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Abstract

A key advantage of Recurrent Neural Networks (RNNs) over Transformers is their
linear computational and space complexity enables faster training and inference
for long sequences. However, RNNs are fundamentally unable to randomly access
historical context, and simply integrating attention mechanisms may undermine
their efficiency advantages. To overcome this limitation, we propose Hierarchical
Sparse Attention (HSA), a novel attention mechanism that enhances RNNs with
long-range random access flexibility while preserving their merits in efficiency and
length generalization. HSA divides inputs into chunks, selects the top-k chunks
and hierarchically aggregates information. The core innovation lies in learning
token-to-chunk relevance based on fine-grained token-level information inside
each chunk. This approach enhances the precision of chunk selection across both
in-domain and out-of-domain context lengths. To make HSA efficient, we further
introduce a hardware-aligned kernel design. By combining HSA with Mamba, we
introduce RAMba, which achieves perfect accuracy in passkey retrieval across 64
million contexts despite pre-training on only 4K-length contexts, and significant
improvements on various downstream tasks, with nearly constant memory footprint.
These results show RAMba’s huge potential in long-context modeling.

1 Introduction

The success of Large Language Models (LLMs) [1, 11, 59] has been largely driven by the Transformer
architecture [60]. However, the quadratic computational and memory costs of self-attention make it
inefficient for processing long sequences. Moreover, Transformers often struggle with inputs that
exceed their pre-training length. These limitations have renewed interest in alternative architec-
tures such as Recurrent Neural Networks (RNNs) [10, 24, 28, 33] that enable efficient, linear-time
processing of sequential data while retaining a degree of extrapolation capability.

However, RNN-based models suffer from a critical limitation: the information bottleneck [58] caused
by compressing variable-length contexts into fixed-dimensional representations. Unlike attention
mechanisms, they lack random access to contextual information, which becomes especially problem-
atic in tasks like passkey retrieval, where performance degrades as sequence length increases [62].
While augmenting RNNs with attention mechanisms can help mitigate this limitation, it introduces
drawbacks such as poor length extrapolation, quadratic computational complexity, and substantial
memory overhead during inference, ultimately undermining the original efficiency advantages of
RNNs. Consequently, there remains no satisfactory RNN-based solution that can simultaneously
achieve length generalization, random-access flexibility, and efficiency.

To address the trilemma, we propose a novel Hierarchical Sparse Attention (HSA) mechanism.
Existing sparse attentions like NSA and MoBA [32, 70] typically divide sequences into chunks,
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allowing each token to attend to a concatenation of k selected chunks, thus can potentially achieve
both efficiency and random access. While this design offers a promising step toward resolving the
trilemma, a closer examination reveals a critical weakness: these methods often suffer from inaccurate
chunk selection, both within the training distribution and when generalizing to longer, out-of-domain
contexts. As illustrated in Figure 1(A), the issue may stem from learning token-to-chunk relevance in
a chunk-unaware way, relying on token-to-token gradients instead of chunk-level feedback.

Figure 1: Ki,Vi are the i-th chunk’s key and value,
with K̄i the mean pooling of Ki. In (A), the chunk se-
lection scores Q⊤

t K̄i are learned from token-to-token
interactions (chunk-unaware). In HSA (B), Q⊤

t K̄i

are guided by the feedback from the entire chunk
(chunk-aware), with Ot,i the chunk-level information
obtained from the i-th chunk by the t-th token.

Based on this insight, HSA introduces a two-stage
hierarchical mechanism for the selected chunks to
enable end-to-end learning of token-to-chunk rele-
vance. As shown in Figure 1(B), in the first stage,
it applies attention separately to the tokens within
each chunk to capture chunk-level information. In
the second stage, it fuses the chunk-level informa-
tion by applying weighted summation using token-
to-chunk weights. During the backpropagation
pass, token-to-chunk weights are adjusted based
on the contribution of the entire chunk to the next
token prediction, achieving chunk-aware learning.
Experimental results show that this chunk selec-
tion mechanism remains accurate even when con-
text lengths exceed pre-training lengths by over
10,000 times in passkey retrieval. Since each to-
ken corresponds to different k chunks, a naive im-
plementation would require substantial memory.
Thus, we further propose a hardware-aligned algorithm to achieve efficient parallel computation.

With HSA, we propose Random Access Mamba (RAMba), an extension of Mamba-2 [16] that
incorporates HSA into specific layers. To maintain a constant memory footprint during inference,
RAMba offloads the token-level key-value (KV) cache to CPU memory while retaining compact
chunk-level representations on the GPU for efficient chunk selection. At each time step, only the
KV cache of the selected chunks is loaded onto the GPU, ensuring efficient memory usage. To
further minimize GPU-CPU memory swaps, RAMba leverages the hidden states derived from an
intermediate layer as shared KV cache for all subsequent HSA layers, requiring just one chunk
selection and swap per step. This architecture can simultaneously balance training and inference
efficiency, length generalization, and long-range random access flexibility.

In our experiments, we compare RAMba with baselines such as Transformers, Mamba-2, and their
variants with sliding window attention [14] and NSA [70], evaluating performance across long-range
language modeling, downstream tasks, and efficiency. RAMba consistently outperforms the baselines
in long-context modeling and downstream tasks while exhibiting exceptional length generalization.
Notably, it is the first Mamba-based model to achieve perfect accuracy on a 64M context in the
passkey retrieval task. In terms of efficiency, HSA is 3× faster than NSA and 5–25× faster than full
attention for contexts of 16K tokens or more during the forward pass. Additionally, when memory
offloading is enabled, RAMba maintains nearly constant memory usage. These results demonstrate
RAMba’s superior capability in long-text modeling. In summary, our contributions are threefold:

1. We propose HSA, a novel hierarchical attention mechanism paired with a hardware-efficient
algorithm that simultaneously enables efficiency, length generalization, and flexible long-range
random access.

