Kalervo Jarvelin and Jaana Kekildinen. Cumulated gain-based evaluation of ir techniques. ACM
Transactions on Information Systems (TOIS), 20(4):422-446, 2002.

Olivier Jeunen, Ivan Potapov, and Aleksei Ustimenko. On (normalised) discounted cumulative gain
as an off-policy evaluation metric for top-n recommendation. In Proceedings of the 30th ACM
SIGKDD conference on knowledge discovery and data mining, pp. 1222-1233, 2024.

Thorsten Joachims. Optimizing search engines using clickthrough data. In KDD, 2002.

Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. Unbiased learning-to-rank with biased
feedback. In Proceedings of the tenth ACM international conference on web search and data
mining, pp- 781-789, 2017.

Wouter Kool, Herke van Hoof, and Max Welling. Buy 4 reinforce samples, get a baseline for free!
2019.

10

https://arxiv.org/abs/2412.08780
https://arxiv.org/abs/2412.08780

Under review as a conference paper at ICLR 2026

Ying Li, Yu Wang, and Kevin C.C. Chan. We match! building online brand engagement behaviours
through social media influencers. Journal of Retailing and Consumer Services, 76:103640,
2025. doi: 10.1016/j.jretconser.2024.103640. URL https://www.sciencedirect.com/
science/article/pii/S0969698924004429.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Harrie Oosterhuis. Computationally efficient optimization of plackett-luce ranking models for
relevance and fairness. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 1023-1032, 2021.

Harrie Oosterhuis. Doubly robust estimation for correcting position bias in click feedback for
unbiased learning to rank. ACM Transactions on Information Systems, 41(3):1-33, 2023.

Przemystaw Pobrotyn and Radostaw Bialobrzeski. Neuralndcg: Direct optimisation of a ranking
metric via differentiable relaxation of sorting. arXiv preprint arXiv:2102.07831, 2021.

Sebastian Prillo and Julian Eisenschlos. Softsort: A continuous relaxation for the argsort operator. In
International Conference on Machine Learning, pp. 7793-7802. PMLR, 2020.

Tao Qin, Tie-Yan Liu, and Hang Li. A general approximation framework for direct optimization of
information retrieval measures. Information retrieval, 13:375-397, 2010.

Chandan K Reddy, Lluis Marquez, Fran Valero, Nikhil Rao, Hugo Zaragoza, Sambaran Bandyopad-
hyay, Arnab Biswas, Anlu Xing, and Karthik Subbian. Shopping queries dataset: A large-scale
esci benchmark for improving product search. arXiv preprint arXiv:2206.06588, 2022.

Yuxin Ren, Qiya Yang, Yichun Wu, Wei Xu, Yalong Wang, and Zhiqgiang Zhang. Non-autoregressive
generative models for reranking recommendation. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pp. 5625-5634, 2024.

Xiaowen Shi, Fan Yang, Ze Wang, Xiaoxu Wu, Muzhi Guan, Guogang Liao, Wang Yongkang,
Xingxing Wang, and Dong Wang. Pier: Permutation-level interest-based end-to-end re-ranking
framework in e-commerce. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 4823-4831, 2023.

Robin Swezey, Aditya Grover, Bruno Charron, and Stefano Ermon. Pirank: Scalable learning to rank
via differentiable sorting. Advances in Neural Information Processing Systems, 34:21644-21654,
2021.

Amos Tversky and Itamar Simonson. Extremeness aversion and attribute-balance effects in choice.
Journal of Consumer Research, 31(2):249-257, 2004. doi: 10.1086/172209. URL https:
//academic.oup.com/jcr/article/31/2/249/1824942]

Ali Vardasbi, Harrie Oosterhuis, and Maarten de Rijke. When inverse propensity scoring does
not work: Affine corrections for unbiased learning to rank. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pp. 1475-1484, 2020.

Shuheng Wang, Weijie Zhang, Yiqun Xu, and Ji-Rong Wen. Decoy effect in search interaction:
Understanding user behavior. In Proceedings of the ACM Web Conference 2025. ACM, 2025a.
doi: 10.1145/3708884. URL https://dl.acm.org/doi/10.1145/3708884.

Shuli Wang, Xue Wei, Senjie Kou, Chi Wang, Wenshuai Chen, Qi Tang, Yinhua Zhu, Xiong
Xiao, and Xingxing Wang. Nlgr: Utilizing neighbor lists for generative rerank in personalized
recommendation systems. arXiv preprint arXiv:2502.06097, 2025b.

Xiaojie Wang, Ruoyuan Gao, Anoop Jain, Graham Edge, and Sachin Ahuja. How well do offline
metrics predict online performance of product ranking models? In Proceedings of the 46th
International ACM SIGIR conference on Research and Development in Information Retrieval, pp.
3415-3420, 2023.

11

https://www.sciencedirect.com/science/article/pii/S0969698924004429
https://www.sciencedirect.com/science/article/pii/S0969698924004429
https://academic.oup.com/jcr/article/31/2/249/1824942
https://academic.oup.com/jcr/article/31/2/249/1824942
https://dl.acm.org/doi/10.1145/3708884

Under review as a conference paper at ICLR 2026

Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork. The lambdaloss
framework for ranking metric optimization. In Proceedings of the 27th ACM international
conference on information and knowledge management, pp. 1313-1322, 2018.

