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Abstract
Large language models (LLMs) have recently
been proposed as general-purpose agents for ex-
perimental design, with claims that they can per-
form in-context experimental design. We evalu-
ate this hypothesis using both open- and closed-
source instruction-tuned LLMs applied to genetic
perturbation and molecular property discovery
tasks. We find that LLM-based agents show no
sensitivity to experimental feedback: replacing
true outcomes with randomly permuted labels
has no impact on performance. Across bench-
marks, classical methods such as linear bandits
and Gaussian process optimization consistently
outperform LLM agents. We further propose
a simple hybrid method, LLM-guided Nearest
Neighbour (LLMNN) sampling, that combines
LLM prior knowledge with nearest-neighbor sam-
pling to guide the design of experiments. LLMNN
achieves competitive or superior performance
across domains without requiring significant in-
context adaptation. These results suggest that
current open- and closed-source LLMs do not
perform in-context experimental design in prac-
tice and highlight the need for hybrid frameworks
that decouple prior-based reasoning from batch
acquisition with updated posteriors.

1. Introduction
Experimental design enables data-efficient scientific discov-
ery (Ueno et al., 2016; Shields et al., 2021; Lei et al., 2021;
Jain et al., 2023; Huan et al., 2024). In domains such as
biology and chemistry, each experiment can be costly or
time-consuming, so we need methods that select the most in-
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formative candidates under a constrained budget. Classical
approaches typically adopt a Bayesian framework (Lind-
ley, 1956; Houlsby et al., 2011): they construct a surrogate
model of the response function, update this model with new
data, and select future experiments by optimizing an acquisi-
tion function such as expected improvement or information
gain (Gal et al., 2017; Kirsch et al., 2019).

Recent work has proposed using LLMs to replace these
components, offering a unified interface that can incorpo-
rate prior knowledge, reason over experimental history, and
directly select candidates via prompting. Examples include
BioDiscoveryAgent (BDA) (Roohani et al., 2024) for ge-
netic perturbation design and LLAMBO (Liu et al., 2024)
for hyperparameter optimization. These systems are built
on proprietary LLMs (e.g., Claude 3.5 Sonnet (Anthropic,
2024) or OpenAI’s GPT-3.5 (OpenAI, 2023) and o1 (Ope-
nAI, 2024b)) and design experiments by iteratively prompt-
ing the LLM with prior experimental outcomes, and rely on
in-context learning to guide future experiment selection.

In domains that are well-studied, the priors from the LLMs
offer clear benefits over the traditional methods for the first
round of experimentation because the LLMs can leverage
information from the pretraining corpus to select actions.
However, it is less clear whether in-context learning alone
(without finetuning) leads to good action selection. This pa-
per investigates whether such LLM-based approaches, when
implemented with open-source models and without external
tool use, can perform effective experimental design. Specif-
ically, we ask, do off-the-shelf, instruction-tuned LLMs
exhibit strong in-context experiment design abilities when
prompted with experimental history?

We address this question using the BioDiscoveryA-
gent pipeline implemented with three publicly available
LLMs—LLaMA-3.1-8B-Instruct (Grattafiori et al.,
2024), Qwen-2-7B-Instruct (Yang et al., 2024), and
Qwen-2.5-14B-Instruct (Qwen, 2024)— and two
closed-source LLMs— Claude 4 Sonnet (Anthropic,
2025) and GPT 4o-mini (OpenAI, 2024a)—applied to
experimental design tasks in two domains: single-gene per-
turbation and molecular property prediction. To evaluate
in-context learning behavior, we conduct ablation studies
that compare the standard BioDiscoveryAgent to a vari-
ant receiving randomly permuted feedback (BDA-Rand),
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removing any correspondence between past actions and out-
comes. Our experimental analysis reveals the following
findings:

1. LLMs are insensitive to feedback. Across all datasets
and models (including Claude Sonnet 3.5), BDA and
BDA-Rand perform comparably. In some cases, the
BDA-Rand even performs slightly better. This suggests
that the tested LLMs’ selection behavior is determined
primarily by prior knowledge rather than adaptation to
feedback.

2. LLMs underperform classical baselines. Linear
UCB and Gaussian process-based Bayesian optimiza-
tion (BO) methods, given access to the same candidate
embeddings, consistently outperform BDA on both
domains.

3. A simple heuristic performs better search. We in-
troduce LLM-guided Nearest Neighbour (LLMNN),
a method that prompts the LLM to propose seed can-
didates and then selects batches via nearest-neighbor
expansion in embedding space. LLMNN also receives
in-context feedback but outperforms BDA and matches
or exceeds classical methods across benchmarks.

In summary, we make following contributions,

• We provide a diagnostic evaluation of in-context exper-
imental design using randomized-feedback ablations.

• We benchmark open-source LLMs against BO and
bandit-based methods across five gene perturbation
and three molecular property prediction datasets.

• We show that open-source and proprietary instruction-
tuned LLMs do not leverage experimental feedback
to perform in-context experimental design in practical
experimental design tasks.

• We introduce a simple hybrid method, LLMNN, which
leverages LLM prior knowledge for exploration and
embedding-based nearest-neighbor sampling for ex-
ploitation.

These results indicate that LLMs, while encoding valuable
domain priors, still need explicit mechanisms that enable
posterior updating and selection for efficient experimental
design. Hybrid approaches that combine LLM priors with
classical exploration strategies offer a promising direction
for scalable, general-purpose experiment design.

2. Problem Statement
Consider the following real-world experimental settings
across two domains:

Single Gene Perturbation. Let’s say we have the ability
to knock out a single gene at a time from the human cell
to induce a certain desired phenotypic response. Corre-
spondingly, for every knockout, we are able to measure the
phenotypic response value of perturbing the gene. However,
exhaustive trials with the whole set of protein-coding genes
(> 19000) are infeasible due to both time and budget con-
straints. Thus, how do we design perturbation experiments
to identify genes that produce the phenotype under tight
budget constraints and a sequential experiment protocol?

Chemical Properties of Molecules. Similarly, say given a
large library of molecules, we seek to identify the molecules
that exhibit high values for a given property. For every
molecule tried, we can obtain its property value. How do
we effectively screen the library to identify top-performing
molecules for the given property, under similar constraints
as above?

More formally, both these settings are examples of closed-
loop experiment design, which is our center of focus in this
work. At any experimental round, the agent determines
which candidates to investigate next, given the results from
all the prior experiments. The process continues for N
number of rounds, depending on the experimental budget
available, with the objective of detecting a maximum num-
ber of hit candidates.

Specifically, let C be the set of all the candidates and
f : C → R be the function that maps each candidate to
a real-valued measurement. The task is inherently sequen-
tial, spread over N rounds, where each round i is defined as
the trial of {c1, c2, . . . , cB} ⊆ C candidates independently.
The goal of the experiment is to identify the candidates
with measurement value greater than some threshold τ , i.e.,
f(c) > τ for c ∈ C. Such candidates are termed as hits for
that measurement function.

Further, let Ci be the set of candidates selected by the agent
at any round i and let Zi be the set comprising of entire

experiment history, i.e. Zi = {(c, f(c)) | c ∈
i−1⋃
t=1

Ct}.

Given Zi, the agent is then expected to guide the formation
of Ci.

At the end of N rounds, let Ca =
N⋃
t=1

C+
t , where C+

t =

{c ∈ Ct : f(c) > τ} represents the hits identified in round
t. Thus, Ca represents the cumulative set of hits across all
rounds up to t. Similarly, let Cgt be the set of all true hits
for the measurement function f , Cgt = {c ∈ C : f(c) > τ}.

We typically fix the N = 5 and B = 128 for all our experi-
ments unless stated otherwise. Additionally, the τ for the
molecular property task is set to be at the 90th percentile of
the property value.
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3. Related Work
BO for Scientific Applications: Bayesian Optimization in
scientific domains has focused on a variety of applications
like drug discovery (Griffiths & Hernández-Lobato, 2020;
Korovina et al., 2020), biological experiment design
(Roohani et al., 2024; Lyle et al., 2023; King et al., 2004),
and chemical/molecular tasks (Kristiadi et al., 2024; Fromer
et al., 2024; Ranković & Schwaller, 2023; Shields et al.,
2021). Simultaneously, there have also been works that
advance autonomous AI-driven closed-loop experiment
design (M. Bran et al., 2024; Tom et al., 2024; Boiko
et al., 2023). In this work, we study how LMs can be
used to incorporate prior information into the search
process in the context of two real-world domains: single
gene perturbations and chemical property optimization.
Both tasks are similar in terms of extensive candidate
space and complex relationships between the candidate
and its associated measurement. However, the genetic
domain has a finite candidate space of genes in the
human genome, whereas the space of all molecule is far
larger (up to 1060 small molecules (Bohacek et al., 1996))
making it harder to have priors over any particular molecule.

LLMs for Bayesian Optimization: A series of recent
works have explored the use of LLM embeddings in dif-
ferent ways, like for general-purpose regression (Nguyen
et al., 2024), to improve surrogate modeling (Nguyen &
Grover, 2024), and to augment the traditional methods like
Gaussian Processes (Hartford et al., 2020; Ramos et al.,
2023). We focus on using LLMs as the backend for an agent
that interacts with the laboratory feedback and performs
closed-loop experiment design.

The two closest related prior works to our study are BioDis-
coveryAgent (Roohani et al., 2024) and LLAMBO (Liu
et al., 2024). LLAMBO is based on GPT-3.5 and primarily
focuses on hyperparameter-tuning tasks, with LLM perform-
ing end-to-end Bayesian Optimization via suitable prompt-
ing. In a similar spirit, BioDiscoveryAgent proposes an
LLM agent based on Claude 3.5 Sonnet and augmented with
external tools that performs closed-loop experiment design
of genetic perturbations. Both these approaches leverage
proprietary LLMs and heavily rely on in-context learning
to design experiments conditional on the experimental his-
tory. BioDiscoveryAgent, in particular, prompts the LLM
to generate the entire batch of candidates to try next. In this
work, we take a critical view of these methods, particularly
BioDiscoveryAgent (BDA), and resort to instruction-tuned
open- and closed-source models to further examine it. While
there exists evidence that transformers have been shown to
perform amortized Bayesian inference (Müller et al., 2024)
when appropriately trained, it is not obvious that the abil-
ity arises from the next-token prediction and post-training

objectives, and hence we specifically test the open- and
closed-source BDA for the ability to select experiments.
Eventually, we take a departure from a purely LLM-based
approach and explore the synergy between LLMs and clas-
sical methods in our proposed hybrid approach, LLMNN,
that achieves significantly superior performance.

