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Abstract

Incorporating tagging into neural machine001
translation (NMT) systems has shown promis-002
ing results in helping translate rare words such003
as named entities (NE). However, translating004
NE in low-resource setting remains a challenge.005
In this work, we investigate the effect of us-006
ing tags and NE hypernyms from knowledge007
graphs (KGs) in parallel corpus in different008
level of resource conditions. We find the tag-009
and-copy mechanism (tag the NEs in the source010
sentence and copy them to the target sentence)011
improves translation in high-resource settings012
only. Introducing copying also results in po-013
larizing effects in translating different parts-of-014
speech (POS). Interestingly, we find that copy015
accuracy for hypernyms is consistently higher016
than that of entities. As a way of avoiding017
"hard" copying and utilizing hypernym in boot-018
strapping rare entities, we introduced a "soft"019
tagging mechanism and found consistent im-020
provement in high and low-resource setting.021

1 Introduction022

NMT methods usually require significant training023

data. For low-resource languages, NMT models024

generally do not work as well, especially when025

translating NEs. With low occurrences and large026

variations, NEs often remain unseen until inference027

time. In this paper, we investigate the usefulness of028

using template tagging methods and hypernyms to029

generalize NMT under low-resource settings.030

Template Machine Translation Template NMT031

usually involves tagging the input sentences such032

that the templates simplify the task for the model033

during translation. One of the first works address-034

ing rare entities in translation uses multiple num-035

bered unknown (unks) tokens to link up source036

and target sentences (Luong et al., 2015). With037

the introduction of such copy mechanism, mod-038

els only need to copy (instead of translate) the039

unknown token from source to target sentence,040

and (if needed) perform post-processing to replace 041

the copied-over tags. Li et al. (2018a) replaces 042

named entities with their type symbols (i.e. LOC, 043

ORG) on both source and target side, and trains 044

a character-level sequence to sequence model for 045

NE translation.Crego et al. (2016) and Wang et al. 046

(2017) use similar tagging mechanism, with the lat- 047

ter using a dictionary to translate tagged NE. Wang 048

et al. (2019) and Li et al. (2018b) use a few tag- 049

ging methods from code-switching, boundary tags 050

(i.e. <ORG>, <\ORG>), to extra embedding to 051

tag NE on both source and target side. Others have 052

explored encouraging copying through constrained 053

decoding (Hokamp and Liu, 2017, Post and Vilar, 054

2018), or modifying architecture or input format 055

(Gu et al., 2018, Pham et al., 2018 Dinu et al., 056

2019). 057

Knowledge Augmented Translation In addition 058

to tagging boundaries of NEs from previous section, 059

a few methods also use POS and other linguistic 060

features to improve NMT (Sennrich and Haddow, 061

2016, Modrzejewski et al., 2020, Hämäläinen and 062

Alnajjar, 2019). Anwarus Salam et al. (2017) uses 063

hypernyms in a statistical machine translation sys- 064

tem for low-resource translation. Meanwhile, many 065

have used KGs to improve NMT systems. Some 066

use KGs for data augmentation(Zhao et al., 2021), 067

while others combine NMT with knowledge graph 068

embedding to improve translation quality (Lu et al., 069

2018, Zhao et al., 2020, Moussallem et al. (2019). 070

While our goal resembles similar efforts in tem- 071

plate machine translation, we extend the tag types 072

to a much wider range using hypernyms obtained 073

through KGs. In addition, we perform extensive 074

analysis to understand the pros and cons of copy 075

mechanism under different resource conditions. 076

Our paper provides 3 key insights: 077

• Copy mechanism improves translation only in 078

high-resource setting. 079

• Copy models translate syntactic POS better 080
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and semantic POS worse, yielding translation081

