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Abstract. Research on abdominal organ segmentation has been exten-
sive for computed tomography (CT) scans but limited for magnetic res-
onance (MR) scans due to the scarcity of annotated MR data. This
challenge highlights the need for effective cross-modality unsupervised
domain adaptation (UDA) techniques to leverage annotated CT scans
for improving MR scan segmentation. While nnU-Net is recognized as a
robust baseline for medical image segmentation, its application in UDA
has been underexplored. In this paper, we propose a novel approach that
rethinks nnU-Net as a tool to enhance UDA methods for abdominal or-
gan segmentation in MR scans. We introduce a three-stage pipeline to
address this challenge. In the first stage, we develop an nnU-Net-based
UDA framework with a triple-level alignment strategy to facilitate knowl-
edge transfer from CT scans to MR scans. In the second stage, we use
the nnU-Net trained in the first stage to generate pseudo labels for MR
scans. We then fine-tune this model with both labeled CT scans and
MR scans with pseudo labels, and additionally train a separate nnU-
Net from scratch using the pseudo-labeled MR scans. In the third stage,
we address resource constraints by training a lightweight nnU-Net with
selected unlabeled MR scans and their corresponding pseudo labels. We
evaluate our approach on Task 3 of the FLARE2024 challenge, where the
lightweight nnU-Net achieves a mean Dice Similarity Coefficient (DSC)
of 75.37 and a mean Normalized Surface Dice (NSD) of 81.67 on the val-
idation set. Our code is publicly available at https://github.com/Chen-
Ziyang/FLARE2024-Task3.

Keywords: Cross-modality · Unsupervised domain adaptation · Ab-
dominal organ segmentation.
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1 Introduction

Abdominal organ segmentation, which involves delineating anatomical struc-
tures from medical images, is essential for various clinical applications. While
segmentation in computed tomography (CT) scans has seen significant advance-
ments over the past decade [6,14], progress in magnetic resonance (MR) scans
remains limited due to the scarcity of annotated MR data. In contrast, a large
volume of annotated CT scans is available, and acquiring numerous unlabeled
MR scans is relatively straightforward. This discrepancy underscores the need
for cross-modality unsupervised domain adaptation (UDA) to utilize annotated
CT scans and enhance MR scan segmentation performance [19].

Recent advancements in deep learning have facilitated automatic segmen-
tation of multiple abdominal organs [3,4]. Among these methods, nnU-Net [9]
stands out as a prominent baseline, underpinning many leading solutions in med-
ical image segmentation challenges [11,7,10]. nnU-Net’s success is largely due to
its self-configuring nature, which adapts model architecture, data preprocessing,
and training strategies to the dataset’s specific characteristics. This adaptability
makes nnU-Net a popular choice with minimal manual intervention. However,
nnU-Net’s default configuration does not accommodate tasks involving unlabeled
data, limiting its use in UDA scenarios.

In this paper, we propose a novel approach to adapt nnU-Net for cross-
modality UDA to enhance abdominal organ segmentation in MR scans. We intro-
duce a three-stage pipeline designed to optimize both effectiveness and efficiency.
In the first stage, we develop a nnU-Net-based UDA framework inspired by [2],
incorporating input-, feature-, and output-level alignment to transfer knowledge
from CT to MR scans, resulting in a universal segmentation model (Uni-Net). We
train a conditional generator based on CGAN [15] for input alignment to trans-
late CT scans to MR-like images. For feature alignment, we disentangle and align
style and content features using consistency constraints. At the output level, we
apply a segmentation consistency constraint to ensure uniformity across modal-
ities. In the second stage, we leverage the Uni-Net to generate pseudo labels for
MR scans. We then fine-tune the pre-trained Uni-Net using both labeled CT
scans and MR scans with pseudo labels. Additionally, we train a new nnU-Net
from scratch, referred to as MR-Net, using MR scans with pseudo labels. In the
third stage, we use the fine-tuned Uni-Net and MR-Net to generate and select
robust pseudo labels based on consistency. To address resource constraints, we
develop a lightweight nnU-Net, called LW-Net, which is trained on the selected
unlabeled MR scans and their corresponding pseudo labels following nnU-Net’s
default configurations. We conducted experiments on Task 3 of the FLARE2024
challenge, which involves 2,050 labeled CT scans and 4,818 unlabeled MR scans.
We evaluated all the models on the validation set comprising 110 MR scans,
and our proposed LW-Net achieved a mean Dice Similarity Coefficient (DSC) of
75.37 and a mean Normalized Surface Dice (NSD) of 81.67.

