
CLGT: A Graph Transformer for Student Performance Prediction
in Collaborative Learning

Tianhao Peng1,2, Yu Liang3*, Wenjun Wu1,4, Jian Ren1,2, Zhao Pengrui1,2, Yanjun Pu1,2

1State Key Laboratory of Software Development Environment, Beihang University
2School of Computer Science and Engineering, Beihang University

3Beijing Engineering Research Center for IoT Software and Systems, Beijing University of Technology
4Institute of Artificial Intelligence, Beihang University

{pengtianhao,wwj09315,renjian,zhaopengrui,buaapyj}@buaa.edu.cn, yuliang@bjut.edu.cn

Abstract

Modeling and predicting the performance of students in col-
laborative learning paradigms is an important task. Most of
the research presented in literature regarding collaborative
learning focuses on the discussion forums and social learning
networks. There are only a few works that investigate how
students interact with each other in team projects and how
such interactions affect their academic performance. In order
to bridge this gap, we choose a software engineering course
as the study subject. The students who participate in a soft-
ware engineering course are required to team up and complete
a software project together. In this work, we construct an in-
teraction graph based on the activities of students grouped in
various teams. Based on this student interaction graph, we
present an extended graph transformer framework for col-
laborative learning (CLGT) for evaluating and predicting the
performance of students. Moreover, the proposed CLGT con-
tains an interpretation module that explains the prediction re-
sults and visualizes the student interaction patterns. The ex-
perimental results confirm that the proposed CLGT outper-
forms the baseline models in terms of performing predictions
based on the real-world datasets. Moreover, the proposed
CLGT differentiates the students with poor performance in
the collaborative learning paradigm and gives teachers early
warnings, so that appropriate assistance can be provided.

Introduction
In modern world, the collaborative learning (CL) is a preva-
lent learning method. In a CL environment, the students
of different calibers and intellectual levels work together in
teams and engage in a common task (Laal and Laal 2012).
The process of modeling and predicting the performance of
students is an important task in CL. Software engineering
(SE) is an educational program that combines theory and
practice. The practical teaching forms the core of SE pro-
gram. As the practical teaching includes considerable CL,
we choose SE as the subject in this work.

The SE courses often incorporate team-based collabora-
tive projects that are designed to mimic the professional
software development tasks. These tasks are often more

*Corresponding author
Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

complex as compared to individual coding exercises imple-
mented in other programming classes. In these tasks, each
student in the study group needs to participate and work
together on a medium scale software project following the
classic life cycle of SE, following requirement specifica-
tions, architectural design, and coding. The final score of
each student depends on their contribution in the project and
the quality of the final software artifacts delivered by the
team. In order to accurately and efficiently evaluate the aca-
demic performance of each student in a team project, the
instructor needs an intelligent educational tool for analyzing
the process of every project by mining the students’ behavior
data, especially the interaction behaviors.

However, it remains a challenge for the instructors in the
field of SE to score the team members by considering their
individual contributions in the projects. This is mainly due
to the difficulty in capturing and quantifying the amount
of individual effort and work (Parizi, Spoletini, and Singh
2018). A typical solution is to adopt either peer evalua-
tion or assessing the team as a whole. However, both ap-
proaches can be inaccurate and prejudiced, resulting in an
unfair assessment. Currently, with the introduction of on-
line CL platforms, such as GitHub and GitLab, it is possi-
ble to collect the behavioral data of students, such as source
code submissions and review postings. The availability of
online behavior data enables the researchers to apply the
machine-learning algorithms for CL (Olsen, Aleven, and
Rummel 2015; Yee-King, Grimalt-Reynes, and d’Inverno
2016; Ekuban et al. 2020; Yee-King and d’Inverno 2016).
However, these methods are mostly developed based on the
classic machine learning models that choose the activity fre-
quency of students as input features. Such coarse-granular
features are unable to capture the rich spatial and temporal
information embedded in the interaction of different team
members, thus only presenting a limited value to the instruc-
tors.