2. Based on HSA, we introduce RAMba, which integrates the advantages of the attention mechanism
into Mamba while maintaining a nearly constant memory footprint during inference.

3. We conducted comprehensive experiments on the length generalization of Mamba with various
attention mechanisms. The results show that HSA excels in both performance and efficiency.

2 Related Works

Sparse Attentions. Sparse attention aims to reduce computational complexity by focusing on a
limited number of tokens. For example, sliding window attention and its variants [9, 14, 41, 71]
restrict computations to a fixed-size local window for each token. Such methods often sacrifice
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the ability to capture long-range information. Clustering based approaches [30, 52, 61, 64] employ
locality-sensitive hashing or K-Means for token clustering and perform attention with clusters. These
methods often trade off efficiency for quality due to the limited accuracy of clustering. Cache eviction
approaches [21, 31, 74] maintain constant memory costs by retaining only the most important
tokens in the KV cache, but this limits the model’s ability to access arbitrary contexts randomly.
Combiner [50] utilizes a hierarchical attention mechanism by compressing tokens within chunks
into single key-value pairs via max-pooling. However, this approach sacrifices the ability to capture
token-level information inside the chunk, resulting in reduced accuracy. Recently, NSA [70] and
MoBA [32] achieve sparsity by dividing a sequence into chunks and dynamically selecting relevant
chunks for each token based on summed token-level attention scores. However, these approaches
struggle with accurately identifying important chunks. Our work introduces a two-stage hierarchical
attention mechanism with sparse chunk selection, achieving end-to-end learning of token-to-chunk
relevance, while maintaining the ability to capture token-level information, resulting in attention
flexibility, accuracy, and efficiency.

RNN-base Language Models. RNN-based language models have recently gained increased atten-
tion because their per-token inference cost remains constant as the sequence length grows. Linear
Attention [28] shows that replacing softmax attention with kernel-based approximations allows Trans-
formers to be reformulated as RNNs, achieving similar performance while benefiting from recurrent
properties. Recent advancements in RNNs, such as RWKV series [42, 43], Mamba series [17, 23],
GLA [66], HGRN series [46, 47], xLSTM [8] and others [67, 73], continue to push the boundaries of
this approach. Our work builds on these RNN models and is in principle applicable across different
RNN architectures. Meanwhile, other studies [18, 37, 51] explore hybrid architectures using RNNs
for long-range memory and attention for short-range patterns. In contrast, our approach leverages
RNNs to adaptively retain essential short-range information for next-token prediction, while sparse
attention selectively accesses long-range context at arbitrary positions.

Context Length Extrapolation. The full attention mechanism struggles to generalize to contexts
longer than those observed during pretraining [45], even with techniques like relative positional
encoding [54] or attention weight scaling [63]. While methods such as Landmark Attention [35]
and DCA [3] have been proposed to address this limitation, they still encounter a sharp rise in
perplexity when extrapolating beyond a certain length, typically 32×. Recently, GCA [27] achieves
perfect accuracy on 16M context lengths despite being pre-trained on only 4K lengths by integrating
end-to-end retrieval within attention. However, GCA limits retrieval to once every S (usually 64)
tokens, reducing its flexibility. The two-stage attention mechanism in HSA is inspired by GCA, but
achieving per-token retrieval through kernel optimization.

3 Methodology

From the psychological perspective, human memory primarily comprises two main systems: working
memory [6], which temporarily stores and manipulates information with limited capacity, and long-
term memory [5], which stores information indefinitely with virtually unlimited capacity. Inspired by
this, RAMba applies Mamba to simulate working memory by compressing variable-length contexts
into a finite representation for manipulation. Meanwhile, it uses HSA to model long-term memory
as an extendable KV cache, enabling efficient retrieval and attention computation. In HSA, the
key innovation lies in its two-stage hierarchical attention mechanism: first, weighting over tokens
within a chunk, and then weighting over chunks. By offloading KV cache to CPU memory or disk,
it can theoretically maintain unlimited memory. In the following sections, we elaborate the model
architecture, HSA, kernel design, and optimizations for training and inference.

3.1 Model Architecture

As shown in Figure 2(a), RAMba contains L Mamba layers, equally divided into upper and lower
decoders, akin to previous works [27, 53]. Given the input sequence {x1, ..., xl}, their corresponding
embeddings are fed into the lower decoder and the outputs are divided into ⌈ l

S ⌉ chunks according
to chunk size S. These chunked representations are then passed through a Transformer-based bi-
directional encoder independently to form chunked memories, used for chunk selection and sparse
attention in subsequent HSA layers. The upper decoder takes the outputs of the lower decoder as
inputs, and alternates between one HSA layer and G Mamba layers for L

2G times. Between the
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Figure 2: (a) Model architecture for RAMba. (b) Kernel design for HSA.

lower and upper decoders, a chunk selection layer selects the most relevant k chunks based on the
dot-product similarity between token and chunk representations at each decoding step. HSA layers
capture long-range dependencies by attending to the selected chunks.

Notations. We focus on architectures like GQA [2], where each group of h query heads shares a
common KV head, and selects chunks independently. The hidden size d is divided into g groups,
satisfying g × dg = d, with dg = h × dh. Here, dg is the dimension of each group, and dh is the
dimension per head. We denote the m-th layer output as Hm ∈ Rl×d, with the t-step representation
Hm

t ∈ Rd, and the encoded token representations of the i-th chunk as Ei ∈ RS×d. To simplify the
notation, we use □̂ as a generic symbol to represent one of the groups, as each group behaves in the
same way. For example, Ĥm

t ∈ Rdg denotes one of the grouped representations.