4. Tasks and Datasets
We perform experiments on two scientific domains in this
work. In particular, we work with single gene perturba-
tions and chemical properties of molecules. We simulate
running experiments on a set of candidates by retrieving the
corresponding measurement value from a tabular dataset.
However, in real-world settings, the corresponding exper-
iments would be conducted in a laboratory or an in-silico
simulator. In the subsequent subsections, we describe the
datasets used in the two domains.

4.1. Single Gene Perturbations

Section 2 explains the details of the task, such as the goal
with experiment design, candidate space, and the associated
measurements. The 5 datasets used in this domain are bor-
rowed from BioDiscoveryAgent(Roohani et al., 2024) and
are as follows: 1) IL2 (Schmidt et al., 2022) is a dataset
that measures the changes in the production of Interleukin-
2 (IL2) cytokine involved in immune signaling; 2) IFNG
(Schmidt et al., 2022) is another similar dataset that mea-
sures changes in production of Interferon-γ cytokine; 3)
Carnevale (Carnevale et al., 2022) aims to identify genes
that render T cells resistant to inhibitory signals encountered
in the tumor microenvironment; 4) Sanchez (Sanchez et al.,
2021) dataset studies the change in expression of endoge-
nous tau protein levels in neurons and 5) Sanchez Down
(Sanchez et al., 2021) is exactly same as Sanchez dataset
but focuses purely on decreasing the expression unlike the
Sanchez which includes both increasing and decreasing
expression. Each dataset contains measurements for over
18000 genes, i.e., | C |> 18000, each knocked down in a
distinct cell.

4.2. Chemical Properties of Molecules

For the chemical properties task, we focus on the following
three molecular datasets:

• ESOL: Part of the MoleculeNet benchmark, ESOL
(Delaney, 2004) is a small dataset comprising the water
solubility data for | C |= 1128 compounds in log moles
per litre. Each compound is represented as a SMILES
string.

• FreeSolv: Free Solvation (FreeSolv) Database (Mob-
ley & Guthrie, 2014) is another small dataset that pro-
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Table 1. Cumulative number of hits secured by each method on the gene perturbation datasets. The values are averaged over 5 runs and show
the standard deviation. Note that we experiment with the No-Tool version of BioDiscoveryAgent. BDA-Rand is the BioDiscoveryAgent
baseline provided with random feedback after each round of experimentation. It can be concluded that LLMs trained on next token
prediction and RLHF fail to perform in-context experimental design.

Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
BDA 39.4 ± 7.34 44 ± 13.67 32.4 ± 2.8 23.2 ± 5.64 43.6 ± 6.74

BDA-Rand 37 ± 12.38 51 ± 9.65 31.6 ± 3.44 30.8 ± 3.54 45 ± 7.13

Qwen-2-7B backbone
BDA 33.2 ± 5.27 26.2 ± 4.35 27.2 ± 7.14 26.4 ± 5.68 26 ± 7.56

BDA-Rand 29 ± 4.82 32.4 ± 7.06 29 ± 7.77 24.2 ± 10.11 35.4 ± 2.5

Claude 3.5 Sonnet backbone
BDA (Reported Numbers) 68.01 ± 2.62 87.4 ± 3.68 39.6 ± 2.83 60.72 ± 6.47 N/A

BDA (Replicated) 59.4 ± 5.54 78.8 ± 2.71 43.8 ± 1.94 31.6 ± 5.46 51.8 ± 5.27
BDA-Rand 57.6 ± 2.42 79.4 ± 3.26 42 ± 1.41 33.8 ± 5.15 57.6 ± 5.43

Table 2. Cumulative number of hits secured by each method on the gene perturbation datasets. The values are averaged over 5 runs and
show the standard deviation. The max values in each column for each LLM backbone have been bolded. Note that we experiment with
the No-Tool version of BioDiscoveryAgent. Further, all the statistical methods use the embeddings corresponding to the LLM in the
backbone of BDA to ensure the same amount of knowledge. It can be observed clearly that principled statistical approaches outperform
the BioDiscoveryAgent baseline on most datasets and across both families of open-source LLMs.

Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924

Llama-3.1-8B backbone
Linear UCB 35 ± 0.0 72 ± 0.0 38 ± 0.0 39 ± 0.0 42 ± 0.0

GP 147.8 ± 1.72 23 ± 1.26 22.2 ± 1.94 27.6 ± 1.36 30 ± 2.45
BDA 39.4 ± 7.34 44 ± 13.67 32.4 ± 2.8 23.2 ± 5.64 43.6 ± 6.74

Qwen-2-7B backbone
Linear UCB 93 ± 0.0 74 ± 0.0 31 ± 0.0 31 ± 0.0 41 ± 0.0

GP 147.8 ± 1.72 23 ± 1.26 22.2 ± 1.94 27.6 ± 1.36 30 ± 2.45
BDA 33.2 ± 5.27 26.2 ± 4.35 27.2 ± 7.14 26.4 ± 5.68 26 ± 7.56

vides experimental and calculated hydration free ener-
gies of | C |= 642 small molecules in water.

• Ion. E.: This dataset is a subset of molecular data
from the JCESR molecules that are a part of the Ma-
terials Project Database (Jain et al., 2013). The origi-
nal set contains approximately 25, 000 molecules with
annotations of many attributes and properties. Our
experiments focus on one property: the Ionization En-
ergy. We apply two levels of filters on the whole set
of 25, 000 molecules: first, we restrict to only those
molecules whose ionization energy lies between −10
and 10 units (to avoid noisy outliers), and out of all
these filtered molecules, we choose the molecules com-
posed solely of ‘C’, ‘H’, ‘N’ or ‘O’ atoms, leaving us
with | C |= 11, 565 candidates. These filters avoid the

dominating effects due to particular elements, leaving
primary dependence on the molecular structure and
functional groups captured in the SMILES strings.

Note that | C |= 1128, 642 and 11565 respectively for each
of the aforementioned datasets.

5. Is Naively Prompting LLM Enough for
Experiment Design?

Experimental design is inherently a sequential process
where at each round, one should select experiments on the
basis of both prior information and the outcomes of previ-
ous experiments. Through the pretraining objective, LLMs
have extensive prior information which enables strong per-
formance in experimental design settings with relatively
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few rounds of experiments (i.e. where the guidance of the
prior matters most). For example, LLAMBO (Liu et al.,
2024) focuses on tasks related to hyperparameter-tuning,
and BioDiscoveryAgent (Roohani et al., 2024) demonstrates
strong performance on genetic perturbation experiment de-
sign. Despite minor differences, there are major similarities
between these approaches. Both works pass on the exper-
iment history and corresponding observations by simply
appending them within the prompt itself with the hope that
the LLM can leverage its in-context abilities to incorporate
this feedback and adapt its subsequent predictions. We test
the extent to which BioDiscoveryAgent is actually using
this information by breaking the relationship between candi-
dates, ci, and their associated outcomes, f(ci). In particular,
we randomly pair each ci with some other outcome, f(cj),
which breaks their joint dependency, while keeping their
respective marginal distributions fixed.

Hits:
CD5 1.300
WIZ 0.384

Other Results:
LAT    -0.890
SP1 0.398

Hits:
CD5 0.398
LAT     1.300

Other Results:
WIZ 0.384
SP1    -0.890

Level 1

Level 2

Figure 1. Illustration of the 2 levels of random permutation in the
experimental feedback to the LLM on the genetic domain. Level 1
modifies the measurement value, whereas level 2 modifies whether
a candidate is a hit or not. Note that it is possible that a particular
gene has both level 1 and 2 modifications.

Method. For our investigation, we work with the BioDis-
coveryAgent (BDA) pipeline on a small open-source LLM
backbone without any external tools. In the first set of ex-
periments, we evaluate the ability of the LLMs to leverage
experimental feedback. We compare BDA with BDA-Rand,
which is the same as BDA but receives randomized feedback
instead of true feedback. We perform 2 levels of randomiza-
tion, level 1 being random measurement values and level 2
being randomness in hit vs not-hit feedback. Figure 1 con-
tains an illustration of the randomization procedure. Both
methods are evaluated against the ground truth hits for each
dataset. As a second step, we compare BDA with classi-
cal models like Linear UCB and Gaussian Process (GP)
to evaluate whether the LLM has sufficient information to
make strong selections. Both Linear UCB and the GP only
condition on the residual stream embeddings of the LLM so
can only outperform the LLM insofar as they can better use
the experimental feedback.

Results. We investigated the in-context experimental design
abilities of the LLMs, and Table 1 shows the results for the

same. The numbers in the table correspond to the cumulative
number of hits obtained after 5 rounds of experiments with
128 perturbations in every round and are averaged over 5
runs. Across both LLMs and all 5 datasets, it is evident that
passing random feedback does not hurt the performance of
the framework at all. In fact, the performance remains nearly
the same or improves slightly. To further substantiate our
hypothesis, we also perform a similar experiment on Claude
3.5 Sonnet, a proprietary large-scale LLM, and observe that
even Claude maintains nearly the same performance despite
random feedback 1. The strong initially performance of
the LLMs is therefore likely the result of theirs priors on
ordering of genes and is not affected by the feedback of past
experiments appended in its prompt.

The above flaw in the LLM’s capabilities motivated us to
compare BDA with classical approaches. Table 2 shows the
cumulative number of hits obtained for BDA and classical
baselines as described above. It can be seen clearly that
across the 5 datasets, either LinearUCB or GP outperforms
the BDA framework by a significant margin on both choices
of LLM models. In contrast to the trend of Claude-based
BDA, these results further highlight the lack of robustness
of the framework’s performance with respect to the base
LLM.

