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ABSTRACT

Large language models (LLMs) are traditionally trained on massive digitized text
corpora; however, alternative data sources exist that may help evaluate and im-
prove the alignment between language models and humans. We contribute to the
assessment of the role of data sources in human-LLM alignment. Specifically, we
present work aimed at understanding differences in the informational content of
text, behavior (e.g., free associations), and brain (e.g., fMRI) data. Using repre-
sentational similarity analysis, we show that word vectors derived from behavior
and brain data encode information that differs from their text-derived cousins. Fur-
thermore, using an interpretability method that we term representational content
analysis, we find that, in particular, behavior representations better encode certain
affective, agentic, and socio-moral dimensions. The findings highlight the poten-
tial of behavior data to evaluate and improve language models along dimensions
critical for human-LLM alignment.

1 INTRODUCTION

Large language models (LLMs) are trained to predict the occurrence of tokens given their context.
Research demonstrates that training larger models on more text leads to predictable improvements
on this objective and other benchmarks (Kaplan et al., 2020; Hoffmann et al., 2022).

However, optimizing for next-token prediction does not automatically produce models that align
well with people’s preferences, representations, or judgments. To remedy this (insofar as such align-
ment is desired), researchers are incorporating more explicit sources of human data into training and
evaluation pipelines.

For instance, in addition to the now-popular use of explicit feedback on language model outputs
(e.g., via reinforcement learning from human feedback or direct preference optimization Christiano
et al., 2017; Bai et al., 2022), researchers have also been leveraging semantic textual similarity
judgments (e.g., Cer et al., 2017, dataset), sentiment judgments (e.g., Socher et al., 2013, dataset),
sensorimotor judgments (Kennington, 2021), as well as brain imaging recordings (Toneva & Wehbe,
2019; Hollenstein et al., 2019, see also, github.com/brain-score/language). Not only do these efforts
demonstrate improvements in model helpfulness and accuracy, but they may also improve human-
model trust and communication (Sucholutsky & Griffiths, 2023; Bansal et al., 2019), as well as make
for more predictive and plausible models of human psychology (Binz & Schulz, 2023; Hussain et al.,
2024).

Ultimately, it is clear that human-generated data must play a crucial role, both in measuring and
increasing human-model alignment (henceforth, just human-model alignment). However, it remains
an open question which types of human data should be used, and what the promise of these prospec-
tive types may be.

Prospective data for human-model alignment can be grouped into three types (see also Roads &
Love, 2023): text, behavior, and brain. Although text has received considerable attention in language
modeling (i.e., for pretraining), behavior and brain data have attracted comparatively little. In light
of recent large-scale, high-resolution collection efforts (e.g., De Deyne et al., 2019; Jamali et al.,
2024), these two data types might hold untapped potential for human-model alignment. Our study
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thus seeks to address two research questions: (a) do behavior and brain data encode systematically
different information than text, and (b) are these differences useful from the perspective of human-
model alignment?

In what follows, we run a representational similarity analysis (RSA) to uncover systematic differ-
ences between text, behavior, and brain data (Section 4.1). We then analyze the content of these
differences via our representational content analysis (RCA, Sections 4.2, 4.3), and end with a dis-
cussion of the merits and limitations of our work.

2 OUR CONTRIBUTIONS

Our contributions are four-fold. First, we perform a comprehensive comparison of 10 text repre-
sentations, 10 behavior representations, and 6 brain representations, revealing robust differences
between data types (Section 4.1).

Second, we collate the largest (to our knowledge) metabase of predominantly human-rated (behav-
ioral) word properties (word norms), Section 3.1), which we call psychNorms. The metabase is
publicly available at github.com/[ANONYM]/psychNorms (and in the supplementary materials),
and reflects over half a century of psycholinguistic research. We hope it will serve as a valuable
resource for researchers seeking to measure and interpret language representations along psycho-
logically meaningful dimensions.

