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Abstract

Keyword Spotting (KwS) in the continuous001
speech setting encapsulates localization and002
recognition of keywords amongst a large003
volume of non-keyword tokens, further004
exemplified by variation in speakers and the005
presence of rare keywords. Our paper presents006
a novel Submodular Combinatorial Prototype007
(SCOPE) learning framework that not only008
contrasts between target keywords but also009
ensures sufficient separation of keywords from010
non-keyword tokens. Additionally, our work011
proposes a weakly-supervised training strategy,012
utilizing forced alignment on phoneme-level013
embeddings to guide a windowing function014
to correctly localize keywords of interest. We015
evaluate our model on the popular LibriSpeech016
and L2-Arctic datasets under varying numbers017
of keywords demonstrating a class-imbalanced018
distribution and show that our proposed019
architecture consistently outperforms existing020
baselines by up to 1.8%.021

1 Introduction022

Keyword Spotting (KwS) for the Continuous023

Speech (CS) setting diverges from traditional trig-024

ger word recognition (Kundu et al., 2023; Vygon025

and Mikhaylovskiy, 2021; Seo et al., 2021) tasks026

in the localization and identification of target key-027

words from a continuous speech signal (Zhao et al.,028

2022a). With a recent surge in the democratiza-029

tion of digital communication in corporate meet-030

ings/ conferences, classroom teaching (online spo-031

ken tutorials), telemedicine, etc., CS-KwS (Zhao032

et al., 2022a) has gained importance in identifying033

technical keywords and filtering of prohibited key-034

words in recorded speech summarization. Recent035

advancements, inspired by machine vision (Lin036

et al., 2017) include anchor-free detector (Zhao037

et al., 2022b) and speech-to-vision signal transfor-038

mation (Samragh et al., 2023). These approaches039

have enhanced keyword spotting accuracy and com-040

Figure 1: Overview of our proposed Continuous Speech
Keyword Spotting Architecture showing the Combina-
torial Prototype Learner objective.

putational efficiency (Bittar et al., 2024). The pres- 041

ence of rare keywords, large diversity in the key- 042

word catalog, and a large volume of non-catalog 043

keywords continue to remain challenging prob- 044

lems. 045

Contemporary research in representation 046

learning (Khosla et al., 2020; Sohn, 2016; Frosst 047

et al., 2019; Deng et al., 2019) has made significant 048

strides to overcome class imbalance and resilience 049

to outliers, a predominant issue in existing 050

approaches (Rumelhart et al., 1986). A key compo- 051

nent of such techniques is the design of an objective 052

function tailored to overcome specific challenges 053

in the target task. Contrastive learning, stemming 054

from noise contrastive estimation (Gutmann and 055

Hyvärinen, 2010) in self-supervised learning (Chen 056
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et al., 2020a; He et al., 2020; Chen et al., 2020b), is057