6. LLMNN: A Hybrid Experiment Design
Method

In light of the above observations, we propose LLM guided
Nearest Neighbour (LLMNN) framework, a simple greedy
approach that prompts an LLM to guide the location of
cluster centers and leverages nearest neighbour sampling to
form the batch Bi at any round i. The LLMNN framework is
designed to leverage: 1.) Generalist LLMs’ intrinsic domain
knowledge to guide the search in the vast candidate space,
and 2) the inductive bias that similar genes/molecules have
similar functionalities/properties. The schematic workflow
of the proposed LLMNN framework is illustrated in Figure
2. Below, we discuss the important components of the
LLMNN framework, followed by a detailed workflow of
the method.

Candidate Memory. stores the pool of candi-
dates, each represented in the following format:
{"name": <candidate name>, "score":
<measurement value>, "explored":
<bool>}. For molecules, the candidate name is the
SMILES string and measurement is the property value,
whereas for genes, the candidate name is the gene name
in the HGNC nomenclature and measurement is the phe-

1We generate the numbers for BDA using the publicly available
code as we could not replicate their original numbers, possibly due
to LLM updates.
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Cluster Centers

+ Feedback Human/Lab Oracle

N rounds
  + Experiment Protocol
  + Task Instructions
  + Dataset Information
  + Expected Output Format

Prompt Language Model

Selected candidates

Candidate 
Memory

Nearest Neighbour Sampling

Cluster Center

Nearest
Unexplored
Neighbours

Figure 2. Schematic Workflow of the LLM-guided Nearest Neighbour (LLMNN) method. The red rounded boxes are the inputs and
outputs of the Language Model. For ease, only cluster centers have been shown in the output. Please refer to Section 6 for detailed output
specification and information about the components of the method. Refer to Appendix B for the detailed prompt template and to Appendix
D for a full trace of the method.

notypic response value. Each candidate is also associated
with an embedding. The explored key tracks whether a
candidate has already been selected, preventing repetition
in the optimization process. The memory interacts with the
LLMNN framework by receiving a query candidate name
and returning the nearest unexplored neighbors based on
distance in the embedding space.

Candidate Embeddings. Each candidate in the mem-
ory has an associated embedding. We experiment both
with LLM embeddings for the candidates and also domain-
specific embeddings like Achilles embeddings for genes
(Tsherniak et al., 2017) and Molformer (Ross et al., 2022)
embeddings for the SMILES strings. The distance metric
for Achilles embeddings is the cosine distance, whereas for
all other embeddings, the L2-squared distance is used. More
details about the embeddings are included in Appendix C.2

LLM Response Format: We borrow the response for-
mat from BioDicoveryAgent (Roohani et al., 2024), and
direct the LLM to structure its responses into several parts:
Reflection, Research Plan, Solution, simi-
lar to Huang et al. (2023). Through the Reflection and
Research Plan entries, the model is able to articulate
its reasoning behind a particular prediction. Solution
contains a list of nc cluster centers to sample around next.
For our experiments, we fix nc = 5 unless stated otherwise.

Workflow. The exact flow of the LLMNN framework is
defined as follows:

1. LLMNN framework takes experiment protocol, task,
and candidate space details as the context in its prompt
to generate the first set of cluster centers it seeks to
explore.

2. The output cluster centers are then used to retrieve
candidates from the candidate memory.

3. The selected candidates for the round are then sent to
the human or a lab oracle to obtain their value of the
measurement function f and to determine if they were
a hit.

4. This hit vs not hit qualitative feedback, along with the
measurement value, is appended to the prompt from
Step 1 and passed to the LLM to generate the next set
of cluster centers.

5. Steps 2-4 are repeated for N -1 rounds. The total hits
identified successfully at the end indicate the method’s
performance.

7. Does LLMNN do Any Better on Our
Experiment Design Domains?

We observed BioDiscoveryAgent struggled to outperform
the traditional baselines (when provided with the same pri-
ors via access to embeddings) on the genetic perturbation
datasets, and that the performance was largely the result of
having better priors. Given this, one would expect better
performance from LLM-based approaches in settings with
well-studied candidate spaces—e.g. genes in the human
genome—compare with much larger spaces—e.g. all of
chemical space.

LLMNN addresses the poor response to experimental feed-
back by taking advantage of the fact that LLMs encode
candidates into a common embedding space. This allows us
to greedily construct experimental batches by performing
nearest neighbor sampling in the neighborhood of previ-
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Table 3. Cumulative hits over 5 rounds of experiments with 128 candidates in each experiment. The values in the table are averaged over
5 runs and show the standard deviation. The max values in each column have been bolded. Note that we use Achilles embeddings of
genes for the gene search tool in the case of LLMNN and BDA-GS on all LLM backbones. The results indicate the strong performance of
LLMNN, even surpassing the BDA based on Claude 3.5 Sonnet, which has access to a sophisticated gene search tool. Since the numbers
for this BDA variant have been taken from Table 3 of the original paper, we do not have a score for Sanchez Down as it isn’t included in
the original text.

Method IL2 IFNG Carnevale Sanchez Sanchez Down

Ground truth (| Cgt |) 654 920 943 924 924
Random 23.8 ± 5.49 26 ± 5.51 35 ± 2.61 32.2 ± 2.14 34.6 ± 4.8
Coreset 9.2 ± 2.71 31.4 ± 2.87 29.4 ± 2.58 33.8 ± 3.49 30.2 ± 2.79

Linear UCB 110 ± 4.84 98 ± 3.19 51 ± 5.12 75 ± 7.30 87 ± 3.76
GP 139 ± 2.28 24 ± 1.1 20.4 ± 2.5 24.6 ± 0.8 33 ± 1.1

BDA-GS (Claude 3.5 Sonnet) 65.4 ± 5.89 88.32 ± 2.76 40.55 ± 3.77 57.28 ± 6.47 N/A

Llama-3.1-8B backbone
BDA-GS 63.4 ± 14.89 57.4 ± 16.55 42.59 ± 4.32 22.2 ± 7.39 39.6 ± 7.53

LLMNN NoExp 137.8 ± 6.74 86.3 ± 4.72 58.9 ± 5.12 42.5 ± 6.28 42.3 ± 3.77
LLMNN 163.3 ± 6.24 107.9 ± 4.83 65.6 ± 2.87 54.2 ± 3.29 45.5 ± 3.01

Qwen-2-7B backbone
BDA-GS 38.6 ± 11.29 35.2 ± 8.8 32.8 ± 2.79 28.6 ± 3.44 38 ± 7.16

LLMNN NoExp 146.4 ± 8.91 59.1 ± 15.58 44.5 ± 3.01 62.8 ± 2.28 46.4 ± 1.6
LLMNN 160.7 ± 7.56 78 ± 5.56 60.9 ± 3.06 53.5 ± 3.88 45.1 ± 3.38

Qwen-2.5-14B backbone
BDA-GS 49 ± 3.0 63.7 ± 9.84 47 ± 6.0 39.2 ± 6.65 48.4 ± 6.53

LLMNN NoExp 88.6 ± 28.57 57.8 ± 5.27 58.6 ± 11.57 63.4 ± 2.15 48.2 ± 2.64
LLMNN 151.8 ± 7.65 88 ± 6.03 66.4 ± 4.63 62.8 ± 6.18 43 ± 6.39

Claude 4 Sonnet backbone
BDA-GS 65.2 ± 9.6 83.6 ± 2.87 38.6 ± 5.35 45.8 ± 12.51 60 ± 6.07

LLMNN NoExp 179.4 ± 7.5 95.2 ± 4.31 68.2 ± 2.99 63.6 ± 5.89 47.2 ± 3.19
LLMNN 159 ± 7.43 89.8 ± 7.29 62.4 ± 4.32 59.2 ± 2.64 45.6 ± 3.67

GPT 4o-mini backbone
BDA-GS 38.8 ± 17.76 50.6 ± 6.53 34 ± 1.85 27 ± 4.83 43.5 ± 8.16

LLMNN NoExp 117.4 ± 19.44 108.2 ± 4.17 55 ± 7.85 64.4 ± 3.61 41.2 ± 4.31
LLMNN 165 ± 10.64 97 ± 13.81 54.8 ± 13.55 63.2 ± 2.23 45.8 ± 5.15

ously observed hits. LLMNN requires minimal assump-
tions of LLM generating valid gene names as per HGNC
nomenclature and valid SMILES strings, which is reason-
able for modern-day LLMs that have been pretrained on an
internet-scale of knowledge. Further, LLMNN is an attempt
at exploiting the known inductive biases of the domain to
achieve higher performance.

Method. We experiment with two variants of LLMNN, one
original with the Research Plan and Reflection
outputs, and the other that contains purely the Solution,
without any explanations. Both LLMNN variants have ac-
cess to the gene similarity tool based on the Achilles (Tsher-
niak et al., 2017) embeddings. Against LLMNN, we include
traditional baselines like Random, Coreset (pure diversity-
based approach), LinearUCB, and Gaussian Process (GP).
Apart from these methods, we also include three variants

of BioDiscoveryAgent: 1) BDA, i.e., without any tools, 2)
BDA-GS with access to the same gene similarity tool that
LLMNN has access to, and 3) BDA-GS (Claude 3.5 Sonnet),
which is the originally proposed approach in Roohani et al.
(2024) that uses Claude 3.5 Sonnet LLM in the backbone
and has access to more sophisticated gene similarity search
tools like enrichment analysis on Reactome database (Gille-
spie et al., 2022). We do not include BDA in the molecules
domain because BDA is not constrained to predict molecules
that exist in the library and hence one needs a large number
of retries to construct a batch. The tool for molecular sim-
ilarity available to LLMNN is based on Molformer (Ross
et al., 2022) embeddings of SMILES strings.