Third, leveraging psychNorms and linear probes (see, e.g., Belinkov, 2022), we demonstrate how
to build interpretable informational content profiles for abstract representations via a novel analysis
framework that we call representational content analysis (RCA, Section 3.3). By comparing the
profiles of different representations, we can provide crucial insight into the content of their differ-
ences. This could be especially useful for interpreting and navigating discrepancies between the
plethora of otherwise opaque representational alignment metrics (Sucholutsky et al., 2023).

Fourth, and most importantly, we show that, despite being trained on orders of magnitudes less data,
the behavior representations encode psychological information of equivalent or even superior reach
and quality in comparison to their text-based cousins (Sections 4.2, 4.3). This indicates that behavior
contains a wealth of highly concentrated psychological information, and is a powerful complement
to text for measuring and improving human-LLM alignment.

We view our work as foundational with respect to the entitled goal of improving human-LLM align-
ment. By carrying out the necessary groundwork looking into the space of possible data sources
and the kinds of information they encode, we hope to pave the way for future researchers seeking to
measure and improve the human-likeness of the current state-of-the-art (SOTA).

3 METHODOLOGY

3.1 REPRESENTATIONS AND NORMS

Our analyses seek to answer (a) whether brain and behavior data offer systematically different infor-
mation than text, and (b) whether these differences are useful from the perspective of human-model
alignment. We attempt to answer these questions using numerical word-level representations (i.e.,
word vectors). These function as continuous measures of the information encoded in text, behav-
ior, and brain data that allow for quantitative comparisons across these often incommensurate data
types. Furthermore, because the representations are at the individual word level, they can be directly
probed using widely available word ratings (norms) such as those we collate in psychNorms.

Our analyses rely on 10 text, 10 behavior, and 6 brain representations, and 292 word norms grouped
into 27 norm categories (see Tables 1 and 2 for details). For our purposes, we subset each repre-
sentation to a specific vocabulary. Specifically, for a given representation i, we take the intersection
of its original vocabulary Vi with the union of: (a) all the norm vocabularies Vnorm,n, (b) behav-
ior embedding vocabularies Vbehavior,h, and (c) brain embedding vocabularies Vbrain,j . The resulting
vocabulary V ′

i is defined as:
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Table 1: Text, behavior, and brain representations (*trained as part of this research).

REPRESENTATION Description

fastText CommonCrawl fastText architecture Mikolov et al. (2018), trained on CommonCrawl.
GloVe CommonCrawl GloVe architecture Pennington et al. (2014), trained on CommonCrawl.
LexVec CommonCrawl LexVec architecture Salle et al. (2016), trained on CommonCrawl.
fastText Wiki News fastText architecture Mikolov et al. (2018), trained on Wikipedia 2017,

UMBC webbase corpus and statmt.org news.
CBOW GoogleNews CBOW architecture Mikolov et al. (2013) trained on the Google News.
fastTextSub OpenSub fastText subword architecture Mikolov et al. (2018) trained on the Open-

Subtitles corpus Van Paridon & Thompson (2021).
GloVe Wikipedia GloVe architecture Pennington et al. (2014) trained on Wikipedia 2014.
spherical text Wikipedia Spherical text architecture Meng et al. (2019) trained on Wikipedia 2019.
GloVe Twitter GloVe architecture Pennington et al. (2014) trained on Twitter.
morphoNLM Recurrent neural network architecture fine-tuned on morphological infor-

mative examples Luong et al. (2013).
norms sensorimotor Ratings of 6 perceptual modalities and 5 action effectors Lynott et al.

(2020)
SGSoftMax[In/Out]put
SWOW*

[Cue/Response] vectors from Skip-gram softmax architecture (as in, e.g.,
Goldberg & Levy, 2014) trained on SWOW (De Deyne et al., 2019).

PPMI SVD SWOW* Positive pointwise mutual information (PPMI) followed by singular value
decomposition (SVD) of the SWOW cue-response frequency matrix (fol-
lowing, e.g., Richie & Bhatia, 2021; ?).

