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Abstract

Keyword Spotting (KwS) in the continuous
speech setting encapsulates localization and
recognition of keywords amongst a large
volume of non-keyword tokens, further
exemplified by variation in speakers and the
presence of rare keywords. Our paper presents
a novel Submodular Combinatorial Prototype
(SCOPE) learning framework that not only
contrasts between target keywords but also
ensures sufficient separation of keywords from
non-keyword tokens. Additionally, our work
proposes a weakly-supervised training strategy,
utilizing forced alignment on phoneme-level
embeddings to guide a windowing function
to correctly localize keywords of interest. We
evaluate our model on the popular LibriSpeech
and L2-Arctic datasets under varying numbers
of keywords demonstrating a class-imbalanced
distribution and show that our proposed
architecture consistently outperforms existing
baselines by up to 1.8%.

1 Introduction

Keyword Spotting (KwS) for the Continuous
Speech (CS) setting diverges from traditional trig-
ger word recognition (Kundu et al., 2023; Vygon
and Mikhaylovskiy, 2021; Seo et al., 2021) tasks
in the localization and identification of target key-
words from a continuous speech signal (Zhao et al.,
2022a). With a recent surge in the democratiza-
tion of digital communication in corporate meet-
ings/ conferences, classroom teaching (online spo-
ken tutorials), telemedicine, etc., CS-KwS (Zhao
et al., 2022a) has gained importance in identifying
technical keywords and filtering of prohibited key-
words in recorded speech summarization. Recent
advancements, inspired by machine vision (Lin
et al., 2017) include anchor-free detector (Zhao
et al., 2022b) and speech-to-vision signal transfor-
mation (Samragh et al., 2023). These approaches
have enhanced keyword spotting accuracy and com-
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Figure 1: Overview of our proposed Continuous Speech
Keyword Spotting Architecture showing the Combina-
torial Prototype Learner objective.

putational efficiency (Bittar et al., 2024). The pres-
ence of rare keywords, large diversity in the key-
word catalog, and a large volume of non-catalog
keywords continue to remain challenging prob-
lems.

Contemporary research in representation
learning (Khosla et al., 2020; Sohn, 2016; Frosst
et al., 2019; Deng et al., 2019) has made significant
strides to overcome class imbalance and resilience
to outliers, a predominant issue in existing
approaches (Rumelhart et al., 1986). A key compo-
nent of such techniques is the design of an objective
function tailored to overcome specific challenges
in the target task. Contrastive learning, stemming
from noise contrastive estimation (Gutmann and
Hyvirinen, 2010) in self-supervised learning (Chen



et al., 2020a; He et al., 2020; Chen et al., 2020b), is
a notable milestone in this direction. In supervised
contexts, Khosla et al. (2020); Sohn (2016);
Frosst et al. (2019) explicitly focus on forming
feature clusters beyond simple feature-to-centroid
alignment or handling the most challenging
negatives (Song et al., 2016). These methods
primarily rely on pairwise similarity and have
been shown in Majee et al. (2024) to not ensure
clear cluster separation and resilience to imbalance
which is a key requirement for the CS-KwS task.
In this work, we present SCOPE, a Continuous
Speech Keyword Spotting framework which aims
to learn discriminative representations from
continuous speech signals to improve performance
on downstream keyword spotting tasks. Our
framework depicted in Figure 1 adopts a pretrained
Wav2Vec2.0 (Baevski et al., 2020) architecture to
extract speech embeddings that are further mean-
pooled with the help of a forced aligner (Kiirzinger
et al., 2020) during training. In a continuous speech
setting, a large volume of non-important keywords
co-exist alongside the target keywords adding to
the complexity of the KwS algorithm. To address
this, word-level embeddings belonging to the target
keyword class are grouped together in the feature
space while being separated from others through
a novel combinatorial objective (refer Section 2.3).
In addition to contrasting between target keywords,
our objective explicitly contrasts between target
and non-target keywords to encourage the underly-
ing model to better attend to rare target keywords.
Our contributions include: (1) A new Con-
tinuous Speech Keyword Spotting framework
(Section 2.2) addressing the challenges of rare
keywords and code-switch. (2) Introduction of a
Combinatorial Prototype Learner (CPL) objective
(Section 2.3) that explicitly contrasts non-target
keywords with target keyword embeddings in
addition to ensuring learning of discriminative
keyword-level features. (3) Improvements in
performance on the LibriSpeech (Panayotov et al.,
2015) dataset with varying number of keywords,
where our model outperforms existing baseline
by significant margins (upto 1.8%) while being re-
silient to varying degrees of imbalance (Section 3).