with similar sentence structures as the source.082

• Appending hypernyms to NEs can improve083

translation accuracy in low-resource settings.084

2 Methods085

We first use statistical alignment (FastAlign, Dyer086

et al., 2013) to build a phrase translation table. We087

then use DBpedia Spotlight entity linking system088

(Mendes et al., 2011)1) to find NEs within sen-089

tences that connects to English DBpedia2, as well090

as the translation of the NEs on target side through091

translation alignment. We substitute the NEs with092

corresponding templates. After model translation,093

we remove the tag3, either keep the translation al-094

ready in the tag or use the phrase translation table095

to translate copied entities. The system is modular096

and all code can be found in our repo4.097

Tagging Methods We use the following tem-098

plates in our experiments (Table 1): Tag and Trans099

are similar to previous works shown to improve100

translation adequacy (Wang et al., 2019, Li et al.,101

2018b). In addition to the two methods, we also ex-102

periment with adding entity’s hypernym provided103

by DBpedia. Since hypernym is a more generalized104

term for the entity with higher term frequency, we105

expect the model to use it as context when trans-106

lating the sentence in addition to using it to copy.107

Add adds hypernym after entity tag, TransA adds108

hypernym after tag and translation, while TransR109

replaces original entity with hypernym and adds110

translation. For the target sentences, we replace111

the NE translations with the same templates as the112

source sentences.113

In addition to enforcing a "hard" copying mech-114

anism using tagging templates, we also include a115

"soft" signal by simply adding the hypernym after116

the entity (HypA). On the target side, we append117

the translated hypernym if possible (from phrase118

translation table) otherwise we use the source lan-119

guage hypernym for HypA. Without direct signal120

for copying, we expect the model to rely on the121

hypernyms as context when translating NEs.122

In our experiments, we ensure the same NEs are123

tagged across templates, with about 25% of all sen-124

tences tagged in each dataset (Appendix Table 6).125

1https://www.dbpedia-spotlight.org/
2https://www.dbpedia.org/
3Our soft tagging approach, HypA, does not contain ex-

plicit tag and requires no removal post translation
4Anonymized. Our code is included in a zip file as software

component in the submission

2.1 NMT Model 126

For NMT model, we used XLM introduced by Con- 127

neau et al. (2020)5. We use the same transformer 128

architecture as Wang et al. (2019): 512 embedding 129

size, 6 encoder and decoder layer, 8 multi-attention 130

heads. Refer to Appendix Section A.5 for more de- 131

tails. We train on both source → target and target 132

→ source direction. 133

3 Experiments 134

In order to evaluate our results in different resource 135

amount settings, we test our methods in English- 136

Chinese as well as English-Hausa. For English- 137

Chinese, we randomly select 3 million pairs of 138

sentences from MultiUN (Ziemski et al., 2016) as 139

training dataset in high-resource setting. To eval- 140

uate English-Chinese translation, we use WMT 141

newstest datasets from 2017-2020. For English- 142

Hausa, we combine available parallel corpus on 143

WMT-21 website6 including ParaCrawl (Bañón 144

et al., 2020), Wikititles, Khamenei corpus, and 145

English-Hausa Opus corpus (Tiedemann, 2012), in 146

total of 740K parallel sentences. For simulated low- 147

resource condition, we randomly sample 6K sen- 148

tences from English-Hausa training set. We eval- 149

uate English-Hausa translation on newsdev2021 150

and newstest2021. We treat the WMT newstest as 151

the out-of-domain datasets, and randomly select 5K 152

valid and 5K test sentences as in-domain evaluation 153

sets from each training dataset. 154

Other than evaluating translation results with 155

multi-BLEU metric, we also investigate the accu- 156

racy of the copy mechanism. We report the copy 157

accuracy for hypernym, entity, and entity transla- 158

tion whenever possible. Additionally, we calculate 159

the word translation accuracy by POS occurring 160

before and after the tagged entity to observe the ef- 161

fect of copying on the rest of the sentence. We use 162

en_core_web_sm and zh_core_web_sm in SpaCy 163

library for POS tagging. For Hausa, since there 164

is not an available POS tagger, we use alignment 165

file from FastAlign and project English POS to 166

corresponding words in Hausa sentence, following 167

Rasooli et al. (2021). 168

4 Results 169

4.1 English-Chinese (High-Resource) 170

Tagging Improves Adequacy and Accuracy 171

We can see a clear improvement of around 1-4 172

5https://github.com/facebookresearch/xlm
6https://www.statmt.org/wmt21/translation-task.html
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Base. myanmar was a highly civilized country.
Tag <start> myanmar <end> was a highly civilized

country.
Add <start> myanmar <mid> state <end> was a

highly civilized country.
Trans <start> myanmar <mid>缅甸 <end> was a

highly civilized country.
TransA <start>myanmar <mid1>缅甸<mid2>state

<end> was a highly civilized country.
TransR <start> state <mid>缅甸 <end> was a highly

civilized country.
HypA myanmar state was a highly civilized country.