PPMI SVD EAT* PPMI followed by SVD of the Edinburgh Associative Thesaurus (EAT,
Kiss et al., 1973).

SVD similarity related-
ness*

SVD of a similarity matrix of aggregated and normalized similarity and
relatedness judgment datasets 1 (and in the supplementary materials).

feature overlap Cosine similarity matrix of overlapping feature frequency percentages be-
tween cue pairs in a feature listing task Buchanan et al. (2019)

THINGS Neural network with softmax output trained to predict odd-one-out judg-
ments of image triplets (Hebart et al., 2020).

experiential attributes Human ratings on 65 attributes comprising sensory, motor, spatial, tempo-
ral, affective, social, and cognitive experiences (Binder et al., 2016)

eye tracking Gaze patterns while reading for 7 datasets Hollenstein et al. (2019).
EEG text Electrode measures while reading sentences (Hollenstein et al., 2018).
EEG speech Electrode measures while listening to sentences (Broderick et al., 2018).
fMRI text hyper align fMRI recordings while reading sentences (Wehbe et al., 2014), prepro-

cessed by (Hollenstein et al., 2019) and hyper-aligned* across individuals.
microarray Neuron-level recordings while listening to sentences
fMRI speech hyper align fMRI recordings while listening to natural sentences (Brennan et al., 2016),

preprocessed by (Hollenstein et al., 2019) and hyper-aligned* across indi-
viduals.

V ′
i = Vi ∩

⋃
n

Vnorm,n ∪
⋃
h

Vbehavior,h ∪
⋃
j

Vbrain,j


We do this for three reasons. First, it reduces the most numerous (text) vocabularies to a com-
putationally feasible subset for representational similarity analysis (RSA, Section 3.2). Second, it
focuses the analyses on a more psychologically relevant set of words—relevant in the sense that they
are words that psychologists and neuroscientists have deemed suitable enough for inclusion in their
data collection efforts. Finally, it ensures a more controlled comparison between representations by
constraining their vocabularies to a more common subset.
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Figure 1: An illustration of the size of the vocabularies (y-axis, log-scaled) for each representation
and norm (x-axis, grouped into higher-level categories) used in our analyses. The representations
have been grouped into each data type (text, behavior, and brain).

Figure 1 illustrates the vocabulary sizes in log space. Starting from the left, the text representations
reflect the largest vocabularies, with between 104 − 105 words (following subsetting). Given text’s
dominance as a data source for training word representations, we were able to obtain a diverse set
of high-quality pretrained representations from publicly available sources (see Table 1).

The behavior representations vary considerably in their vocabulary sizes, with the smallest (experi-
ential attributes) on par with the smallest brain representations and the largest (norms sensorimotor)
approaching that of text. We use a mixture of out-of-the-box behavior representations and those
we train ourselves. For the latter, we rely heavily on the Small World of Words (SWOW) dataset
(De Deyne et al., 2019), which is the largest dataset of free associations available. It contains
roughly 3.6 million associates to over 12,000 cues, and has been found to be an effective way to
uncover semantic representations in humans (Aeschbach et al., 2024).

Turning to the brain representations, vocabularies tend to be one or two orders of magnitudes
smaller. We draw on preexisting fMRI and EEG data from reading ([fMRI/EEG] text) and lis-
tening ([fMRI/EEG] speech) tasks, eye-tracking data from a reading task (eye tracking, Hollenstein
et al., 2018)2, and a promising novel dataset of neuron-level recordings obtained from tungsten
micro-electrode arrays (microarray) during listening tasks (Jamali et al., 2024). Aside from stan-
dard preprocessing steps and (hyper-)alignment of individual-level fMRI data (using the HyperTools
Python package, Heusser et al., 2017), the brain data does not receive any further processing.