2 Method

2.1 Problem Definition

Representation learning for continuous speech
starts with learning parameters 6 of a feature

extractor E(s;,0), Vi € |T| tasked with learning
robust token-level representations for the keyword
vocabulary 7 in our catalog C. The output of
FE is a set of embeddings, which are pooled,
ft = Avg.Pool(E(T;0)) to retrieve word-level
embeddings guided by weakly-supervised labels
from a forced-alignment model. A learning
objective L ,s(0) guides the feature extractor E
to learn discriminative class/keyword prototypes
amidst a large volume of non-catalog keywords
T’ and presence of rare keywords. Following
Majee et al. (2024), we introduce a combinatorial
viewpoint where the dataset 7 is represented as
a collection of sets, 7 = {A1, Az, -+, Ajg}s
where each A;, ¢ € [1,C] represents a key-
word in 7. Each batch of inputs {s,,c,}lj1
is considered as the ground-set )V and the loss
Lyys = Z‘kc;'l (Ag; 0) is modelled as the sum
over the total submodular information (Fujishige,
2005) contained in a set Ay, where f is the
submodular function. Note that the non-catalog
words 7" are not a part of the keyword catalog C'.

2.2 The SCOPE Framework

Unlike isolated KwS tasks (Warden, 2018),
real-world settings demonstrate (1) longtail
imbalance leading to inter-class bias, (2) large
diversity in speakers and, (3) the presence of
phonetically similar words, e.g., weak and week
which lead to confusions.

Previous literature in KwS indicates a strong
correlation between model performance and qual-
ity of utterance-level feature representations learnt
by FE(S;,0). Learning of robust representations
is further motivated by the choice of objective
function L(#). Contrastive learners like (Khosla
et al., 2020; Chen et al., 2020a) demonstrate learn-
ing of robust feature vectors by modeling fea-
ture similarity, forming compact as well as well-
separated keyword-specific feature clusters. To
address the challenges in real-world KwS tasks, we
propose a Submodular Combinatorial Prototype
Learner for Continuous Speech Keyword Spotting
(SCoOPE) framework that learns keyword proto-
types C' = [c1,co...cy|. Figure 1 illustrates the
proposed SCOPE architecture.

We adapt the encoder from Wav2Vec (Baevski
et al., 2020) for keyword-level feature represen-
tation learning. The training is performed in a
supervised manner as the word-level segments of
an utterance are computed at once using a forced



alignment algorithm (Kiirzinger et al., 2020). The
resultant word-level segments serve as soft labels.
During training, we mean-pool the aligned feature
segments to obtain keyword-level embeddings. We
stack these feature embeddings over the batch di-
mension. We train the model to align the features
of these word-level embeddings. We use cross-
entropy as our baseline loss function. We further
adopted contrastive learners like SupCon (Khosla
et al., 2020) to ensure that the learned keyword
embeddings are invariant to variations in context
and speaker identity.

2.3 Combinatorial Prototype Learner

The challenges outlined in Section 2.1 motivate a
learning framework to discern discriminative fea-
tures for each keyword, with clearly established de-
cision boundaries between catalog keywords. For
continuous speech, the learner must handle nu-
merous non-catalog keywords 7" and catalog key-
words, with some catalog words being rare or tech-
nical, creating a class imbalance. Inspired by repre-
sentation learning paradigms (Khosla et al., 2020;
Chen et al., 2020a; Majee et al., 2024), we pro-
pose a novel combinatorial objective L,,s(0) to
address these challenges in the continuous speech
setting. CPL amplifies the separation between tar-
get keywords and non-catalog words, distinguish-
ing itself from other metric/contrastive learning
objectives (Khosla et al., 2020; Chen et al., 2020a;
Deng et al., 2019). This is achieved by modeling
L gs(0) as the minimization of Total Submodular
Information over sets A, € T (Theorem 1).