Qiang Wu, Chris JC Burges, Krysta M Svore, and Jianfeng Gao. Adapting boosting for information
retrieval measures. In Information Retrieval, 2010.

Yunjia Xi, Weiwen Liu, Xinyi Dai, Ruiming Tang, Qing Liu, Weinan Zhang, and Yong Yu. Utility-
oriented reranking with counterfactual context. ACM Transactions on Knowledge Discovery from
Data, 18(8):1-22, 2024.

Fei Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. Listwise approach to learning to
rank: theory and algorithm. In ICML, 2008.

Lixin Zou, Haitao Mao, Xiaokai Chu, Jiliang Tang, Wenwen Ye, Shuaiqiang Wang, and Dawei
Yin. A large scale search dataset for unbiased learning to rank. Advances in Neural Information
Processing Systems, 35:1127-1139, 2022.

12

Under review as a conference paper at ICLR 2026

A PROOFS AND CONCEPTUAL DETAILS

A.1 CLICK-BASED UTILITY FOR PO-EVAL.

The IPS-Oracle models user clicks as a probabilistic function of both examination and item relevance.
Specifically, the click probability at position £ is modeled as:

P(Cqin,0) = P(Ep) - 0(Ryi,,)

where P(E}) is the position-dependent examination probability, and o (Ry,;,,) is the relevance-based

click probability estimated by the reward model. Given a query group (g, {7},), the click indicator
for each item is sampled as:

Cq,

A Bernoulli(P(C’q’iW,g))
We define the utility of a ranked list as a binary signal indicating whether at least one item was
clicked:

. L
1, if Zé:l Cqiny l > 0,

; (14)
0, otherwise.

Ulg,{i}r,m) = {

To obtain a differentiable approximation of this binary utility, we define the expected probability of at
least one click as:

Us(q, {i}r,m) =1— f[(1-PE) o (Ryi,) (15)

This smoothed utility approximates the expected user engagement over the list and serves as a
continuous training signal. The reward model is trained to predict the binary group-level utility
U € {0,1}, while the ranker maximizes the soft expected utility Upps under permutations. This
formulation bridges synthetic click modeling with realistic counterfactual feedback, enabling effective
utility-based ranking even in the absence of direct supervision on full permutations.

A.2 IDEAL IPS-ORACLE: REARRANGEMENT INEQUALITY

Theorem 1 (Ideal Ranking Maximizes Utility via Rearrangement Inequality). Letr = (rq,...,r,) €
RZ, be a vector of predicted relevance scores, and let € = (e1,. .., e,) € RZ, be a non-increasing
sequence of examination probabilities: e1 > ex > ... > ¢e,. Let * be the permutation that sorts r
in descending order: 1y« (1) 2 T'ne(2) 2 ... 2 T'rne (). Then, for any permutation © € Sy, we have:

n n
Zei T (i) 2 Zei T (i)
i=1 i=1

Proof. This is a direct consequence of the classical rearrangement inequality (Day, |1972)). Among all
permutations 7 of the relevance scores, the weighted sum), e; - Tx(i) 18 maximized when the 7 ;)
are ordered in the same way as the e;, i.e., both decreasing. Hence, sorting r in descending order and
aligning it with the already sorted e gives the maximal utility. O

Above analysis shows that ideal ranking order under the IPS Oracle is ordering the items such the
sorting of item relevance scores and examination probabilities result in the same permutation.

A.3 DETAILS OF BASELINES
A.3.1 PG-RANK* : PG-RANK WITH LEARNED REWARD MODEL.

We extend the PG-Rank framework (Gao et al.| [2023) by replacing the handcrafted reward (e.g.,
NDCG) with a learned reward model g(q, {¢} 1, 7) that scores entire permutations based on user
utility. The goal is to maximize the expected reward under the Plackett—Luce distribution induced by
the ranker’s scores:

13

Under review as a conference paper at ICLR 2026

EPG—reward(e) = ETA’NPQ [g(% {i}La 77)] (16)
where Py (7) is the Plackett-Luce distribution over permutations, parameterized by model scores
s1,...,s8r for each item in the query group. To enable backpropagation through the sampled

permutations, we adopt the Gumbel-Softmax trick as in the original PG-Rank implementation, which
provides a continuous relaxation of the discrete sampling process.

The gradient of this objective is estimated using the REINFORCE trick with a baseline b for variance
reduction (adopted from PG-rank (Gao et al., 2023}; Kool et al.,[2019)):

K
ablag LpGreward ~ %Z Kg(ﬂ'(k)) — b) - ablag log Pg(ﬂ'(k))} 17
k=1

where 7(¥) ~ P, are K Monte Carlo samples drawn from the Plackett—Luce model.