Finally, in order to measure the psychological content of the representations (via RCA), we needed
a vast dataset of existing norms. Although norm (meta-)databases exist (e.g., Gao et al., 2023), there
are (to our knowledge) no systematic literature searches for human-rated word properties. We thus
screened 3,056 articles containing norm-relevant keywords (returning 181 norms) and combined the
results with the largest preexisting norm metabase (SCOPE, 97 norms selected Gao et al., 2023) and
a dataset of 65 human-rated experiential attributes (Binder et al., 2016). This resulted in a metabase
of 292 unique norms, which we make available at github.com/[ANONYM]/psychNorms (and in the
supplementary materials).

As illustrated on the right-hand side of Figure 1, these norms differ considerably both in the size
of their vocabularies and the kinds of properties they seek to measure. To aid in interpretation
of this diversity, we have manually grouped the norms (points) into higher-level categories (x-axis)
(see Table 2). These categories include those that are popular in natural language processing settings
(e.g., Frequency, Part of Speech, and Valence) as well as categories that have hitherto been relatively
constrained to psycholinguistics (e.g., Space/Time/Quantity, Animacy, Goals/Needs).

2Although eye-tracking data is not typically considered brain data, we anticipated that the specific eye-
tracking data used in this study, which was obtained from reading tasks, would be more closely linked to visual
attention than, for instance, semantic relatedness judgments, which we view as more brain-like.
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Table 2: Norm categories (*human-rated/behavioral norms).

Category Description

Frequency (Log) frequency of word’s occurrence in various text corpora.
Semantic Diversity Measures word’s polysemy or contextual diversity.
Familiarity* Measures how well-known or familiar the word is.
Visual Lexical Deci-
sion*

Measures accuracy or response time during visual decision task with
the word.

Part of Speech The word’s dominant grammatical category.
Semantic Neighbor-
hood*

Network-style measures of the number and strength of the word’s
relationships with its neighbors.

Naming* Measures accuracy or response time for word naming.
Concreteness* Ratings of how concrete or abstract a word is.
Sensory* Ratings of how strongly or easily the word is experienced through

particular senses.
Motor* Ratings of how much a word concerns body action or interaction.
Age of Acquisition* Estimates of the age at which a word is learned.
Auditory Lexical De-
cision*

Measures accuracy or response time during auditory decision task
with the word.

Dominance* Ratings of the degree to which the word can be controlled.
Valence* Ratings of how positive or negative a word is.
Arousal* Ratings of the intensity of emotion or excitation evoked by a word.
Iconicity/Transparency* Ratings of how much a word looks or sounds like what it means.
Emotion* Ratings of how much a word reflect or elicits certain emotions.
Semantic Decision* Accuracy or response time during semantic rating tasks.
Social/Moral* Ratings of a word’s relevance to social and moral dimensions.
Recognition Mem-
ory*

Recognition memory performance (hits minus false alarms).

Space/Time/Quantity* Ratings of a word on spatial, temporal, and other quantitative di-
mensions.

Imageability* Ratings of the ease with which a word can be imagined.
Number of Features* Number of features listed for a word.
Animacy* Ratings of how much a word is thinking, living, or human-like.
Goals/Needs* Ratings of how much a word represents goals, needs, or drives.
Associatability* Ratings of how quick and easy it is to thing of associations to a word.
This/That* Proportion of times participants associated words with this versus

that.

3.2 REPRESENTATIONAL SIMILARITY ANALYSIS

We use representational similarity analysis (RSA) to compare the information encoded in the above
representations. Developed within neuroscience (Kriegeskorte et al., 2008), RSA enables compar-
isons of representations from otherwise-disparate modalities (e.g., fMRI, EEG, similarity ratings)
by leveraging the fact that the different dimensions may nevertheless contain information that seeks
to distinguish a comparable set of mental states, stimuli, or other kinds of entities.