Chunk Selection. At each time step t, a token uses the representation derived from the lower
decoder to select top-k past chunks. Each query group independently selects K chunks, which are
shared across the h heads within the group. Formally, we have:

Qslc
t = Wslc

Q norm(H
L
2
t )

Kslc
i = Wslc

K Ēi

, ŝt,i =

{
Q̂slc⊤

t K̂slc
i /

√
dg, i ≤ ⌊ t

S
⌋

−∞, i > ⌊ t
S
⌋ , Ît = {i| rank(ŝt,i) < K},

where norm is RMSNorm [72], Wslc
Q ,Wslc

K ∈ Rd×d conduct linear transformations, rank(·)
denotes the ranking position in descending order, Ēi ∈ Rd is the mean-pooled representations of
Ei. Qslc

t ,Kslc
i ∈ Rd are representations used for chunk selection, with Q̂slc

t , K̂slc
i ∈ Rdg as their

grouped representations. For each group, ŝt,i is the relevance score of xt to the i-th chunk, and Ît is
the selected K chunk indices for xt.

3.1.1 Hierarchical Sparse Attention

Chunk Weights. To avoid the impact of position encoding on length generalization [29], we discard
it and instead model the ordinal relationships of distances akin to the stick-breaking attention [55]. In
the stick-breaking process, participants sequentially take a portion from a stick, with later participants
dividing the remaining portion left by earlier ones, thus introducing a “most recent” bias. Let the
total weights 1 serve as the stick and wt,k denote the weight assigned to the k-th chunk selected by
the t-th token. For each group, we have:

Î ′
t = sort(Ît) , ŵt,k = β̂t,k

∏
i<k

(1− β̂t,i) = σ(ŝt,Î′
t,k

)
∏
i<k

(1− σ(ŝt,Î′
t,i
)),

where β̂t,k is the proportion taken from the remaining attention, calculated via the sigmoid function
σ. The sort(·) function rearranges Ît in descending order to prioritize chunks closer to xt in attention
allocation. Î

′
t,k denotes the the k-th value in Î

′
t.

Hierarchical Attention. After obtaining the weights for each chunk, xt performs attention with
tokens in each retrieved chunk separately. We denote the representation of information collected from
the k-th selected chunk as Ot,k ∈ Rdg . These representations are then fused using the chunk weights.
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Formally, for the l-th HSA layer, we have:

Ql
t = Wl

Q norm(hl−1
t ) , Ki = WKEi , Vi = WV Ei ,

Ôl
t,k = attn(Q̂l

t, K̂Î′
t,k

, V̂Î′
t,k

)︸ ︷︷ ︸
token-level attention for one group

, Ôl
t =

∑
k <K

ŵt,kÔ
l
t,k︸ ︷︷ ︸

chunk-level attention for one group

, Hl+1
t = Hl

t +Ol
t ,︸ ︷︷ ︸

Ol
t is the concatenation of all groups

where Wl
Q ∈ Rd×d,WK ,WV ∈ Rd×(g×dh) apply linear transform to obtain query, key, and value

representations, with h query head shares the same KV head. Ki,Vi ∈ RS×(g×dh) are the key and
value corresponding to the i-th chunk, while K̂i, V̂i ∈ RS×dh are their grouped representations,
shared across all HSA layers. Ql

t is the query representation of xt at the l-th layer.

The key Difference with MoBA/NSA. The primary distinction of HSA lies in the learnable chunk
retrieval module. To illustrate the difference between existing sparse attentions, such as in MoBA [32]
and MiniCPM4 [56], we provide a detailed analysis with specific examples in the Appendix A.

3.1.2 Kernel Design

In HSA, each token corresponds to a distinct set of K chunks, which can lead to a substantial memory
footprint in a naive implementation. Inspired by NSA, we address this issue by implementing
hardware-aligned HSA kernels based on Triton [57]. As illustrated in Figure 2(b), each GPU thread
loads the query representations for a single step along with the selected chunks’ KV pairs for attention
computation. Algorithm 1 demonstrates a parallel forward pass for one group of query heads, with
multiple groups processed in parallel following the same approach. Particularly, we use softmax-
off-by-one [34] to allow tokens in the current chunk to ignore any retrieved tokens. During the
back-propagation process, we adopt a two-phased backward pass inspired by Dao [15]. The first stage
accumulates gradients for Q and w, followed by K and V in the second stage. The pseudo-code for
this process is shown in Algorithm 2 and 3, in which Mt,i ∈ {0, 1}l×⌈ l

S ⌉ denotes whether the t-th
token selects the i-th chunk, and Rt,i ∈ Zl×⌈ l

S ⌉ represents the index of the i-th chunk in I ′
t.

Algorithm 1 FORWARD thread t

1: O′
t ← 0 // Initialize O′

t ∈ Rh×dh

2: Q′ ← load Qt // load Qt to Static RAM (SRAM), Q ∈ Rl×h×dh ,Q′ ∈ Rh×dh

3: for 1 ≤ k ≤ K do
4: i← load It,k, w ← load wt,k // I ∈ Zl×K , w ∈ Rl×K

5: K′ ← load Ki, V′ ← load Vi // K,V ∈ Rl×h×dhK′,V′ ∈ RS×dh

6: O′ ← softmax1(Q′K′⊤)V′ // Inter-chunk token-level attention, no online softmax required.
7: O′

t ← O′
t + wO′ // Chunk-level attention via weighted sum.

8: end for
9: O′

t → write to Ot // Write to High Bandwidth Memory (HBM) from Static RAM (SRAM).