Theorem 1 If f(A) = =37, ..45;(0) +
ZzeA Al 10g<2jev exp(Si;(6))) represents a
submodular function, we can define an objective
Lgws as shown in Eqn 1 as the Total Submodu-
lar Information Ly.,,5 = Z‘kc;ll WﬂAk; 0),
where N¢(Ay) = |Ayg| is the normalization con-
stant. Note that the ground setV =T U T".
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We provide proofs of CPL loss submodularity
in Appendix A.1. CPL loss decomposes into

two terms: minimizing ZZ jea, Sij ensures intra-
cluster compactness, while the second term ensures
inter-keyword separation, introducing embeddings
from non-catalog keywords 7" only in the second
term to maximize separation. Since f(Ag;6) is
submodular, L g,,5 models class imbalance and is
resilient to outliers (Majee et al., 2024).

Inference. After training the model, we extract
speech features and store keyword prototypes by
mean-pooling the features of all keyword occur-
rences in the training set. For each keyword, we
compute the centroid by averaging these features,
resulting in a centroid vector for each keyword
prototype. During evaluation, we use a sliding
window approach on the test utterances. For each
test utterance, we slide a window of size w and
stride s. Within each window, we mean-pool the
features to obtain a pooled feature vector and cal-
culate the cosine similarity between this vector and
each keyword centroid. We select the keyword
with the highest cosine similarity score and apply a
threshold to this score to ensure confident keyword
predictions.

3 Experimental Setup and Results

3.1 Datasets

LibriSpeech-100 includes 100 hours of read En-
glish speech that have been resampled at a fre-
quency of 16 kHz and is diverse in its speakers.
This dataset is specifically designed for Automatic
Speech Recognition (ASR), but we adapt it to KwS
as in Zhao et al. (2022a). We use Librispeech’s
train-clean-100 and test-clean splits. We also show
results on the L2-Arctic dataset comprising record-
ings from 24 speakers (2 male, 2 female for each
language) representing one of six native languages:
Hindi, Korean, Mandarin, Spanish, Arabic, and
Vietnamese. Approximately 1,600 keywords were
selected, with each keyword occurring once for
all 24 speakers. We create a held-out set of 3400
Vietnamese-accented utterances.

3.2 Training

Wav2vec2 Large Finetuned Model (315M param-
eters) is used as our base model (Baevski et al.,
2020). For cross-entropy, we added a projection
layer after the Wav2vec?2 feature extractor of size
C+1, plus one denotes an extra class to represent
non-catalog words. For contrastive learners, we
added a projection network as described in (Khosla
et al., 2020) to compress embeddings down from



Table 1: Results on LibriSpeech continuous speech dataset.

Dataset Loss function Precision Recall F1 Score
LibriSpeech Top 20 CE 93.6 95.2 94.3
CPL 94.6 97.4 95.8
LibriSpeech 500 CE 92.0 92.6 922
CPL 92.0 95.1 93.5
LibriSpeech 1500 CE 91.8 88.7 89.1
CPL 92.0 90.0 90.9
L2-Arctic CE 98.8 938 95.6
CPL 98.4 96.3 96.6
Precision Recall F1 positives (FPs).
CE 0.988 0.938 0.956
SupCon 0.941 0.932 0.921 3.4 Results
CPL 0.98 0.963 0.966

Table 2: Comparing Objective Functions for KwS task

Dataset AP@5

LibriSpeech20 CE 0.690

CPL 0.692

Wav2Vec2 LibriSpeech500 CE 0.580
CPL 0.587

LibriSpeech1500 CE 0.364

CPL 0.376

Table 3: Localization of keywords using AP@5.

