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Abstract
This study proves the two-phase dynamics of a deep neural network (DNN) learning
interactions. Despite the long disappointing view of the faithfulness of post-hoc
explanation of a DNN, a series of theorems have been proven [27] in recent years
to show that for a given input sample, a small set of interactions between input
variables can be considered as primitive inference patterns that faithfully represent
a DNN’s detailed inference logic on that sample. Particularly, Zhang et al. [41] have
observed that various DNNs all learn interactions of different complexities in two
distinct phases, and this two-phase dynamics well explains how a DNN changes
from under-fitting to over-fitting. Therefore, in this study, we mathematically
prove the two-phase dynamics of interactions, providing a theoretical mechanism
for how the generalization power of a DNN changes during the training process.
Experiments show that our theory well predicts the real dynamics of interactions
on different DNNs trained for various tasks.

1 Introduction
Background: mathematically guaranteeing that the inference score of a DNN can be faithfully
explained as symbolic interactions. Explaining the detailed inference logic hidden behind the
output score of a DNN is considered one of the core issues for the post-hoc explanation of a DNN.
However, after a comprehensive survey of various explanation methods, many studies [28, 1, 12] have
unanimously and empirically arrived at a disappointing view of the faithfulness of almost all post-hoc
explanation methods. Fortunately, the recent progress [27] has mathematically proven that given
a specific input sample x = [x1, · · · , xn]

⊤, a DNN3 for a classification task usually only encodes a
small set of interactions between input variables in the sample. It is proven that these interactions act
like primitive inference patterns and can accurately predict all network outputs, no matter how we
randomly mask the input sample4. An interaction refers to a non-linear relationship encoded by the
DNN between a set of input variables in S. For example, as Figure 1 shows, a DNN may encode
a non-linear relationship between the three image patches in S = {x1, x2, x3} to form a dog-snout
pattern, which makes a numerical effect I(S) on the network output. The complexity (or order) of an
interaction is defined as the number of input variables in the set S, i.e., order(S) def

= |S|.

Our task. Since Zhou et al. [44] found that high-order (complex) interactions usually have a much
higher risk of over-fitting than low-order (simple) interactions, in this study, we hope to further track
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Figure 1: (a) It is proven that the DNN’s inference on a certain sample is equivalent to a logical model
that uses a small number of AND-OR interactions for inference. Each interaction corresponds to a
non-linear (AND or OR) relationship between a set S of input variables (e.g., image patches). (b)
Sparsity of interactions. We show the strength |I(S|x)| of all 2n interactions sorted in descending
order. (c) Illustration of the two-phase dynamics of a DNN learning interactions of different orders.

the change in the complexity of interactions during training, so as to explain the change of the DNN’s
generalization power during training. In particular, the time when the DNN starts to learn high-order
(complex) interactions indicates the starting point of over-fitting.

Specifically, we focus on the two-phase dynamics of interaction complexity which was empiri-
cally observed by [41], and we aim to mathematically prove this dynamics. First, before training,
a DNN with randomly initialized parameters mainly encodes interactions of medium complexities.
As Figure 2 shows, the distribution of interactions appears spindle-shaped. Then, in the first phase,
the DNN eliminates interactions of medium and high complexities, thereby mainly encoding interac-
tions of low complexity. In the second phase, the DNN gradually learns interactions of increasing
complexities. We have conducted experiments to train DNNs with various architectures for different
tasks. It shows that our theory can well predict the learning dynamics of interactions in real DNNs.

The proven two-phase dynamics explain hidden factors that push the DNN from under-fitting
to over-fitting. (1) In the first phase, the DNN mainly removes noise interactions, (2) In the second
phase, the DNN gradually learns more complex and non-generalizable interactions toward over-fitting.

2 Related work
Long-standing disappointment on the faithfulness of existing post-hoc explanation of DNNs.
Many studies [30, 40, 29, 2, 15] have explained the inference score of a DNN, but how to mathemati-
cally formulate and guarantee the faithfulness of the explanation is still an open problem. For example,
using an interpretable surrogate model to approximate the output of a DNN [3, 11, 35, 34] is a classic
explanation technique. However, the good matching between the DNN’s output and the surrogate
model’s output cannot fully guarantee that the two models use exactly the same inference patterns
and/or use the same attention. Therefore, many studies [28, 12, 1] have unanimously and empirically
arrived at a disappointing view of the faithfulness of current explanation methods. Rudin [28] pointed
out that inaccurate post-hoc explanations of DNNs would be harmful to high-stakes applications.
Ghassemi et al. [12] showed various failure cases of current explanation methods in the healthcare
field and argued that using these methods to aid medical decisions was a false hope.

New progress towards proving the faithfulness of symbolic explanation of a DNN. Despite
the disappointing view of post-hoc explanation methods, we have established a theory system of
interactions within three years, which includes more than 30 papers, to quantify the symbolic
concepts encoded by a DNN and explain the hidden factors that determine the generalization power
and robustness of a DNN. We revisit this theory system as follows.

• Proving interactions act as faithful primitives inference patterns encoded by the DNN. Recent
achievements in the theory system of interactions have provided a new perspective to formulate
primitive inference patterns encoded by a DNN. We discovered [23] and proved [27] that a DNN’s
inference logic on a certain sample can be explained by only a small number of interactions. Further-
more, we discovered that salient interactions usually represented common inference patterns shared by
different samples (sample-wise transferability of interactions) [21], and proposed a method to extract
generalizable interactions shared by different DNNs (model-wise transferability of interactions) [4].
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The above studies indicated that salient interactions could be considered primitive inference patterns
encoded by a DNN, which served as the theoretical foundation of this study. Based on interactions,
we also defined and learned the optimal baseline value for the Shapley value [25], and explained the
encoding of different types of visual patterns in DNNs for image classification [5, 6].

• Using interactions to explain the representation power of DNNs. Our recent studies showed
that interactions well explained the hidden factors that determine the adversarial robustness [24],
adversarial transferability [37], and generalization power [44] of a DNN. We also discovered and
proved the representation bottleneck of a DNN in encoding middle-complexity interactions [7]. In
addition, we proved that compared to a standard DNN, a Bayesian neural network (BNN) tended to
avoid encoding complex interactions [26], thus explaining the good adversarial robustness of BNNs.
We discovered and explained the phenomenon that DNNs tended to learn simple interactions more
easily than complex interactions [22]. We found that complex interactions were less generalizable
than simple interactions [44], and further discovered the two-phase dynamics of a DNN learning
interactions of different complexities [41]. To this end, this study aims to theoretically prove the
discovery in [41] to better understand the two-phase dynamics of interactions.

• Using interactions to unify the common mechanism of various empirical deep learning methods.
We proved that fourteen attribution methods could all be explained as a re-allocation of interaction
effects [8]. We proved that twelve existing methods to improve adversarial transferability all shared
the common utility of suppressing the interactions between adversarial perturbation units [42].

3 Dynamics of interactions
3.1 Preliminary: interactions
Let us consider a DNN v and an input sample x = [x1, · · · , xn]

⊤ with n input variables indexed by
N = {1, · · · , n}. In different tasks, one can define different input variables, e.g., each input variable
may represent an image patch for image classification or a word/token for text classification. Let
us consider a scalar output5 of a DNN, denoted by v(x) ∈ R. Previous studies [4, 43] show that the
output score v(x) can be decomposed into the sum of AND interactions and OR interactions.

v(x) = v(x∅) +
∑

∅̸=S⊆N
Iand(S|x) +

∑
∅̸=S⊆N

Ior(S|x), (1)

where the computation of Iand(S|x) and Ior(S|x) will be introduced later in Eq. (2).

How to understand the physical meaning of AND-OR interactions. Suppose that we are given an
input sample x. According to Theorem 2, a non-zero interaction effect Iand(S|x) indicates that the
entire function of the DNN must equivalently encode an AND relationship between input variables in
the set S ⊆ N , although the DNN does not use an explicit neuron to model such an AND relationship.
As Figure 1 shows, when the image patchs in the set S2={x1=nose, x2= tongue, x3=cheek} are all
present (i.e., not masked), the three regions form a dog-snout pattern, and make a numerical effect
Iand(S2|x) to push the output score v(x) towards the dog category. Masking any image patch in
S2 will deactivate the AND interaction and remove Iand(S2|x) from v(x). This will be shown by
Theorem 2. Likewise, Ior(S|x) can be considered as the numerical effect of the OR relationship
encoded by the DNN between input variables in the set S. As Figure 1 shows, when one of the
patches in S1 = {x4 = spotty region1, x5 = spotty region2} is present, a speckles pattern is used by the
DNN to make a numerical effect Ior(S1|x) on the network output v(x).