The log-probability of a sampled permutation 7 under this model is given by:

L L

log Py(m) = Z Sr(k) — logZexp(sﬂ(j)) (18)
k=1 j=k

This formulation allows us to train the ranking model directly on learned, utility-aligned reward
signals using fully differentiable, sample-based policy gradients.

A.3.2 URCC* WITH LEARNED REWARD MODEL.

URCC (Xi et al.| 2024)) proposes a two-stage counterfactual reranking framework that jointly learns
a set-aware utility function and a context-aware reranker. The utility model in URCC is itself
learned from data and used to guide the optimization of the reranker via a pairwise ranking loss
over permutations. Since the official implementation of URCC is not publicly available, we re-
implemented the method using our own architecture.

In our version of URCC* , we retain the core two-stage structure but implement the utility model
9(q,{i}r, ™) as a Transformer-based encoder trained to predict user utility over full permutations.
Given a query ¢ and a set of items {4} 1, the reward model assigns a scalar score to a permutation 7:

Sr = g(Qa {i}Lv "T) (19)

Following URCC, we then train the ranker fy to maximize this learned reward by optimizing a context-
aware pairwise loss. For a pair of permutations (7, 7~) such that g(q, {i} 1, ") > g(q,{i}r,77),
we minimize the following objective:

Lurccreward(0) = E(rt z—yp [log (1 + exp (—(Sr+ — Sr-)))] (20)

Here, P denotes the set of sampled permutation pairs with preference orderings induced by the reward
model. Our implementation uses neighborhood-based sampling (e.g., pairwise swaps) to construct
7T and 7~ from the base ranking.

Thus, while our training procedure is structurally consistent with the original URCC framework, we
employ a more expressive Transformer-based reward model to capture user behavior better and align
optimization with utility-oriented objectives.

A.4 COMPARISON OF TIME COMPLEXITY AND COUNTERFACTUAL SPACE EXPLORATION

Table [3| compares the time complexity of three methods: URCC* , PG-rank* , and REWARDRANK.
The per-iteration time complexity is analyzed based on the number of calls to the reward model.

» URCC* : n?, where n is the number of items in the list. URCC* explores the neighborhood
of factual permutations, leading to quadratic complexity due to pairwise comparisons.

14

Under review as a conference paper at ICLR 2026

Table 3: Comparison of Time Complexity for URCC* , PG-rank* , and REWARDRANK in term of
number of calls to the reward model per iteration on Baidu-ULTR dataset.

Method Time Complexity = Wall-Clock Time Description

PiRank 1 ~6 hours No call to the reward model.
URCC* n? ~34 hours Neighborhood search, pessimistic.
PG-rank* k ~16 hours (k = 10) Needs large k for convergence.
RewardRank 1 ~7 hours Full counterfactual space exploration.

URCC* only explores the neighborhood of factual permutations, meaning it performs
limited counterfactual exploration. This approach is considered pessimistic because it
does not explore the entire space of possible rankings, which could miss potentially better
arrangements.

* PG-rank* : k, where £ is the number of Monte Carlo (MC) samples. While k is typically
smaller than n, PG-rank* requires large k values and variance reduction baselines to con-
verge. PG-Rank uses Monte Carlo (MC) sampling to explore a broader counterfactual space,
but this approach requires large MC samples to converge effectively. To ensure stable and
accurate exploration, PG-Rank relies on variance-reduction baselines. However, it still faces
challenges in accurately capturing all potential counterfactual configurations without a very
large number of samples.

* REWARDRANK: 1, as it performs a single call to the reward model. RewardRank explores
the entire counterfactual space efficiently and can focus on more certain regions with reward
misspecification mitigation.

In Table 3] we also provide the overall wall-clock time to train the model under the above method for
the Baidu-ULTR dataset. Each model is trained for 21 epochs.

B EXPERIMENTATION DETAILS

B.1 DATASETS

Baidu-ULTR Reranking Dataset. The Baidu-ULTR dataset (Hager et al.,[2024])), a large-scale
subset of the Baidu-ULTR corpus (Zou et al., | 2022)), contains user click interactions over web search
queries. It includes 1.8M query groups (11.7M query-document pairs) and 590K validation/test
sessions (4.8M pairs).The authors of (Hager et al., 2024) provide BERT-based CLS embeddings for
each query-document pair.

We use the large-scale reranking dataset introduced by (Hager et al| [2024): publicly
available at: https://huggingface.co/datasets/philipphager/baidu-ultr_
uva-mlm-ctr, derived from the original Baidu-ULTR corpus (Zou et al}|2022). This dataset is
constructed from real-world user interactions on Baidu’s production search engine and is designed to
support robust evaluation of learning-to-rank models in counterfactual settings.

Each session consists of a user query, a candidate list of documents retrieved by an upstream ranker,
the original presented ranking, and user interaction logs (e.g., clicks and dwell time). For each
query-document pair, the dataset provides both sparse lexical features (e.g., BM25, TF-IDF, query
likelihood) and dense semantic representations.

Table 4: Statistics of the Baidu-ULTR reranking dataset (Hager et al.| [2024).