1024 dim to 256 dim. All the models are trained
on one NVIDIA A100-SXM4-80GB for 20k steps
with a batch size of 30.

3.3 Evaluation Metrics

We frame the KwsS task as a word detection prob-
lem. To evaluate performance, we use precision, re-
call, and F1 score metrics. Additionally, we aim to
detect the precise position of each keyword within
the utterance. This is achieved using a sliding win-
dow module, which processes the utterance with
a fixed window size and stride. Consecutive pre-
dictions of the same keyword indicate its location
and duration (time frames) in the utterance. For
evaluation, we use the 1D Average Precision (AP)
metric from (Zhao et al., 2022a). We compute the
1D Intersection over Union (IoU) for each detected
keyword against the ground truth. We slide a win-
dow across the input data, apply mean pooling, and
calculate cosine similarity between the pooled fea-
tures and stored keyword centroids. We calculate
the start and end of the time frame using window
size and stride. A predicted event is a true positive
(TP) if it’s similarity score exceeds a threshold and
the overlap of frames with the ground-truth event
of the same class is more than 5%. Ground-truth
events not matched by predictions are false nega-
tives (FNs), while unmatched predictions are false

Table 1 shows precision, recall, F1 scores on cat-
alogs of varying sizes containing words of differ-
ent frequencies. We use catalogs of top-20 most
frequent words (as in (Zhao et al., 2022a)), 500
keywords occurring between 50 to 100 times and
1500 rare keywords appearing only 5 to 10 times
in the training data.

Our proposed CPL achieves an improvement
of more than 1% over the CE approach across all
catalog sizes. The most significant gain of 1.8%
is observed in the tail word catalog of size 1500,
demonstrating that our method is robust to class
imbalance.

Table 2 shows precision, recall, F1 scores com-
paring CPL with SupCon and CE losses. We ob-
serve that CPL shows improvements of 1% and
4.5% compared to CE and SupCon, respectively.
We report AP@5 in Table 3 to compare against
(Zhao et al., 2022a) Libri-Top20 result. (We note
our numbers are poorer than the reported numbers
in (Zhao et al., 2022a) as we trained our models
on 100 hrs of Librispeech training data while they
trained on Librispeech 960 hours.)

4 Conclusion

We introduce the SCOPE framework for key-
word spotting in continuous speech. By ensur-
ing clear differentiation between target keywords
and non-keyword tokens and employing a weakly-
supervised training strategy with forced-alignment,
our approach enhances keyword detection and lo-
calization. In continuous speech, the learner must
effectively handle numerous non-catalog and cata-
log keywords, some of which are rare resulting in a
class imbalance. To address this challenge, we pro-
pose a Combinatorial Prototype Learner, a novel
objective function aimed at optimizing feature rep-
resentations for continuous speech contexts.



5 Limitations

A limitation of our method is the reliance on a slid-
ing window for inference, which can sometimes
incorrectly predict a keyword when it appears as a
subword, suffix, or prefix. Nonetheless, our frame-
work provides a robust and effective solution for
real-world keyword spotting applications.
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A Appendix
A.1 Proof of Submodularity of CPL Loss

The combinatorial formulation of CPL loss as in
Equation 2 can be defined as a sum over the set-
function L ,,s(@) as described in Theorem 1 of
the main paper.

+ Z log <Z exp(Si;(6))
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Term 2(b)

The Term 1 of CPL loss is a negative sum over
similarities of set Ay, and is thus submodular. The
Term 2(a) and 2(b) in eq. 2 can be combined
together based on the assumption in Theorem 1
which states that V = T U T’. We show this in eq.
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The Term 2 computed in eq. 3 depicts a sum of
the exponent of similarities (3¢, exp(5i;(0)) —
1) which is a modular term as the sum is computed
over the complete ground set V. The logarithm
over this term constituting the complete inter-class
term represents a concave over modular function
which is submodular in nature. Thus, the underly-
ing function f(Ag; @) for the CPL loss L(6) repre-
sented in Theorem 1 is submodular in nature.
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