Algorithm 2 BACKWARD-Q,w thread t

∇Q′ ← 0,Q′ ← load Qt,∇O′ ← load∇Ot

for 1 ≤ k ≤ K do
i← load It,k, w ← load wt,k

K′,V′ ← load Ki,Vi // K′,V′ ∈ RS×dh

P← softmax1(Q′K′⊤) // P ∈ Rh×S

O′ ← PV′ // O′ ∈ Rh×dh

D′ ← rowsum(O′ ◦ ∇O′) // pointwise multiply
// D′ ∈ Rh,∇O′ ∈ Rh×dh

D′ → write to Dt,k // D ∈ Rl×K×h

∇w′ ← rowsum(D′) //∇w′ ∈ R
∇w′ → write to∇wt,k //∇w ∈ Rl×K

∇P← ∇O′V′⊤ //∇P ∈ Rh×S

∇S← wP ◦ (∇P−D′) //∇S ∈ Rh×S

∇Qt ← ∇Qt +∇SK′ //∇Qt ∈ Rh×dh

end for
∇Q′ → write to∇Qt

Algorithm 3 BACKWARD-K,V thread i

K′,V′ ← load Ki,Vi // K′,V′ ∈ RS×dh

∇K′,∇V′ ← 0 //∇K′,∇V′ ∈ RS×dh

for 1 ≤ t ≤ l do
if Mt,i is true then

k ← load Rt,i, w ← load wt,i

Q′ ← load Qt // Q′ ∈ Rh×dh

∇O′ ← load∇Ot //∇O′ ∈ Rh×dh

D′ ← load Dt,k // D′ ∈ Rg

P← softmax1(Q′K′⊤) // P ∈ Rh×S

∇V′ ← ∇V′ + wP⊤∇O′

∇P← ∇O′V′⊤ //∇P ∈ Rh×S

∇S← wP ◦ (∇P−D′) //∇S ∈ Rh×S

∇K′ ← ∇K′ +∇S⊤Q′

end if
∇K′,∇V′ → write to∇Ki,∇Vi

end for
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3.2 Training & Inference

Training. Many efforts have been made to address Mamba’s length generalization issues. A simple
yet effective solution is truncated backpropagation through time (BPTT) [13, 66], in which the
first state of a sequence is initialized as the final state of its preceding sequence. We follow this
approach in training RAMba and other baselines. However, even though RAMba demonstrates
certain extrapolation capabilities, we still observe an increase in perplexity on longer contexts.
We hypothesize that RNNs’ memory state provides certain shortcuts [22] for long-range attention,
degrading performance on contexts largely exceeding the pre-trained length. Thus we attempt to
introduce an appropriate forgetting mechanism into the memory state to disrupt the shortcuts. A
straightforward way is memory reset, where sequences are divided into equal segments, and the initial
state of each segment is reset to zero. To align with BPTT, we set the initial state as the last hidden
state of a random segment in the previous step. In other words, for RNNs, the previous segment
is randomly replaced, while the attention mechanism retains access to the original context. Our
experiments show that this method effectively improves length generalization for RAMba.

Inference. A key challenge in introducing attention mechanisms to RNNs is managing the mem-
ory footprint, as the KV cache scales linearly with sequence length. Prior works [27, 35] have
demonstrated the feasibility of offloading the KV cache to CPU memory and selectively loading
chunks during inference. For a prompt of length L, all chunk representations are offloaded to the
CPU after prefilling, while only Kslc ∈ R⌊L

S ⌋×d is kept in GPU memory for chunk selection. During
decoding, RAMba retrieves and loads K chunks at each step for each group. Since the KV cache is
shared across all HSA layers, the number of parameters exchanged between the CPU and GPU totals
g × dh ×K × S. Our efficiency analysis in § 4.4 demonstrates the overhead for memory exchange
is fully acceptable. Since the memory footprint of Kslc still increases with the sequence length,
to theoretically achieve constant memory, a straightforward way is to offload it to a FAISS [19]
database. However, in practice, the memory footprint of Kslc is very limited, making such offloading
unnecessary. Detailed analysis is elaborated in the experiments section.

4 Experiments

4.1 Setups

To ensure a fair comparison, we pre-train all 370M models from scratch with 4K context length to
observe their performance and extrapolation capabilities across various tasks. For 2.7B models, the
training details are presented in Appendix E.

Baselines. We adopt the Mamba-2 architecture as the backbone of the RNN model and YaRN [44]
as the Transformer baseline. The parameter size of all models trained from scratch is 370M, with
detailed parameters provided in Appendix B. We experiment with Mamba variants with different
attention mechanisms, including sliding window attention, native sparse attention (NSA), and HSA.
For sliding window attention, the window size is set to 512, incorporating two position encoding
schemes: ALiBi [45] and RoPE, the latter following the settings in Samba [51]. We set the chunk size
of HSA to 64 following NSA. To ensure that the field of view for sparse attention matches the sliding
window size (64 * 8 = 512), we set the number of selected chunks to 8. For NSA, we use its efficient
open-source implementation *. To isolate the effects of the sparse attention components, we disable
the sliding window attention in NSA. The HSA incorporates a single-layered Transformer-based
bi-directional encoder for chunk memory encoding, accounting for 5.4% of the total parameters,
whose impact on fairness is minimal. HSA layers are inserted into the upper decoder every G = 8
Mamba layers, with other attention mechanisms like SWA and NSA following the same pattern.
These settings remain consistent across all subsequent 370M models. Since the compressed attention
in NSA functions similarly to Combiner [50], we do not conduct a separate comparison against
Combiner. Some other related works [36] are not included in the experiments due to the lack of
open-source implementations.