Split #Query Groups #Query-Document Pairs
Training 1,857,248 11,738,489
Validation/Test 590,612 4,797,378
Total 2,447,860 16,535,867

15

https://huggingface.co/datasets/philipphager/baidu-ultr_uva-mlm-ctr
https://huggingface.co/datasets/philipphager/baidu-ultr_uva-mlm-ctr

Under review as a conference paper at ICLR 2026

To generate the dense features, the authors pretrain a BERT-style model, referred to as MonoBERT,
from scratch using masked language modeling (MLM) on the full Baidu corpus. This model is trained
in a mono-encoder configuration and outputs a [CLS] token embedding for each query-document pair.
These CLS embeddings are included in the dataset and serve as fixed, high-quality dense features for
downstream reranking. The pretrained MonoBERT model and inference code are publicly available
at: https://github.com/philipphager/baidu-bert-model.

Amazon KDD-cup. The KDD-Cup dataset (Reddy et al.,|2022) contains 130K queries and 2.6M
annotated query-product pairs in English, Japanese, and Spanish. Each query is linked to up to 40
products with rich textual metadata (titles, descriptions, bullet points), making it well-suited for LLM-
based evaluation, unlike Baidu-ULTR. Although the presentation order is not recorded, the dataset
primarily consists of relevant query-product pairs that were shown to users. For training, validation,
and testing, we sample five random permutations of length 8 per query, resulting in 400,000 training
and 50,000 validation/test groups. We use the English subset of the product search dataset released as
part of the KDD Cup 2022 challenge (Reddy et al.| [2022), which contains real-world queries and
associated candidate products from Amazon. Each query-product pair is annotated using the ESCI
labeling scheme: Exact match, Substitute, Complement, or Irrelevant.

Each query group is identified by a unique query_id and paired with 10-40 product candidates.
For each product, the dataset provides structured metadata including:

 product_title,

* product_brand,

e product_color

* product_description,

* product_bullet_point (optional fields)
e product_id,

* product_locale, and

* ESCI relevance label

To construct our training and evaluation sets, we sample 5 random permutations of length 8 from
each query group. Note that we do not use the human-annotated ESCI labels provided in the
dataset. Instead, we leverage the LLM’s capability for contextual understanding to generate relevance
labels automatically. Ideally, the relevance judgments produced by the LLM should align closely
with those of human annotators. This yields approximately 392K query groups for training and
20K for validation, and 20K for testing. For a given query group, we encode each query-item
pair into sentence embeddings using the a11-MiniIM-L6-v2: https://huggingface.co/
sentence-transformers/all-MiniLM-L6-v2 model from Sentence Transformers. The
input format for the sentence transformer is constructed as:

{query} [SEP] {product_title} Brand: {brand}
Color:{color}

Table 5: Statistics of the Amazon KDD Cup (ESCI) dataset (English subset).

Split #Query groups #Query-Product Pairs
Training 78,447 627,576
Validation 4,000 32,000

Test 4,000 32,000

Total 86,447 691,576

Total (including 5 random permutations) 392,235 3,137,880

B.2 IMPLEMENTATION DETAILS

We use a transformer architecture for both the reward model and the ranker across all methods to
ensure a consistent architectural backbone. The model contains 12 transformer layers, 768 hidden

16

https://github.com/philipphager/baidu-bert-model
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

Under review as a conference paper at ICLR 2026

dimensions, 12 attention heads, and approximately 110M parameters. All models are trained with a
learning rate of 2 x 10~° using the AdamW optimizer (Loshchilov & Hutter, [2017) with a weight
decay of 102, We use a batch size of 512 and train for 21 epochs, applying a learning rate decay at
epoch 12 via a step-based learning rate scheduler. All experiments are conducted using 2 NVIDIA
A100 GPUs (40GB each).

For our method, REWARDRANK, we use a soft permutation temperature 7 = 0.5 and reward
correction term A = 0.7. In the PG-rank™ baseline, which replaces the handcrafted NDCG utility with
our learned reward model, we apply Gumbel-Softmax sampling with temperature 0.1 to approximate
permutation sampling from the Plackett—Luce distribution. We report PG-rank* results for different
Monte Carlo samples (MC = 1, 5, 10) to evaluate variance in reward estimation.

In our URCC* implementation, we follow the original two-stage design: a set-aware utility model
and a pairwise ranker. The utility model is trained with a binary cross-entropy loss computed over
per-item logits derived from the transformer encoder outputs. Specifically, for each item in the
permutation, we pool its embedding from the encoder, apply dropout, and project it through a shared
per-item classifier. The per-item predictions are matched to click labels, and their aggregated loss
forms the utility supervision.

As an additional baseline, we include a Naive-ranker trained with a relaxed NDCG objective following
the PiRank formulation (Swezey et al[2021)), allowing listwise supervision using soft permutation
matrices. All baselines are trained using the same reward data and input embeddings to isolate the
impact of the learning objective.

Representative code for our implementations of REWARDRANK, PG-rank* , URCC* baselines, and
evaluation procedures is included in the supplementary material.