In our case, the entities being distinguished are words. Consequently, RSA measures the similar-
ity between two matrices, M1 and M2, where each row i represents a word, and each column j
reflects a measurement unit (dimensions). For the brain representations, these units may be voxels
(fMRI) or electrode readings (EEG), whereas for text and behavior models, the units are often latent
dimensions. RSA addresses the challenge of correlating these different units by transforming M1

and M2 into a common space. This transformation is achieved by calculating the (dis)similarities
between the rows of M1 and M2, forming what is known as a representational similarity matrix, S.
Following Lenci et al. (e.g., 2022)), we compute the cosine similarity matrices S1 and S2, as:

S1 = M̂1 · M̂⊤
1 and S2 = M̂2 · M̂⊤

2 ,

5
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where the hat notation M̂ indicates that the rows of the matrices have been L2 normalized. We then
compute the similarity between the two representations by taking the Spearman correlation between
the flattened upper triangles (excluding the diagonal) of S1 and S2.

3.3 REPRESENTATIONAL CONTENT ANALYSIS

Representational content analysis (RCA) is an approach to interpretable informational content pro-
files for abstract numerical representations. Although it leverages the well-established technique
of probing from deep learning interpretability (see e.g., Belinkov, 2022), it differs from traditional
probing applications in its scope, employing tens or even hundreds (as in our case) of targets to more
holistically interpret the information encoded.

Our RCA implementation uses L2-regularized linear probing classifiers and regressors. We employ
L2-regularization to mitigate issues such as multicolinearity, underdetermination, and over-fitting
in high-dimensional settings. Following Hupkes et al. (2018), we use linear probes to avoid the
risk of more flexible estimators learning features that do not reflect what is present in the original
representations.

For numerical norms, we use the Scikit-Learn API’s RidgeCV (Pedregosa et al., 2011). For bi-
nary and multi-class norms, we use the API’s LogisticRegressionCV. Both estimators per-
form automatic (hyperparameter) tuning of the L2 penalty. This parameter—alpha in the case of
RidgeCV, or C in the case of LogisticRegressionCV (equivalent to 1/apha)—is selected
from a grid of values ranging from 10−5 to 105 (in alpha terms) with even spacing in log (base-10)
space.

Generalization performance is measured via 5-fold nested cross-validation (Pedregosa et al., 2011),
where the regression coefficients and L2 penalty parameter are fitted in an inner loop, and evaluated
on separate test sets in the outer loop (following, e.g., Varma & Simon, 2006).

Finally, to ensure some minimum reliability for performance estimates, we do not probe in cases
where the intersection of the representation and norm vocabularies results in a test set with fewer
than 20 samples. This is important to keep in mind for Section 4.2, where, in a minority of cases,
average performances are estimated from a reduced set of norms.

4 EXPERIMENTS

4.1 REPRESENTATIONS FROM TEXT, BEHAVIOR, AND BRAIN DIFFER SYSTEMATICALLY,
IRRESPECTIVE OF LEARNING ALGORITHM

We begin by asking to what extent text, behavior, and brain data encode distinct information (re-
search question (a)). Using representational similarity analysis (RSA), we compare the representa-
tions obtained from each data type (see Section 3.3 for details).

Figure 2 illustrates the results. Panel A presents a multidimensional scaling of the representational
similarity space, and Panel B the pairwise similarity matrix. It is important to emphasize that each
data type encompasses a diverse set of representations derived from different learning algorithms
and sub-data-types (or sub-datasets) (see 3.1 for details). For instance, the text and behavior repre-
sentations result from algorithms both from the global matrix factorization family (e.g., PPMI SVD
SWOW, SVD Similarity Relatedness), local context window family (e.g., fastText CommonCrawl,
SGSoftMax Input SWOW), and hybrids of both families (e.g., GloVe CommonCrawl).

Despite the diversity within data type, and some algorithmic commonalities between types (e.g.,
fastText CommonCrawl, SGSoftMax Input SWOW), we observe relatively clear clustering by data
type (Figure 2), suggesting that the type of data has a more significant effect on representational
structure than the choice of learning algorithm. Although some clustering based on the representa-
tion learning algorithm can be observed, the clustering by data is more pronounced.