The CL data contains interactive activities with the graph
structured features, where the nodes represent the students
and the edges between two students represent the interac-
tions between them. There are often different kinds of in-
teractions among the students, such as submitting docu-
ments and source codes, as well as posting reviews and
issues. Each kind of edge has multiple attributes and has



a potential impact on the final grade of students. Thus,
the graph-structured interactive behaviors are formulated as
a weighted heterogeneous graph, which contains not only
multiple types of edges, but also the additional informa-
tion features regarding each type of edge. In order to effec-
tively exploit the rich edge feature information, in this work,
we propose a method for processing the CL data and an
extended Graph Transformer framework for Collaborative
Learning (CLGT). We implement the proposed model and
compare its performance with Ada Boost (Freund and
Schapire 1997), relational graph convolutional network (R-
GCN) (Schlichtkrull et al. 2018), graph transformer network
(GTN) (Yun et al. 2019) and Graph Trans (Dwivedi and
Bresson 2020) based on the same dataset for predicting the
performance of the students. The experimental results show
that the proposed model outperforms four other models.

In addition to performance prediction, an instructor also
needs intelligent tutoring tools to infer the latent impact
of student interactions on the process of collaborative soft-
ware development. For instance, the online questioning-
answering and code submissions are recorded on the CL
platform, however, the implicit activities, such as getting in-
spiration from reading other’s documents and codes is dif-
ficult to measure. Moreover, it is noteworthy that most of
the deep learning models are inherently designed as black
boxes, which are not able to provide good explanations re-
garding their reasoning mechanisms. Both factors, including
the unobserved activities and the nature of the model makes
it difficult to present the explainable prediction results to the
instructors of SE courses. Therefore, in this work, we build
an interpretation model inspired by PGM-Explainer (Vu and
Thai 2020) to explain the prediction results of the proposed
CLGT model. Based on the results of the interpretation
model, we are able to analyze whether the students influence
their peers during the learning process and to what extent.

The major contributions of this work are summarized be-
low.
1. In this work, we extend the graph transformer model to

develop the CLGT model for accurately predicting and
assessing the performance of students in a project-based
CL environment.

2. We build an interpretation module for explaining that
which part of the graph structure data is responsible for
the prediction results of the proposed CLGT framework.

3. To facilitate further research, we publish our dataset of
students CL activities generated from an online project-
based SE course. The relevant code and dataset have been
published 1.

Related Works
There are some works presented in literature for measur-
ing the contribution of each individual in the projects re-
lated to software engineering courses. The log data and ac-
tivity records available in version control systems are used
in collaborative software development (Arcelli Fontana and
Raibulet 2017; Loeliger and McCullough 2012; Clifton,

1https://github.com/BUAA-TianhaoPeng/CLGT/

Kaczmarczyk, and Mrozek 2007; Reid and Wilson 2005),
thus enabling the researchers to gather data regarding the
computing contribution metrics. Most of the methods pre-
sented in literature (Parizi, Spoletini, and Singh 2018; Buf-
fardi 2020) utilize classic statistics and regression algo-
rithms for assessing the contribution of a member based on
the activity ratio among the metrics of team members, in-
cluding the number of commits, pull requests, and the lines
of code changed by this member. However, these methods
fail to consider and reflect the interactive activities that oc-
cur during the software development process. Fu et al. (Fu
et al. 2021) constructed a developer interaction graph based
on the data obtained from GitHub (a git repository man-
ager) for identifying the key developers bridging messages
across the GitHub communities. This method only studies
the structural properties of large-scale interaction networks
in the professional software development communities with-
out any attention to the topics of small- or medium-sized stu-
dent interaction networks in collaborative learning. To the
best of our knowledge, the proposed work is a first attempt
that focuses on predicting the performance of students based
on their interactive graph in software engineering courses.

It is noteworthy that most of the research efforts regard-
ing the learning outcome prediction have focused on model-
ing the performance of students based on individual learn-
ing process (Corbett and Anderson 1994; Pavlik Jr, Cen,
and Koedinger 2009; Piech et al. 2015; Pu et al. 2019;
Liang et al. 2022). However, the individual analytic mod-
els cannot be applied directly in collaborative learning en-
vironments since they do not consider the influence of the
students within a team or between different teams. There
are few works that make an effort to extend the models
designed specifically for individual learning to team-based
learning scenarios. Olsen et al. (Olsen, Aleven, and Rummel
2015) extended the additive factors model (Pavlik Jr, Cen,
and Koedinger 2009) by using cooperative features to pre-
dict the performance of students in a collaborative learning
environment. Yee-King et al. (Yee-King, Grimalt-Reynes,
and d’Inverno 2016) employed K-nearest neighbour (KNN)
model to make predictions on the grades of students in a
collaborative learning environment. Ekuban et al. (Ekuban
et al. 2020) evaluated multiple machine learning models, in-
cluding decision tree, random forest, extra trees, Ada Boost,
and gradient boosting to predict the performance of students
working in a team based on student interactions. However,
the models discussed above are shallow and have a limited
performance in terms of handling large scale datasets and
modeling complex graph-structured data based on spatio-
temporal features.