C COUNTERFACTUAL EVALUATION PROTOCOLS

C.1 PO-EVAL DETAILS

PO-Eval provides a click-based framework for counterfactual evaluation of ranking models. Using the
pre-trained Inverse Propensity Scoring model (IPS-Oracle) (Hager et al., 2024E| on the Baidu-ULTR
dataset, it generates soft click probabilities for items in a ranked query group. These probabilities
serve as counterfactual labels, enabling the evaluation of how effectively a ranker can model user
engagement patterns reflected in clicks.

As the Baidu-ULTR dataset is derived from user interaction logs, click activity is heavily concentrated
in the top-ranked positions, reflecting strong position bias (see Figure[3b). In contrast, the distilled
soft utility () generated by the IPS-Oracle exhibits a more uniform distribution across positions
(Figure[34), indicating that the oracle has successfully learned to correct for position bias. Under the

nttps://github.com/philipphager/baidu-bert-model

0.10
P

g — ™ g0.4
£0.08 <
2 30.3
$0.06 s
S S
[[T
$0.04 902
- F=]
3 0.02 0.1
o o

000556 02 04 06 08 10 00792 3 4 5 6 7 8 9 10

y=Ups(q, {i}., m) Document Position

(a) Soft-utility distribution on Baidu-ULTR gener- (b) Position distribution of clicks in Baidu-ULTR.

ated by IPS-Oracle computed using EqnlEl

Figure 3: Distributions extracted from IPS-Oracle analysis on Baidu-ULTR.

17

https://github.com/philipphager/baidu-bert-model

Under review as a conference paper at ICLR 2026

Temperature = 0.1 Temperature = 0.5 Temperature = 0.75

0 1
y=D(pur)

0.0 0.0 55T

0 1 2 6 7 8 78

Figure 4: Effect of Sampling Temperature on LLM-Simulated Behavior in LAU-Eval. We
visualize the distribution of binary purchase decisions (top) and item positions (bottom) generated by
Claude Sonnet 3.5 v2 under three sampling temperatures: 0.1, 0.5, and 0.75. Each sample corresponds
to a ranked list generated during LAU-Eval. As temperature increases, the purchase signal slightly
diversifies, while positional biases remain consistent across settings. These results suggest that
LAU-Eval is robust to moderate sampling variability, with LLMs producing stable user-like behavior
under soft prompting.

PO-Eval protocol, ranking methods aim to implicitly learn position debiasing from the IPS-Oracle’s
soft utility, as indicated by high Upps o(q, {¢} L, 7).

Training and evaluating ranking schemes. fix ndcg Using the learned reward model, any ranker
f can be optimized via the reward maximization objective defined in Eqn To evaluate its
performance under the IPS-Oracle, we define the following metric: Given a query group (g, {i}1.)
and predicted relevance scores s = [s1,. .., sy], the induced permutation is # = argsort(s). For
each position 7, the examination probability is P(E3,), and the associated relevance score R, ;, is
provided by the IPS-Oracle. The overall utility is computed as the probability of at least one click:
Urps(q, {i}1,7), which serves as the primary evaluation metric. It reflects how well f aligns with the
user behavior modeled by the IPS-Oracle; higher values indicating better alignment. Additionally, we
report NDCGy;@10, which measures how much the predicted ranking respects the relevance scores
Ry

We incorporate the examination probabilities from (Hager et al.,[2024)), which are defined as:
P(FE)=1{1:1.0000,2:0.6738,3:0.4145,4 : 0.2932,5 : 0.2079,6 : 0.1714,7 : 0.1363,8 : 0.1166}

C.2 LAU-EVAL DETAILS

We use Claude 3.5 Sonnet v2 with a temperature of 0.5 and a context window of 5,000 tokens. The
LLM is prompted using a consistent instruction template, as illustrated in Figure[5] To evaluate a
ranker with LAU-Eval, its predicted scores are converted into item positions, which are then used to
reorder the input list. This reordered list is passed to the LLM alongside the original query, and the
LLM outputs a binary decision regarding purchase. We include representative query groups and the
corresponding LLM responses to demonstrate this pipeline.

To assess the robustness of LAU-Eval under different sampling conditions, we examine how varying
the temperature of the LLM decoding process affects its outputs. Figure [shows the distribu-
tions of LLM-simulated purchase decisions and selected item positions at temperatures 0.1, 0.5,
and 0.75. While purchase rates exhibit slight variation, the LLM consistently favors top-ranked
items—reflecting realistic user behavior in shopping scenarios.

Instruction prompt for LLM. We design the LLM-Eval instruction to incorporate behavioral
biases such as position bias, brand preference, irrelevance filtering, similarity aversion, and color bias,
guiding the LLM to consider both relevance and context-dependent preferences. Given a query and

18

Under review as a conference paper at ICLR 2026

an ordered product list, the LLM estimates (i) the probability of purchasing at least one item and (ii)
the selected item, without explicit relevance constraints. We illustrate the instruction prompt using an
example from the Amazon KDD-Cup dataset (Reddy et al.,[2022), as shown in Figure[5]

Ranking Evaluations. We present the LLM’s response to the initial list in Figure [f] including the
full reasoning behind the response. It is noteworthy how the LLM is able to reason about the biases
present in the query groups effectively. For each initial list, we also show the LLM’s response to the
rearranged list generated by Claude, depicted in Figure[/l As seen, the initial arrangements in Figure
[6] 1ead to a no purchase decision, whereas REWARDRANK generates arrangements that increase
the likelihood of purchase according to the LLM. Furthermore, the LLM’s response enhances the
interpretability of LLM-Eval, demonstrating how REWARDRANK’s ranking capabilities align with
the LLM’s reasoning process.