Definition and computation. Given a DNN and an input x, the AND-OR interactions between each
specific set of input variables S ⊆ N(S ̸= ∅) are computed as follows [4, 43].

Iand(S|x) =
∑

T⊆S
(−1)|S|−|T |vand (xT ) , Ior(S|x) = −

∑
T⊆S

(−1)|S|−|T |vor
(
xN\T

)
, (2)

where xT denotes the sample in which input variables in N \ T are masked6, while input variables in
T are unchanged. The network output on each masked sample v(xT ), T ⊆ N , is decomposed into two

5For example, one may set v(x) as the loss value on sample x. For a multi-category classification task, one
usually either set v(x) to be the output score for the ground-truth category before the softmax operation, or
follow[7] to set v(x) = log p(ytruth|x)

1−p(ytruth|x)
. See Table 1 for a summary of mathematical settings for interactions.

6The masked states of input variables are represented by specific baseline values b = [b1, · · · , bn]⊤ by
following [41]. See Appendix G.3 for the detailed setting of baseline values.

3



components: (1) the component vand(xT ) = 0.5v(xT )+γT that exclusively contains AND interactions,
and (2) the component vor(xT ) = 0.5v(xT )− γT that exclusively contains OR interactions, subject
to v(xT ) = vand(xT ) + vor(xT ). Appendix F.1 shows that vand(xT ) = v(x∅) +

∑
∅≠S′⊆T Iand(S

′|x) and
vor(xT ) =

∑
S′⊆N :S′∩T ̸=∅ Ior(S

′|x). The sparsest AND-OR interactions are extracted by minimizing
the following objective [20]: min{γT }

∑
S⊆N |Iand(S|x)| + |Ior(S|x)|. Please see Appendix C for

details about the computation and Appendix D for mathematical support of the coefficient in Eq. (2).

Salient interactions and noisy patterns. Let us enumerate all 2n combinations of variables S ⊆ N ,
and compute the interaction effects Iand(S|x) and Ior(S|x). We can identify a few salient interactions
from all these interactions, i.e., interactions whose absolute value exceeds a threshold (|Iand(S|x)| ≥ τ
or |Ior(S|x)| ≥ τ ). Other interactions have small effects and are termed noisy patterns.

Theorem 1 (Sparsity property, proven by [27], and discussed in Appendix B). Given a DNN v

and an input sample x with n input variables, let Ω def
= {S ⊆ N : |Iand(S|x)| ≥ τ} denote the set

of salient AND interactions whose absolute value exceeds a threshold τ . If the DNN can generate
relatively stable inference outputs v(xS) on masked samples7, then the size of the set |Ω| has an upper
bound of O(nξ/τ), where ξ is an intrinsic parameter for the smoothness of the network function v(·).
Empirically, ξ is usually within the range of [1.9,2.2].

Theorem 2 (Universal matching property, proven in [4] and Appendix F.1). Given an input sample x̂,
let us construct the following surrogate logical model f(·) to use AND-OR interactions for inference,
which are extracted from the DNN v(·) on the sample x̂. Then, the output of the surrogate logical
model f(·) can always match the output of the DNN v(·), no matter how the input sample is masked.

∀S⊆N, f(x̂S)=v(x̂S), f(x̂S)= v(x̂∅)+
∑
T⊆N

Iand(T |x̂)·1
(

x̂S triggers
AND relation T

)
︸ ︷︷ ︸

vand(xS)

+
∑
T⊆N

Ior(T |x̂)·1
(

x̂S triggers
OR relation T

)
︸ ︷︷ ︸

vor(xS)

(3)

= v(x= x̂∅) +
∑

∅≠T⊆S
Iand (T |x= x̂) +

∑
T⊆N :T∩S ̸=∅

Ior (T |x= x̂) (4)

≈ v(x= x̂∅) +
∑

T∈Ωand:∅≠T⊆S
Iand (T |x= x̂) +

∑
T∈Ωor:T∩S ̸=∅

Ior (T |x= x̂) , (5)

where Ωand is the set of all salient AND interactions, and Ωor is the set of all salient OR interactions.

What makes the interaction-based explanation faithful. The following four properties guarantee
that the inference score of a DNN can be faithfully explained by symbolic interactions.

• Sparsity property. The sparsity property means that a DNN for a classification task usually only
encodes a small number of AND interactions with salient effects, i.e., for most of all 2n subsets of
input variables S ⊆ N , Iand(S|x) has almost zero interaction effect. Specifically, the sparsity property
has been widely observed on various DNNs for different tasks [21], and it is also theoretically proven
(see Theorem 1). The number of AND interactions whose absolute value exceeds the threshold τ
(|Iand(S|x)| ≥ τ ), is O(nξ/τ), where ξ is empirically within the range of [1.9, 2.2]. This indicates that
the number of salient interactions is much less than 2n. Furthermore, the sparsity property also holds
for OR interactions, because an OR interaction can be viewed as a special kind of AND interaction8.

• Universal matching property. The universal matching property means that the output of the DNN
on a masked sample xS can be well matched by the sum of interaction effects, no matter how we
randomly mask the sample and obtain xS . This property is proven in Theorem 2.

• Transferability property. The transferability property means that salient interactions extracted from
one input sample can usually be extracted from other input samples as well. If so, these interactions
are considered transferable across different samples. This property has been widely observed by [21]
on various DNNs for different tasks.

7This is formulated by three mathematical conditions. (1) The DNN does not encode highly complex
interactions. (2) Let us compute the average classification confidence when we mask different random sets of
k input variables (generating {xT : |T | = n − k}). Then, the average confidence monotonically decreases
when more input variables are masked. (3) The decreasing speed of the average confidence is polynomial. See
Appendix B for the detailed mathematical formulation.

8If we flip the masked state and the presence state of each input variable (i.e., taking bi as the presence state
of the i-th variable, while taking xi as the masked state), then OR interactions can be viewed as a special kind of
AND interactions. See Appendix E for details.
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Figure 2: The distribution of interaction strength I
(k)
real over different orders k. Each row shows

the change in the distribution during the training process. Experiments showed that the two-phase
phenomenon widely existed on different DNNs trained on various datasets. It also verified the finding
in [41] that the beginning of the 2nd phase was temporally aligned with the time point when the
loss gap increased. Please see Appendix J.1 for results on the other six DNNs trained for 3D point
cloud/image/sentiment classification.

• Discrimination property. This property means that the same interaction extracted from different
samples consistently contributes to the classification of a certain category. This property has been
observed on various DNNs [21], and it implies that interactions are discriminative for classification.

Complexity/order of interactions. The complexity (or order) of an interaction is defined as the
number of input variables in the set S, i.e., order(S) def

= |S|. In this way, a high-order interaction
represents a complex non-linear relationship among many input variables.

3.2 Two-phase dynamics of learning interactions
Zhang et al. [41] have discovered the following two-phase dynamics of interaction complexity during
the training process. (1) As Figure 2 shows, before the training process, the DNN with randomly
initialized parameters mainly encodes interactions of medium orders. (2) In the first phase, the DNN
removes initial interactions of medium and high orders, and mainly encodes low-order interactions.
(3) In the second phase, the DNN gradually learns interactions of increasing orders.