The graph neural network (GNN) is a suitable frame-
work for modeling complex interactions. The applications
of GNN are widespread, ranging from image classifica-
tion and video processing to speech recognition and natu-
ral language processing (Wu et al. 2020). However, there
are few research works that use GNN for modeling stu-
dent interactions in a collaborative learning environment.
The R-GCN (Schlichtkrull et al. 2018) proposes relation-
specific transformation in the message passing steps to deal
with various relations in edges. GTN (Yun et al. 2019) pro-



Writing documents within teams
Week 1

Reviewing projects of other teams
Week 3

Writing codes within teams
Week 2

Reviewing projects of other teams
Week 16

Figure 1: The flowchart of the three cycle phases of the SE course. During the documentation and coding phase, the students
interact with other members of their teams, and during the reviewing phase, the integration occurs between the teams as well.
As shown in the figure, the interaction graphs within and between the teams may change on weekly basis.

poses a novel graph transformer layer to identify the con-
nections between unconnected nodes that are closely related.
Graph Trans (Dwivedi and Bresson 2020) proposes an ele-
gant positional encoding strategy based on the eigenvectors
of the graph Laplacian to apply attention to neighbouring
nodes. However, these models cannot fully and efficiently
utilize the extra edge information of weighted heterogeneous
graphs in some datasets which contain not only multiple
types of edges, but also additional information features of
each type of edge.

Moreover, there has been little work devoted to explain-
ing collaborative learning activities with explainable mod-
els. Without reasoning the underlying mechanisms behind
the predictions, deep models cannot be fully used in col-
laborative learning. PGM-Explainer (Vu and Thai 2020) is
an explanation method that explains the predictions of any
GNN in an interpretable manner. It has great performance in
interpreting graph-structured data, including node prediction
tasks.

Problem Statement
In this work, we aim to model the performance of students
during the implementation of SE projects for exploring their
interactions with each other team members, and the influ-
ence of these interactions on the academic performance of
students in a CL environment.

The goal of any software engineering course is to en-
able the students to master a variety of software engineer-
ing skills. The learning activities designed to achieve these
learning goals are divided into a three-phase cycle, includ-
ing writing documents, coding, and reviewing projects of
other teams, as presented in Fig. 1. During the documenta-
tion phase, the students are required to submit various files.
Each change in these files can be tracked by using a ver-
sion control system. During the coding phase, the students
commit code on the course website. Finally, during the re-
viewing phase, the students review the documents and codes
of other teams and point out the problems by raising issues
on the course website. Each problem raised by students has
a degree rating, which indicates the severity of that problem.
When students commit the revised documents or code in the
repository, the rest of the team can view these changes and
continue their development by considering these changes.
Therefore, we assume that the commit behavior affects all
the other members of the team. When a student raises a prob-

lem on a project of another team by creating an issue, all the
members of that team have to work together to fix the project
based on the raised issue. Therefore, we believe that the be-
havior of issue affects all the members of the team.

As presented in Fig. 1, the collaborative learning activ-
ities have peculiar spatial and temporal characteristics. In
terms of spatial characteristics, the interaction activities re-
flect the structural influence relationships among the stu-
dents in the course. In terms of temporal characteristics, the
interaction graph keeps changing as the course progresses.
The machine learning models, such as Ada Boost, KNN,
and decision trees, currently used in collaborative learn-
ing research (Olsen, Aleven, and Rummel 2015; Pavlik Jr,
Cen, and Koedinger 2009; Yee-King, Grimalt-Reynes, and
d’Inverno 2016; Ekuban et al. 2020) are unable to deal with
such complex spatio-temporal data. The GNNs are deep
learning models that have the ability to capture the graph de-
pendencies based on message passing between graph nodes.
The transformers have the ability to forecast time series
data (Min et al. 2022). In this work, we combine GNN and
Transformer models to make full use of the spatio-temporal
features available in the data. We propose a new model
CLGT based on Graph Trans (Dwivedi and Bresson 2020)
for modeling the interactions between the students partici-
pating in any software engineering course.