Initially, we experimented with smaller language models such as Llama-3.1-8B:
meta—-1llama/Llama—-3.1-8B-Instruct and DeepSeek-R1-Distill: |deepseek-ai/
DeepSeek-R1-Distill-Llama-8B. However, these models were unable to generate
appropriate responses to the instructions. Our experiments revealed that larger models were better at
understanding the context.

It is important to note that LAU-Eval is used to simulate user behavior dynamics that may influence
user decisions. Our selection of biases and instruction prompt serves as a proof-of-concept demon-
strating that an LLM can be used as a proxy user to study counterfactual ranking strategies. We
acknowledge that there are likely many variants of instruction prompts that could be designed to
simulate user behavior. This area of exploration could be a direction for future work.

19

meta-llama/Llama-3.1-8B-Instruct
deepseek-ai/DeepSeek-R1-Distill-Llama-8B
deepseek-ai/DeepSeek-R1-Distill-Llama-8B

Under review as a conference paper at ICLR 2026

LLM Prompt (Probability Estimation Task)

You are shopping for a given query. Your task is to estimate the likelihood of purchasing any item
in a provided list. Please answer yes or no, indicating whether you wish to purchase any item from
the given list. Consider the relative relevance of items in the list when making your decisions.
Be frugal, as a typical human user would be—most users buy when the list is highly relevant,
and often make no purchase when following behavioral criteria are not met. You enter a ’query’
into the shopping system, and it returns some items mentioned in the ’products’. The items are
presented in the given order, with 1st item shown at the top of the list and the last item shown at
the bottom.

Your query-products shopping list:

Query: 11 iphone pro screen protector

Products:

{"BO9CGJ8RW1":"title":"JETech Screen Protector and Camera Lens",
"brand":"JETech", "color": "Transparent",
"BO7515P7PT":"title" :"JETech Screen Protector for iPhone 11 Pro",

"brand":"JETech", "color": "Clear",

"B075S8Vv728":"title":"Ailun for Apple iPhone 11 Pro/iPhone",
"brand":"Ailun", "color":NA,

"BO7STC633H":"title" :"UNBREAKcable Screen Protector for iPhone 11",
"brand" : "UNBREAKcable", "color":NA,

"BO7D6XR7FM" :"title":"TETHYS Glass Screen Protector for iPhone 11",
"brand":"TETHYS", "color":"Transparent",

"BO73DLZWX7":"title":"Maxboost Screen Protector for Apple iPhone",
"brand":"Maxboost", "color":"Clear",

"BO7FP41MC5":"title":"Trianium (3 Packs) Screen Protector",
brand:"Trianium",color:"Clear",

"BO9BQRWG15":"title" :"YRMJK Screen Protector Compatible iPhone",
brand:"YRMJK", color: NA}

Relevance Score: The relevance score shows how relevant the item is given the query. For every
query-item pair, it is a numerical value between O and 1. You should consider the following
criteria:

1. Position bias: where the items appearing near the top are more likely to be clicked. The position
score decreases based on the following examination probabilities: position_scores = { 1: 1.0000,
2: 0.6738, 3: 0.4145, 4: 0.2932, 5: 0.2079, 6: 0.1714, 7: 0.1363, 8: 0.1166 } If the relevant item is
not near the top, it will reduce the probability of purchase irrespective of its relevance.

2. Brand bias: If items from the same brand are placed adjacent to each other, the user is less
likely to make a purchase. High brand bias means adjacent items are from the same brand.

3. Irrelevance bias: Multiple irrelevant items near the top reduce the chance of purchasing any
item. This measures contextual dissimilarity at top positions.

4. Color bias: A lack of visual diversity (e.g., similar-colored items grouped together) discourages
purchases.

Note that high brand-bias, irrelevance-bias, or color-bias harms the user experience and should
lower the chance of purchasing. Act like a frugal user: only purchase if all criteria are satisfied;
otherwise, do not purchase.

Task: Given a query and its candidate product list, decide whether any item should be purchased
and report the decision (no exact totals needed). Use a strict policy: purchase only if all criteria
are satisfied; otherwise, output no purchase. Decision rule: Determine the Final decision (yes/no)
by jointly considering relevance score, position bias, brand bias, irrelevance bias, and color bias.
Proceed to purchase only if all criteria are satisfactorily met. If not, do not purchase. Be especially
cautious about brand and color biases—purchase only when the biases are very low. If the decision
is yes, select exactly one item to purchase.