To better illustrate this phenomenon, we followed [41] to conduct experiments on different DNNs,
including AlexNet [17], VGG [31], BERT [9], DGCNN [38], and on various datasets, including
image data (MNIST [19], CIFAR-10 [16], CUB-200-2011 [36], and Tiny-ImageNet [18]), natural
language data (SST-2 [32]), and point cloud data (ShapeNet [39]). For image data, we followed [41]
to select a random set of ten image patches as input variables. For natural language data, we
set the entire embedding vector of each token as an input variable. For point cloud data, we
took point clusters as input variables. Please see Appendix G.3 for the detailed settings. We set
v(x)= log

(
p(ytruth|x)/[1− p(ytruth|x)]

)
by following [7], where p(ytruth|x) denotes the probability of

classifying the input sample x to the ground-truth category. We followed [41] to define the in-
teraction whose absolute value is greater than or equal to τ = 0.03 Ex[|v(x) − v(x∅)|] as salient
interaction. For interactions of each k-th order, we normalized the strength of salient interactions
as I

(k)
real =Ex[

∑
type∈{and,or}

∑
S:|S|=k,|Itype(S|x)|≥τ |Itype(S|x)|]/Z to enable fair comparison between dif-

ferent training epochs9, where Z=E1≤k′≤nEx[
∑

type∈{and,or}
∑

S:|S|=k′,|Itype(S|x)|≥τ |Itype(S|x)|] denotes
the normalizing constant.

Figure 2 shows how the distribution of interaction strength I
(k)
real of different orders changed throughout

the entire training process, and it demonstrates that the two-phase dynamics widely existed on
different DNNs trained on various datasets. Before training, the interaction strength of medium orders
dominated, and the distribution of interaction strength of different orders looked like a spindle. In
the first phase (from the 2nd column to the 3rd column in the figure), the strength of medium-order
and high-order interactions gradually shrank to zero, while the strength of low-order interactions

9The normalization removes the effect of the explosion of output values during the training process and
enables us to only analyze the relative distribution of interaction strength.
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increased. In the second phase (from the 3rd column to the 6th column in the figure), the DNN
learned interactions of increasing orders (complexities).

How to understand the two-phase phenomenon. Previous studies [44, 26] have observed and
partially proved that the complexity/order of an interaction can reflect the generalization ability10 of
the interaction. Let us consider an interaction that is frequently extracted by a DNN from training
samples (see the transferability property in Section 3.2). If this interaction also frequently appears in
testing samples, then this interaction is considered generalizable10; otherwise, non-generalizable. To
this end, Zhou et al. [44] have discovered that high-order (complex) interactions are less generalizable
between training and testing samples than low-order (simple) interactions. Furthermore, Ren et
al. [26] have proved that high-order (complex) interactions are more unstable than low-order (simple)
interactions when input variables or network parameters are perturbed by random noises.

Therefore, the two-phase dynamics enable us to revisit the change of generalization power of a DNN:

1. Before training, the interactions extracted from an initialized DNN exhibited a spindle-shaped
distribution of interaction strength over different orders. These interactions could be considered
random patterns irrelevant to the task, and such patterns were mostly of medium orders.

2. In the first phase, the DNN mainly removed the irrelevant patterns caused by the randomly
initialized parameters. At the same time, the DNN shifted its attention to low-order interactions
between very few input variables. These low-order interactions usually represented relatively
simple and generalizable10 inference patterns, without encoding complex inference patterns.

3. In the second phase, the DNN gradually learned interactions of increasing orders (increasing
complexities). Although there was no clear boundary between under-fitting and over-fitting
in mathematics, the learning of very complex interactions had been widely considered as a
typical sign of over-fitting10 [44].

3.3 Proving of the two-phase dynamics
3.3.1 Analytic solution to interaction effects
As the foundation of proving the dynamics of the two phases, let us first derive the analytic solution
to interaction effects at a specific time point during the training process. Then, Sections 3.3.2 and
3.3.3 will use this analytic solution to further explain detailed dynamics in the second phase and the
first phase, respectively. Later experiments show that our theory can well predict the true dynamics
of all AND-OR interactions during the learning of real DNNs.

The proof in this subsection can be divided into three steps. (1) We first rewrite a DNN’s inference on
an input sample as a weighted sum of triggering functions of different interactions. (2) Then, we can
reformulate the learning of the DNN on an input sample as a linear regression problem. (3) Thus, the
interactions at an intermediate time point during training can be obtained as the optimal solution to
the linear regression problem under a certain level of parameter noises.

• Step 1: Rewriting a DNN’s inference on an input sample as a weighted sum of triggering
functions of different interactions. For simplicity, let us only focus on the dynamics of AND
interactions, because OR interactions can also be represented as a specific kind of AND interactions8

(see Appendix E for details). In this way, without loss of generality, let us just analyze the learning
of AND interactions w.r.t. vand(x) = v(x∅) +

∑
∅≠S⊆N Iand(S|x), and simplify the notation as v(x) =

v(x∅) +
∑

∅≠S⊆N I(S|x) in the following proof. Our conclusions can also be extended to OR
interactions, as mentioned above.

Given a DNN, we follow [26, 22] to rewrite the inference function of the network v(x). This is
inspired by the universal matching property of interactions in Theorem 2, i.e., given any arbitrarily
masked input sample x̂S w.r.t. a random subset S ⊆ N , the network output can always be represented
as a linear sum of different interaction effects v(x = x̂S) =

∑
T⊆S I(T |x = x̂). In this way, the

following equation rewrites the inference function of the DNN v(x = x̂S) as the weighted sum of
triggering functions of interactions (see Appendix F.2 for proof).

∀ S ⊆ N, v(x= x̂S) = f(x= x̂S), subject to f(x)
def
=

∑
T⊆N

wT JT (x), (6)

10Unlike the traditional definition of the over-fitting/generalization power on the entire model over the entire
dataset, the interaction first enables us to explicitly identify detailed over-fitted/generalizable inference patterns
(interactions) on a specific sample.
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where the interaction triggering function JT (x) is a real-valued approximation of the binary indicator
function 1(x̂S triggers the AND relation T ) in Eq. (3) and returns the triggering value of the interaction
pattern T . In particular, we set w∅ = v(x = x̂∅), J∅(x) = 1. JT (x) is computed as a sum of
compositional terms in the Taylor expansion of v(x).

JT (x) =
∑

π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂x

πn
n

∣∣∣
x=x∅

∏
i∈T

(xi − bi)
πi /wT , (7)

where the scalar weight wT should be computed as wT = I(T |x= x̂) to satisfy the equality in Eq. (6),
and QT = {[π1, . . . , πn]

⊤ : ∀i ∈ T, πi ∈ N+;∀i ̸∈ T, πi = 0}. See Appendix F.2 for proof.

Understanding JT (x) and wT . Let us consider a masked sample x̂S in which input variables in
N \ S are masked. If T ⊆ S, which means all input variables in T are not masked in x̂S , then
JT (x̂S) = 1, indicating the interaction pattern is triggered; otherwise, JT (x̂S) = 0, indicating the
interaction pattern is not triggered. wT is a scalar weight. Particularly, let If (T |x) denote the
interaction extracted from the function f(x) =

∑
T⊆N wTJT (x), then we have If (T |x) = wT .

• Step 2: Based on Eq. (6), the learning of the DNN on an input sample can be reformulated as
learning the scalar weight wT for each interaction triggering function JT (x), under a linear
regression setting. We can roughly consider the learning problem as a linear regression to a set
of potentially true interactions, because it has been discovered by [21, 4] that different DNNs for
the same task usually encode similar sets of interactions. Therefore, the learning of a DNN can be
considered as training a model to fit a set of pre-defined interactions. In spite of the above simplifying
settings, subsequent experiments in Figure 4 still verify that our theoretical results can well predict
the learning dynamics of interactions in real DNNs.

Specifically, let the DNN be trained on a set of samples D = {(x, y)}. According to The-
orem 2, given each training sample x, output scores of the finally converged DNN on all 2n

randomly masked samples {xS : S ⊆ N} can be written in the form of yS
def
= y(xS) = v(x∅)+∑

∅≠T⊆N 1(xS triggers interaction T ) ·w∗
T = v(x∅) +

∑
∅≠T⊆S w∗

T , which is determined by parameters
{w∗

T : T ⊆ N}11. {w∗
T : T ⊆ N} can be taken as a set of true interactions that the DNN needs to learn.

Therefore, the learning of the converged interactions on the training sample x can be represented as
the regression towards the converged function y(xS) on all masked samples {(xS , yS) : S ⊆ N}.