To answer our research question, we find considerable differences between brain and behavior when
compared to text (text-brain ρ̄ = .09, text-behavior ρ̄ = .20, where ρ̄ denotes the mean Spearman
correlation), with the similarities between the data types displaying lower values than those within
(brain-brain ρ̄ = .12, behavior-behavior ρ̄ = .22, text-text ρ̄ = .41). Interestingly, the similarity

6
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Figure 2: A: A 2-dimensional projection of the representational similarity space. The space was
obtained by multidimensional scaling of the pairwise Spearman dissimilarity matrix between em-
beddings. Text = green, behavior = purple, brain = blue. B: A heatmap visualization of the pairwise
Spearman similarity matrix.

between text and brain turns out to be .06 points higher than that between brain and behavior (brain-
behavior ρ̄ = .03).

Ultimately, our analyses demonstrate the importance of data type in shaping representational simi-
larity, with noticeable informational differences between text, behavior, and brain. We now move to
characterizing these differences.

4.2 BEHAVIOR DATA CAN RIVAL TEXT IN PSYCHOLOGICAL BREADTH AND DEPTH

The last section revealed differences in the information encoded in text, behavior, and brain data.
This raises the question: What is the content of these differences? This is important from the per-
spective of human-model alignment, where alignment on different dimensions will have varying
implications for, for instance, a model’s helpfulness, accuracy, or psychological plausibility. To
address this question, we leverage our psychNorms metabase (Section 3.1) as targets in a represen-
tational content analysis (RCA, Section 3.3).

Figure 3 illustrates the average test performances of each representation3 (rows) on each norm cat-
egory (columns). Performance is measured via the coefficient of determination (R2) for numerical
norms, and McFadden’s pseudo-R2 for categorical norms (e.g. This/That, Part of Speech norms).
We henceforth denote both measures with R2.

Some interesting patterns can be observed. First, text and behavior appear to encode a broad range
of psychological information. This is unsurprising in the case of text, which has been the dominant
source for pretraining today’s unprecedentedly human-like language models. Behavior, on the other
hand, has garnered comparatively little attention in this regard. The representations are also de-
rived from orders of magnitudes smaller training sets and possess more modest vocabularies (hence,
smaller probe-training sets). Behavior’s competitiveness with text is thus quite impressive.

Second, we detect scarce psychological information in brain. However, it is important to reiterate
brain’s limited vocabularies here. Furthermore, in many cases, the number of features (e.g., voxels,
electrode readings) approaches the number of norm-labeled words (samples), making it all-the-
more difficult to detect norm-signal in the brain data (i.e., even in cases where norm information is
encoded). Nevertheless, in its present form, brain does not present a promising resource for human-
model alignment.

3feature overlap and experiential attributes are dropped from remaining analyses due to, respectively, a vast
number of missing values (words with no overlapping features were set to NaN), and an insufficiently large
vocabulary.

7
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Figure 3: Average 5-fold cross-validation (pseudo-)R2 test performance for text, behavior, and brain
representations (rows, grouped) on 292 norms grouped into 27 norm categories (columns). Per-
formances are aggregated by first taking the mean R2 on each norm and then the median of the
norm-wise (mean) R2 for each norm category. Representations are ordered within each data type
in terms of overall performance. Norms categories are ordered in terms of the performance of the
top-performing behavior representation (PPMI SVD SWOW). Missing values are the result of an
insufficient number of test samples.

Third, it appears that some norms are in general better-encoded than others across representations:
namely, those on the right-hand side of Figure 3 versus those on the left. Although this may be
explained in part by differences in norm reliability, it is also possible that certain norm-relevant
information is especially hard to capture irrespective of data type. This latter explanation could
indicate an avenue for future research seeking to capture remaining psychological information.

Fourth and finally, important differences can be observed between the best-performing representa-
tions from each type on certain norms. For instance, the best-performing text representations tend
to outperform those of behavior by a considerable margin on Part of Speech (absolute difference in
90th percentile R2, |∆R2

90th| = .26), Age of Acquisition (|∆R2
90th| = .19), Visual Lexical Decision

(|∆R2
90th| = .14), Familiarity (|∆R2

90th| = .13, and Concreteness (|∆R2
90th| = .12) norms. Of

course, these superior performances may be (partially) attributable to the text representations’ larger
vocabularies (we control for probe-training set size and constitution in the next section, 4.3). The
differences are nevertheless notable.