Qutput: D(purchase) = <answer>

If decision = yes, then Item to be purchased = <answer>

Figure 5: LLM instructions for a sample taken from the Amazon KDD-Cup dataset (Reddy
et al.,[2022). A total of 8 products are displayed for the query "11 iphone pro screen protector". For
visual clarity, we have shortened the titles and product descriptions.

20

Under review as a conference paper at ICLR 2026

LLM’s response to the initial item list

Let me analyze this shopping scenario step by step:

1. Relevance Analysis:- Most products are screen protectors for iPhone 11 Pro/X/XS (5.8-inch),
which is highly relevant to the query - Top items (JETech, Ailun) are particularly relevant as they
specifically mention iPhone 11 Pro.

Position Bias:- First few positions have higher probability of being selected- Top 3 positions
(JETech, JETech, Ailun) have the highest position scores.

Brand Bias:- First two positions are JETech brand (high brand bias at top)- This creates a negative
shopping experience- Having same brand adjacent to each other reduces purchase likelihood.
Irrelevance Bias:- Most items are relevant to the query- However, some products like Trianium
(4th position) is for iPhone 11 Pro Max (6.5"), which is incorrect size- Overall irrelevance bias is
low as most products match the query.

Color Bias:- Many items are listed as "Clear" or "Transparent"- High color similarity among
products- This creates a moderate color bias.

Final Analysis: Despite high relevance of products, there are several concerns: 1. High brand
bias at top positions (JETech repeated)2. High color bias (many transparent/clear options)3. The
position bias favors top items, but those have brand repetition 4. Some size mismatches in the list.
Given these factors, especially the high brand bias at top positions and color similarity, a frugal
user would likely be hesitant to make a purchase from this list.

D(purchase) = no; The brand repetition at top positions and lack of diversity in colors significantly
harm the shopping experience, making it less likely for a careful shopper to make a purchase, even
though the products themselves are relevant to the query.

Figure 6: LLM response to the initial list of items shown in Figure

LLM'’s response to the ranked list provided by REWARDRANK

Let me analyze this shopping scenario carefully:

1. Relevance Analysis:- All products are screen protectors for iPhone 11 Pro/X/XS, which
matches the query perfectly- Most products offer multiple packs (2-3 pieces)- All are tempered
glass protectors- High relevance across items.

2. Position Bias:- Top positions have higher visibility- First three items (UNBREAKCcable,
TETHYS, Ailun) have strongest position advantage.

3. Brand Bias:- JETech appears twice (positions 5 and 6) - creates brand bias- Other brands are
well distributed- Moderate brand bias due to JETech repetition.

4. Irrelevance Bias:- Low irrelevance bias as all products are highly relevant to query- All
products are specifically designed for the requested phone model- Core features (tempered glass,
screen protection) are consistent.

5. Color Bias:- Most items are clear/transparent- Very similar color schemes across products-
High color bias due to lack of variety.

Final Decision Analysis:- While relevance is high and position bias favors top items- The high
color bias (all transparent) and moderate brand bias (JETech repetition) are concerning- However,
given this is a screen protector where transparency is expected/desired, color bias should be
weighted less heavily- The first three positions offer different brands and good specifications-
TETHYS (2nd position) offers 3-pack with edge-to-edge coverage and installation frame.

D(purchase) = yes; Item to be purchased = TETHYS Glass Screen Protector
(BO7D6XR7FM)Reasoning: Selected TETHYS due to good position (2nd), differentiated brand,

comprehensive features, and 3-pack value proposition. The high relevance and acceptable biases
make this a reasonable purchase despite some concerns.

Figure 7: LLM response to the ranked list generated by REWARDRANK.

21

Under review as a conference paper at ICLR 2026

Table 6: Ablation studies on Baidu-ULTR dataset under PO-Eval. This table presents ablation results for
RewardRank under different configurations, including variations in SoftSort temperature 7, misspecification
correction regularization A, and the addition of the auxiliary reward loss term from Eqn[6] We also report
results for PG-rank™ using different numbers of Monte Carlo samples. The counterfactual evaluation metric is
E[Uwso(q, {i}L)]-

Method E[Urps-o(q, {i}1)]
Upper-Bound 0.553
ListNet|Cao et al.|(2007) 0.523 + 0.0007
ListMLE Xia et al.[(2008) 0.522 4+ 0.0007
LambdaRank|Wang et al.|(2018) 0.524 £ 0.0007
PiRank [Swezey et al.|(2021) 0.525 4+ 0.0007
URCC* 0.462 £ 0.0005
PG-rank* (mc=1) 0.481 + 0.0006
PG-rank* (mc=5) 0.495 £+ 0.0005
PG-rank* (mc=10) 0.501 £ 0.0005

SoftSort Temperature 7

RewardRank (7 = 0.1, A = 0.0) 0.532 4+ 0.0005
RewardRank (7 = 0.2, A = 0.0) 0.533 + 0.0005
RewardRank (7 = 0.7, A = 0.0) 0.531 £ 0.0005
RewardRank (7 = 1.0, A = 0.0) 0.530 £ 0.0005