Interaction Graph Generation
It is necessary to convert the data collected from the version
control system into a format that is usable by the neural net-
works. The students use a CL platform as a repository for
code and document projects. The CL platform records the
details regarding each change a student makes in any file.
Therefore, the nature and place of the change are known.
The data type of the interaction graph can be generated
based on the recorded information. In this work, we require a
definition that can validate if a construct is an instance of an
interaction graph. We identify three necessary and sufficient
conditions for interaction graphs.

1. An interaction graph is described by a graph G = (V, E),
where V denotes a set of vertices and E denotes a set of
edges such that E ∈ V × V . All the edges are directed
from one vertex to another. This indicates that one vertex
interacts with other vertices.

2. Each vertex V represents a student, and each student is



𝒗𝒊
𝒍{𝒆𝒊𝒋

𝒍 }{𝒘𝒊𝒋
𝒍 }

𝑽𝒌,𝒍𝑬𝒌,𝒍𝑬𝒘𝒆𝒊𝒈𝒉𝒕
𝒌,𝒍

𝑸𝒌,𝒍 𝑲𝒌,𝒍

Linear projection layer

Scaling

Product

Sum

Concat

Norm & Residual

𝒉𝒊𝒋
𝒌,𝒍

෡𝒉𝒊𝒋
𝒌,𝒍

{𝒘𝒊𝒋
𝒍+𝟏} {𝒆𝒊𝒋

𝒍+𝟏} 𝒗𝒊
𝒍+𝟏

softmax

× K

heads

× L

layers

{𝒗𝒋
𝒍}

Data Generation

Variable Selection

Structure Learning

Perturbed 

Graph

Prediction 

Graph

Explanation

Figure 2: The architecture for the CLGT framework, including the prediction module (Left) and the explainer module (Right).

the part of a team.
3. Edges E represents the interactions between different

vertexes V . There are two types of edges, including inter-
actions between students within the same team and inter-
actions between different teams. Additionally, each edge
type has different weights, depicting the degree of influ-
ence of the interaction activity.

Since there are multiple types of edges in an interaction
graph and each edge type has multiple types of attributes, an
interaction graph is a weighted heterogeneous graph.

Interaction Degree Definitions
In order to accurately depict the interaction activities be-
tween the students, we consider the revised lines in the docu-
ments and the codes. The issue depict the degree of influence
of an interaction activity. The definition of the interaction
degree of documents, codes, and issues is as follows.

1. For the interaction activities of document revision adoc,
the version control system record the number of lines
added or deleted in the document numdoc, which indicates
the degree of influence of the revision activity. Since the
document revision activity is available to the students
within the same team, we normalize the number of lines
numdoc between all commits performed in one week, as
follows:

I(ai
doc) =

numi
doc∑n

k=0 numk
doc

where I(ai
doc) indicates the influence of the document re-

vision activity ai
doc.

2. As the interaction activities regarding code revision acode
are available to the students within the same team, we
process the data similar to the previous step. We normal-
ize the number of lines numcode between all the commits
performed in one week, as follows:

I(ai
code) =

numi
code∑n

k=0 numk
code

where I(ai
code) denotes the influence of the code revision

activity ai
code.

3. For the interaction activities regarding the creation of is-
sues aissue, each issue records the severity of the problems
raised in the issue. We normalize the severity of the issues
numissue between all issues incorporated in one week, as
follows:

I(ai
issue) =

numi
issue∑n

k=0 numk
issue

where I(ai
issue) denotes the influence of the code revision

activity ai
issue.

Based on the normalized data of the document revision,
code revision, and issue related activities, we generate the
interaction matrix, which is used as the input of the model.

Interaction Matrix Generation
Once an interaction graph is generated based on the col-
lected commit records and issue data, it can be converted
into an interaction matrix. For a simple graph with vertex
set V = v1, · · · , vn, the interaction matrix A is a square ma-
trix of dimension n × n. The value of Ai j represents whether



vertex vi interacts with v j. Zero denotes that there is no in-
teraction, while a positive number indicates the influence of
the interaction. Since the interaction graph is directed, the
interaction matrix is asymmetric. Especially, the diagonal el-
ements of a matrix are zero, as the edges (cycles) from the
vertices pointing towards themselves are not allowed in the
interaction graphs.