Table 1: Tagging Templates for English-Chinese source
sentence. NE (in red) are replaced with templates (un-
derlined), NE hypernyms are in blue and NE translations
are in green. Best viewed in color.

Method In-Domain Out-of-Domain

Baseline (all) 33.30 ± 0.63 11.09 ± 0.78
- (tag-only) 34.64 ± 2.1 12.21 ± 0.81

Tag (all) 33.77 ± 0.24 11.26 ± 0.91
- (tag-only) 36.07 ± 0.28 12.89 ± 1.34
Add (all) 33.69 ± 0.21 11.29 ± 0.81

- (tag-only) 35.77 ± 0.36 12.89 ± 1.11
Trans (all) 33.77 ± 0.04 11.25 ± 0.90
- (tag-only) 35.80 ± 0.48 12.97 ± 1.00
TransA (all) 33.35 ± 0.28 11.32 ± 0.83
- (tag-only) 35.37 ± 0.65 13.03 ± 0.98
TransR (all) 33.84 ± 0.29 11.18 ± 0.87
- (tag-only) 35.73 ± 0.61 12.75 ± 0.88
HypA (all) 34.39 ± 0.14 11.48 ± 0.87
- (tag-only) 37.54 ± 0.07 13.69 ± 0.95

Table 2: Average and standard deviation of BLEU scores
across evaluation sets for all tagging methods in English-
Chinese. Evaluation is performed on whole dataset (all)
and on tagged sentences only (tag-only). Best perfor-
mances in tag-only subsets are in bold. Best perfor-
mances in all datasets are underscored. See results for
individual datasets in Appendix Table 7

BLEU point on average (Table 2). The improve-173

ments are much larger when we evaluate it on tag-174

only subsets. HypA outperforms other methods175

consistently. Similar trend is observed in Chinese-176

English Translation (see Appendix Table 8).177

When looking at translation accuracy (Table 3)178

of the tagged NEs, we see about 35 points im-179

provement in translation accuracy. This is ex-180

pected because copying is much easier than trans-181

lating. HypA method, while performing better in182

BLEU, does not improve NE translation accuracy183

as much because it does not enforce "hard" copy-184

ing. Tag method performs best in translating NEs185

with 91.92% accuracy (assuming perfect phrase186

translation table).187

Method Entity Translation Hypernym

Baseline - 55.38 -
Tag 91.92 - -
Add 91.02 - 92.04

Trans 92.12 90.99 -
TransA 91.83 91.27 92.97
TransR - 89.12 91.66
HypA - 55.76 58.69

Table 3: Copy accuracy (percentage) mean for different
parts of the tag in English-Chinese across evaluation sets.
We equate correct NE translation in baseline to correct
translation copy. The hypernym translation accuracy
for HypA is approximated with the word translation
accuracy after the entity.