a notable milestone in this direction. In supervised058

contexts, Khosla et al. (2020); Sohn (2016);059

Frosst et al. (2019) explicitly focus on forming060

feature clusters beyond simple feature-to-centroid061

alignment or handling the most challenging062

negatives (Song et al., 2016). These methods063

primarily rely on pairwise similarity and have064

been shown in Majee et al. (2024) to not ensure065

clear cluster separation and resilience to imbalance066

which is a key requirement for the CS-KwS task.067

In this work, we present SCOPE, a Continuous068

Speech Keyword Spotting framework which aims069

to learn discriminative representations from070

continuous speech signals to improve performance071

on downstream keyword spotting tasks. Our072

framework depicted in Figure 1 adopts a pretrained073

Wav2Vec2.0 (Baevski et al., 2020) architecture to074

extract speech embeddings that are further mean-075

pooled with the help of a forced aligner (Kürzinger076

et al., 2020) during training. In a continuous speech077

setting, a large volume of non-important keywords078

co-exist alongside the target keywords adding to079

the complexity of the KwS algorithm. To address080

this, word-level embeddings belonging to the target081

keyword class are grouped together in the feature082

space while being separated from others through083

a novel combinatorial objective (refer Section 2.3).084

In addition to contrasting between target keywords,085

our objective explicitly contrasts between target086

and non-target keywords to encourage the underly-087

ing model to better attend to rare target keywords.088

Our contributions include: (1) A new Con-089

tinuous Speech Keyword Spotting framework090

(Section 2.2) addressing the challenges of rare091

keywords and code-switch. (2) Introduction of a092

Combinatorial Prototype Learner (CPL) objective093

(Section 2.3) that explicitly contrasts non-target094

keywords with target keyword embeddings in095

addition to ensuring learning of discriminative096

keyword-level features. (3) Improvements in097

performance on the LibriSpeech (Panayotov et al.,098

2015) dataset with varying number of keywords,099

where our model outperforms existing baseline100

by significant margins (upto 1.8%) while being re-101

silient to varying degrees of imbalance (Section 3).102

2 Method103

2.1 Problem Definition104

Representation learning for continuous speech105

starts with learning parameters θ of a feature106

extractor E(si, θ), ∀i ∈ |T | tasked with learning 107

robust token-level representations for the keyword 108

vocabulary T in our catalog C. The output of 109

E is a set of embeddings, which are pooled, 110

ft = Avg.Pool(E(T ; θ)) to retrieve word-level 111

embeddings guided by weakly-supervised labels 112

from a forced-alignment model. A learning 113

objective LKwS(θ) guides the feature extractor E 114

to learn discriminative class/keyword prototypes 115

amidst a large volume of non-catalog keywords 116

T ′ and presence of rare keywords. Following 117

Majee et al. (2024), we introduce a combinatorial 118

viewpoint where the dataset T is represented as 119

a collection of sets, T = {A1, A2, · · · , A|C|}, 120

where each Ai, i ∈ [1, C] represents a key- 121

word in T . Each batch of inputs {si, ci}|T |
i=1 122

is considered as the ground-set V and the loss 123

LKwS =
∑|C|

k=1 f(Ak; θ) is modelled as the sum 124

over the total submodular information (Fujishige, 125

2005) contained in a set Ak, where f is the 126

submodular function. Note that the non-catalog 127

words T ′ are not a part of the keyword catalog C. 128

2.2 The SCOPE Framework 129

Unlike isolated KwS tasks (Warden, 2018), 130

real-world settings demonstrate (1) longtail 131

imbalance leading to inter-class bias, (2) large 132

diversity in speakers and, (3) the presence of 133

phonetically similar words, e.g., weak and week 134

which lead to confusions. 135

Previous literature in KwS indicates a strong 136

correlation between model performance and qual- 137

ity of utterance-level feature representations learnt 138

by E(Si, θ). Learning of robust representations 139

is further motivated by the choice of objective 140

function L(θ). Contrastive learners like (Khosla 141

et al., 2020; Chen et al., 2020a) demonstrate learn- 142

ing of robust feature vectors by modeling fea- 143

ture similarity, forming compact as well as well- 144

separated keyword-specific feature clusters. To 145

address the challenges in real-world KwS tasks, we 146

propose a Submodular Combinatorial Prototype 147

Learner for Continuous Speech Keyword Spotting 148

(SCOPE) framework that learns keyword proto- 149

types C = [c1, c2...cN ]. Figure 1 illustrates the 150

proposed SCOPE architecture. 151

We adapt the encoder from Wav2Vec (Baevski 152

et al., 2020) for keyword-level feature represen- 153

tation learning. The training is performed in a 154

supervised manner as the word-level segments of 155

an utterance are computed at once using a forced 156
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alignment algorithm (Kürzinger et al., 2020). The157

resultant word-level segments serve as soft labels.158

During training, we mean-pool the aligned feature159

segments to obtain keyword-level embeddings. We160

stack these feature embeddings over the batch di-161

mension. We train the model to align the features162

of these word-level embeddings. We use cross-163

entropy as our baseline loss function. We further164

adopted contrastive learners like SupCon (Khosla165

et al., 2020) to ensure that the learned keyword166

embeddings are invariant to variations in context167

and speaker identity.168

2.3 Combinatorial Prototype Learner169

The challenges outlined in Section 2.1 motivate a170

learning framework to discern discriminative fea-171

tures for each keyword, with clearly established de-172

cision boundaries between catalog keywords. For173

continuous speech, the learner must handle nu-174

merous non-catalog keywords T ′ and catalog key-175

words, with some catalog words being rare or tech-176

nical, creating a class imbalance. Inspired by repre-177

sentation learning paradigms (Khosla et al., 2020;178

Chen et al., 2020a; Majee et al., 2024), we pro-179

pose a novel combinatorial objective LKwS(θ) to180

address these challenges in the continuous speech181

setting. CPL amplifies the separation between tar-182

get keywords and non-catalog words, distinguish-183

ing itself from other metric/contrastive learning184

objectives (Khosla et al., 2020; Chen et al., 2020a;185

Deng et al., 2019). This is achieved by modeling186

LKwS(θ) as the minimization of Total Submodular187

Information over sets Ak ∈ T (Theorem 1).188

Theorem 1 If f(A) = −
∑

i,j∈A Sij(θ) +189 ∑
i∈A

1
|A| log(

∑
j∈V exp(Sij(θ))) represents a190

submodular function, we can define an objective191

LKwS as shown in Eqn 1 as the Total Submodu-192

lar Information LKwS =
∑|C|

k=1
1

Nf (Ak)
f(Ak; θ),193

where Nf (Ak) = |Ak| is the normalization con-194

stant. Note that the ground set V = T ∪ T ′.195

LKwS(θ) =

|C|∑
k=1

−1

|Ak|
∑

i,j∈Ak

Sij(θ)