Prediction Module
The proposed prediction module of CLGT framework is in-
spired by the Graph Trans (Dwivedi and Bresson 2020).It is
designed to effectively utilize the rich edge feature informa-
tion in collaborative learning. It is notable that original graph
trans model only considers heterogeneous graphs that con-
tain multiple types of edges and does not consider the case
where the weighted heterogeneous graph contains additional
information features regarding the type of each edge. For in-
stance, in our software engineering course dataset, the edges
represent different interactions, and each interaction activity
has a varying degree of influence. In order to address this
problem, we add a pipeline for the weighted edge features
based on the original model for making full use of edge
information available in the graph. Fig. 2 (Left) illustrates
the prediction module of CLGT framework. The prediction
module comprises an extra edge feature pipeline and an ex-
tra weighted edge feature pipeline to effectively utilize the
available edge information.

Given the interaction graph G = (V, E), we pass the input
node vi for each node i, edge features ei j and weighted edge
features wi j for each edge between node i and node j via a
linear projection layer to embed these to d−dimensional hid-
den features v0

i , e0
i j and w0

i j. After the input layer, the pipeline
propagates edge attributes from one layer to another, and the
layer update equations are as follows.

hk,ℓ
i j =

Qk,ℓvℓi · K
k,ℓvℓj

√
dk

 · Ek,ℓeℓi j · E
k,ℓ
weightw

ℓ
i j (1)

ĥk,ℓ
i j =

∑
j∈Ni

so f tmax(hk,ℓ
i j )Vk,ℓvℓj (2)

where Qk,ℓ,Kk,ℓ,Vk,ℓ ∈ Rdk×d are trainable parameter ma-
trices, k denotes the number of attention heads, Ni denotes
the neighbors of node i. The outputs of hk,ℓ

i j and ĥk,ℓ
i j in at-

tention heads are then concatenated and passed via residual
connection layers as follows.

vℓ+1
i = Fr(Fc(ĥk,ℓ

i j ) + vℓi ) (3)

eℓ+1
i = Fr(Fc(hk,ℓ

i j ) + eℓi ) (4)

wℓ+1
i = Fr(Fc(hk,ℓ

i j ) + wℓi ) (5)

where vℓ+1
i , e

ℓ+1
i ,w

ℓ+1
i denotes the output of ℓ layer and the

input of ℓ + 1 layer, Fc denotes the concat operation, Fr de-
notes the normalization and residual connection operation.

The task of the model is node classification, eℓi ,w
ℓ
i repre-

sent the intermediate results, and vℓi in each layer is passed
to a fully connected layer to compute the prediction scores.

Explainer Module
In order to understand the underlying mechanisms behind
the predictions, and present the explainable prediction re-
sults, we build an explainer module for the prediction
module. This explainer module is inspired by the PGM-
Explainer (Vu and Thai 2020) and elaborates the process
based on which the proposed CLGT makes predictions.
Moreover, it also shows the part of the graph structure data
that is responsible for the prediction results.

As presented in Fig. 2 (Right), the workflow of the ex-
plainer module can be roughly divided into three stages.

1. Data Generation The explainer module repeatedly per-
turbs the nodes in the original graph data and feeds the
perturbed graph data to the proposed CLGT for obtaining
the sampled data. This sample data contains node infor-
mation and prediction results.

2. Variable Selection Based on the sampled data, a pair-
wise dependency test is used to form an approximate
Markov blanket for the target node to reduce the com-
putational overhead and obtain all the potential statistics
of the target node.

3. Structure Learning The explainer module uses a hill-
climbing algorithm for maximizing the Bayesian infor-
mation criterion (BIC) score in order to obtain an ex-
planatory Bayesian network. The explainer module gen-
erates a weighted graph with the same number of nodes
as the original input graph. The edge shows the influence
of one node on the prediction result of the other node.

Experiments
Dataset
The object of this work include teams of students from a
software engineering graduate course conducted in Spring
2021. In this course, a GitLab-based website 2 is selected
to implement the CL platform. We aim to study the inter-
actions of students, when performing software engineering
projects assigned in a semester to explore the ways students
interact with each other in team projects and the effect of
such interactions on the academic performance of students
in a CL environment. The software engineering course lasted
16 weeks and comprised three different sessions, including
writing documents, writing code, and reviewing projects of
other teams. We acquire all the commits and issues avail-
able within the GitLab during the 16-week course. We obtain
4,903 commit records and 862 issues. Each commit records
the number of lines added or deleted from the documents
and code. Each issue records the severity of the problems
raised in the issue. Each week, the teacher classified stu-
dents’ grades into three categories (A, B, C) based on the
quality and quantity of documentation and code contributed
in the software engineering project.