Effects of Copy Mechanism on Translation As 188

seen in Figure 1, copying provides benefits and 189

downfalls. It improves translation accuracy for 190

POSs which serve as structural syntactic signals in 191

sentences such as conjunctions, particles, punctua- 192

tion while decreasing accuracy for POSs contain- 193

ing more semantic information that require more 194

context to translate (verb, adjective, adverb). Quali- 195

tatively, this is equivalent to producing translations 196

with similar sentence structures to source sentence 197

(Appendix Table 10). Since copying is a direct 198

signal for models to ignore context and translate 199

word by word for the entity, it is not surprising to 200

see such polarizing effects on the rest of the sen- 201

tences. Unexpectedly, despite being a "soft" copy 202

signal, HypA shows similar effects. We suspect 203

that the repeating semantic of appending hyper- 204

nyms after NEs yields similar signal for models to 205

follow word-by-word order sensitive translation. 206

Similarly in Table 2, we do not see significant 207

BLEU improvement of tagging methods that con- 208

tain hypernym (Add, TransA, TransR) over those 209

that do not (Tag, Trans). We believe, by the same 210

mechanism described above, the copy mechanism 211

shifts models’ priority from using the semantics of 212

the hypernym to simply copying the word. 213

4.2 English-Hausa (Medium-Resource) 214

Full English-Hausa yields similar results as 215

English-Chinese, except that the improvements in 216

BLEU from tagged models over baseline become 217

marginal (Appendix Table 11). HypA and Tag per- 218

forms best in-domain while baseline performs best 219

out-of-domain. Additionally, copy accuracy de- 220

creases from 90% to 80%, but remains 20% higher 221

over baseline accuracy (Appendix Table 12). Tag 222

still outperforms other methods in copy accuracy. 223
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Figure 1: POS translation accuracy (percentage) difference against baseline before (_pre) and after (_post) the
tagged entity in English-Chinese. * indicates a statistical significant difference against baseline with p-value < 0.05

4.3 6K English-Hausa (Low-Resource)224

Method In-Domain Out-of-Domain

Baseline 7.61 ± 0.21 3.80 ± 3.37
- (tag-only) 7.21 ± 0.85 3.40 ± 2.87

Tag (all) 7.39 ± 0.14 3.67 ± 3.12
- (tag-only) 6.69 ± 0.79 3.39 ± 3.13
Trans (all) 7.45 ± 0.08 3.91 ± 3.44
- (tag-only) 6.99 ± 0.92 3.60 ± 3.44
HypA (all) 7.53 ± 0.25 3.52 ± 2.88
- (tag-only) 7.82 ± 1.40 2.55 ± 1.89

Table 4: BLEU scores for 6K English-Hausa data. Only
top performing methods are included.

Method entity translation hypernym

Baseline - 42.44 -
Tag 30.72↓ - -
Add 34.48↓ - 55.66

Trans 37.81 35.69↓ -
TransA 39.01 37.53 55.91
TransR - 30.61↓ 55.39
HypA - 44.77↑ 48.32

Table 5: Copy accuracy (mean) in 6K English-Hausa
dataset models across evaluation sets. Arrows indicate
statistical difference from baseline with p-value < 0.05.