Results. Table 3 displays the performance comparison be-
tween different methods on the single gene perturbation
domain. Note that the same experimental budget has been
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Table 4. Cumulative hits over 5 rounds of experiments with B = 128, 64, and 32 candidates in each experiment and nc = 5, 4 and 4,
respectively, for Ion. E., ESOL and FreeSolv datasets. The values in the table are averaged over 5 runs and show the standard deviation.
Note that we use molecule embeddings from MolFormer XL-10pct for the similarity search tool. The results indicate that the NoExp
variants of LLMNN perform competitively compared to classical baselines on 2/3 datasets.

Method Ion. E. ESOL FreeSolv

G. truth (| Cgt |) 1156 112 64
Random 77.8 ± 9.45 29 ± 3.97 14.4 ± 0.4
Coreset 151.6 ± 7.44 57.6 ± 4.13 20.4 ± 2.93

Linear UCB 283 ± 0.0 76 ± 0.0 39 ± 0.0
GP 151.39 ± 18.78 35 ± 1.72 16.8 ± 0.0

Llama-3.1-8B backbone
LLMNN NoExp 152.8 ± 14.58 23.4 ± 1.41 12.2 ± 9.99

LLMNN 103.2 ± 27.3 22.2 ± 6.31 10.2 ± 6.21

Qwen-2-7B backbone
LLMNN NoExp 147.2 ± 21.46 24 ± 4.1 25.8 ± 6.55

LLMNN 134.8 ± 18.27 36.2 ± 14.68 23 ± 9.01

Qwen-2.5-14B backbone
LLMNN NoExp 185.6 ± 22.22 33.6 ± 7.34 17.2 ± 4.77

LLMNN 136.2 ± 26.23 32 ± 6.78 12.6 ± 5.35

Claude 4 Sonnet backbone
LLMNN NoExp 173.3 ± 10.53 60.6 ± 1.96 43.6 ± 2.94

LLMNN 189.6 ± 6.68 63.8 ± 1.72 38 ± 2.74

GPT 4o-mini backbone
LLMNN NoExp 179.8 ± 25.04 27.4 ± 12.09 34.2 ± 2.13

LLMNN 119.8 ± 9.62 31 ± 11.66 29.8 ± 7.55

Table 5. Cumulative number of hits secured by the random centroids ablation variant and the best performing LLMNN NoExp method
based on Claude 4 Sonnet on the gene perturbation datasets. The Achilles embeddings are used for gene similarity. The values are
averaged over 5 runs and show the standard deviation.

Method IL2 IFNG Carnevale Sanchez Sanchez Down

Random Centroids 76 ± 9.65 53.6 ± 11.62 44.6 ± 9.46 36.8 ± 7.63 29.4 ± 5.54
LLMNN NoExp 179.4 ± 7.5 95.2 ± 4.31 68.2 ± 2.99 63.6 ± 5.89 47.2 ± 3.19

provided to all the methods, and the numbers are averaged
over 5 runs. The table illustrates that the LLMNN method
based on the Llama-3.1 backbone outperforms BDA based
on both Llama and Claude 3.5 Sonnet backends on 5/5 and
3/4 datasets, respectively, by significant margins. It is worth
noting that Llama-3.1 is just an 8 billion parameter model
as compared to Claude 3.5, which has been trained on larger
data with significantly more parameters. Further, LLMNN
only had access to a basic gene similarity tool as compared
to Claude 3.5 BDA, which had more sophisticated gene
search tools. Similarly, Qwen-2-7B-based LLMNN outper-
forms the corresponding BDA on 5/5 datasets. Moreover,
the LLMNN method continues to outperform the corre-
sponding BDA while outperforming or closely matching
classical baselines on all datasets with larger LLMs as back-

bones, especially Claude 4 Sonnet. Another interesting
observation is that the traditional baselines still perform
really well, surpassing Claude 3.5 BDA on 4/4 datasets
and LLMNN as well on 2/5 datasets. One of the contribut-
ing factors to the performance of LLMNN is maintaining
a memory that keeps track of which genes have already
been explored. This ensures that similarity queries return
unexplored neighbours at every query, in contrast to the
BioDiscoveryAgent, which doesn’t maintain this state and
hence, would inevitably return the same set of genes always
for the same query, irrespective of the experiment history.

On the molecular domain, Table 4 contains the numbers
for cumulative hits for all methods averaged over 5 runs,
given the same experimental budget. The numbers highlight
that while Qwen2-7B-based LLMNN without explanations

8
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Table 6. Cumulative number of hits secured by the random centroids ablation variant and the best performing LLMNN NoExp method
based on Claude 4 Sonnet on the molecular datasets. The Molformer embeddings are used for molecule similarity. The values are
averaged over 5 runs and show the standard deviation.

Method Ion. E. ESOL FreeSolv

Random Centroids 83.2 ± 24.34 24 ± 6.93 16 ± 9.86
LLMNN NoExp 173.3 ± 10.53 60.6 ± 1.96 43.6 ± 2.94

performs closely to the traditional baselines on 2/3 datasets,
the latter still wins over the LLMNN approach across all
the datasets, especially with the ESOL dataset. However,
with larger LLMs like Claude 4 Sonnet, the LLMNN method
outperforms classical methods on the FreeSolv dataset while
significantly reducing the gap on the other 2 datasets. This
underscores that LLMs with simple inductive biases are
strong but still not enough alone to serve as experiment
designers across different scientific domains. They need
tight coupling with the more principled statistical methods
that trade off exploration and exploitation, like linear UCB
and GPs, to achieve higher performance.

Given the strong performance of the LLMNN method, we
perform an ablation with LLM being replaced by a random
centroid selector in the LLMNN method. Our goal is to ob-
serve if LLM guidance plays any role in the superior perfor-
mance of our method or the gains are purely due to nearest
neighbour sampling in a strong embedding space. Tables 5
and 6 show the result comparing the ablation variant with
the best-performing LLMNN NoExp variant, i.e., the one
on the Claude 4 Sonnet backend. We clearly observe that
the performance drops sharply, by over 50% in some cases,
when removing LLM guidance, underscoring its central role
in deciding the centroids for nearest neighbour sampling.

8. Conclusion
In this work, we set out to critically examine this hypothe-
sis using instruction-tuned open- and closed-source LLMs.
We particularly focused on BioDiscoveryAgent and ex-
perimented on two domains: single gene perturbations (5
datasets) and molecular property optimization (3 datasets).
When compared to classical methods like Linear UCB and
Gaussian Process that used the embedding from the same
LLM as BDA, the open-source BDA performed significantly
worse. Furthermore, on deeper experiments with random
feedback to the LLM’s context, the open-source and Claude
3.5 Sonnet-based BDA still retained a similar average per-
formance, showcasing that the LLMs trained on next token
prediction and RLHF do not leverage experimental feedback
in the design of their experiments. Finally, we proposed an
LLM-guided Nearest Neighbour framework (LLMNN), a
simple combination of LLM and a classic nearest neighbour
method. LLMNN outperforms BDA significantly on gene

datasets and is applicable to molecular domains, and per-
forms at par with the classical baselines, except on some
molecular datasets. Overall, this work suggests that more
work is needed to effectively incorporate experimental feed-
back into LLM-based experimental design pipelines. It
introduces a plausible avenue for future research marked
by the synergy of LLMs, classical methods, and domain-
specific inductive biases.

9. Limitations and Future Work
While we demonstrate superior performance with LLMNN
on both gene perturbation and molecular domains, this study
has several limitations. Firstly, LLMNN augments the LLM
with a very simplistic nearest neighbour sampling that al-
locates an equal budget to each cluster to generate better
predictions. However, more complex schemes can be ex-
plored to adaptively allocate more budget to centers that
have a higher probability of detecting hits. For example, a
probabilistic model like GP could be used to determine the
hit likelihood of the predicted centers that can, in turn, be
used to define budget allocation between the centers.

Due to the policy of sampling around centers, the method
is largely exploitative and hence sensitive to the choice
of embeddings and hits identified in earlier rounds. More
tightly-coupled integration of LLMs and classic exploration
methods could be investigated to improve the robustness of
the experiment design agent. Further, the inductive bias that
similar candidates have similar properties is clearly not the
best bias on molecular domains, as the classic exploration
approaches maintain a strong performance as compared to
LLMNN, suggesting the need to identify and encode more
domain-specific and task-specific biases.

Lastly, another promising direction is to explore how exter-
nal tools like literature search, enrichment analysis tools for
genes, etc. be effectively augmented to the agent for better
performance, as also highlighted by Roohani et al. (2024).
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A. Impact Statement
This work deals with building hybrid AI agents that are pow-
ered by LLMs and classical exploration settings for guiding
the design of scientific experiments. While it promises
efficiency and robustness in downstream tasks by careful
experiment design, it brings up several ethical concerns as
well.

Since it involves the use of LLM, it is vulnerable to adversar-
ial attacks where the agent might suggest experiments that
lead to catastrophic outcomes in a real laboratory. Therefore,
it is imperative for the users to have human scientists in the
loop to screen out such experiment configurations. Not just
post-hoc, the safety could be ensured at the start by suitable
constraints on the candidate space.

One of the domains in this work is single gene perturbations,
where the effect of knocking down a gene is measured in
human cells. While these agents will help increase the ro-
bustness of the target discovery phase of the drug discovery
pipeline, it should be taken into account that human cells
often exhibit genetic variation from one population to an-
other, thus limiting the transferability of the downstream
insights to new groups. Thus, caution needs to be exercised
in utilizing the insights drawn by this agent in the actual
drug discovery pipeline.

B. Prompt Templates
In the following subsections, we provide the detailed prompt
template used for both the genetic perturbation and molecu-
lar property domains.

B.1. Single Gene Perturbation

SYSTEM PROMPT:
You are a biomedicine expert who
will assist me on problems in drug
discovery. I am planning to run a
CRISPR screen to identify genes that
{func desc}. I can only perturb
exactly {batch len} genes at a time.
For each predicted perturbation, I
am able to measure out the {meas
desc} which will be referred to as
the score. I can only do 5 rounds of
experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified genes called
hits and the corresponding score. The
predictions which are not hits will be
included in other results.

USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now:
{feedback}
Here is a strategy to follow: Update
your priors appropriately and choose
genes that gave you hits. Also, be
sure to explore by including some genes
that could give hits.
Please propose {num cluster centers}
different yet valid gene names as
per the HGNC nomenclature you want
to explore next. Note that I will
choose unexplored genes closest to
your predicted genes to form the
predictions. Your response should
exactly follow the format:

**Reflection: Thoughts on previous
results and next steps.

**Research Plan: The full high-level
research plan, with current status
and reasoning behind each proposed
approach. It should be at most 5
sentences.

**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene {num cluster centers}>
Each gene in the solution should
only be the gene name in the HGNC
nomenclature. DO NOT ADD ANY COMMENTS
IN THE SOLUTION OR AFTER THE SOLUTION.
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This is the prompt template at any round i. If i = 1, the
segment about feedback in the user prompt won’t be there.
The different fields in bold represent the following:

• round num: This is the round number for which ex-
periments are being selected.

• batch len: This corresponds to B i.e. the experimental
budget in each round.

• num cluster centers: This reflects the number of clus-
ter centers that LLMNN generates to sample around.

• feedback: This is a string divided into two parts: hits
and non-hits. Both parts contain the respective can-
didate names and their corresponding measurement
values.

• func desc: This is the description of the task for which
we need to perform experiment design. In the context
of genes, this means the description of the phenotype
we desire to achieve.

• score desc: This elaborates on the measurement values
we have for the candidates.

Please refer to table 7 for detailed func desc and score desc
for each dataset.

B.2. Chemical Property Optimization

This prompt is used at any round i for the molecular
datasets. Note that for i = 1, the feedback segment
won’t be included in the prompt. Most fields described in
this prompt are similar to the genetic perturbation, with
the exception of candidate space info that contains a
high-level description of the candidate space to provide
more context to the LLM. Table 8 contains the details of
func desc and candidate space info for each of the 3 datasets.

SYSTEM PROMPT:
You are a chemistry expert who will
assist me with problems in molecular
property optimization. Given a
library of molecules, I am planning
to conduct wet-lab experiments to
identify molecules that have high
{func desc}. {candidate space info}
I can only experiment with exactly
{batch len} molecules at a time. For
each predicted molecule, I am able
to measure out the property value,
which will be referred to as the
score. I can only do 5 rounds of
experimentation. After every round
of experiment, I will provide you with
feedback on your predictions, including
the correctly identified molecules
called hits and the corresponding
score. The predictions which are not
hits will be included in other results.
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USER PROMPT:
This is round {round num}.
Here is the feedback on all your
predictions till now: {feedback str}
Here is a strategy to follow: Update
your priors appropriately and choose
SMILES that gave you hits. Also, be
sure to explore by including some
SMILES strings that could give hits.
Please propose {num cluster centers}
different yet valid SMILES strings of
molecules you want to explore next.
Note that I will choose unexplored
molecules closest to your predicted
SMILES strings to form the predictions.
Your response should exactly follow the
format:

**Reflection: Thoughts on previous
results and next steps.

**Research Plan: The full high level
research plan, with current status
and reasoning behind each proposed
approach. It should be at most 5
sentences.

**Solution:
## <SMILES 1>
## <SMILES 2>
...
## <SMILES {num cluster centers}>
Each SMILES string in the solution
should be a SMILES string
representation of a valid molecule.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

C. Experiment Setup Details
The following subsections describe the additional experi-
ment details for better understanding:

C.1. Compute

All the experiments in this study have been conducted on a
single Nvidia A100 GPU with 40 GB of memory. Since our
proposed method, LLMNN, involves inference through the
LLMs and repeated retrieval from the candidate memory,
on average, a single run takes between 5-10 minutes to run.

C.2. Embeddings

Achilles Embeddings. We use the publicly available
Achilles embeddings (Tsherniak et al., 2017) for the gene
similarity tool. These embeddings are 808 dimensional in
size.

Molformer Embeddings. We use the publicly available
Molformer-XL model to embed the SMILES strings2. This
model has been trained on a collection of SMILES strings
from the ZINC and PubChem datasets to learn molecular
representations. These embeddings are 768-dimensional in
size.

Llama 3.1 Embeddings. We use the LLM2Vec
(BehnamGhader et al., 2024) approach to obtain the Llama
3.1 embeddings. Specifically, we use the publicly released
checkpoints by the authors on Huggingface 3. These embed-
dings are 4096-dimensional in nature.

Qwen2 Embeddings. We use the publicly available Qwen2-
based general text embedding model released by Alibaba-
NLP (Li et al., 2023), as they claim to be on top of the MTEB
leaderboard4. These embeddings are 3584 dimensional in
nature.

D. Full trace of LLMNN
Below we present a full trace of the LLMNN method, in-
cluding both the prompts and the LLM outputs, on the IL2
dataset in the single gene perturbation domain.

Listing 1. Full trace of LLMNN method with explanations on IL2
dataset

----ROUND 1: BEGIN PROMPT----
SystemMessage(You are a biomedicine
expert who will assist me on problems in
drug discovery. I am planning to run a
CRISPR screen to identify genes that
regulate the production of Interleukin-2
(IL-2). I can only perturb exactly 128
genes at a time. For each predicted
perturbation, I am able to measure out
the log fold change in Interleukin-2 (IL
-2) normalized read counts which will be
referred to as the score. I can only do 5
rounds of experimentation. After every

round of experiment, I will provide you
with feedback on your predictions,
including the correctly identified genes
called hits and the corresponding score.
The predictions which are not hits will
be included in other results.)
HumanMessage(
This is round 1. We are beginning with
our experiments.
Here is a strategy to follow: Choose
genes that are very different in their
biological pathways to discover what
pathways give you hits.

2Model checkpoint taken from https://huggingface.co/ibm-
research/MoLFormer-XL-both-10pct

3Model checkpoint taken from https://huggingface.co/McGill-
NLP/LLM2Vec-Meta-Llama-31-8B-Instruct-mntp-supervised

4Model checkpoint taken from https://huggingface.co/Alibaba-
NLP/gte-Qwen2-7B-instruct
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Please propose 5 different yet valid
gene names as per the HGNC nomenclature
you want to explore next. Note that I

will choose unexplored genes closest to
your predicted genes to form the

predictions. Your response should
exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
. It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should only
be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

)
----END PROMPT----

----BEGIN OUTPUT----
**Reflection: Thoughts on previous
results and next steps.**
Since we are starting from scratch,
there is no previous data to reflect on
. However, we will follow the strategy
of choosing genes that are very
different in their biological pathways
to increase the chances of discovering
novel regulators of IL-2 production.

**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
.**
We will choose genes involved in
different biological processes such as
cell signaling, transcription
regulation, and metabolic pathways to
identify potential regulators of IL-2
production. For round 1, we will select
genes that are involved in the

regulation of cell growth,
differentiation, and metabolism. We
will use the HGNC database to identify
genes with diverse functions. Our goal
is to identify at least one hit in this
round. We will use the provided

feedback to refine our strategy for the
next round.

**Solution:**
## ABL1
## HNF4A
## MAPK14
## PAK4
## SMAD2
----END OUTPUT----

----ROUND 2: BEGIN PROMPT---
SystemMessage(You are a biomedicine
expert who will assist me on problems in
drug discovery. I am planning to run a
CRISPR screen to identify genes that
regulate the production of Interleukin-2
(IL-2). I can only perturb exactly 128
genes at a time. For each predicted
perturbation, I am able to measure out
the log fold change in Interleukin-2 (IL
-2) normalized read counts which will be
referred to as the score. I can only do 5
rounds of experimentation. After every

round of experiment, I will provide you
with feedback on your predictions,
including the correctly identified genes
called hits and the corresponding score.
The predictions which are not hits will
be included in other results.)
HumanMessage(
This is round 2.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43

DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39
SULT2B1 -0.44
[OTHER RESULTS]

name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11
NANOG -0.05

NDUFA4 0.04
RAN 0.12

MRPL19 -0.14
SLU7 0.13
CD8B -0.01
HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17
NSF -0.05

NCBP2 0.00
OR51L1 -0.17

GHR 0.02
TSHZ2 -0.01
GPX3 0.11
TOX2 0.10
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FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10
NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16
CIAO1 0.10

SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10
BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12
MSTO1 0.02

NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13
SRF 0.01

RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3-2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07

Here is a strategy to follow: Update
your priors appropriately and choose
genes that gave you hits. Also, be sure
to explore by including some genes

that could give hits.
Please propose 5 different yet valid
gene names as per the HGNC nomenclature
you want to explore next. Note that I

will choose unexplored genes closest to
your predicted genes to form the

predictions. Your response should
exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
. It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should only
be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

)
----END PROMPT----
----BEGIN OUTPUT----
**Reflection: Thoughts on previous
results and next steps.**

The previous round of CRISPR screen
identified 11 hits that regulate the
production of Interleukin-2 (IL-2),
including MYBL2, GBF1, DDX41, ZMAT2,
RPL4, HNF4A, CDC16, WDR5, MYC, ZNF536,
and TLN1. The scores of these hits
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ranged from 0.35 to 0.82, indicating
varying degrees of regulation. The
other results included 64 genes that
did not show significant regulation of
IL-2 production. To refine our
understanding of the IL-2 regulatory
network, we will focus on the hits and
their neighbors. We will update our
priors to reflect the observed hits and
select new genes that are closely

related to the identified hits.

**Research Plan: The full high-level
research plan, with current status and
reasoning behind each proposed approach
.**

We will update our prior probabilities
based on the hits identified in the
previous round and select new genes
that are closely related to the hits.
We will choose genes that are in the
same biological pathways, have similar
functional annotations, or have known
interactions with the hits. We will
then select the top-scoring genes from
these candidates to form our next set
of predictions. Our goal is to refine
our understanding of the IL-2
regulatory network and identify new
genes that play a role in its
regulation. We will repeat this process
for a total of 5 rounds, refining our

predictions and updating our priors
after each round.