+
∑
i∈A

1

|Ak|
log

[∑
j∈T

exp(Sij(θ))

+
∑
j∈T ′

exp(Sij(θ))

]
(1)196

We provide proofs of CPL loss submodularity197

in Appendix A.1. CPL loss decomposes into198

two terms: minimizing
∑

i,j∈Ak
Sij ensures intra- 199

cluster compactness, while the second term ensures 200

inter-keyword separation, introducing embeddings 201

from non-catalog keywords T ′ only in the second 202

term to maximize separation. Since f(Ak; θ) is 203

submodular, LKwS models class imbalance and is 204

resilient to outliers (Majee et al., 2024). 205

Inference. After training the model, we extract 206

speech features and store keyword prototypes by 207

mean-pooling the features of all keyword occur- 208

rences in the training set. For each keyword, we 209

compute the centroid by averaging these features, 210

resulting in a centroid vector for each keyword 211

prototype. During evaluation, we use a sliding 212

window approach on the test utterances. For each 213

test utterance, we slide a window of size w and 214

stride s. Within each window, we mean-pool the 215

features to obtain a pooled feature vector and cal- 216

culate the cosine similarity between this vector and 217

each keyword centroid. We select the keyword 218

with the highest cosine similarity score and apply a 219

threshold to this score to ensure confident keyword 220

predictions. 221

3 Experimental Setup and Results 222

3.1 Datasets 223

LibriSpeech-100 includes 100 hours of read En- 224

glish speech that have been resampled at a fre- 225

quency of 16 kHz and is diverse in its speakers. 226

This dataset is specifically designed for Automatic 227

Speech Recognition (ASR), but we adapt it to KwS 228

as in Zhao et al. (2022a). We use Librispeech’s 229

train-clean-100 and test-clean splits. We also show 230

results on the L2-Arctic dataset comprising record- 231

ings from 24 speakers (2 male, 2 female for each 232

language) representing one of six native languages: 233

Hindi, Korean, Mandarin, Spanish, Arabic, and 234

Vietnamese. Approximately 1,600 keywords were 235

selected, with each keyword occurring once for 236

all 24 speakers. We create a held-out set of 3400 237

Vietnamese-accented utterances. 238

3.2 Training 239

Wav2vec2 Large Finetuned Model (315M param- 240

eters) is used as our base model (Baevski et al., 241

2020). For cross-entropy, we added a projection 242

layer after the Wav2vec2 feature extractor of size 243

C+1, plus one denotes an extra class to represent 244

non-catalog words. For contrastive learners, we 245

added a projection network as described in (Khosla 246

et al., 2020) to compress embeddings down from 247
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Table 1: Results on LibriSpeech continuous speech dataset.

Dataset Loss function Precision Recall F1 Score
LibriSpeech Top 20 CE 93.6 95.2 94.3

CPL 94.6 97.4 95.8
LibriSpeech 500 CE 92.0 92.6 92.2

CPL 92.0 95.1 93.5
LibriSpeech 1500 CE 91.8 88.7 89.1

CPL 92.0 90.0 90.9
L2-Arctic CE 98.8 93.8 95.6

CPL 98.4 96.3 96.6

Precision Recall F1
CE 0.988 0.938 0.956

SupCon 0.941 0.932 0.921
CPL 0.98 0.963 0.966

Table 2: Comparing Objective Functions for KwS task

Dataset AP@5
LibriSpeech20 CE 0.690

CPL 0.692
Wav2Vec2 LibriSpeech500 CE 0.580

CPL 0.587
LibriSpeech1500 CE 0.364

CPL 0.376

Table 3: Localization of keywords using AP@5.