Pre-training. All models are pre-trained on the same 60-billion-token subset of the Pile dataset [20].
Detailed training hyper-parameters are provided in Appendix C.

*https://github.com/fla-org/native-sparse-attention
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Models(370M) pg19 arxiv code pg19 arxiv code pg19 arxiv code
eval_len=4k eval_len=16k eval_len=64k

Transformerfull_attn 18.61 4.23 3.28 539.15 199.42 62.17 >104 >104 2865.51
Mamba 17.92 4.24 3.28 17.38 3.91 3.09 17.30 3.86 3.05

w/ SWAALiBi 17.82 4.21 3.26 20.48 5.01 3.53 23.86 6.46 3.96
w/ SWArope 17.82 4.21 3.26 17.50 4.03 3.19 17.80 4.25 3.35
w/ NSAw/ m.r. 17.87 4.20 3.25 17.31 3.87 3.06 17.31 3.87 3.05
w/ NSAw/o m.r. 17.74 4.18 3.24 17.56 4.29 3.26 17.62 4.35 3.28

RAMbaw/ m.r. 17.82 4.15 3.23 17.15 3.73 3.04 17.01 3.65 3.07
RAMbaw/o m.r. 17.63 4.13 3.21 17.11 3.81 3.08 17.11 3.87 3.21
RAMbaw/o m.r., w/o s.b. 18.07 4.52 3.34 17.61 5.01 3.17 17.61 6.05 3.16

Table 1: Perplexity for long-range language modeling. We highlight the best results in bold and underline the
second best. All models are pre-trained on 4K contexts.

Ablation Studies. We denote memory reset usage as w/ m.r. and its absence as w/o m.r.. Addition-
ally, w/o s.b. refers to using softmax without positional encoding instead of stick-breaking weights.
For an 8K token context, the memory is reset every 4K tokens, which aligns with the context length
of other baselines. However, the chunk selection scope for sparse attention spans 8K tokens, which
might be unfair to other baselines. To ensure fair comparisons, we apply the same settings to both
HSA and NSA.

4.2 Long-range Langauge Modeling

Datasets. We evaluate long-range language modeling on PG19 [48], ArXiv-math [4], and Code [65].

Results. As shown in Table 1, RAMba performs better than the baselines across most datasets, on
both in-domain (4K) and out-of-domain (16K & 64K) lengths. In addition, we have two findings.
First, Mamba’s perplexity decreases as the context length increases from 4K to 64K, whereas Mamba
with attentions shows higher perplexity at 64K compared to 16K when not trained with memory
reset. This suggests that Mamba’s memory state may influence the generalization ability of attention
mechanisms. Secondly, when trained with memory reset, Mamba with NSA or HSA all exhibit
stronger length extrapolation capabilities but show a decline in in-domain performance. This result
validates the effectiveness of memory reset, which essentially constrains the model to rely entirely
on the content of the text for retrieval, thereby preventing the model from learning shortcuts. Since
the model becomes adapted to retrieving information from longer contexts, it is reasonable that its
performance declines when handling shorter contexts.

4.3 Downstream Tasks

Tasks. We evaluate various models’ long-context modeling abilities on classic tasks like passkey
retrieval [35] and the LongBench V2 dataset [7]. To increase task difficulty, we replace numbers
in passkey retrieval with random token sequences. Since passkey retrieval is relatively simple,
we further fine-tuned the models using synthetic data following RULER [25]. We use a context
length of 4K for fine-tuning with a total training step size equivalent to 5% of the pre-training stage.
Evaluations were conducted across different lengths on four RULER tasks: Single NIAH (S-N),
Multi-queries NIAH (MQ-N), Variable Tracking (VT), and Frequent Words Extraction (FWE). To
align with passkey retrieval, keys in Single NIAH were also replaced with random token sequences.
We adopt a Cloze format for LongBench evaluation, following Waleffe et al. [62], to address the
instruction-following challenges of small models. Since LongBench V2 is a zero-shot benchmark
and thus small models may exhibit randomness, we additionally evaluate on fine-tunable datasets,
including summarization tasks like XSUM [39] and CNN [38], and QA tasks like SQuaD [49],
HotpotQA [68], and QuALITY [40]. NSA’s implementation currently does not support generation,
so its results on generative tasks are not reported.

Results. First, Figure 3 shows that RAMba achieves perfect accuracy in the passkey retrieval
task with a 64M context, even without memory reset, while most baselines drop to nearly zero
around 64K length. However, removing the chunk encoder causes RAMba’s accuracy to decrease as
context length grows, highlighting the encoder’s importance for HSA and length generalization. One
possible reason is that the hidden states are primarily optimized for predicting the next token, thus
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Figure 3: Passkey retrieval results.

Models(370M) Overall Easy Hard Short Medium Long

Transformerfull_attn 24.8 23.4 25.7 28.5 19.6 29.5
Mamba 22.4 16.4 26.1 19.6 22.7 26.3

w/ SWAALiBi 23.3 26.9 21.0 19.6 26.8 22.1
w/ SWArope 24.2 25.7 23.2 20.3 26.3 26.3
w/ NSAw/ m.r. 23.5 25.7 22.1 21.5 25.8 22.1
w/ NSAw/o m.r. 22.1 26.3 19.6 17.1 26.3 22.1

RAMbaw/ m.r. 25.7 28.7 23.9 20.9 27.8 29.5
RAMbaw/o m.r. 23.5 26.3 21.7 20.9 23.7 27.4

Table 2: LongBench V2 results.