L(w) = ES⊆N [(yS −w⊤J(xS))
2]. (8)

where we simplify the notation as follows. w
def
= vec({wT : T ⊆ N}) ∈ R2n denotes the weight

vector of 2n different interactions, and J(xS)
def
= vec({JT (xS) : T ⊆ N}) ∈ R2n denotes the vector of

triggering values of 2n different interactions {T ⊆ N} on the masked sample xS .

• Step 3: Directly optimizing Eq. (8) gives the interactions of the finally converged DNN
wT ← w∗

T , but how do we estimate the interactions in an intermediate time point during the
training process? To this end, we assume that the training process of the DNN is subject to parameter
noises (see Lemma 1). In fact, this assumption is common. Before training, randomly initialized
parameters in the DNN are pure noises without clear meanings. In this way, the DNN’s training
process can be viewed as a process of gradually reducing the noise on its parameters. This is also
supported by the lottery ticket hypothesis [10], i.e., the learning process actually penalizes most
noisy parameters and learns a very small number of meaningful parameters. Therefore, as training
proceeds, the noise on the network parameters can be considered to gradually diminish.

Lemma 1 (Noisy triggering function, proven in Appendix F.3). If the inference score of the DNN
contains an unlearnable noise, i.e., ∀S ⊆ N, ṽ(xS) = v(xS) + ∆vS , ∆vS ∼ N (0, σ2), then the
interaction between input variables w.r.t. ∅ ≠ T ⊆ N , extracted from inference scores {ṽ(xS)} can
be written as Ĩ(T |x) = I(T |x) + ∆IT , where ∆IT denotes the noise in the interaction caused by
the noise in the output ∆vS , and we have E[∆IT ] = 0 and Var[∆IT ] = 2|T |σ2. In this way, given an
input sample x̂, we can consider the scalar weight wT = I(T |x = x̂), and consider the interaction
triggering function J̃T (x) = JT (x) + ϵT , where JT (x) is defined in Eq. (7). ϵT = ∆IT /wT represents
the noise term on the triggering function. We have E[ϵT ] = 0 and Var[ϵT ] ∝ 2|T |σ2 w.r.t. noises.

11Note that in the converged output yS , the true interactions {w∗
T : T ⊆ N} actually mean interactions

extracted from the finally converged DNN, which probably contain over-fitted interaction patterns. I.e., {w∗
T :

T ⊆ N} is not the ideal representation for the task.
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Therefore, the learned interactions under unavoidable parameter noises can be represented as mini-
mizing the following loss, where we vectorize the noise ϵ=vec({ϵT :T ⊆ N})∈R2n for simplicity.

L̃(w) = EϵES⊆N [(yS −w⊤J̃(xS))
2] = EϵES⊆N [(yS −w⊤(J(xS) + ϵ))2]. (9)

Remark. The minimizer to Eq. (9) does not represent the end of training, but represents the
intermediate state of interactions after a certain epoch in the training process. We formulate the
training process as a process of gradually reducing the noise on the DNN’s parameters, and the
minimizer ŵ to Eq. (9) represents the optimal interaction state when the training is subject to certain
parameter noises. We will show later that the minimizer ŵ computed under different noise levels can
accurately predict the dynamics of interactions during the training process (see Figures 4 and 8).

Assumption 1. To simplify the proof, we assume that different noise terms ϵT on the triggering
function are independent, and uniformly set the variance as ∀ T ⊆ N , Var[ϵT ] = 2|T |σ2.

Assumption 1 is made according to two findings in Lemma 1: (1) the interaction triggering function
J̃T (x) is real-valued subject to the noise on the DNN’s parameters, (2) the variance of the interaction
triggering function J̃T (x) increases exponentially along with the order |T |. More importantly, the
assumed exponential increase of the variance in the above finding (2) has been widely observed in
various DNNs trained for different tasks in previous experiments [26, 22].

Theorem 3 (Proven in Appendix F.4). Let ŵ = argminw L̃(w) denote the optimal solution to the
minimization of the loss function L̃(w). Then, we have

ŵ = (J⊤J + 2ndiag(c))−1J⊤y = (J⊤J + 2ndiag(c))−1J⊤Jw∗ = M̂w∗, (10)

where J
def
= [J(xS1),J(xS2), · · · ,J(xS2n

)]⊤ ∈ R2n×2n is a matrix to represent the triggering values
of 2n interactions (w.r.t. 2n columns) on 2n masked samples (w.r.t. 2n rows). xS1 ,xS2 , · · · ,xS2n

enumerate all masked samples. y
def
= [y(xS1), y(xS2), · · · , y(xS2n

)]⊤ ∈ R2n enumerates the finally-
converged outputs on 2n masked samples. c def

= vec({Var[ϵT ] : T ⊆ N}) = vec({2|T |σ2 : T ⊆ N}) ∈
R2n denotes the vector of variances of the triggering values of 2n interactions. The matrix M̂ is
defined as M̂

def
= (J⊤J + 2ndiag(c))−1J⊤J , and w∗ def

= vec({w∗
T : T ⊆ N}).

In this way, Theorem 3 provides an analytic solution to the minimization of L̃(w) under parameter
noises. Experiments in Figure 4 will show that the learning dynamics of interactions derived from
our simplifying assumption can still predict the real distribution of interactions over different orders.

3.3.2 Explaining the dynamics in the second phase
Based on the above analytic solution, this subsection aims to prove that in the second phase, the DNN
first encodes interactions of low orders and then gradually encodes interactions of higher orders.

• The second phase can be viewed as a process of gradually reducing the noise level σ2. The
analytic solution ŵ in Theorem 3 under different noise levels σ2 enables us to analyze the dynamics
of interactions during the second phase. This is because the noise on the network parameters can
be considered to gradually diminish during the training process, as we assume in Section 3.3.1.
Then accordingly, the noise level σ2 of the noise term ϵT on the interaction triggering function also
gradually diminishes during training. At the start of the second phase, the noise level σ2 is large,
and the interaction triggering function J̃T (x) is dominated by the noise term ϵT . Later, as training
proceeds in the second phase, the noise level σ2 gradually decreases, making less effect on the
interaction triggering function.

• The change of the analytic solution ŵ along with the decreasing noises σ2 explains the
dynamics in the second phase. We prove that as σ2 decreases, the ratio of low-order interaction
strength to high-order interaction strength in the analytic solution ŵ decreases. This means that the
DNN gradually learns higher-order interactions in the second phase, which can be verified by our
observation in Figure 2. The detailed results are derived as follows.

Lemma 2 (Proven in Appendix F.5). The compositional term JT (x) in the Taylor expansion in Eq. (7)
always has fixed values on 2n masked samples {xS : S ⊆ N}, i.e., ∀S ⊆ N, JT (xS) = 1(T ⊆ S).
It means that the matrix J = [J(xS1),J(xS2), · · · ,J(xS2n

)]⊤ ∈ {0, 1}2
n×2n in Eq. (10) is a fixed

binary matrix, no matter how we change the DNN v(·) or the input sample x.
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Figure 3: Monotonic increase of r(k) along with σ2 mentioned in Proposition 1. We show the curves
of r(k) when we set different numbers of input variables n and different orders k = 1, · · · , n− 1.
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Figure 4: Comparison between the theoretical distribution of interaction strength I
(k)
theo and the

real distribution of interaction strength I
(k)
real in the second phase. Please see Appendix J.3 for the

comparison on the other six DNNs trained for 3D point cloud/image/sentiment classification.

Theorem 4 (Proven in Appendix F.6). According to Theorem 3, we can write the analytic solution of
the interaction effect ŵT w.r.t. a subset T as ŵT = m̂⊤

T w
∗, where m̂⊤

T ∈ R1×2n denotes a row vector
of the matrix M̂ = [m̂T1 , m̂T2 · · · , m̂T2n

]⊤, indexed by T . Combining with Lemma 2, for any two
subsets T, T ′ ⊆ N of the same order, i.e., |T | = |T ′|, we have ∥m̂T ∥2 = ∥m̂T ′∥2.

Proposition 1. For any two subsets T, T ′ ⊆ N with |T | < |T ′|, ∥m̂T ∥2/∥m̂T ′∥2 is greater than 1 and
decreases monotonically as σ2 decreases throughout training. The norm ∥m̂T ∥2 is only determined
by n, σ2, and the order |T |, but is agnostic to finally-converged interactions {w∗

T : T ⊆ N}.