Data Process
Based on the proposed method, the interaction graphs and
interaction matrices are easily generated. As the course

2https://gitlab.com/



(a) Visualization of the output of the explainer module (b) Subgraph of Fig. 3(a)

Figure 3: (a) presents the visualization of the output of the explainer module. The nodes represent the students, and the edges
represent the influence of students on each other. Different teams are denoted by different colors. The student 58 of team 8 is
specially marked with ✰, which is further analyzed in (b). (b) presents the visualization of part of the Fig. 3(a). Different colors
in the inner circle represent different teams, and the outer circular sector represents different students of the corresponding
teams. The proportion of the sector indicates the degree of influence of a team and its members on the middle student. The
larger the proportion, the greater the influence.

lasted for 16 weeks and the teacher graded each student
weekly, we divide the acquired data into 16 sections. In each
section, we generate an interaction graph and three corre-
sponding matrices, namely addition, deletion, and issue ma-
trices. The addition matrix (or the deletion matrix) considers
the members of the same team only and depict the influence
of adding (or deleting) documents and codes on the mem-
bers of the same team. The issue matrix considers the mem-
bers of different teams and represents the influence of issues
raised by one team on the members of other teams. Since the
number of lines of code and documentation in each commit
vary considerably, and there is a need for quantifying the
severity of raised issues, we divide them into three levels,
i.e., minor, moderate, and severe levels. After division, we
obtain 48 matrices, i.e., three matrices per week. Now, each
matrix consists of three types of elements, representing the
influence from one vertex to another.

The purpose of the proposed CLGT is node classification.
The labels of each node include the weekly and final grades
of the students in the published dataset. The weekly and final
grades of students are assigned by the teacher based on the
quality and quantity of documentation and code contributed
in the software engineering project.

Baselines and Experimental Setup
In the experiments, we compare the proposed CLGT with
Ada Boost and three state-of-the-art graph neural networks.
The CLGT, Ada Boost, R-GCN, GTN and Graph Trans are
constructed using Pytorch (Paszke et al. 2017) and scikit-
learn (Pedregosa et al. 2011). For Ada Boost model, we
use sklearn.ensemble.AdaBoostClassifier with 100 week es-
timators given the cumulative average number of GitLab
pushes per week, and the total number of lines of docu-

mentation and code added, deleted, and modified per week.
In the case of R-GCN and GTN models, the Adam opti-
mizer is used and the hyperparameters, including learning
rate, weight decay etc. are selected appropriately so that each
baseline yields its best performance. For the original graph
trans model and the proposed CLGT model, we use 10 graph
transformer layers, where each layer comprises 8 attention
heads and arbitrary hidden dimensions. Therefore, the total
number of trainable parameters is in the range of 588k and
855k. We use the learning rate decay strategy for training
the models. The training process is stopped when the learn-
ing rate reaches a value of 1 × 10−6.

Results and Discussion
Prediction Results
The experimental results are presented in Table 1. For the
sake of comparison, we implement the proposed CLGT
model, R-GCN, GTN, Graph Trans model and Ada Boost
on the same dataset we collected. In this work, the accuracy
(ACC), the F1-score and the average and standard deviation
of the area under the ROC curve (AUC) are used as eval-
uation metrics. The larger the AUC, F1-score or ACC, the
better the model’s prediction performance.

Experimental results show that CLGT model performs
better as compared to Ada Boost, R-GCN, GTN, and Graph
Trans model in terms of ACC, F1-score, and AUC. The out-
standing performance of the proposed model shows better
utilization of rich edge and weighted edge feature informa-
tion as compared to the baseline models. The proposed ar-
chitecture specifically ensures better utilization of datasets
that not only contain multiple types of edges, but also addi-
tional information features regarding the type of each edge.



team 1 team 2 team 3 team 4 team 5 team 6 team 7 team 8 team 9 team 10 team 11

stu1-6 stu7-13 stu14-19 stu20-27 stu42-48 stu49-55 stu56-61 stu62-69stu28-34 stu35-41 stu70-75

w
ee
k1
6

w
ee
k1

Figure 4: The horizontal axis represents all the 75 students in the course. The vertical axis represents the 16 weeks during which
the course is conducted. The shades of color represent the activeness of students in the course, with darker colors representing
more active students. Additionally, 75 students are divided into 11 teams, with each block in the figure representing a team.