In low-resource setting, tagging does not im-225

prove performance (Table 4). The NE copy accu-226

racy drops below baseline. Interestingly, hyper-227

nyms are more consistently copied to the target228

side (Table 5). We believe this is due to hyper-229

nyms having higher term frequency in the training230

data. Compared to baseline, only HypA method231

is able to improve NE translation accuracy and ob-232

tain higher BLEU for tag-only subsets in-domain233

(Table 4). Despite not having as high of hypernym234

copy accuracy, the model is able to use hypernym235

as context, and improve NE translation.236

5 Discussion237

Copy mechanism in low-resource? As results238

show, copy mechanism is able to increase NE trans-239

lation accuracy in both high and medium-resource 240

but not in low-resource condition. Learning to copy 241

requires significant amount of data. Once tags are 242

recognized, the semantics of the content within are 243

ignored. Translations become structurally similar 244

to source sentence, while focusing less on seman- 245

tics of words that depend on the context. Without 246

enough data, "softer" methods of augmentation 247

(HypA or extra embedding used by (Moussallem 248

et al., 2019)) that incorporates hypernym in trans- 249

lation is a better choice. Work by (Currey et al., 250

2017), which copies target sentences to source side 251

to create additional bitext, might be interesting al- 252

ternatives to encourage copying. 253

Low-Resource translation affected by term fre- 254

quency. As suggested by Table 5, before copy 255

mechanism generalizes, models are more likely 256

to copy words that occur more frequently (hy- 257

pernyms). This points to potential directions in 258

low-resource NLP in using hypernyms to boot- 259

strap performance of other words or sentences. 260

Data augmentation techniques like randomly in- 261

serting/replacing NEs with hypernyms could be po- 262

tential ways of adding data points in low-resource 263

settings and better generalize embedding space. 264

6 Conclusion 265

In our paper, we analyzed the tag-and-copy mecha- 266

nism under different resource conditions. We found 267

that learning to copy requires significant amount 268

of resource which is often not achievable in low- 269

resource languages. Additionally, we found that 270

copying can induce polarizing effects on translat- 271

ing different POSs. It discouraged models from us- 272

ing contextual information, but provide "structural 273

supervision". In low-resource setting, we found 274

correlation between term frequency and copying 275

accuracy. Our proposed method of appending hy- 276

pernym after NEs was able to encourage better 277

translation in both low and high-resource setting. 278
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A Appendix433

A.1 Text Preprocessing434

We follow default preprocessing steps in XLM435

repo. For English and Hausa, we use Moses tok-436

enizer.perl script, after which we lower-case letters437

and remove accents. For Chinese, we use Moses438

tokenizer_PTB.perl script.439

A.2 Special Tags in XLM Model 440

During tagging, in order to prevent creating addi- 441

tional vocabulary, we use four of the special to- 442

kens (i.e. <special2>, <special3>, <special4>, 443

<special5>), that already exist in pretrained XLM- 444

R model vocab, instead of actual <start>, <end>, 445

etc. 446

A.3 Tagging Statistics 447

Language Pair Train Size Tag Size

English-Hausa 6 K 1.5 K (25.6%)
English-Hausa 746 K 191 K (25.6%)

English-Chinese 2,990 K 816 K (27.3%)

Table 6: Tagging Statistics in Training Sets

A.4 Entity Linking 448

During experimentation, we have also tried more 449

recent Entity linking systems such as BLINK (Li 450

et al., 2020) 7. In reality, we find BLINK tagging 451

less entities as well as taking a longer time. We 452

presume this is because BLINK expects normally- 453

cased sentences while our entity linking occurs 454

after input sentences are lower-cased. 455

A.5 Model Training Details 456

In all of our experiments, we use the pretrained 457

XLM-R BPE vocab with 200,000 tokens, trained 458

on 100 lanugages 8. We use Adam optimizer, learn- 459

ing rate 0.0001, epoch size 300000, dropout rate 460

of 0.1. We fix number of tokens in a batch to be 461

around 2000. To increase batch size with GPU 462

memory constraint, we use gradient accumulation 463

for every four batches to increase effective batch 464

size. For low-resource condition with 6K train- 465

ing sentences (see Section 3), we change epoch 466

size to 120,000, dropout of 0.2, and enforce mini- 467

mum sentence length to 10 words. All models are 468

trained on NVIDIA V100 GPUs. Each English- 469

Chinese model takes about 5 days to train (1 GPU 470

time). Each English-Hausa model takes about 3 471

days and each English-Hausa 6K model takes about 472

15 hours. 473
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Method subset valid test nd2017 nt2017 nt2018 nt2019 nt2020 ntB2020

Baseline all 32.85 33.75 11.23 10.77 11.02 10.20 12.54 10.78
Baseline tag-only 33.15 36.12 13.22 12.69 12.13 11.30 12.69 11.20

Tag all 33.59 33.94 11.20 11.38 11.34 10.14 12.85 10.66
Tag tag-only 35.86 36.27 13.72 14.20 13.18 11.16 13.85 11.25
Add all 33.53 33.84 11.15 11.58 11.19 10.36 12.71 10.72
Add tag-only 35.51 36.03 13.25 14.48 12.88 12.17 13.33 11.20

Trans all 33.74 33.80 11.23 11.10 10.72 10.73 13.04 10.68
Trans tag-only 35.45 36.14 13.46 13.97 12.40 12.34 14.04 11.59

TransA all 33.14 33.55 11.10 11.33 11.28 10.47 12.89 10.85
TransA tag-only 34.90 35.83 13.50 13.72 13.54 12.02 13.84 11.53
TransR all 33.63 34.05 11.10 11.08 11.18 10.31 12.82 10.61
TransR tag-only 35.29 36.16 13.32 13.65 12.63 11.85 13.46 11.56
HypA all 34.29 34.39 11.31 11.51 11.17 10.73 13.18 10.99
HypA tag-only 37.49 37.59 14.67 14.73 13.49 13.28 13.76 12.18