Proposition 1 shows a monotonic decrease of ∥m̂T ∥2/∥m̂T ′∥2 along with the decrease of σ2. The
physical meaning of ∥m̂T ∥2/∥m̂T ′∥2 can be understood as follows. According to ŵT = m̂⊤

T w
∗,

∥m̂T ∥2 reflects the strength of the DNN encoding the interaction T . In this way, ∥m̂T ∥2/∥m̂T ′∥2
measures the relative strength of encoding a low-order interaction T w.r.t. that of encoding a high-
order interaction T ′.

Conclusions from Theorem 4 and Proposition 1: Because the second phase is viewed as a process
of gradually reducing the noise level σ2, Theorem 4 and Proposition 1 explain why the DNN
mainly encodes low-order interactions and suppresses high-order interactions at the start of
the second phase (when σ2 is large). They also explain why the DNN learns interactions of
increasing orders during the second phase (when σ2 gradually decreases).

Experimental verification of Proposition 1: We measured the relative strength r(k)
def
= ∥m̂T ∥2/∥m̂T ′∥2

subject to |T | = k and |T ′| = k + 1, for k = 1, · · · , n − 1, under different values of σ2. Figure 3
shows that when σ2 decreased, r(k) monotonically decreased for all orders k = 1, · · · , n− 1, which
verified the proposition. The experiment was conducted using different numbers of input variables n.

Theorem 5 (Proven in Appendix F.7). When σ = 0, ŵ satisfies ∀ ∅ ≠ T ⊆ N, ŵT = w∗
T .

Theorem 5 shows a special case when there is no noise on the network parameters. Then, the DNN
learns the finally converged interactions {w∗

T : T ⊆ N}. Note that the finally converged DNN
probably encodes some interactions of high orders, which correspond to over-fitted patterns.

• Experiments on real datasets. We conducted experiments to examine whether our theory could
predict the real dynamics of interaction strength of different orders when we trained DNNs in practice.
We trained AlexNet and VGG on the MNIST dataset, the CIFAR-10 dataset, the CUB-200-2011
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dataset, and the Tiny-ImageNet dataset, trained BERT-Tiny and BERT-Medium on the SST-2 dataset,
and trained DGCNN on the ShapeNet dataset. Then, we computed the real distribution of interaction
strength over different orders on each DNN, and tracked the change of the distribution throughout the
training process. As mentioned in Section 3.2, the real interaction strength of each k-th order was
quantified as I(k)real = Ex[

∑
S:|S|=k,|I(S|x)|≥τ |I(S|x)|] / Z

12. Accordingly, we defined the metric I
(k)
theo =

Ex[
∑

S:|S|=k,|ŵS |≥τtheo
|ŵS |] / Ztheo in the same way of I(k)real to measure the theoretical distribution of the

interaction strength, where Ztheo = E1≤k′≤nEx[
∑

S:|S|=k′,|ŵS |≥τtheo
|ŵS |], τtheo = 0.03 · |vtheo(x)− ŵ∅|,

and vtheo(x)
def
=

∑
S⊆N ŵS . To compute the theoretical solution ŵ = M̂w∗ in Eq. (10), given an input

sample x, we used the set of salient interactions Ω = {S ⊆ N : |I(S|x)| ≥ τ}) extracted from the
finally converged DNN to construct the set of true interactions w∗.

Figure 4 shows that the theoretical distribution I
(k)
theo could well match the real distribution I

(k)
real at

different training epochs. Particularly, we used a sequence of theoretical distributions of I(k)theo with
decreasing σ2 values to match the real distribution of I

(k)
real at different epochs. The σ2 value was

determined to achieve the best match between I
(k)
theo and I

(k)
real .

3.3.3 Explaining the dynamics in the first phase
Because the spindle-shaped distribution of interaction strength in a randomly initialized DNN has
already been proven by [41], in this subsection, let us further explain the DNN’s dynamics in the first
phase based on Eq. (9). As previously shown in Figure 2, in the first phase, the DNN removes initial
interactions of medium and high orders, and mainly encodes low-order interactions.

Therefore, the first phase is explained as the process of removing chaotic initial interactions and
converging to the optimal solution to Eq. (9) under large parameter noise (i.e., large σ2). In sum,
the first phase is a process of pushing initial random interactions to the optimal solution, while the
second phase corresponds to the change of the optimal solution as σ2 gradually decreases.

4 Conclusion and discussion

In this study, we have proven the two-phase dynamics of a DNN learning interactions of different
orders. Specifically, we have followed [26, 22] to reformulate the learning of interactions as a linear
regression problem on a set of interaction triggering functions. In this way, we have successfully
derived an analytic solution to interaction effects when the DNN was learned with unavoidable
parameter noises. This analytic solution has successfully predicted a DNN’s two-phase dynamics
of learning interactions in real experiments. Considering a series of recent theoretical guarantees of
taking interactions as faithful primitive inference patterns encoded by the DNN [44, 27], our study
has first mathematically explained why and how the learning process gradually shifts attention from
generalizable (low-order) inference patterns to probably over-fitted (high-order) inference patterns.

Practical implications. A theoretical understanding of the two-phase dynamics of interactions
offers a new perspective to monitor the overfitting level of the DNN on different training samples
throughout training. The two-phase dynamics enables us to evaluate the overfitting level of each
specific sample, making overfitting no longer a problem w.r.t. the entire dataset. We can track
the change of the interaction complexity for each training sample, and take the time point when
high-order interactions increase as a sign of overfitting. In this way, the two-phase dynamics of
interactions may help people remove overfitted samples from training and guide the early stopping
on a few "hard samples."

Acknowledgements. This work is partially supported by the National Science and Technology Major
Project (2021ZD0111602), the National Nature Science Foundation of China (92370115, 62276165).
This work is also partially supported by Huawei Technologies Inc.

12In experiments, the real distribution of interaction strength I
(k)
real was computed using both AND and

OR interactions. Because the OR interaction was a special AND interaction and had similar dynamics, this
experiment actually tested the fidelity of our theory to explain the dynamics of all interactions. Nevertheless,
Appendix J.4 also reports the fitness of the theoretical distribution I

(k)
theo and real distribution of AND interactions.
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A Properties of the AND interaction
The Harsanyi interaction [14] (i.e., the AND interaction in this paper) was a standard metric to
measure the AND relationship between input variables encoded by the network. In this section, we
present several desirable properties/axioms that the Harsanyi AND interaction Iand(S|x) satisfies.
These properties further demonstrate the faithfulness of using Harsanyi AND interaction to explain
the inference score of a DNN.

(1) Efficiency axiom (proven by [14]). The output score of a model can be decomposed into interaction
effects of different patterns, i.e. v(x) =

∑
S⊆N Iand(S|x).

(2) Linearity axiom. If we merge output scores of two models v1 and v2 as the output of model v, i.e.
∀S ⊆ N, v(xS) = v1(xS) + v2(xS), then their interaction effects Iv1and(S|x) and Iv2and(S|x) can also be
merged as ∀S ⊆ N, Ivand(S|x) = Iv1and(S|x) + Iv2and(S|x).

(3) Dummy axiom. If a variable i ∈ N is a dummy variable, i.e. ∀S ⊆ N \ {i}, v(xS∪{i}) =
v(xS)+ v(x{i}), then it has no interaction with other variables, ∀ ∅ ̸= S ⊆ N \ {i}, Iand(S ∪{i}|x) = 0.

(4) Symmetry axiom. If input variables i, j ∈ N cooperate with other variables in the same way,
∀S ⊆ N \ {i, j}, v(xS∪{i}) = v(xS∪{j}), then they have same interaction effects with other variables,
∀S ⊆ N \ {i, j}, Iand(S ∪ {i}|x) = Iand(S ∪ {j}|x).

(5) Anonymity axiom. For any permutations π on N , we have ∀S⊆N, Ivand(S|x) = Iπv
and (πS|x), where

πS
def
= {π(i)|i ∈ S}, and the new model πv is defined by (πv)(xπS) = v(xS). This indicates that

interaction effects are not changed by permutation.