Our contributions are threefold: (1) We propose a nnU-Net-based framework
for UDA to enhance the performance of existing methods. (2) We introduce a
three-stage pipeline to improve both effectiveness and efficiency. (3) We present
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a method for selecting robust pseudo labels using both a universal segmentation
model and an MR-specific model.
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Fig. 1. Overview of our proposed nnU-Net-based UDA framework including generation,
segmentation and reconstruction, and feature disentangle.

2 Method

Let Dct = {X ct
i ,Yct

i }N
ct

i=1 and Dmr = {Xmr
i }N

mr

i=1 denote the sets of labeled CT
scans and unlabeled MR scans, respectively, where X ∗

i ∈ RH×W×D represents
the i-th scan and Y ∗

i its corresponding label. In this study, we propose a three-
stage pipeline for accurate MR scan segmentation, comprising the UDA phase,
pseudo-labeling phase, and efficiency phase. We detail each phase below.

Table 1. Detailed Configurations of the models.

Settings Uni-Net UDA Generator MR-Net LW-Net
Base channels 32 32 32 16
convolution numbers 3 2 3 2
Downsampling times 5 4 5 4
Patch size (48, 224, 224) (48, 224, 224) (48, 224, 224) (32, 128, 192)
Input spacing (2.5, 0.8, 0.8) (2.5, 0.8, 0.8) (2.5, 0.8, 0.8) (4.0, 1.2, 1.2)

2.1 UDA Phase

In this phase, we aim to train a robust universal segmentation model S, called
Uni-Net, using the proposed UDA framework, as illustrated in Fig. 1. To enhance
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representation learning on MR scans, we improve the vanilla nnU-Net with a
reconstruction decoder and a reconstruction loss Lrec based on mean squared
error, which has the same architecture as the segmentation decoder.

For domain alignment, we employ a triple-level alignment strategy from [2].
For input alignment, as Fourier-based image translation [18] is unsuitable for CT-
to-MR translation, we design a conditional generator G based on CGAN [15].
The condition is the MR features extracted by the 3rd blocks of the segmentation
encoder. The generated MR-like CT scan X ct→mr and the MR scan Xmr are
fed into a patch-based discriminator D [16] to calculate the adversarial loss Ladv

based on cross-entropy loss. For feature alignment, we first disentangle features
following [5]. Low-level features extracted by 1st, 2nd, and 3rd blocks of the seg-
mentation encoder are regarded as style features Fsty, while high-level features
from the last block are considered content features Fcon. We then apply a style
consistency constraint Lsty on the style features of X ct→mr and Xmr, and a
content consistency constraint Lcon on the content features of X ct and X ct→mr,
following [2]. For output alignment, besides the segmentation loss Lseg, we ap-
ply a segmentation consistency constraint Lsc to the segmentation predictions
of CT scans and MR-like CT scans. The detailed configurations of the generator
and Uni-Net are provided in Table 1. The discriminator D is trained with the
traditional adversarial loss:

min
D

Ladv(D(X ct→mr), 0) + Ladv(D(Xmr), 1). (1)

The generator G and Uni-Net S are trained using a warm-up mechanism for
improved convergence. During the first 25 epochs, we optimize:

min
G

Ladv(D(X ct→mr), 1), min
S

Lseg(S(X ct),Yct) + 0.1 ∗ Lrec. (2)

After warm-up, the overall objective is:

min
G,S

Ladv(X ct→mr, 1) + βLseg(S(X ct),Yct) + αLseg(S(X ct→mr),Yct)+ (3)