Table 7: BLEU scores across evaluation sets for all tagging methods in English-Chinese. Evaluation is performed on
whole dataset and on tagged sentences only. Best performances in tagged subset are in bold. Best performances in all
datasets are underscored. Each point represents a single data point. (nd2017=newsdev2017, nt2017=newstest2017,
etc)

A.6 English-Chinese Full Results474

A.7 Chinese-English Translation Results475

A.8 Copy Efficiency In / Out of Domain476

In English-Chinese translation results, we can ob-477

serve that the copy accuracy for the tags is similar478

across different set regardless of the domain (Ta-479

ble 9), which is a good sign considering the drop480

in BLEU across the out-of-domain datasets. This481

indicate copy mechanism is a valuable method in482

translation avenues where entity translation accu-483

racy is more valuable than adequacy (i.e. medical,484

scientific domain), confirming with results in Pham485

et al. (2018) and Dinu et al. (2019).486

A.9 English-Hausa POS Accuracy Qualitative487

Analysis488

A.10 English-Hausa 6K Translation Results489

7https://github.com/facebookresearch/BLINK
8See https://github.com/facebookresearch/XLMthe-17-

and-100-languages for language details
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Method subset valid test nd2017 nt2017 nt2018 nt2019 nt2020 ntB2020

Baseline all 38.46 42.33 12.06 12.74 13 10.37 12.13 11.65
Baseline tag-only 43.28 44.87 13.01 13.81 14.16 11 12.88 12.47

Tag all 41.47 42.56 12.53 12.76 13.06 10.55 12.48 11.84
Tag tag-only 44.01 45.13 14.51 13.87 14.57 11.94 13.43 13.17
Add all 41.42 42.37 12.76 13.14 12.74 10.38 12.46 11.83
Add tag-only 43.82 44.86 14.73 14.11 14.33 11.54 13.67 13.26

Trans all 41.31 42.42 12.35 13 13.17 10.42 12.21 11.61
Trans tag-only 43.4 44.8 13.84 14.26 14.96 12.14 13.26 13.02

TransA all 41.1 42.17 12.76 13.21 13.13 10.66 12.07 11.52
TransA tag-only 42.99 44.39 14.3 14.69 14.84 12.24 13.12 12.72
TransR all 41.21 42.28 12.8 13.03 12.88 10.75 12.52 11.81
TransR tag-only 43.49 44.75 15.03 14.26 14.69 12.26 13.39 12.82
HypA all 41.84 42.99 12.47 12.98 13.29 10.48 12.2 11.68
HypA tag-only 45.32 46.08 14.76 14.55 15.07 12.62 13.18 13.23

Table 8: BLEU scores across evaluation sets for all tagging methods in Chinese-English. There is a consistent 0.5-2
point improvement with tagged methods over baseline. Each point represents a single data point.

Valid Test nd2017 nt2017

H 91.98 90.92 94.88 97.19
E 91.84 90.5 92.79 91.8
T 91.91 90.15 93.17 93.91

nt2018 nt2019 nt2020 ntB2020

H 94.45 94.16 88.48 91.73
E 93.76 93.67 88.02 92.27
T 92.37 92.94 86.41 89.33

Table 9: Copy Accuracy of TransA model across differ-
ent in and out-of-domain evaluation datasets. Each point
represents a single data point. H=Hypernym, E=Entity,
T=Entity translation
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Label in the gambia ’s interim paper , it was noted that major factors in poverty among rural
women include their predominance in subsistence agriculture , where they have less access
than men to mechanized technologies , and the fact that , in addition to farming , they
work longer hours than men carrying out household tasks .

Baseline the interim document of the gambia indicated that rural women ’s poverty was mainly due
to their livelihood agriculture , which was less skilled than men ; and that they were more
time spent than men to run their household than men , in addition to their work .

Tag the <special2> gambia <special5> interim paper indicated that the main cause of poverty
among rural women was their main livelihood agriculture , less access to mechanized
technologies than men ; and that in addition to farming , they were more time-consuming
than men .