(6) Recursive axiom. The interaction effects can be computed recursively. For i ∈ N and S ⊆
N \ {i}, the interaction effect of the pattern S ∪ {i} is equal to the interaction effect of S with the
presence of i minus the interaction effect of S with the absence of i, i.e. ∀S ⊆ N \{i}, Iand(S ∪
{i}|x) = Iand(S|x, i is always present)− Iand(S|x). Iand(S|x, i is always present) denotes the interaction
effect when the variable i is always present as a constant context, i.e. Iand(S|x, i is always present) =∑

L⊆S(−1)
|S|−|L| · v(xL∪{i}).

(7) Interaction distribution axiom. This axiom characterizes how interactions are distributed for
“interaction functions” [33]. An interaction function vT parameterized by a subset of variables T is
defined as follows. ∀S ⊆ N , if T ⊆ S, vT (xS) = c ; otherwise, vT (xS) = 0. The function vT models
pure interaction among the variables in T , because only if all variables in T are present, the output
value will be increased by c. The interactions encoded in the function vT satisfies Iand(T |x) = c, and
∀S ̸= T , Iand(S|x) = 0.

B Common conditions for sparse interactions
Ren et al. [27] have formulated three mathematical conditions for the sparsity of AND interactions,
as follows.

Condition 1. The DNN does not encode interactions higher than the M -th order: ∀ S ∈ {S ⊆ N |
|S| ≥M + 1}, Iand(S|x) = 0.

Condition 1 implies that the DNN does not encode extremely high-order interactions. This is because
extremely high-order interactions usually represent very complex and over-fitted patterns, which are
unnecessary and unlikely to be learned by the DNN in real applications.

Condition 2. Let us consider the average network output ū(k) def
= E|S|=k[v(xS) − v(x∅)] over all

masked samples xS with k unmasked input variables. This average network output monotonically
increases when k increases: ∀ k′ ≤ k, we have ū(k′) ≤ ū(k).

Condition 2 implies that a well-trained DNN is likely to have higher classification confidence for
input samples that are less masked.

Condition 3. Given the average network output ū(k) of samples with k unmasked input variables,
there is a polynomial lower bound for the average network output of samples with k′(k′ ≤ k)

unmasked input variables: ∀ k′ ≤ k, ū(k′) ≥ ( k
′

k
)p ū(k), where p > 0 is a positive constant.

Condition 3 implies that the classification confidence of the DNN does not significantly degrade on
masked input samples. The classification/detection of masked/occluded samples is common in real
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scenarios. In this way, a well-trained DNN usually learns to classify a masked input sample based
on local information (which can be extracted from unmasked parts of the input) and thus should not
yield a significantly low confidence score on masked samples.

C Details of optimizing {γT} to extract the sparsest AND-OR interactions

A method is proposed [20, 4] to simultaneously extract AND interactions Iand(S|x) and OR interac-
tions Ior(S|x) from the network output. Given a masked sample xT , [20] proposed to learn a decom-
position v(xT ) = vand(xT )+vor(xT ) towards the sparsest interactions. The component vand(xT ) was
explained by AND interactions, and the component vor(xT ) was explained by OR interactions. Specif-
ically, they decomposed v(xT ) into vand(xT ) = 0.5 v(xT ) + γT and vand(xT ) = 0.5 · v(xT )− γT ,
where {γT : T ⊆ N} is a set of learnable variables that determine the decomposition. In
this way, the AND interactions and OR interactions can be computed according to Eq. (2), i.e.,
Iand(S|x) =

∑
T⊆S(−1)|S|−|T |vand(xT ), and Ior(S|x) = −

∑
T⊆S(−1)|S|−|T |vor(xN\T ).

The parameters {γT } were learned by minimizing the following LASSO-like loss to obtain sparse
interactions:

min
{γT }

∑
S⊆N

|Iand(S|x)|+ |Ior(S|x)| (11)

Removing small noises. A small noise δS in the network output may significantly affect the extracted
interactions, especially for high-order interactions. Thus, [20] proposed to learn to remove a small
noise term δS from the computation of AND-OR interactions. Specifically, the decomposition was
rewritten as vand(xT ) = 0.5(v(xT ) − δT ) + γT and vor(xT ) = 0.5(v(xT ) − δT ) + γT . Thus, the
parameters {δT }, and {γT } are simultaneously learned by minimizing the loss function in Eq. (11).
The values of {δT } were constrained in [−ζ, ζ] where ζ = 0.02 · |v(x)− v(x∅)|.

D Where does the coefficient (−1)|S|−|T | in Eq. (2) come from?

In fact, it is proven in [13] and [23] that the coefficient (−1)|S|−|T | in Eq. (2) is the unique coefficient
to ensure that the interaction satisfies the universal matching property. Recall that the universal
matching property means that no matter how we randomly mask an input sample x, the network
output on the masked sample xS can always be accurately mimicked by the sum of interaction effects
within S. An extension of this property for AND-OR interactions is also mentioned in Theorem 2.

E OR interactions can be considered a special kind of AND interactions

The OR interaction can be considered a specific kind of AND interaction, when we flip the masked
state and presence (unmasked) state of each input variable.

Given an input sample x ∈ Rn, let xT denote the masked sample obtained by masking input variables
in N \ T , while leaving variables in T unchanged. Specifically, the baseline values b ∈ Rn are used
to mask the input variables, which represent the masked states of the input variables. The definition
of xT is given as follows.

(xT )i =

{
xi, i ∈ T

bi, i ∈ N \ T (12)

Based on the above definition, the AND interaction is computed as Iand(S|x) =∑
T⊆S(−1)|S|−|T |vand (xT ), while the OR interaction is computed as Ior(S|x) =

−
∑

T⊆S(−1)|S|−|T |vor
(
xN\T

)
. To simplify the analysis, let us assume vand(·) = vor(·) = 0.5v(·).

Then, let us consider a masked sample x̃T , where we flip the masked state and presence (unmasked)
state of each input variable. In this way, x̃T is defined as follows.

(x̃T )i =

{
xi, i ∈ N \ T
bi, i ∈ T

(13)
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Therefore, the OR interaction Ior(S|x) in Eq. 2 in main paper can be represented as an AND
interaction Ior(S|x̃), as follows.

Ior(S|x) = −
∑
T⊆S

(−1)|S|−|T |v(xN\T ), (14)

= −
∑
T⊆S

(−1)|S|−|T |v(x̃T ), (15)

= −Iand (S|x̃) . (16)

In this way, the proof of the sparsity of AND interactions in [27] can also extend to OR interactions.
Furthermore, we can simplify our analysis of the DNN’s learning of interactions by only focusing on
AND interactions.

F Proof of theorems
F.1 Proof of Theorem 2
Proof. (1) Universal matching theorem of AND interactions.

We will prove that output component vand(xS) on all 2n masked samples {xS : S ⊆ N} could
be universally explained by the all interactions in S ⊆ N , i.e., ∀∅ ≠ S ⊆ N, vand(xS) =∑

∅̸=T⊆S Iand(T |x) + v(x∅). In particular, we define vand(x∅) = v(x∅) (i.e., we attribute output on
an empty sample to AND interactions).

Specifically, the AND interaction is defined as Iand(T |x) =
∑

L⊆T (−1)|T |−|L|vand(xL) in 2. To
compute the sum of AND interactions

∑
∅̸=T⊆S Iand(T |x) =

∑
∅̸=T⊆S

∑
L⊆T (−1)|T |−|L|vand(xL),

we first exchange the order of summation of the set L ⊆ T ⊆ S and the set T ⊇ L. That is,
we compute all linear combinations of all sets T containing L with respect to the model outputs
vand(xL) given a set of input variables L, i.e.,

∑
T :L⊆T⊆S(−1)|T |−|L|vand(xL). Then, we compute

all summations over the set L ⊆ S.

In this way, we can compute them separately for different cases of L ⊆ T ⊆ S. In the following, we
consider the cases (1) L = S = T , and (2) L ⊆ T ⊆ S,L ̸= S, respectively.

(1) When L = S = T , the linear combination of all subsets T containing L with respect to the model
output vand(xL) is (−1)|S|−|S|vand(xL) = vand(xL).