0.1 ∗ αLcon + 0.01 ∗ αLsty + 0.1 ∗ Lrec,

where α and β are weights respectively controlling the training extent on
MR-like CT scans and CT scans, which are computed as:

α = min(1, (epoch/250)0.5), (4)

β =

{
max(0.5, 1− ((epoch− 500)/250)2), epoch > 500

1, epoch ≤ 500

}
. (5)

We progressively increase the model’s focus on MR-like CT scans while reducing
its reliance on CT scans.
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Fig. 2. Overview of the fine-tuning process, including generation and adversarial learn-
ing, and segmentation and reconstruction. During inference, MR scans will be fed into
the segmentation encoder and decoder to produce predictions.

2.2 Pseudo-Labeling Phase

After establishing a strong baseline S, we use it to generate pseudo labels Pmr

for unlabeled MR scans. For the AMOS dataset, S is applied directly to the
unlabeled MR data. For the LLD-MMRI dataset, we first register scans from
eight modalities per patient following [1] and perform inference on four modalities
(i.e., C+A, C+Delay, C+V, and C-pre) that exhibit styles similar to CT. We
then combine the predictions of these modalities by voting to generate pseudo
labels.

Subsequently, we train a large nnU-Net, referred to as MR-Net, on the MR
scans with pseudo labels using the default nnU-Net training procedure. The
configurations of MR-Net are detailed in Table 1. This trained model generates
more accurate pseudo labels P̃mr. We then freeze the generator G and fine-tune
the Uni-Net S as follows:

min
S

Lseg(S(X ct→mr),Yct) + Lseg(S(Xmr), P̃mr)+ (6)

0.1 ∗ Ladv(D′(Cat(Xmr,S(Xmr))), 1) + 0.1 ∗ Lrec,

min
D′

Ladv(D′(Cat(X ct→mr,S(X ct→mr))), 1)+ (7)

Ladv(D′(Cat(Xmr,S(Xmr))), 0),
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where Cat denotes concatenation, and D′ is a discriminator similar to D but
with a different number of input channels. The fine-tuning process is illustrated
in Fig. 2. We use the fine-tuned Uni-Net S to generate pseudo labels Ṕmr. The
uncertainty

u =

∑
P̃mr ̸= Ṕmr∑
P̃mr > 0

(8)

is calculated to select robust pseudo labels P̂mr from P̃mr, with empirical thresh-
olds set at 0.25 and 0.5 for the LLD-MMRI and AMOS datasets, respectively.

2.3 Efficiency Phase

Inspired by [8], we further train a lightweight nnU-Net, called LW-Net, to en-
hance segmentation efficiency during deployment. This model is trained exclu-
sively on MR scans with selected pseudo labels P̂mr, following the default train-
ing process in nnU-Net. Detailed configurations of LW-Net are provided in Ta-
ble 1. We employ smaller patch sizes and input spacings to reduce computational
complexity and decrease model parameters by using fewer base channels, con-
volutions, and downsampling layers. The trained LW-Net is then used for final
testing to balance performance and efficiency.

Table 2. Development environments and requirements.

System Ubuntu 18.04.5 LTS
CPU Intel(R) Xeon(R) CPU E5-2690 v3 @ 2.60GHz
RAM 16×64GB; 3200MT/s
GPU (number and type) Two NVIDIA GeForce RTX 3090 24G
CUDA version 11.7
Programming language Python 3.10
Deep learning framework PyTorch 2.0.1, Torchvision 0.15.2
Specific dependencies nnU-Net 1.7.0
Code https://github.com/Chen-Ziyang/FLARE2024-Task3

3 Experiments

3.1 Dataset and evaluation measures

The FLARE2024 dataset expands upon the FLARE2022 dataset [13] by incor-
porating additional unlabeled MR scans from the LLD-MMRI1 and AMOS [12]
datasets. The training set includes 2,050 labeled CT scans with annotations for
1 https://zenodo.org/records/7852363

https://github.com/Chen-Ziyang/FLARE2024-Task3
https://zenodo.org/records/7852363
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Table 3. Training protocols of UDA and fine-tuning.