Models (370M) S-N MQ-N VT FWE S-N MQ-N VT FWE S-N MQ-N VT FWE S-N FWE
ctx-len=4K ctx-len=64K ctx-len=256K ctx-len=1M

Transformerfull_attn 95.08 88.59 97.12 60.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 — —
Mamba-2 96.66 1.86 61.78 64.75 10.45 0.00 8.96 37.31 0.00 0.00 6.25 43.75 0.00 40.00

w/ SWArope 91.84 6.96 37.20 72.08 28.36 0.00 17.91 0.00 6.25 0.00 0.00 0.00 — —
w/ NSA (w/o m.r.) 92.58 59.09 57.70 66.98 13.43 0.00 0.00 2.99 6.25 0.00 0.00 6.25 — —
w/ NSA (w/ m.r.) 84.79 4.08 31.63 49.54 4.48 0.00 5.97 26.87 0.00 0.00 0.00 12.50 — —

RAMbaw/ m.r. 91.74 80.61 95.18 49.81 85.07 55.22 55.22 53.73 62.50 62.50 37.50 37.50 24.00 20.00
RAMbaw/o m.r. 92.76 87.10 96.66 76.81 55.22 29.85 68.66 8.96 18.75 12.50 31.25 0.00 — —
RAMbaw/o enc 92.67 81.08 57.79 75.97 41.79 23.88 14.92 26.87 6.25 12.50 0.00 6.25 — —

Table 3: Results for selected sub-tasks in RULER. All models are pre-trained on 4K contexts.

requiring an adapter to extract information representing the current context. Second, LongBench’s
evaluation results in Table 2 are generally consistent with those of language modeling. However,
since LongBench is a zero-shot benchmark, most baselines performed below the random guess rate of
25%, with the results across different sub-tasks show high variability. Thus, we believe the following
SFT tasks can provide deeper insights into architectural capabilities for small models.

Table 3 presents the evaluation results of various models fine-tuned on RULER synthetic data across
different context lengths. We have four interesting findings. First, HSA demonstrates more precise
chunk selection. HSA performs comparably to full-attention on retrieval-related tasks (S-N, MQ-N,
VT) over in-domain context length, while NSA lags behind both, supporting our argument that
estimating chunk importance using token-to-token attention scores is inaccurate. Meanwhile, HSA
achieves strong performance across retrieval tasks despite selecting chunks only once, validating the
effectiveness of the hierarchical attention mechanism in learning token-to-chunk relevance. Second,
Mamba excels in sequential statistical tasks. While Mamba-based models underperform in retrieval
tasks, they outperform in Frequent Word Extraction (FWE), successfully extrapolating up to 256× the
pre-training length. This advantage likely stems from Mamba’s continuous memory flow mechanism,
which is also partially inherited by RAMba. Third, memory reset helps length generalization.
Models with memory reset consistently outperform those without in length extrapolation. Though
performance drops significantly beyond 1M context length on more challenging retrieval tasks, it still
achieves 256× extrapolation. Fourth, templates can make a significant difference. Single-NIAH
extrapolates only to 4M, while the similar task of passkey retrieval extends to 64M, with the sole
difference lying in the template of passkey retrieval being simpler. We elaborate the templates of these
two tasks in Appendix D. It suggests that a simpler pattern may facilitate learning more generalizable
patterns. Still, precise chunk selection for extremely long contexts remains an open challenge for
future work.

Models (370M) XSUMR-1/R-2/R-L CNNR-1/R-2/R-L SQuaDEM/F1 HotpotQAEM/F1 QuALITYAcc AVG.
avg-len=498 avg-len=883 avg-len=174 avg-len=1428 avg-len=7745

Mamba-2 30.40/11.89/24.53 37.97/17.54/35.84 41.33/52.03 18.70/26.20 33.32 31.03
w/ SWAALiBi 30.78/12.11/24.79 38.96/17.84/36.73 50.54/61.23 19.96/27.58 29.48 32.57
w/ SWArope 30.88/12.33/24.99 38.78/17.67/36.57 51.46/61.91 19.89/28.00 32.89 32.61
w/ NSA — — — — 31.40 —

Transformerfull_attn 30.10/11.63/24.23 38.25/17.89/36.14 45.50/56.13 21.90/29.49 33.46 32.82
RAMba 30.81/12.25/24.80 39.11/18.04/36.85 48.24/59.17 22.30/30.53 34.13 33.64

Table 4: Downstream task evaluations.

Table 4 shows the results of the model after fine-tuning on summarization and generation tasks.
RAMba still outperforms in the vast majority of tasks, but two observations are worth noting. First,
Mamba with SWA demonstrates advantages over other models on the SQuaD task. One potential
reason is that the SQuaD dataset contains shorter texts, even less than the sliding window, making
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SWA able to randomly access all contexts. This phenomenon shows that integrating random access
can improve RNN performance even for short contexts. Second, despite lagging behind Mamba in
perplexity (PPL), the Transformer demonstrates strong downstream performance, ranking just behind
RAMba. This further validates the importance of random access capability for downstream tasks.

Models #params. LongBench RULERS-N/MQ-N/VT/FWE
Overall Easy Hard Short Medium Long ctx-len=4K ctx-len=64K ctx-len=1M

Mamba-2 2.7B 26.8 23.4 29.0 29.7 27.3 21.1 89.24/26.62/24.68/77.09 0.00/0.00/0.00/0.00 0.00/0.00/0.00/0.00
RAMbaw/ m.r. 2.7B + 110M 27.3 25.1 28.6 30.4 27.3 22.1 91.00/86.36/96.47/42.95 83.58/76.12/100.00/28.36 25.00/13.33/50.00/37.14

Table 5: Results of 2.7B models trained on 4K contexts.

Table 5 shows the results of the 2.7B models. These results show that even after scaling up, RAMba
still maintains a significant lead. Details about training can be found in Appendix E.