(2) When L ⊆ T ⊆ S,L ̸= S, the linear combination of all subsets T containing L with respect
to the model output vand(xL) is

∑
T :L⊆T⊆S(−1)|T |−|L|vand(xL). For all sets T : S ⊇ T ⊇ L, let

us consider the linear combinations of all sets T with number |T | for the model output vand(xL),
respectively. Let m := |T |−|L|, (0 ≤ m ≤ |S|−|L|), then there are a total of Cm

|S|−|L| combinations
of all sets T of order |T |. Thus, given L, accumulating the model outputs vand(xL) corresponding

to all T ⊇ L, then
∑

T :L⊆T⊆S(−1)|T |−|L|vand(xL) = vand(xL) ·
∑|S|−|L|

m=0
Cm

|S|−|L|(−1)m︸ ︷︷ ︸
=0

= 0.

Please see the complete derivation of the following formula.

∑
∅̸=T⊆S

Iand(T |x)

=
∑

∅̸=T⊆S

∑
L⊆T

(−1)|T |−|L|vand(xL)

=
∑

L⊆S

∑
T :L⊆T⊆S

(−1)|T |−|L|vand(xL)− vand(x∅)

= vand(xS)︸ ︷︷ ︸
L=S

+
∑

L⊆S,L ̸=S
vand(xL) ·

∑|S|−|L|

m=0
Cm

|S|−|L|(−1)m︸ ︷︷ ︸
=0

−vand(x∅)

=vand(xS)− vand(x∅)

=vand(xS)− v(x∅)

(17)
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Thus, we have ∀∅ ≠ S ⊆ N, vand(xS) =
∑

∅̸=T⊆S Iand(T |x) + v(x∅).

(2) Universal matching theorem of OR interactions.

According to the definition of OR interactions, we will derive that ∀S ⊆ N, vor(xS) =∑
T :T∩S ̸=∅ Ior(S|x), where we define vor(x∅) = 0 (recall that in Step (1), we attribute the out-

put on empty input to AND interactions).

Specifically, the OR interaction is defined as Ior(T |x) = −
∑

L⊆T (−1)|T |−|L|vor(xN\L) in 2.
Similar to the above derivation of the universal matching theorem of AND interactions, to compute
the sum of OR interactions

∑
T :T∩S ̸=∅ Ior(T |x) =

∑
T :T∩S ̸=∅

[
−
∑

L⊆T (−1)|T |−|L|vor(xN\L)
]
,

we first exchange the order of summation of the set L ⊆ T ⊆ N and the set T : T ∩ S ̸= ∅. That
is, we compute all linear combinations of all sets T containing L with respect to the model outputs
vor(xN\L) given a set of input variables L, i.e.,

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L). Then, we

compute all summations over the set L ⊆ N .

In this way, we can compute them separately for different cases of L ⊆ T ⊆ N,T ∩ S ̸= ∅. In
the following, we consider the cases (1) L = N \ S, (2) L = N , (3) L ∩ S ̸= ∅, L ̸= N , and (4)
L ∩ S = ∅, L ̸= N \ S, respectively.

(1) When L = N \ S, the linear combination of all subsets T containing L with respect to the model
output vor(xN\L) is

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L) =

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xS).

For all sets T : T ⊇ L, T ∩ S ̸= ∅ (then T ̸= N \ S, T ̸= L), let us consider the lin-
ear combinations of all sets T with number |T | for the model output vor(xS), respectively. Let
|T ′| := |T | − |L|, (1 ≤ |T ′| ≤ |S|), then there are a total of C |T ′|

|S| combinations of all sets T ′ of
order |T ′|. Thus, given L, accumulating the model outputs vor(xS) corresponding to all T ⊇ L, then∑

T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L) = vor(xS) ·
∑|S|

|T ′|=1
C

|T ′|
|S| (−1)|T

′|︸ ︷︷ ︸
=−1

= −vor(xS).

(2) When L = N (then T = N ), the linear combination of all subsets T containing L with respect
to the model output vor(xN\L) is

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L) = (−1)|N |−|N |vor(x∅) =

vor(x∅).

(3) When L ∩ S ̸= ∅, L ̸= N , the linear combination of all subsets T containing L with
respect to the model output vor(xN\L) is

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L). For all sets

T : T ⊇ L, T ∩ S ̸= ∅, let us consider the linear combinations of all sets T with num-
ber |T | for the model output vor(xS), respectively. Let us split |T | − |L| into |T ′| and |T ′′|,
i.e.,|T | − |L| = |T ′|+ |T ′′|, where T ′ = {i|i ∈ T, i /∈ L, i ∈ N \ S}, T ′′ = {i|i ∈ T, i /∈ L, i ∈ S}
(then 0 ≤ |T ′′| ≤ |S| − |S ∩ L|) and |T ′| + |T ′′| + |L| = |T |. In this way, there are a total of
C

|T ′′|
|S|−|S∩L| combinations of all sets T ′′ of order |T ′′|. Thus, given L, accumulating the model

outputs vor(xN\L) corresponding to all T ⊇ L, then
∑

T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L) =

vor(xN\L) ·
∑

T ′⊆N\S\L

∑|S|−|S∩L|

|T ′′|=0
C

|T ′′|
|S|−|S∩L|(−1)|T

′|+|T ′′|︸ ︷︷ ︸
=0

= 0.

(4) When L ∩ S = ∅, L ̸= N \ S, the linear combination of all subsets T containing L with respect
to the model output vor(xN\L) is

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L). Similarly, let us split

|T | − |L| into |T ′| and |T ′′|, i.e.,|T | − |L| = |T ′|+ |T ′′|, where T ′ = {i|i ∈ T, i /∈ L, i ∈ N \ S},
T ′′ = {i|i ∈ T, i ∈ S} (then 0 ≤ |T ′′| ≤ |S|) and |T ′| + |T ′′| + |L| = |T |. In this way, there are
a total of C |T ′′|

|S| combinations of all sets T ′′ of order |T ′′|. Thus, given L, accumulating the model
outputs vor(xN\L) corresponding to all T ⊇ L, then

∑
T :T∩S ̸=∅,T⊇L(−1)|T |−|L|vor(xN\L) =

vor(xN\L) ·
∑

T ′⊆N\S\L

∑|S|

|T ′′|=0
C

|T ′′|
|S| (−1)|T

′|+|T ′′|︸ ︷︷ ︸
=0

= 0.
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Please see the complete derivation of the following formula.∑
T :T∩S ̸=∅

Ior(T |x) =
∑

T :T∩S ̸=∅

[
−
∑

L⊆T
(−1)|T |−|L|vor(xN\L)

]
= −

∑
L⊆N

∑
T :T∩S ̸=∅,T⊇L

(−1)|T |−|L|vor(xN\L)

= −

 |S|∑
|T ′|=1

C
|T ′|
|S| (−1)|T

′|

 · vor(xS)︸ ︷︷ ︸
L=N\S

− vor(x∅)︸ ︷︷ ︸
L=N

−
∑

L∩S ̸=∅,L ̸=N

 ∑
T ′⊆N\S\L

|S|−|S∩L|∑
|T ′′|=0

C
|T ′′|
|S|−|S∩L|(−1)

|T ′|+|T ′′|

 · vor(xN\L)

−
∑

L∩S=∅,L ̸=N\S

 ∑
T ′⊆N\S\L

 |S|∑
|T ′′|=0

C
|T ′′|
|S| (−1)|T

′|+|T ′′|

 · vor(xN\L)

= −(−1) · vor(xS)− vor(x∅)−
∑

L∩S ̸=∅,L ̸=N

 ∑
T ′⊆N\S\L

0

 · vor(xN\L)

−
∑

L∩S=∅,L ̸=N\S

 ∑
T ′⊆N\S\L

0

 · vor(xN\L)

= vor(xS)− vor(x∅)

= vor(xS)
(18)

(3) Universal matching theorem of AND-OR interactions.

With the universal matching theorem of AND interactions and the universal matching theorem of
OR interactions, we can easily get v(xS) = vand(xS) + vor(xS) = v(x∅) +

∑
∅̸=T⊆S Iand(T |x) +∑

T :T∩S ̸=∅ Ior(T |x), thus, we obtain the universal matching theorem of AND-OR interactions.

F.2 Proof of Eq. (6) and Eq. (7)
Before we give the derivation of Eq. (6) and Eq. (7), we first prove the following lemma.