Network initialization "He" normal initialization
Batch size 2
Patch size 48×224×224
Total epochs 1000 (UDA) / 100 (fine-tuning)
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule lr = 0.01× (1− epoch/1000)0.9

Training time 72.3 hours (UDA) / 7.2 hours (fine-tuning)
Segmentation loss function Dice loss and cross entropy loss
Number of model parameters S (119.3M) G (16.5M) D (2.6M)
Number of flops S (1149G) G (716G) D (24G)
CO2eq 171.7 Kg (UDA) / 17.2 Kg (fine-tuning)

Table 4. Training protocols of MR-Net and LW-Net.

Network initialization "He" normal initialization
Batch size 4 (MR-Net) / 16 (LW-Net)
Patch size 48×224×224 (MR-Net) / 32×128×192 (LW-Net)
Total epochs 1000 (MR-Net) / 200 (LW-Net)
Optimizer SGD with nesterov momentum (µ = 0.99)
Initial learning rate (lr) 0.01
Lr decay schedule lr = 0.01× (1− epoch/1000)0.9

Training time 63.1 hours (MR-Net) / 39.5 hours (LW-Net)
Loss function Dice loss and cross entropy loss
Number of model parameters 81.0M (MR-Net) / 5.4M (LW-Net)
Number of flops 1552G (MR-Net) / 1088G (LW-Net)
CO2eq 123.1 Kg (MR-Net) / 54.0 Kg (LW-Net)
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13 organs and 4,818 unlabeled MR scans. The validation set includes 100 MR
scans, and the testing set includes 300 MR scans. We evaluate our models using
three measures: the Dice Similarity Coefficient (DSC) and Normalized Surface
Dice (NSD) for accuracy, and running time for efficiency.

3.2 Implementation details

Development environments and requirements are summarized in Table 2. Train-
ing protocols for UDA and fine-tuning are outlined in Table 3, while those for
MR-Net and LW-Net are detailed in Table 4.

Training protocols. We apply on-the-fly data augmentation techniques, in-
cluding additive brightness, gamma correction, rotation, scaling, and elastic de-
formation during training. No test-time augmentation (TTA) is used during
inference. The final model is empirically selected as the optimal one. For LW-
Net, although the model is trained for 1000 epochs, the 200th epoch model is
chosen for testing.

Table 5. Quantitative evaluation results of the Uni-Net, fine-tuned Uni-Net, MR-Net,
and LW-Net. RK: Right Kidney. IVC: Inferior Vena Cava. RAG: Right Adrenal Gland.
LAG: Left Adrenal Gland. LK: Left Kidney.

Target
Uni-Net fine-tuned Uni-Net MR-Net LW-Net

DSC(%) NSD(%) DSC(%) NSD(%) DSC(%) NSD (%) DSC(%) NSD (%)
Liver 85.96 83.65 88.41 87.47 90.85 90.73 90.83 91.07
RK 85.82 83.99 88.20 85.78 87.21 84.95 87.68 86.38
Spleen 74.85 75.86 82.30 83.38 87.58 88.60 85.34 87.15
Pancreas 70.24 80.86 75.07 86.15 79.66 90.31 78.41 90.67
Aorta 83.49 86.35 85.33 87.89 88.23 90.13 88.21 92.02
IVC 60.45 62.25 67.18 68.31 69.67 70.83 71.25 72.83
RAG 59.82 76.13 62.34 78.95 61.17 77.04 59.36 76.47
LAG 66.24 79.28 68.15 81.24 65.63 78.24 62.57 77.03
Gallbladder 70.86 69.36 75.07 72.08 69.24 64.73 69.47 63.23
Esophagus 51.75 63.73 57.42 69.59 60.79 73.95 61.87 77.49
Stomach 72.11 73.96 76.85 79.40 80.29 82.83 78.39 81.21
Duodenum 57.99 75.74 61.05 78.29 60.06 80.11 58.06 79.59
LK 84.29 83.00 87.79 85.15 89.47 86.42 88.35 86.53
Average 71.07 76.47 75.01 80.28 76.14 81.45 75.37 81.67
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4 Results and Discussion