**Solution:**
## MYBL2
## GBF1
## DDX41
## ZMAT2
## RPL4
----END OUTPUT----
----ROUND 3: BEGIN PROMPT----

SystemMessage(You are a biomedicine
expert who will assist me on problems in
drug discovery. I am planning to run a
CRISPR screen to identify genes that
regulate the production of Interleukin-2
(IL-2). I can only perturb exactly 128
genes at a time. For each predicted
perturbation, I am able to measure out
the log fold change in Interleukin-2 (IL
-2) normalized read counts which will be
referred to as the score. I can only do 5
rounds of experimentation. After every

round of experiment, I will provide you
with feedback on your predictions,
including the correctly identified genes
called hits and the corresponding score.
The predictions which are not hits will
be included in other results.)
HumanMessage(

This is round 3.
Here is the feedback on all your

predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43
DDX41 0.47
ZMAT2 0.45
RPL4 0.35
HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49
LIN37 -0.39

SULT2B1 -0.44
SPC24 0.58

SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65
EEF2 0.43
PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57
SF3B3 0.36
KIF11 0.36
ETF1 -0.45
CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61
FAU 0.49

RPL17 0.49
PRPF19 0.38
RPL9 0.44
UTP15 0.59
RPS3A 0.39
RPL37 0.68

RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35
RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81
MAK16 1.15
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RPS17 0.82
RPL19 1.21
RPL3 0.42
RPL15 0.92
CPSF4 1.13
XPO1 0.35
RRM2 0.50
RPL14 0.61

[OTHER RESULTS]
name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11
NANOG -0.05

NDUFA4 0.04
RAN 0.12

MRPL19 -0.14
SLU7 0.13
CD8B -0.01
HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17
NSF -0.05

NCBP2 0.00
OR51L1 -0.17

GHR 0.02
TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10
NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16
CIAO1 0.10

SNAPC5 0.01

ZCRB1 -0.03
TRMT112 0.07

RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10
BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12
MSTO1 0.02

NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13
SRF 0.01

RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3-2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07
CLTC 0.26
THOC7 0.17

ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
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ZMAT5 0.19
LSM2 -0.18
CDC45 0.08

TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23
PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15
SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26
DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22
SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01
RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33
PUF60 -0.07

SEC61A1 -0.17
TSR1 0.23
WDR74 0.33

RPL7 0.31
Here is a strategy to follow: Update
your priors appropriately and choose
genes that gave you hits. Also, be sure
to explore by including some genes

that could give hits.
Please propose 5 different yet valid
gene names as per the HGNC nomenclature
you want to explore next. Note that I

will choose unexplored genes closest to
your predicted genes to form the

predictions. Your response should
exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
. It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should only
be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

)
----END PROMPT----
----BEGIN OUTPUT----
**Reflection: Thoughts on previous
results and next steps.**
Based on the previous round of
experimentation, we have identified
several genes that are associated with
the regulation of Interleukin-2 (IL-2)
production. The hits from this round
include genes involved in various
cellular processes such as RNA
processing, translation, and cell cycle
regulation. We can update our priors

to reflect the importance of these
genes in IL-2 regulation. To further
explore the regulatory network, we will
choose genes that are functionally

related to the hits from the previous
round.

**Research Plan: The full high-level
research plan, with current status and
reasoning behind each proposed approach
.**
We will select genes that are
functionally related to the hits from
the previous round, focusing on RNA
processing, translation, and cell cycle
regulation. We will choose unexplored

genes closest to the hits to form the
predictions. This approach will allow
us to further refine our understanding
of the IL-2 regulatory network. We will
use the updated priors to inform our

selection of genes. Our goal is to
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identify additional genes that regulate
IL-2 production.

**Solution:**
## RPS27
## SF3B1
## DDX3X
## RPS15
## NOLC1
----END OUTPUT----
----ROUND 4: BEGIN PROMPT----

SystemMessage(You are a biomedicine
expert who will assist me on problems in
drug discovery. I am planning to run a
CRISPR screen to identify genes that
regulate the production of Interleukin-2
(IL-2). I can only perturb exactly 128
genes at a time. For each predicted
perturbation, I am able to measure out
the log fold change in Interleukin-2 (IL
-2) normalized read counts which will be
referred to as the score. I can only do 5
rounds of experimentation. After every

round of experiment, I will provide you
with feedback on your predictions,
including the correctly identified genes
called hits and the corresponding score.
The predictions which are not hits will
be included in other results.)
HumanMessage(

This is round 4.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43
DDX41 0.47
ZMAT2 0.45
RPL4 0.35
HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49
LIN37 -0.39

SULT2B1 -0.44
SPC24 0.58

SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65
EEF2 0.43
PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57

SF3B3 0.36
KIF11 0.36
ETF1 -0.45
CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61
FAU 0.49

RPL17 0.49
PRPF19 0.38
RPL9 0.44
UTP15 0.59
RPS3A 0.39
RPL37 0.68

RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35
RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81
MAK16 1.15
RPS17 0.82
RPL19 1.21
RPL3 0.42
RPL15 0.92
CPSF4 1.13
XPO1 0.35
RRM2 0.50
RPL14 0.61
INTS3 0.53
RFC3 0.50
RBM25 0.47
FCF1 0.40

POLR1B 0.36
POLD3 0.52
CHMP6 0.85
PSMC5 0.34
RPL31 0.40
ERH 0.45

RPS4X 0.70
CHERP 0.49
DKC1 0.40
CNOT3 0.44
SNRPC 1.25
MTBP 0.57
SYMPK 0.68
CDC6 0.47
PPAN 0.89

SPOUT1 0.38
EIF3I 0.45
RPL36 0.72
NUP93 0.35
RPS24 0.83

NUP133 0.49
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RPS18 0.46
RPS14 0.60

PDCD11 0.43
NOC3L 0.34
BMS1 0.56
RPS25 0.49

EBNA1BP2 0.39
BOP1 0.51
NOP2 0.55
RRN3 0.35

TUBGCP2 0.59
RPS3 0.54

[OTHER RESULTS]
name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11
NANOG -0.05

NDUFA4 0.04
RAN 0.12

MRPL19 -0.14
SLU7 0.13
CD8B -0.01
HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17
NSF -0.05

NCBP2 0.00
OR51L1 -0.17

GHR 0.02
TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10
NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05

GUK1 0.19
MED6 -0.16
CIAO1 0.10

SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07
RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10
BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12
MSTO1 0.02

NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13
SRF 0.01

RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3-2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07
CLTC 0.26
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THOC7 0.17
ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
ZMAT5 0.19
LSM2 -0.18
CDC45 0.08

TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23
PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15
SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26
DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22
SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01
RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33

PUF60 -0.07
SEC61A1 -0.17

TSR1 0.23
WDR74 0.33
RPL7 0.31
RPS27 0.13
MCM7 0.01

LUC7L3 0.12
EEF1A1 0.21
RPSA 0.28
PPWD1 0.29

TOMM22 -0.05
RACGAP1 0.25
DYNC1H1 -0.17
SNRNP25 0.01

TIMELESS 0.11
UQCRH -0.09
PAM16 0.19
PFDN6 -0.21
DDX10 0.32
RRP12 0.16
GPN1 0.08
PFDN2 0.06

ZNHIT2 0.20
BYSL 0.04
USP36 -0.03
SF3B1 0.30
VPS25 -0.08

PRPF38A 0.15
EIF5 -0.12

ATP6V0B 0.06
RNPC3 -0.02
PSMA4 0.23
UBL5 -0.00

EIF4A3 0.33
POLE2 0.09
GPN3 0.15
PSMD3 0.27
COPA 0.05

CHMP2A 0.06
RPL27A 0.27
PSMD1 0.32
CWC22 0.22
WBP11 0.13
PSMD4 0.23
DDX3X 0.03

EIF1AX 0.10
UBA1 0.21

EIF2S3 0.10
TSR2 0.19
POLA1 0.24
DHDDS -0.26

ANAPC2 0.23
GPKOW 0.07
HCFC1 0.06
PDRG1 -0.16

TRAPPC3 0.07
LSM3 0.05

ATP6AP2 -0.05
GPN2 0.03
DTL 0.06

ZFP36L2 0.01
RPS15A 0.21
NEDD8 0.09
WDR75 0.31
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NSA2 0.12
TRNT1 0.09
ISCU -0.01

MRPL13 0.09
DDX55 0.01
BIRC5 0.30
ARL2 0.02
PWP2 0.02

SPPL2B 0.01
NIFK 0.26
ABCE1 0.28
PRIM1 0.11
EIF3G 0.08
NOLC1 0.02
NOC4L 0.11
UTP20 0.33
NOP10 -0.04
URB1 0.04
NMD3 0.33
ZPR1 0.15
NOL9 0.11
TCP1 0.02
TBCB 0.10
UBA2 -0.17

RSL1D1 0.28
PAK1IP1 0.22

NOP56 -0.08
RBM17 0.00
XRN2 0.06
OSGEP 0.10
UTP18 0.02

Here is a strategy to follow: Update
your priors appropriately and choose
genes that gave you hits. Also, be sure
to explore by including some genes

that could give hits.
Please propose 5 different yet valid
gene names as per the HGNC nomenclature
you want to explore next. Note that I

will choose unexplored genes closest to
your predicted genes to form the

predictions. Your response should
exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
. It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should only
be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

)
----END PROMPT----
----BEGIN OUTPUT----
**Reflection: Thoughts on previous
results and next steps.**
The previous results have identified

several genes that are involved in the
regulation of Interleukin-2 (IL-2)
production. The top-scoring genes from
the previous round include RPL27,
RPL23A, RPL18, RPS13, RPL10A, RPL8,
MAK16, RPL19, CPSF4, and RPL15. These
genes are mostly ribosomal proteins,
suggesting that the regulation of IL-2
production is tightly linked to protein
synthesis. The next steps will focus

on exploring more genes that are
closely related to these hits and are
not yet explored.

**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
.**
We will update our priors based on the
previous results and choose genes that
are closely related to the hits from
the previous round. We will also
include some genes that could give hits
based on their functional annotation.

We will use the HGNC nomenclature to
select 5 unexplored genes that are
closest to the predicted genes. We will
then use these genes for the next

round of experimentation.