Method ACC F1-score AUC

Ada Boost 41.53±1.30 29.36±1.82 48.81±1.05
R-GCN 64.81±2.13 52.64±1.83 76.54±2.60
GTN 73.37±2.32 62.79±2.25 78.84±1.12
Graph Trans 72.46±2.08 59.04±1.84 86.21±1.73

CLGT(ours) 73.92±1.78 66.75±2.15 90.57±1.88

Table 1: The prediction performances of the proposed
CLGT, Ada Boost, R-GCN, GTN, and Graph Trans model
based on the same dataset. The best results are highlighted.

Case Study and Visualization
In order to explore the explainability of the predicted results
obtained using the proposed CLGT model, we build an ex-
plainer module that generates a weighted graph. The edges
of this weighted graph represent the influence of students on
each other. The output of the weighted graph is visualized
(as presented in Fig. 3(a)) for performing intuitive analysis.

1. After considering a specific student, we explore which
students have the greatest influence on him or her. In
most cases, the teammates have a greater influence on the
students as compared to other team members. However,
we can also infer some information from the interpreta-
tion results that is not reflected directly in the original
interaction graph. We process and visualize the subgraph
of Fig. 3(a) in Fig. 3(b). The student 58 (in team 8) does
not interact with student 22 (in team 3). However, that
student indirectly affects student 58 in team 8 through the
interaction with students in team 9 (there are direct inter-
actions between team 3 and team 9). This shows that we
can explore potential relationships among different stu-
dents to further analyze the role of student behavior.

2. We explore how the influence of each student changes
during the course of 16 weeks. We process the data of
16-week course in order to visualize the influence of all
students in each week presented in Fig. 4. We find a high
correlation between the students’ influence and the teams
they belong to. Although some teams, e.g., team 10, do

not achieve the best grades, their overall influence is sig-
nificantly bigger. On the contrary, other teams, e.g., team
3, achieve better grades; however, their influence is not as
high as their grades. We think this may reflect the under-
lying characteristics of different teams, such as team 10
being more active, but the overall quality of the project
code is poor. On the other hand, team 3 showcases the
exactly opposite characteristics. These results enable the
course instructors to build better student profiles and per-
form accurate assessment based on the performance of
students working in teams.

Conclusions
In this work, we investigate how students interact with each
other in team projects and how such interactions affect the
academic performance of these students in the collabora-
tive learning paradigm. We choose one-semester software
engineering course to investigate and assess the collabora-
tive learning activities of students. We propose a method
for extracting the activity data from an in-house Gitlab plat-
form and constructing the interaction graph. Moreover, we
also introduce an extended graph transformer model named
CLGT for accurately predicting the performance of students.
We also build an interpretation model for explaining the pre-
diction results of the proposed CLGT model and analyze the
influence of each student on the teammates during the course
project. The experimental results confirm that the proposed
CLGT model outperforms the state-of-art models and pro-
vides good insights for the instructors to assess the learning
progress of students. Moreover, the proposed CLGT differ-
entiates the students with poor performance in collaborative
learning and gives the teachers early warnings, so that ap-
propriate assistance can be provided.

Acknowledgments
This work is supported in part by the Science and Tech-
nology Innovation 2030—“New Generation Artificial Intel-
ligence” Major Project (2018AAA0102300) and the State
Key Laboratory of Software Development Environment
(SKLSDE-2020ZX-01/2022KF-08/2022KF-10).