Conversely, the best-performing behavior representations perform comparatively strongly on Domi-
nance (|∆R2

90th| = .09), Arousal (|∆R2
90th| = .06), Motor (|∆R2

90th| = .06), This/That (|∆R2
90th| =

.05), and Valence (|∆R2
90th| = .05) norms, relative to text. Given the behavior representations’

smaller vocabularies, these higher performances can be seen as conservative estimates of what be-
havior may be able to contribute beyond text to human-LLM alignment.

All-in-all, our RCA provides a preliminary insight into the content of the differences between text,
behavior, and brain. Having identified a surprisingly rich reservoir of psychological information in
behavior, we now move onto the question of the extent to which behavior could complement text
when it comes to human-model alignment.

4.3 BEHAVIOR CAPTURES UNIQUE PSYCHOLOGICAL VARIANCE

The last section hinted that behavior may contain psychological information that text fails to capture.
We now turn to the question of the unique (marginal) contribution of behavior on top of text. To

8
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Figure 4: 5-fold cross-validation (pseudo-)R2 performance for several text and behavior solo and
ensemble representations (rows) on 292 norms grouped into 27 norm categories (columns). Perfor-
mances are aggregated by first taking the mean (difference in) R2 on each norm and then the median
of the norm-wise (mean) R2 for each norm category. Norms are ordered in terms of the performance
of Text & Behavior.

investigate this, we perform an ensemble RCA, whereby we concatenate the top-performing text
and behavior representations and measure the marginal increase in norm variance explained. We
also subset all representation vocabularies to their collective intersection, meaning that the size and
content of the probe’s training set on any given norm is identical across representations.

Figure 4 illustrates the results. Specifically, we take the top-2 text representations from the previ-
ous section (CBOW GoogleNews and fastText CommonCrawl) and the top behavior representation
(PPMI SVD SWOW). We then compare two main groups: Text & Text—in which we concatenate
CBOW GoogleNews and fastText CommonCrawl—and Text & Behavior—in which we concatenate
PPMI SVD SWOW with both CBOW GoogleNews and fastText CommonCrawl. We provide solo
Text and Behavior baselines for reference.

The first thing to note is that ensembling tends to improve performance: on any given norm, it is
either Text & Text or Text & Behavior in first place. However, neither Text & Text nor Text & Behavior
is the unanimous winner. For instance, and as already hinted at in Section 4.2, Text & Text tends
to outperform Text & Behavior on Visual Lexical Decision (absolute median difference, |d̃| = .064,
Wilcoxon signed-rank p < .001), frequency-related norms (Age of Acquisition: |d̃| = .03, p < .001,
Familiarity: |d̃| = .03, p < .001, Frequency: |d̃| = .03, p < .001), and Semantic Diversity
(|d̃| = .04, p < .001) .

Text & Behavior, on the other hand, tends to perform better on affect-related norms (Dominance:
|d̃| = .08, p < .001, Arousal: |d̃| = .07, p < .001, Valence |d̃| = .06, p < .001, Emotion: |d̃| = .04,
p < .001), agency-related norms (Goals/Needs: |d̃| = .03, p = .01, Motor: |d̃| = .04, p < .001),
and Social/Moral (|d̃| = .03, p < .001) norms.

Ultimately Text & Behavior (descriptively) outperforms Text & Text on 11 out of the 27 norm cate-
gories. Some of these categories (e.g., affective, agential, Social/Moral are likely crucial for human-
LLM alignment, though their relevance will, of course, vary depending on one’s ultimate alignment
goals.