Misspecification Correction \

RewardRank (7 = 0.5, A = 0.1) 0.532 4+ 0.0005
RewardRank (7 = 0.5, A = 0.3) 0.534 + 0.0007
RewardRank (7 = 0.5, A = 0.7) 0.536 + 0.0007
RewardRank (7 = 0.5, A = 1.0) 0.533 £ 0.0007

Aucxiliary Per-Item Regularizer Eqn E]

RewardRank (reward loss = Eqn 0.528 £ 0.0005
RewardRank (reward loss = Eqn[3|+ Eqn@ 0.536 £+ 0.0005

D FURTHER ABLATION STUDIES

We use the Baidu-ULTR dataset to study how the performance of REWARDRANK varies with two key
hyperparameters: the temperature 7 of the SoftSort operator, which controls permutation sharpness,
and the regularization strength \ for reward misspecification correction introduced in Eqn[I3] Varying
7€ {0.1,0.2,0.7, 1.0} shows that moderate temperature (7 = 0.2 — 0.5) achieves the best utility and
relevance alignment. Too low a temperature leads to unstable gradients due to near-hard permutations,
while higher values oversmooth rankings, diluting learning signals. Fixing 7 = 0.5, we ablate the
correction term with A € {0.0,0.1,0.3,0.7,1.0}. As shown in Table@ and visualized in Figure
moderate correction (A = 0.5 — 0.7) yields the best trade-off, by down-weighting unreliable samples
without discarding informative ones. This results in higher IPS utility, confirming the benefit of
explicitly mitigating reward misspecification.

We explore the impact of incorporating an auxiliary item-level reward loss (Eqn[6)) into the training
objective of the reward model. As shown in Table 6} adding this auxiliary loss to the list-level cross-
entropy objective (Eqn[3) improves expected utility from 0.528 to 0.536. This indicates that learning
to predict the per-item feedback as an auxiliary task enhances the reward model’s generalization and
improves the downstream utility-optimized ranking.

As shown in Figure [8] increasing A progressively reduces the influence of unreliable reward estimates
by lowering their instance weights, leading to more stable learning. For illustration, we display soft
utility scores from Eqn[I3} however, all experiments use binary utility signals as defined in Eqn

22

Under review as a conference paper at ICLR 2026

1.0
0.8
0.6
0.4
0.2

00"

Figure 8: Effect of reward misspecification correction on PO-Eval testbed. Scatter plots show
the relationship between predicted utility ¢ and true utility u for different values of the correction
strength A € {0.1,0.5,1.0}. Each point corresponds to a ranked list, colored by its instance weight
w = 1— My — ¢| based on reward model error. As A increases, the influence of low-confidence
predictions (lower w) diminishes, effectively down-weighting misspecified instances. This correction
improves stability by emphasizing samples with well-aligned predicted rewards.

E INFERENCE COST AND LIMITATIONS

Inference Cost. The main inference cost in our work arises from using large language models
(LLMs) for ranking and purchase probability estimation. These models require significant computa-
tional resources, especially for large datasets and permutations of items. Optimizations like batch
processing and multi-GPU use help manage costs, but scalability remains a challenge. Caching
frequently accessed queries can further reduce repeated computation costs.

Limitations. While both PO-Eval and LAU-Eval provide valuable insights into ranking quality
and user preferences, there are inherent limitations in each approach. These limitations arise from
their reliance on specific biases and the quality of input data, which may affect their performance in
diverse real-world scenarios. Below, we outline the key limitations of each method:

* PO-Eval Limitations: While PO-Eval provides a robust baseline for position-debiasing,
it is limited in behavioral scope. It primarily focuses on mitigating position bias without
considering other nuanced user preferences, such as brand bias or contextual relevance,
which can lead to suboptimal performance in more complex scenarios.

* LAU-Eval Limitations: LAU-Eval captures richer heuristics and offers more context-aware
ranking, but it depends heavily on the quality and stability of the LLM outputs. Inconsistent
or noisy outputs from the LLM can negatively affect the reliability of the evaluation, as the
method assumes that the LLM accurately reflects user preferences in all scenarios.

These limitations highlight areas for future improvement, such as incorporating additional user
behavior modeling and enhancing the robustness of the LLM outputs.

23

	Introduction
	Related Work
	Learning-To-Rank Problem: Utility Maximization vs Sorting
	RewardRank: Data-driven LTR Utility Maximization
	Stage 1: Learning the Utility Using a Reward Model
	Stage 2: Ranker Reward Maximization through Soft Sorting

	Experimental Results
	Large-Scale Reproducible Testbenches for Counterfactual LTR
	Baidu-ULTR Dataset with Real User Clicks

	Conclusion
	Proofs and conceptual details
	Click-based Utility for PO-Eval.
	Ideal IPS-Oracle: Rearrangement inequality
	Details of baselines
	PG-rank* : PG-rank with Learned Reward Model.
	URCC* with Learned Reward Model.

	Comparison of Time Complexity and Counterfactual Space Exploration

	Experimentation details
	Datasets
	Implementation details

	Counterfactual evaluation protocols
	PO-Eval details
	LAU-Eval details

	Further ablation studies
	Inference cost and limitations