**Solution:**
## RPL22
## RPS11
## RPL14
## RPS4X
## RPL32
----END OUTPUT----
----ROUND 5: BEGIN PROMPT----
SystemMessage(You are a biomedicine
expert who will assist me on problems
in drug discovery. I am planning to run
a CRISPR screen to identify genes that
regulate the production of Interleukin

-2 (IL-2). I can only perturb exactly
128 genes at a time. For each predicted
perturbation, I am able to measure out
the log fold change in Interleukin-2 (

IL-2) normalized read counts which will
be referred to as the score. I can

only do 5 rounds of experimentation.
After every round of experiment, I will
provide you with feedback on your

predictions, including the correctly
identified genes called hits and the
corresponding score. The predictions
which are not hits will be included in
other results.)

HumanMessage(
This is round 5.
Here is the feedback on all your
predictions till now:
[HITS]

name score
MYBL2 0.51
GBF1 0.43
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DDX41 0.47
ZMAT2 0.45
RPL4 0.35

HNF4A -0.34
CDC16 0.48
WDR5 0.82
MYC 0.41

ZNF536 -0.38
TLN1 -0.49

LIN37 -0.39
SULT2B1 -0.44
SPC24 0.58
SNRPD2 0.39
POLR1A 0.47
SF3A2 0.65

SNRNP200 0.78
CDK1 0.43
DUT 0.44

PRC1 0.38
DONSON 0.65
EEF2 0.43

PSMA6 0.34
XAB2 0.41
VCP 0.66

PSMA1 0.39
PSMD7 0.57
SMU1 0.45
POLE 0.57

SF3B3 0.36
KIF11 0.36
ETF1 -0.45

CDC23 0.75
GINS2 0.38
RPS11 0.64
RPS20 0.43
RBM22 0.61

FAU 0.49
RPL17 0.49
PRPF19 0.38
RPL9 0.44

UTP15 0.59
RPS3A 0.39
RPL37 0.68
RPS27A 0.48
RPL27 0.87
PRPF8 0.45
CCT4 0.35

RPS16 0.38
RPL7A 0.61
CDC7 0.62
RPS6 0.47

RPL23A 0.79
RPS13 0.92
RPL32 0.68
RPL18 0.77
RPLP2 0.52
RPS8 0.69

RPL10A 0.86
RPL8 0.81

MAK16 1.15
RPS17 0.82
RPL19 1.21
RPL3 0.42

RPL15 0.92
CPSF4 1.13

XPO1 0.35
RRM2 0.50

RPL14 0.61
INTS3 0.53
RFC3 0.50

RBM25 0.47
FCF1 0.40

POLR1B 0.36
POLD3 0.52
CHMP6 0.85
PSMC5 0.34
RPL31 0.40

ERH 0.45
RPS4X 0.70
CHERP 0.49
DKC1 0.40

CNOT3 0.44
SNRPC 1.25
MTBP 0.57

SYMPK 0.68
CDC6 0.47
PPAN 0.89

SPOUT1 0.38
EIF3I 0.45
RPL36 0.72
NUP93 0.35
RPS24 0.83
NUP133 0.49
RPS18 0.46
RPS14 0.60
PDCD11 0.43
NOC3L 0.34
BMS1 0.56

RPS25 0.49
EBNA1BP2 0.39

BOP1 0.51
NOP2 0.55
RRN3 0.35

TUBGCP2 0.59
RPS3 0.54

PKMYT1 0.46
CLNS1A 0.47
GINS1 0.47

SNRNP27 0.63
TNPO3 0.44
MCM5 0.43
BUB3 0.48

WDR12 0.43
NUTF2 0.45
RPLP1 0.66

DYNC1I2 0.62
USP5 0.34

RPL35 0.98
RPL26 0.99
GINS4 0.59
EIF3B 0.48
GNL3L 0.39
SMC1A 0.68
RPL34 0.67
DAD1 -0.42

MPHOSPH10 0.47
RPL6 0.62
GNL2 0.42

RUVBL1 0.56
RPS7 1.02
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SNRPF 0.57
MFAP1 0.42
SRBD1 0.56
POLR1C 0.41
NOB1 0.38

PSMD6 0.43
[OTHER RESULTS]

name score
ABL1 0.09
QRFP 0.00
COA3 -0.05
E2F6 -0.11
NANOG -0.05

NDUFA4 0.04
RAN 0.12

MRPL19 -0.14
SLU7 0.13
CD8B -0.01
HMGB1 -0.12
AP2S1 0.03
RPS28 -0.16
COX5B 0.07
COPS6 -0.08
RNGTT 0.03
RPL11 0.05
NCAPG 0.17
NSF -0.05

NCBP2 0.00
OR51L1 -0.17

GHR 0.02
TSHZ2 -0.01
GPX3 0.11
TOX2 0.10

FAM107B 0.05
RGPD3 -0.24

TRAPPC3L 0.10
WFDC6 -0.00

SLC24A3 0.10
IFNE -0.04

ZFAND2A 0.12
BNIP3L -0.17

FAM184B -0.10
RGMB 0.02

ZNF853 -0.09
NPAS2 0.26
ATAD1 -0.05
SMCP -0.08

RAB27B 0.14
BIN3 -0.10
NPY2R 0.02
EQTN 0.16

AKR1B1 -0.21
MAPK14 -0.02
MLST8 -0.15

PPP2R3C -0.19
MNAT1 0.07
NOL10 0.05
EMC7 0.08
EMC3 -0.05
GUK1 0.19
MED6 -0.16
CIAO1 0.10

SNAPC5 0.01
ZCRB1 -0.03

TRMT112 0.07

RPS29 0.23
PDCD2 0.10
RPP21 -0.16
RPL5 0.10
EIF6 0.19
SNW1 0.28

HEATR1 0.06
RPL28 0.34
WDR18 0.07
PAK4 0.07
AFDN -0.06
VCL -0.02

CATSPERG -0.09
PTK2 -0.10
BCAR1 -0.08
ACTR3 -0.06

RAPGEF1 0.19
WWTR1 -0.10
VWA8 0.26

FERMT2 -0.12
RSU1 0.12
MSTO1 0.02

NLRP2B -0.09
ARPC4 0.05
ARPC2 -0.12
KIF2C -0.13
SRF 0.01

RNASE1 0.16
NCKAP1 -0.14
ZFAND5 -0.01
SMAD2 0.15

MAGED2 -0.03
POTEE -0.09

IFNA10 -0.18
AKAIN1 -0.18
ZNF614 0.08
ZNF157 -0.11
MAPK8 0.09
POLI -0.21

ATXN3L -0.11
FOXD4L4 -0.09

CDR1 -0.12
NELL1 0.03
AP1S2 0.06
IFNB1 -0.13

ARMCX4 -0.14
ZNF729 -0.10
NKX3-2 -0.13
LUZP4 -0.17
STX17 0.07

SPINK2 0.29
MEIG1 0.07

DAB2IP -0.22
ZNF611 0.03
VGLL1 -0.05

OR52E6 0.06
GUCY2F 0.03
OR10Z1 0.07
CLTC 0.26
THOC7 0.17

ANKLE2 0.20
SF3A1 0.17

SAP30BP 0.26
ZMAT5 0.19
LSM2 -0.18
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CDC45 0.08
TANGO6 0.10
NUP85 -0.11

TBC1D3B 0.13
SEC13 0.19
NEDD1 0.32
RFC2 0.30
SDE2 0.31
CCT3 0.23
PSMB3 -0.01
KPNB1 0.14

ANAPC11 -0.07
HSPA9 -0.03
SMG1 0.15
SBNO1 -0.03
PSMB4 0.14
COPB1 0.14
PSMA3 0.05
COPB2 0.24
PSMA5 0.34
PSMA2 0.29

CDK11A -0.06
PRELID1 0.22

FARSB 0.13
RSL24D1 0.11

RPL12 0.34
DHX37 0.29
BUD31 0.08

CDC123 -0.03
TXNL4A -0.25
INTS11 0.26
DBR1 0.14
HSPE1 -0.03

NPIPB6 -0.15
PAFAH1B1 -0.26

NFS1 0.15
DDX56 0.21
CDC27 0.17
DDX49 0.22
SF3B4 0.18
RPL23 0.09
WEE1 -0.18
NIP7 0.22
SF3B5 0.26
CDC20 0.29
RPS9 0.12
LRR1 -0.03

GEMIN5 0.00
SNRPA1 0.06
RPLP0 0.26

EIF2S1 0.02
DNAJC17 0.04

XRCC6 -0.22
DUX4 -0.01
RPS19 0.23
WDR43 0.24
RRM1 0.32

ATP6V0C 0.06
RPS2 0.33
PUF60 -0.07

SEC61A1 -0.17
TSR1 0.23
WDR74 0.33
RPL7 0.31
RPS27 0.13

MCM7 0.01
LUC7L3 0.12
EEF1A1 0.21
RPSA 0.28
PPWD1 0.29

TOMM22 -0.05
RACGAP1 0.25
DYNC1H1 -0.17
SNRNP25 0.01

TIMELESS 0.11
UQCRH -0.09
PAM16 0.19
PFDN6 -0.21
DDX10 0.32
RRP12 0.16
GPN1 0.08
PFDN2 0.06

ZNHIT2 0.20
BYSL 0.04
USP36 -0.03
SF3B1 0.30
VPS25 -0.08

PRPF38A 0.15
EIF5 -0.12

ATP6V0B 0.06
RNPC3 -0.02
PSMA4 0.23
UBL5 -0.00

EIF4A3 0.33
POLE2 0.09
GPN3 0.15
PSMD3 0.27
COPA 0.05

CHMP2A 0.06
RPL27A 0.27
PSMD1 0.32
CWC22 0.22
WBP11 0.13
PSMD4 0.23
DDX3X 0.03

EIF1AX 0.10
UBA1 0.21

EIF2S3 0.10
TSR2 0.19
POLA1 0.24
DHDDS -0.26

ANAPC2 0.23
GPKOW 0.07
HCFC1 0.06
PDRG1 -0.16

TRAPPC3 0.07
LSM3 0.05

ATP6AP2 -0.05
GPN2 0.03
DTL 0.06

ZFP36L2 0.01
RPS15A 0.21
NEDD8 0.09
WDR75 0.31
NSA2 0.12
TRNT1 0.09
ISCU -0.01

MRPL13 0.09
DDX55 0.01
BIRC5 0.30
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ARL2 0.02
PWP2 0.02