4.4 Efficiency Analysis

Experimental Setup. To evaluate the scalability and efficiency of HSA, we measure the runtime
and memory footprint of FlashAttention-2, NSA, and HSA operators across different sequence
lengths, the throughput of various models at different scales, and the per-token time consumption
during inference. Runtime measurements were conducted with three attention layers only, excluding
additional components such as MLPs or Mamba. In HSA, a single chunk selection is shared
across all three layers, while SWA remains disabled in NSA. The memory footprint is reported
as a ratio of the memory occupied by Mamba 370M. We use w/ offloading and w/o offloading to
denote whether memory offloading is enabled. To further evaluate the benefits of shared chunk
selection, we introduce an ablation group (w/o sharing), where chunk selection and CPU-GPU
memory exchanges happen in each HSA layer. When measuring training throughput, we enable
FSDP [75] and gradient checkpointing [12], running models on 16 × Physics Processing Units
(PPUs), each with approximately half the computational power of an A100 GPU.

Figure 4: Comparison of attention computation time: 3 attention layers per group. (The lower the better)

Models Parameter Size
370M↑ 780M↑ 1.4B↑ 3B↑

Mamba 16.44 9.71 6.53 3.46
w/ SWA 15.64 9.24 6.27 3.31
w/ full_attn 10.00 5.73 4.31 2.07
w/ NSA 14.35 8.70 5.46 3.18

RAMba 14.80 8.76 5.70 3.18
Table 6: Training throughput (103 tokens/s) with con-
text length=32K.

Models Prompt-Length
4K↓ 16K↓ 64K↓

Transformerfull_attn 2.26 8.90 32.12
Mamba-2 2.92 2.82 2.84
RAMbaw/o offloading 3.14 3.05 2.76
RAMbaw/ offloading 3.97 4.19 4.02
RAMbaw/ offloading, w/o sharing 5.98 5.87 5.95

Table 7: Inference time cost (seconds, prefilling time
excluded) for generating 100 tokens (batch-size=16)

Results. Figure 4 compares the time consumption and memory footprint of three operators across
different context lengths. Both NSA and HSA, as sparse attention mechanisms, significantly out-
perform Flash-Attention in terms of speed. HSA is faster than NSA because it performs chunk
selection—the only operation with quadratic complexity—only once, and shares it across all HSA
layers. In contrast, NSA involves computations with quadratic complexity like compressed token
attention and chunk selection in every layer, which increases its time consumption. For memory foot-
print, enabling memory offloading drastically reduces GPU memory usage and slows its growth with
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increasing context length. Despite introducing CPU-GPU memory exchange, the impact on inference
speed is limited, as reported in Table 7. Table 6 shows that RAMba achieves 90% of Mamba’s
training throughput. Although HSA is faster than NSA, the additional encoder sometimes offsets this
advantage at certain scales. Nonetheless, the results clearly highlight HSA’s high efficiency, excellent
scalability during training, and near-constant memory usage during inference.

5 Conclusion

In this work, we present Hierarchical Sparse Attention (HSA) and build on it to propose RAMba,
which integrates an RNN backbone, length-generalizable sparse attention, and a simple forgetting
mechanism. This architecture strikes a strong balance between performance, efficiency, long-range
access, and length generalization, offering a foundation for language models with permanent memory.
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Limitations

Although the method proposed in this work is theoretically applicable to all RNNs, the experimental
section of this work mainly focuses on Mamba.

Considering computational resources, this work does not discuss the performance of models larger
than 3B parameters.

A How HSA achieves accurate chunk retrieval

The core principle of previous sparse attentions’ chunk selection lies in approximating the token-to-
chunk relevance using unnormalized attention scores. In self-attention, the relevance of token j to
token i is defined as:

pi,j =
elogitsi,j

Zi
,Zi =

∑
j<i

elogitsi,j , (1)

where logitsi,j = q⊤
i kj is the dot product between the query qi of token i and the key kj of token j.

The relevance of chunk c to token i is ideally the sum of the relevance of all tokens within that chunk:

ri,c =
∑
j∈C

pi,j =
1

Zi

∑
j∈C

elogitsi,j , (2)

where C denotes tokens in chunk c. However, calculating ri,c requires computing Zi (the full softmax
normalization across all tokens), which would necessitate full computation and thus undermine the
computational efficiency.

To ensure efficiency, they instead approximate chunk relevance using the mean-pooled representation
of keys:

r′i,c = q⊤
i Kc = q⊤

i

1

S

∑
j∈C

kj =
1

S

∑
j∈C

q⊤
i kj =

1

S

∑
j∈C

logitsi,j , (3)

where Kc represents the mean-pooling of key representations within the c-th chunk. While this
approximation bypasses the need for normalized softmax scores across all tokens, it introduces a
discrepancy between r′i,c (the approximation) and ri,c (the ideal one).

Let’s consider the following example shown in Figure 5, assuming every 2 tokens form a chunk. If

Figure 5: How unnormalized scores mislead the chunk selection.

only the top-2 chunks can be selected, they would choose chunks 2 and 3 according to r′i,c, thus
missing the chunk 0 with the highest sum of attention weights.

Assuming they select the top-2 chunks for sparse attention, the subsequent attention process is shown
in Figure 6. Throughout this process, r′i,c only participates in chunk selection but not in the forward
computation, nor does it receive gradients. The inaccurate chunk selection issue stems from using
unnormalized attention logits to estimate chunk importance, with r′i,c not learnable, making the
inaccuracy of chunk selection unavoidable.
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Figure 6: Applying attention over the concatenation of selected chunks.