References
Arcelli Fontana, F.; and Raibulet, C. 2017. Students’ feed-
back in using GitHub in a project development for a software
engineering course. In Proceedings of the 2017 ACM Con-
ference on Innovation and Technology in Computer Science
Education, 380–380.
Buffardi, K. 2020. Assessing individual contributions to
software engineering projects with git logs and user stories.
In Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, 650–656.
Clifton, C.; Kaczmarczyk, L. C.; and Mrozek, M. 2007. Sub-
verting the fundamentals sequence: using version control to
enhance course management. ACM SIGCSE Bulletin, 39(1):
86–90.
Corbett, A. T.; and Anderson, J. R. 1994. Knowledge
tracing: Modeling the acquisition of procedural knowledge.
User modeling and user-adapted interaction, 4(4): 253–278.
Dwivedi, V. P.; and Bresson, X. 2020. A Generalization of
Transformer Networks to Graphs. CoRR, abs/2012.09699.
Ekuban, A. B.; Mikroyannidis, A.; Third, A.; and
Domingue, J. 2020. Using GitLab Interactions to Predict
Student Success When Working as Part of a Team. In Inter-
national Conference on Interactive Collaborative Learning,
127–138. Springer.
Freund, Y.; and Schapire, R. E. 1997. A Decision-Theoretic
Generalization of On-Line Learning and an Application to
Boosting. J. Comput. Syst. Sci., 55(1): 119–139.
Fu, E.; Zhuang, Y.; Zhang, J.; Zhang, J.; and Chen, Y. 2021.
Understanding the User Interactions on GitHub: A Social
Network Perspective. In 2021 IEEE 24th International Con-
ference on Computer Supported Cooperative Work in De-
sign (CSCWD), 1148–1153. IEEE.
Laal, M.; and Laal, M. 2012. Collaborative learning: what is
it? Procedia-Social and Behavioral Sciences, 31: 491–495.
Liang, Y.; Peng, T.; Pu, Y.; and Wu, W. 2022. HELP-DKT:
an interpretable cognitive model of how students learn pro-
gramming based on deep knowledge tracing. Scientific Re-
ports, 12(1): 1–11.
Loeliger, J.; and McCullough, M. 2012. Version Control
with Git: Powerful tools and techniques for collaborative
software development. ” O’Reilly Media, Inc.”.
Min, E.; Chen, R.; Bian, Y.; Xu, T.; Zhao, K.; Huang, W.;
Zhao, P.; Huang, J.; Ananiadou, S.; and Rong, Y. 2022.
Transformer for Graphs: An Overview from Architecture
Perspective. arXiv preprint arXiv:2202.08455.
Olsen, J. K.; Aleven, V.; and Rummel, N. 2015. Predicting
Student Performance in a Collaborative Learning Environ-
ment. International Educational Data Mining Society.
Parizi, R. M.; Spoletini, P.; and Singh, A. 2018. Measur-
ing team members’ contributions in software engineering
projects using git-driven technology. In 2018 IEEE Fron-
tiers in Education Conference (FIE), 1–5. IEEE.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch. NeurIPS.

Pavlik Jr, P. I.; Cen, H.; and Koedinger, K. R. 2009. Perfor-
mance Factors Analysis–A New Alternative to Knowledge
Tracing. Online Submission.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine Learning in Python. Journal of Machine
Learning Research, 12: 2825–2830.
Piech, C.; Bassen, J.; Huang, J.; Ganguli, S.; Sahami, M.;
Guibas, L. J.; and Sohl-Dickstein, J. 2015. Deep knowledge
tracing. In Advances in neural information processing sys-
tems, 505–513.
Pu, Y.; Wu, W.; Jiang, T.; Desmarais, M.; Lynch, C.; Mer-
ceron, A.; and Nkambou, R. 2019. ATC Framework: A fully
Automatic Cognitive Tracing Model for Student and Educa-
tional Contents. In EDM.
Reid, K. L.; and Wilson, G. V. 2005. Learning by doing:
introducing version control as a way to manage student as-
signments. In Proceedings of the 36th SIGCSE technical
symposium on Computer science education, 272–276.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Berg, R. v. d.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European semantic
web conference, 593–607. Springer.
Vu, M.; and Thai, M. T. 2020. Pgm-explainer: Proba-
bilistic graphical model explanations for graph neural net-
works. Advances in neural information processing systems,
33: 12225–12235.
Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; and Philip,
S. Y. 2020. A comprehensive survey on graph neural net-
works. IEEE transactions on neural networks and learning
systems, 32(1): 4–24.
Yee-King, M.; and d’Inverno, M. 2016. Stimulating collab-
orative activity in online social learning environments with
Markov decision processes. In EDM, 652–653.
Yee-King, M.; Grimalt-Reynes, A.; and d’Inverno, M. 2016.
Predicting student grades from online, collaborative social
learning metrics using K-NN. In EDM, 654–655.
Yun, S.; Jeong, M.; Kim, R.; Kang, J.; and Kim, H. J. 2019.
Graph transformer networks. Advances in neural informa-
tion processing systems, 32.