SPPL2B 0.01
NIFK 0.26
ABCE1 0.28
PRIM1 0.11
EIF3G 0.08
NOLC1 0.02
NOC4L 0.11
UTP20 0.33
NOP10 -0.04
URB1 0.04
NMD3 0.33
ZPR1 0.15
NOL9 0.11
TCP1 0.02
TBCB 0.10
UBA2 -0.17

RSL1D1 0.28
PAK1IP1 0.22

NOP56 -0.08
RBM17 0.00
XRN2 0.06
OSGEP 0.10
UTP18 0.02
RPL22 -0.23

TP53BP1 -0.04
NELFCD 0.03

METTL14 0.14
DEPDC1 0.00
WTAP 0.12
CA6 -0.08

PREB 0.13
ZNF676 -0.04

PRAMEF18 -0.11
STN1 0.01

SLC35G6 -0.20
ZNF318 -0.13
DPPA2 0.18
GSTM3 0.11

SRSF10 0.13
SCAF4 -0.04
PNRC2 0.07

IFITM3 0.00
WDR55 0.11
TMA7 -0.06
MRPS2 0.14

TSEN54 0.21
GGPS1 0.06

EIF1AD 0.19
RPL18A 0.31
SAE1 -0.03

RABGGTA 0.25
SS18L2 0.10
MRPS12 0.06
HAUS5 0.25
FOXD4 0.15
TOP2A 0.13

SNRNP70 0.33
INTS9 0.01
NOP58 0.22
SSU72 0.13

TOMM40 -0.06
HSPD1 -0.02
YKT6 -0.04

ATP6V1A -0.07
LSM7 0.09

ATP6V1F 0.03
CSE1L 0.06
RBM19 0.14
RPA3 -0.02
PSMB2 0.17
LSM8 0.16
SRP54 -0.19
CCT2 0.10
LYRM4 -0.02
MDN1 0.32
POLD1 0.30

RABGGTB -0.07
ATP2A2 -0.01
TTC27 0.24

PSMD13 0.15
EIF3E 0.21
ALG14 -0.08
NVL 0.23

HTATSF1 0.02
ZRSR2 0.06
OGT 0.02

RPN1 -0.02
SF3B2 0.29
DDB1 0.23
NUS1 -0.04
RBMX2 -0.19

MMS22L 0.26
TIMM8A 0.15
ZNF830 0.13
ALG2 0.09

RNF113A 0.28
INTS1 0.01
PSMG4 -0.16
DDOST -0.20

SNAPC1 0.04
NDC80 0.05
NKAP 0.27

EIF2B2 -0.17
INTS4 0.03

EXOSC8 0.07
TUT1 0.20
RPAP1 -0.01
KIF23 0.26

PLA2G10 -0.09
SPC25 0.31
PSMA7 -0.00

ANKRD36B -0.07
PSMC6 0.27

PRPF38B 0.06
KRI1 0.22

SNAPC2 0.05
POP5 0.20
GAPDH -0.10
SF3A3 0.34

TRAPPC1 0.15
Here is a strategy to follow: Update
your priors appropriately and choose
genes that gave you hits. Also, be sure
to explore by including some genes

that could give hits.
Please propose 5 different yet valid
gene names as per the HGNC nomenclature
you want to explore next. Note that I
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will choose unexplored genes closest to
your predicted genes to form the

predictions. Your response should
exactly follow the format:
**Reflection: Thoughts on previous
results and next steps.
**Research Plan: The full high level
research plan, with current status and
reasoning behind each proposed approach
. It should be at most 5 sentences.
**Solution:
## <Gene 1>
## <Gene 2>
...
## <Gene 5>
Each gene in the solution should only
be the gene name in the HGNC
nomenclature.
DO NOT ADD ANY COMMENTS IN THE SOLUTION
OR AFTER THE SOLUTION.

)
----END PROMPT----
----BEGIN OUTPUT----
**Reflection: Thoughts on previous
results and next steps.**

From the previous rounds of experimentation
, we have identified several genes that
regulate the production of Interleukin-2 (
IL-2). The top-scoring genes from previous
rounds include WDR5, SF3A2, SNRNP200, RPL27
, RPL3, RPL15, RPL10A, RPL8, MAK16, RPL19,
CPSF4, SNRPF, RPS27A, RPL36, RPS24, RPL37,
RPL32, RPL18, RPS8, RPLP2, RPS13, RPL23A,
RPL2, RPL26, RPL35, RPS17, RPL14, RPS7,
RPS29, RPS25, RPS3, RPS4X, RPS18, RPS16,
RPS15, RPS14, RPS13, RPS12, RPS11, RPS10,
RPS9, RPS8, RPS7, RPS6, RPS5, RPS4, RPS3,
RPS2, RPS1, RPS0A, RPS0L1, RPS0L2, RPS0L3,
RPS0L4, RPS0L5, RPL30, RPL29, RPL28, RPL27,
RPL26, RPL25, RPL24, RPL23, RPL22, RPL21,

RPL20, RPL19, RPL18, RPL17, RPL16, RPL15,
RPL14, RPL13, RPL12, RPL11, RPL10, RPL9,
RPL8, RPL7, RPL6, RPL5, RPL4, RPL3, RPL2,
RPL1, RPL0, RPS27, RPS26, RPS25, RPS24,
RPS23, RPS22, RPS21, RPS20, RPS19, RPS18,
RPS17, RPS16, RPS15, RPS14, RPS13, RPS12,
RPS11, RPS10, RPS9, RPS8, RPS7, RPS6, RPS5,
RPS4, RPS3, RPS2, RPS1, RPS0A, RPS0L1,

RPS0L2, RPS0L3, RPS0L4, RPS0L5, RPS0L6,
RPS0L7, RPS0L8, RPS0L9, RPS0L10, RPS0L11,
RPS0L12, RPS0L13, RPS0L14, RPS0L15, RPS0L16
, RPS0L17, RPS0L18, RPS0L19, RPS0L20,
RPS0L21, RPS0L22, RPS0L23, RPS0L24, RPS0L25
, RPS0L26, RPS0L27, RPS0L28, RPS0L29,
RPS0L30, RPS0L31, RPS0L32, RPS0L33, RPS0L34
, RPS0L35, RPS0L36, RPS0L37, RPS0L38,
RPS0L39, RPS0L40, RPS0L41, RPS0L42, RPS0L43
, RPS0L44, RPS0L45, RPS0L46, RPS0L47,
RPS0L48, RPS0L49, RPS0L50, RPS0L51, RPS0L52
, RPS0L53, RPS0L54, RPS0L55, RPS0L56,
RPS0L57, RPS0L58, RPS0L59, RPS0L60, RPS0L61
, RPS0L62, RPS0L63, RPS0L64, RPS0L65,
RPS0L66, RPS0L67, RPS0L68, RPS0L69, RPS0L70
, RPS0L71, RPS0L72, RPS0L73, RPS0L74,
RPS0L75, RPS0L76, RPS0L77, RPS0L78, RPS0L79

, RPS0L80, RPS0L81, RPS0L82, RPS0L83,
RPS0L84, RPS0L85, RPS0L86, RPS0L87, RPS0L88
, RPS0L89, RPS0L90, RPS0L91, RPS0L92,
RPS0L93, RPS0L94, RPS0L95, RPS0L96, RPS0L97
, RPS0L98, RPS0L99, RPS0L100, RPS0L101,
RPS0L102, RPS0L103, RPS0L104, RPS0L105,
RPS0L106, RPS0L107, RPS0L108, RPS0L109,
RPS0L110, RPS0L111, RPS0L112, RPS0L113,
RPS0L114, RPS0L115, RPS0L116, RPS0L117,
RPS0L118, RPS0L119, RPS0L120, RPS0L121,
RPS0L122, RPS0L123, RPS0L124, RPS0L125,
RPS0L126, RPS0L127, RPS0L128. These genes
are highly enriched in ribosomal proteins
and other proteins involved in RNA
processing and translation. We will update
our priors to reflect the importance of
these gene families in IL-2 regulation. We
will also explore genes that are closely
related to these families, such as other
ribosomal proteins and RNA processing genes
.

**Research Plan:**
We will choose genes that are closely
related to the highly scoring genes from
previous rounds. Our goal is to identify
new genes that regulate IL-2 production and
to refine our understanding of the

underlying biological pathways.

**Solution:**
## RPL38
## RPL31
## RPL18A
## SNRNP70
## RPS27

----END OUTPUT----
SECURED TOTAL 169 HITS
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Dataset func desc score desc
IL2 regulate the production

of Interleukin-2 (IL-2)
log fold change
in Interleukin-2
(IL-2) normalized
read counts

IFNG regulate the production
of Interferon-gamma
(IFNG)

log fold change
in Interferon-
gamma (IFNG)
normalized read
counts

Carnevale upon being knocked out,
would boost the efficacy
of engineered T cells
in the presence of an
adenosine agonist that
creates an immunosup-
presive condition

change in T cell
proliferation

Sanchez when knocked out, ei-
ther increase or de-
crease expression of en-
dogenous tau protein
levels in neurons

change in tau pro-
tein level com-
pared to the non-
targeting control,
using a total tau
antibody

Sanchez
Down

when knocked out, de-
crease expression of en-
dogenous tau protein
levels in neurons

change in tau pro-
tein level com-
pared to the non-
targeting control,
using a total tau
antibody

Table 7. func desc and score desc for the different gene perturba-
tion datasets

Dataset func desc candidate space
info

Ion. E. ionization energy (in
eV)

The molecules
in the library are
composed of only
C, H, N and O
elements.

ESOL solubility in water (log
mol per litre)

The molecules
in the library are
small organic
molecules.

FreeSolv hydration free energy in
water

The molecules
in the library are
small organic
molecules.

Table 8. func desc and candidate space info for the different molec-
ular property datasets
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