4.1 Quantitative results on validation set

We evaluate the Uni-Net, fine-tuned Uni-Net, MR-Net, and LW-Net on the vali-
dation set, covering 13 organs. Results are presented in Table 5. Key observations
include: (1) All models perform well on easier categories such as the liver and
right kidney, but performance declines on more challenging categories like the
esophagus and duodenum; (2) Utilizing pseudo labels for fine-tuning or train-
ing a model from scratch improves performance; (3) Our LW-Net achieves a
competitive overall DSC and the best overall NSD metric.

(a) Image

(b) Ground Truth

(c) Uni-Net

(d) Fine-tuned 

Uni-Net

(e) MR-Net

(f) LW-Net

amos_8179 amos_8186 amos_0508 amos_8117

60.47/65.12 6.58/7.17 83.64/90.91 81.93/88.55

67.38/75.00 6.69/6.18 87.34/93.88 87.21/93.18

69.86/76.61 12.56/12.0586.83/92.76 87.92/93.59

69.32/77.22 15.90/15.07 85.32/92.44 87.02/95.19

Fig. 3. Qualitative results of the Uni-Net, fine-tuned Uni-Net, MR-Net, and LW-Net
on two easy cases (amos_8179 and amos_8186) and two hard cases (amos_0508 and
amos_8117). The DSC/NSD metrics are shown in the top of each image.
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4.2 Qualitative results on validation set

Fig. 3 presents four representative segmentation results from the Uni-Net, fine-
tuned Uni-Net, MR-Net, and LW-Net. The cases include two easy examples
(amos_8179 and amos_8186) and two challenging ones (amos_0508 and amos_8117).
For amos_8179 and amos_8186, all models successfully segment most organs.
In contrast, for amos_0508 and amos_8117, noticeable under-segmentation and
over-segmentation errors are evident. These issues are likely due to domain shifts
caused by the distinct styles of these cases compared to the CT modality. De-
spite these challenges, LW-Net delivers competitive results while maintaining
high segmentation efficiency.

Table 6. Segmentation efficiency results of the Uni-Net, fine-tuned Uni-Net, MR-Net,
and LW-Net.

Target Uni-Net fine-tune MR-Net LW-Net
Total Running Time (s) 3333.17 818.79 1187.17 479.30

Table 7. Results of the LW-Net on the testing set.

Method DSC(%) NSD(%) Time (s) GPU
LW-Net 37.5± 26.9 37.6± 29.6 15.4± 4.0 856590.4± 238940.1

4.3 Segmentation efficiency results on validation set

Table 6 reports the segmentation efficiency results on the validation set, using
the official nnU-Net evaluation code and a NVIDIA GeForce RTX 3090 GPU.
The results demonstrate that LW-Net exhibits superior segmentation efficiency
compared to other models.

4.4 Limitation and future work

The proposed UDA method involves a complex three-part framework, which
complicates the evaluation of each component’s contribution. Additionally, ex-
tending the framework to other tasks requires extensive manual tuning, which is
time-consuming and labor-intensive. Future work will focus on simplifying the
framework to enhance its extensibility.
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5 Conclusion

In this paper, we present an enhanced approach to utilizing nnU-Net for cross-
modality UDA and introduce a three-stage pipeline specifically designed for ab-
dominal organ segmentation in MR scans. In the first stage, we establish an
universal segmentation model using the nnU-Net-based UDA framework, incor-
porating a triple-level alignment strategy. In the second stage, we generate and
select robust pseudo labels for unlabeled MR scans to improve model training.
In the third stage, we train a lightweight nnU-Net using the selected MR scans
with pseudo labels to balance the efficiency and effectiveness. We believe that our
proposed pipeline provides a strong baseline for abdominal organ segmentation
in MR scans and can be extended to other UDA tasks.
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