Figure 7: The chunk selection stage of HSA

For the same example, HSA works as shown in Figure 7 where si,c represents learnable token-to-
chunk relevance scores. HSA selects chunks 2 and 3 according to si,c, and applies the hierarchical
attention over selected chunks as shown in Figure 8. In this process, wi,c, derived from si,c, par-

Figure 8: Applying hierarchical attention over selected chunks.

ticipates in the final attention weight computation and the whole forward pass. This allows it to
receive gradients and allocate higher weights to chunks with more important tokens. Even if random
initialization initially misses the most relevant chunk 0, continuous training enables the model to
gradually learn to select the most relevant chunks.
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B Hyper-parameters

Architecture Transformer Mamba Mamba+NSA Mamba+SWA RAMba

Total Params (M) 372 368 375 375 385
Hidden size, d 1024 1024 1024 1024 1024
Mamba Layers - 48 48 48 48
Attention Layers 16 - 3×NSA 3×SWA 3×HSA
Other Layers 16×MLP - - - 1×Chunk Selection, 1×Encoder
MLP hidden size 5504 - - - 1344
Query heads 32 - 16 - 16
KV heads 16 - 1 - 1
Vocab size 50280 50280 50280 50280 50280

Table 8: Hyper-parameters of 370M models.

C Training hyper-parameters

All 370M models used the AdamW optimizer with

• linear learning rate warmup with warmup ratio 0.02, cosine decay to 4e− 5.

• peak learning rate 2e− 3.

• total tokens 60B, batch size 1M tokens.

• gradient clip value 1.0

• no dropout

• no linear bias terms

• weight decay 1e− 3

• AdamW hyperparameter β = (.9, .95) (the GPT3 value)

All models are pre-trained on 16 PPUs, with each taking approximately 60 hours.

D Templates for passkey retrieval and Single-NIAH tasks

The passkey retrieval template is structured as follows: “(essays) The pass key is <PASS KEY>.
(essays) What is the passkey? The passkey is”. The single NIAH template follows this format:
“(essays)... One of the special magic numbers for long-context is: <PASS KEY>. (essays)... What is
the special magic number for long-context mentioned in the provided text? Answer:”

E RAMba 2.7B

We follow the hyperparameters of Mamba-2 2.7B, where the embedding dimension is 2560, and the
total number of layers is 64. We use a two-layer Transformer-based encoder with a hidden size of
2560 and an intermediate dimension of 3392. HSA is inserted into Mamba starting from the 32nd
layer, with one HSA layer inserted every 8 layers. In HSA, the group size g is 5, with a query head
size h of 16 for each group. The total additional parameters amount to approximately 110M.

E.1 Post-training

Due to the length generalization issues inherent in the Mamba-2 2.7B, we post-train it to stabilize its
perplexity on longer contexts. Specifically, we utilized BPTT for post-tuning the base model. We
trained the model on sequences of 32K tokens with a batch size of 16 for 3K steps, totaling 1.5B
tokens. This stage takes 5 hours on 32 PPUs.

Then we follow CEPE [69] by freezing most parameters of the Mamba backbone and tuning the
parameters of the additional HSA modules for post-training. This process primarily involves the
following two stages:
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Warmup. We employ a warmup initialization method by simply training the model to copy the
first half of the sentence. Specifically, we append an identical copy of each sentence to itself and train
the model to locate the distant context and replicate it. At this stage, all parameters of Mamba-2 are
frozen, with only the HSA-related parameters remaining tunable. We train the model with a 32K
context length, batch size of 16, for 16K steps, with a peak learning rate of 2× 10−5, totaling 8B
tokens. This stage takes around 24 hours on 32 PPUs.

Post-Training. We use LoRA [26] to fine-tune 5% of the parameters in the Mamba-2 module,
while keeping all parameters in the HSA module fully trainable. The model is trained with a context
length of 32K, a batch size of 16, for 32K steps, using a peak learning rate of 2× 10−5, totaling 16B
tokens. This stage takes around 48 hours on 32 PPUs.

This model is used for the LongBench evaluation in Table 5.

E.2 RULER finetuning

Since the RULER tasks like NIAH and FWE do not have high requirements for intrinsic knowledge
of LLMs, we opt to train RAMba from scratch and fine-tune it on RULER’s synthetic dataset. This
approach aims to evaluate whether RAMba trained from scratch can stably converge and demonstrate
long-range retrieval capabilities. We conduct pre-training on 60B tokens, which amounts to one-tenth
of the Mamba-2 2.7B model, followed by fine-tuning on 1B synthetic data, which takes around 200
hours on 32 PPUs. We also fine-tuned the Mamba-2 2.7B model on the same synthetic dataset for
comparison.

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in abstract and introduction are supported by experimental
results in Section 4.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitation section is presented in page 16.
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.
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• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: This paper provides detailed experiment settings in Section 4.1, Appendix A,B,
and D, which should be sufficient for reproducing the main experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
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one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: The sources of all data are explained in the paper, and the code will be
open-sourced on GitHub after de-anonymization.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper provides detailed experiment settings in Section 4.1, Appendix A,B,
and D, which should be sufficient for reproducing the main experimental results.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Since each pre-trained model only has a single checkpoint, it is not feasible to
evaluate error bars. However, in all experiments, we include multiple datasets or multiple
sets of tasks and evaluate using various metrics. Therefore, the statistical significance of the
experiments can be verified and supported.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In Appendix B,D and Section 4.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
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Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work adheres to all the ethical guidelines outlined by NeurIPS.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.
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• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All dataset details and original authorship are cited in Section 4.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The code will be published and well documented after de-anonymization.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.
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• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects,
hence do not require IRB approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: Our core method doesn’t involve the usage of LLMs.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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