5 DISCUSSION

This article began by asking whether behavior and brain data could help in measuring and increasing
human-LLM alignment (beyond text). We showed that behavior and brain representations encode
information that differs from that of the text representations (Section 4.1). Drawing on our psych-
Norms metabase and RCA, we probed these representations to reveal rich, interpretable psycholog-

4These numbers may differ slightly from those in Figure 4 due to differences in the level of mean aggregation
at which the median was taken (fold-level means for Wilcoxon versus norm-level means for Figure 4).
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ical profiles, with behavior outperforming text on several dimensions (e.g., Dominance, Arousal,
Section 4.2). Motivated by evidence suggesting psychologically important differences between text
and behavior, we carried out an ensemble RCA to reveal significant improvements from ensembling
behavior with text on affective, agentic, and Social/Moral dimensions.

Our findings have important implications. The revealed differences in informational content can
conceivably be exploited for human-LLM alignment. Consistent with the current practice of pre-
training on text and fine-tuning on human behavior, our findings suggest that LLMs that are trained
on multiple sources of data—specifically, text and behavior—are well-equipped to cover a larger
number of dimensions relevant to human emotion, agency, and morality. Moreover, our RSA and
RCA findings can be used to better understand the contents of behavioral datasets already used in the
evaluation of language models—for instance, textual similarity judgements (e.g., Cer et al., 2017,
dataset), sentiment judgments (e.g., Socher et al., 2013, dataset), and, more prospectively, free as-
sociations (Thawani et al., 2019; Abramski et al., 2024). Our analyses provide insight into both the
content of these datasets, and how they relate to each other. We view this as crucial to improving
our understanding of what is being evaluated or optimized for in such cases (Burden, 2024).

Our work has several limitations. First, it is foundational with respect to the entitled goal of improv-
ing human-LLM alignment: Although we demonstrate that behavior could in principle complement
text in work seeking to measure or increase human-LLM alignment, we do not demonstrate this in
practice (i.e., with the latest, SOTA LLMs). Nevertheless, the work provides hints at how this may
be done—for instance, via RSA, RCA, or fine-tuning of the weights of SOTA models using behav-
ior data (provided those weights are open, see Wulff et al., 2024)—and methods for comparing and
aligning data from different modalities are not in short supply (see, e.g., Sucholutsky & Griffiths,
2023).

Second, our approach does not allow for perfectly controlled representational content comparisons.
As mentioned in Section 4.2, although better probing results may signal the encoding of more norm-
relevant information, they may also reflect larger probe-training set sizes. These issues can be al-
leviated by subsetting to the same vocabulary across comparison conditions (as we do in Section
4.3). However, this will naturally reduce the probe’s sensitivity to norm-relevant signal due to the
decrease in the training set size from subsetting.

One final limitation concerns our brain data, in which we detect scant evidence of psychological
information. Although this may simply be due to the brain representations’ small vocabularies, it
could also be that brain is poorly suited to word-level analyses such as ours. After all, the brain data
was collected during sentence-level tasks, meaning that word-level representations had to be ex-
tracted via relatively crude heuristics (e.g., a four-second hemodynamic delay offset) and averaging
across contexts (Hollenstein et al., 2019). We would thus caution against drawing strong conclusions
against other brain data formats (e.g., github.com/brain-score/language) on these bases.

6 CONCLUSION

In this work, we investigated behavior and brain data as prospective complements to text for mea-
suring and improving human-LLM alignment. We found that behavior, in particular, captures psy-
chological information to a breadth and depth rivalling that of text, and also captures unique psy-
chological variance on certain dimensions. Our work thus contributes to a growing body of research
(e.g., Bai et al., 2022; Kennington, 2021; Abramski et al., 2024) suggesting behavior as an important
complement to text in LLM-training and evaluation pipelines, with the potential to improve LLM
helpfulness, accuracy, and psychological plausibility.

7 REPRODUCIBILITY STATEMENT

Code and data for reproducing the analyses in this paper can be found in the supplementary mate-
rials, and will be made publicly available on GitHub upon publication. Anonymized GitHub links
present in the paper will be de-anonymized for the camera-ready version.
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