1024 dim to 256 dim. All the models are trained248

on one NVIDIA A100-SXM4-80GB for 20k steps249

with a batch size of 30.250

3.3 Evaluation Metrics251

We frame the KwS task as a word detection prob-252

lem. To evaluate performance, we use precision, re-253

call, and F1 score metrics. Additionally, we aim to254

detect the precise position of each keyword within255

the utterance. This is achieved using a sliding win-256

dow module, which processes the utterance with257

a fixed window size and stride. Consecutive pre-258

dictions of the same keyword indicate its location259

and duration (time frames) in the utterance. For260

evaluation, we use the 1D Average Precision (AP)261

metric from (Zhao et al., 2022a). We compute the262

1D Intersection over Union (IoU) for each detected263

keyword against the ground truth. We slide a win-264

dow across the input data, apply mean pooling, and265

calculate cosine similarity between the pooled fea-266

tures and stored keyword centroids. We calculate267

the start and end of the time frame using window268

size and stride. A predicted event is a true positive269

(TP) if it’s similarity score exceeds a threshold and270

the overlap of frames with the ground-truth event271

of the same class is more than 5%. Ground-truth272

events not matched by predictions are false nega-273

tives (FNs), while unmatched predictions are false274

positives (FPs). 275

3.4 Results 276

Table 1 shows precision, recall, F1 scores on cat- 277

alogs of varying sizes containing words of differ- 278

ent frequencies. We use catalogs of top-20 most 279

frequent words (as in (Zhao et al., 2022a)), 500 280

keywords occurring between 50 to 100 times and 281

1500 rare keywords appearing only 5 to 10 times 282

in the training data. 283

Our proposed CPL achieves an improvement 284

of more than 1% over the CE approach across all 285

catalog sizes. The most significant gain of 1.8% 286

is observed in the tail word catalog of size 1500, 287

demonstrating that our method is robust to class 288

imbalance. 289

Table 2 shows precision, recall, F1 scores com- 290

paring CPL with SupCon and CE losses. We ob- 291

serve that CPL shows improvements of 1% and 292

4.5% compared to CE and SupCon, respectively. 293

We report AP@5 in Table 3 to compare against 294

(Zhao et al., 2022a) Libri-Top20 result. (We note 295

our numbers are poorer than the reported numbers 296

in (Zhao et al., 2022a) as we trained our models 297

on 100 hrs of Librispeech training data while they 298

trained on Librispeech 960 hours.) 299

4 Conclusion 300

We introduce the SCOPE framework for key- 301

word spotting in continuous speech. By ensur- 302

ing clear differentiation between target keywords 303

and non-keyword tokens and employing a weakly- 304

supervised training strategy with forced-alignment, 305

our approach enhances keyword detection and lo- 306

calization. In continuous speech, the learner must 307

effectively handle numerous non-catalog and cata- 308

log keywords, some of which are rare resulting in a 309

class imbalance. To address this challenge, we pro- 310

pose a Combinatorial Prototype Learner, a novel 311

objective function aimed at optimizing feature rep- 312

resentations for continuous speech contexts. 313
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5 Limitations314

A limitation of our method is the reliance on a slid-315

ing window for inference, which can sometimes316

incorrectly predict a keyword when it appears as a317

subword, suffix, or prefix. Nonetheless, our frame-318

work provides a robust and effective solution for319

real-world keyword spotting applications.320
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A Appendix428

A.1 Proof of Submodularity of CPL Loss429

The combinatorial formulation of CPL loss as in430

Equation 2 can be defined as a sum over the set-431

function LKwS(θ) as described in Theorem 1 of432

the main paper.433

f(Ak; θ) =−
∑

i,j∈Ak

Sij(θ)︸ ︷︷ ︸
Term 1

+
∑
i∈Ak

log

(∑
j∈T

exp(Sij(θ))︸ ︷︷ ︸
Term 2(a)

+
∑
j∈T ′

exp(Sij(θ))

)
︸ ︷︷ ︸

Term 2(b)

(2)434

The Term 1 of CPL loss is a negative sum over435

similarities of set Ak and is thus submodular. The436

Term 2(a) and 2(b) in eq. 2 can be combined437

together based on the assumption in Theorem 1438

which states that V = T ∪ T ′. We show this in eq.439

3.440

f(Ak; θ) =−
∑

i,j∈Ak

Sij(θ)︸ ︷︷ ︸
Term 1

+
∑
i∈Ak

log

(∑
j∈V

exp(Sij(θ))

)
︸ ︷︷ ︸

Term 2

(3)441

The Term 2 computed in eq. 3 depicts a sum of442

the exponent of similarities (
∑

j∈V exp(Sij(θ))−443

1) which is a modular term as the sum is computed444

over the complete ground set V . The logarithm445

over this term constituting the complete inter-class446

term represents a concave over modular function447

which is submodular in nature. Thus, the underly-448

ing function f(Ak; θ) for the CPL loss L(θ) repre-449

sented in Theorem 1 is submodular in nature.450
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