Add the <special2> gambia <special3> country <special5> ’s interim paper noted that the
main causes of poverty among rural women were their primary work in subsistence
agriculture , more than men ’s access to mechanical techniques , and that they would have
more time than men to take their household roles in addition to their farm .

Trans the <special2> gambia <special3>冈比亚 <special5> ’s provisional document noted that
the main causes of poverty among rural women are their primary subsistence agriculture ,
less than men ’s access to mechanized technologies , and that in addition to their farm ,
they are more time than men to operate household .

TransA in the <special2> gambia <special3>冈比亚 <special4> country <special5> ’s interim
paper , it was noted that major factors in poverty among rural women include their predom-
inance in subsistence agriculture , where they have less access than men to mechanized
technologies , and the fact that , in addition to farming , they work longer hours than men
carrying out household tasks .

TransR the provisional document of the <special2> country <special3>冈比亚 <special5> indi-
cates that the main causes of poverty among rural women are their predominance in
livelihood agriculture , less access to mechanized technologies than men , and that they
are more time than men to take up their housework in addition to their agricultural work .

HypA the interim document of the gambia country indicated that the main reason for poverty
among rural women was their predominant livelihood farming , less than the mechanized
technique of access to men ; and that they were also taking more time than men to operate
their household tasks .

Table 10: Translation example before post-translation tag removal. In Chinese-English translation setting, we
compare all model translation results with ground truth English sentence. In all tagging methods, models tend to
produce more similar sentence structures due to similar syntactic word choices. Given fixed sentence structures,
there is less emphasis on translating the rest of the words that contain more semantic variations (verbs, adjectives,
adverbs, etc.). NE (in red) are replaced with templates (underlined), NE hypernyms are in blue and NE translations
are in green. Best viewed in color.
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Method valid test nd2021 nt2021

Base(all) 32.94 32.89 11.31 21.62
- (tag-only) 35.35 37.12 11.50 23.18

Tag(all) 33.17 32.99 10.77 21.84
- (tag) 35.91 37.28 11.86 23.13

Add (all) 32.25 32.62 11.16 21.42
- (tag-only) 34.58 36.44 12.07 22.54
Trans(all) 32.27 32.29 10.85 21.56

- (tag-only) 35.45 36.14 12.01 22.71
TransA 32.22 32.3 10.58 21.38

- (tag-only) 33.88 35.94 11.33 22.56
TransR 32.65 32.77 11.18 21.74

- (tag-only) 34.74 36.73 12.38 22.71
HypA(all) 33.02 33.00 9.59 20.24
- (tag-only) 35.89 37.39 8.12 15.42

Table 11: BLEU scores with English-Hausa full data.
Each point represents a single data point.

Method entity translation hypernym

Tag 81.93 - -
Add 79.16 - 79.34

Trans 82.10 81.30 -
TransR - 80.99 81.86
TransA 80.87 80.23 80.90
HypA - 61.00 64.29

Baseline - 59.56 -

Table 12: Copy accuracy mean with English-Hausa full
data. Aggregated across all evaluation datasets.

Method valid test nd2021 nt2021

Base (all) 7.75 7.46 1.41 6.18
- (tag-only) 6.61 7.81 1.37 5.43

Tag (all) 7.49 7.29 1.46 5.87
- (tag-only) 6.13 7.25 1.18 5.6
Add (all) 7.59 7.52 1.38 6.29

- (tag-only) 6.19 7.61 1.25 5.48
Trans (all) 7.51 7.39 1.48 6.34
- (tag-only) 6.34 7.64 1.16 6.03
TransA (all) 7.14 7.12 1.35 6.13
- (tag-only) 5.86 7.3 1.19 5.56
TransR (all) 7.35 7.32 1.4 6.5
- (tag-only) 5.73 7.22 1.03 5.74
HypA (all) 7.71 7.35 1.48 5.55
- (tag-only) 6.83 8.18 1.21 3.88

Table 13: BLEU scores in 6K English-Hausa data for
all models across individual evaluation sets. Each point
represents a single data point. nd2021=newsdev2021,
nt2021=newstest2021
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