Lemma 3. The effect I(T |x) of an AND interaction w.r.t. subset T on sample x can be rewritten as

I(T |x) =
∑

π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣∣
x=x∅

∏
i∈T

(xi − bi)
πi , (19)

where QT = {[π1, . . . , πn]
⊤ | ∀ i ∈ T, πi ∈ N+;∀ i ̸∈ T, πi = 0}.

Note that a similar proof was first introduced in [26].

Proof. Let us denote the function on the right of Eq. (19) by K(T |x), i.e., for S ̸= ∅,

K(T |x) def
=

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣∣
x=x∅

∏
i∈T

(xi − bi)
πi . (20)

Actually, it has been proven in [13] and [23] that the AND interaction I(T |x) (see definition in
Eq. (2)) is the unique metric satisfying the following property (an extension of the property for
AND-OR interactions is mentioned in Theorem 2), i.e.,

∀ S ⊆ N, v(xS) =
∑

∅̸=T⊆S
I(T |x) + v(x∅). (21)

Thus, as long as we can prove that K(T |x) also satisfies the above universal matching property, we
can obtain I(T |x) = K(T |x).
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To this end, we only need to prove K(T |x) also satisfies the property in Eq. (21). Specifically, given
an input sample x ∈ Rn, let us consider the Taylor expansion of the network output v(xS) of an
arbitrarily masked sample xS , which is expanded at x∅ = b = [b1, · · · , bn]⊤. Then, we have

∀ S ⊆ N, v(xS) =

∞∑
π1=0

· · ·
∞∑

πn=0

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂x

πn
n

∣∣∣∣
x=x∅

n∏
i=1

((xS)i − bi)
πi (22)

where bi denotes the baseline value to mask the input variable xi.

According to the definition of the masked sample xS , we have that all variables in S keep unchanged
and other variables are masked to the baseline value. That is, ∀ i ∈ S, (xS)i = xi; ∀ i ̸∈ S,
(xS)i = bi. Hence, we obtain ∀i ̸∈ S, ((xS)i − bi)

πi = 0 if πi > 0. Then, among all Taylor
expansion terms, only terms corresponding to degrees π in the set PS = {[π1, · · · , πn]

⊤ | ∀i ∈
S, πi ∈ N;∀i ̸∈ S, πi = 0} may not be zero (we consider the value of ((xS)i − bi)

πi to be always
equal to 1 if πi = 0). Therefore, Eq. (22) can be re-written as

∀ S ⊆ N, v(xS) =
∑

π∈PS

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂x

πn
n

∣∣∣∣
x=x∅

∏
i∈S

(xi − bi)
πi . (23)

We find that the set PS can be divided into multiple disjoint sets as PS = ∪T⊆S QT , where
QT = {[π1, · · · , πn]

⊤ | ∀i ∈ T, πi ∈ N+;∀i ̸∈ T, πi = 0}. Then, we can further write Eq. (23) as

∀ S ⊆ N, v(xS) =
∑
T⊆S

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂x

πn
n

∣∣∣∣
x=x∅

∏
i∈T

(xi − bi)
πi

=
∑

∅≠T⊆S

K(T |x) + v(x∅). // according to the definition of K(T |x) in Eq. (20)

(24)
The last step is obtained as follows. When T = ∅, QT only has one element π = [0, · · · , 0]⊤, which
corresponds to the term v(x∅).

Thus, K(T |x) satisfies the property in Eq. (21), and this means I(T |x) = K(T |x) =∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T (xi − bi)

πi .

Then, let us continue the proof of Eq. (6) and Eq. (7).

Proof. Given a specific sample x̂, let us consider the following function defined in Eq. (6) and
Eq. (7).

f(x) =
∑

T⊆N
wT JT (x), (25)

where the scalar weight wT = I(T |x = x̂), and the function JT (x) =∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T (xi − bi)

πi/wT .
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We will then prove that ∀S ⊆ N, f(x̂S) = v(x̂S).

f(x̂S) =
∑
T⊆N

wT JT (x̂S) (26)

=
∑
T⊆N

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣∣
x=x∅

∏
i∈T

((x̂S)i − bi)
πi // wT cancels out (27)

=
∑
T⊆S

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣∣
x=x∅

∏
i∈T

((x̂S)i − bi)
πi (28)

// if T ⊈ S, then ∃j ∈ T \ S, s.t. (x̂S)j − bj = 0, which makes the whole term zero
(29)

=
∑
T⊆S

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣∣
x=x∅

∏
i∈T

(x̂i − bi)
πi (30)

// when T ⊆ S, we have ∀i ∈ T, (x̂S)i = x̂i (31)

=
∑

∅̸=T⊆S

I(T |x = x̂) + v(x∅) // the inverse direction of Lemma 3 we have just proven

(32)
= v(x̂S) // the inverse direction of universal matching theorem (33)

Remark. The function f(x) essentially provides a continuous implementation of Eq. (3) in the
universal matching theorem (Theorem 2). The weight wT = I(T |x = x̂) is the interaction effect
w.r.t. to subset T on the unmasked sample x̂, while the function JT (x) is a continuous extension of
the indicator function 1(x̂S triggers the AND relation T ) (thus we call JT (x) a triggering function
and the value of this function triggering strength).

F.3 Proof of Lemma 1
Proof. Given the inference scores on masked samples {ṽ(xS) : S ⊆ N}, the interaction between in-
put variables w.r.t. T ⊆ N can be computed as Ĩ(T |x) =

∑
S⊆T (−1)|T |−|S| ṽ(xS) (the computation

of AND interactions in Eq. (2)).

Since we assume that ∀S ⊆ N, ṽ(xS) = v(xS) + ∆vS , ∆vS ∼ N (0, σ2), Ĩ(T |x) can be written as

Ĩ(T |x) =
∑
S⊆T

(−1)|T |−|S| ṽ(xS) (34)

=
∑
S⊆T

(−1)|T |−|S| (v(xS) + ∆vS) (35)

=
∑
S⊆T

(−1)|T |−|S| v(xS) +
∑
S⊆T

(−1)|T |−|S|∆vS (36)

= I(T |x) + ∆IT (37)

where I(T |x) =
∑

S⊆T (−1)|T |−|S|v(xS) is a noiseless component (not a random variable), and
∆IT =

∑
S⊆T (−1)|T |−|S|∆vS is the noise component on the interaction.

Since each Gaussian noise ∆vS ∼ N (0, σ2),∀S ⊆ N , is independent and identically distributed, it
is easy to see E[∆IT ] =

∑
S⊆T (−1)|T |−|S|E[∆vS ] = 0. The variance of ∆IT is computed as

Var[∆IT ] = Var(
∑
S⊆T

(−1)|T |−|S|∆vS) (38)

= Var(∆vS1
) + Var(∆vS2

) + · · ·+Var(∆vS
2|T | ) (39)

= 2|T | · σ2, (40)

because there are a total of 2|T | subsets for S ⊆ T .
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Furthermore, according to the analytic form of interaction effect in Eq. (19), we note that the values
of Ĩ(T |x) and J̃T (x) have a ratio of wT . Therefore, if we write J̃T (x) = JT (x) + ϵT , then the
noise term satisfies ϵT = ∆IT /wT , and thus E[ϵT ] = 0,Var[ϵT ] ∝ 2|T |σ2.

F.4 Proof of Theorem 3
Proof. We concatenate all J(xS) (w.r.t. all 2n masked samples xS , S ⊆ N ) into a matrix
J = [J(xS1),J(xS2), · · · ,J(xS2n

)]⊤ ∈ {0, 1}2n×2n to represent the triggering strength of 2n
interactions on 2n masked samples We also concatenate all noise terms on all 2n masked samples
into a matrix E = [ϵ(1), ϵ(2), · · · , ϵ(2n)]⊤ to represent the noise term over J . We concatenate the
output score vector y def

= [y(xS1
), y(xS2

), · · · , y(xS2n
)]⊤ ∈ R2n to represent the finally converged

outputs on all 2n masked samples.

The optimal weights ŵ can be solved by minimizing the loss function L̃(w) in Eq. (9). The loss
function can be rewritten as follows:

ŵ = argmin
w

L̃(w) (41)

L̃(w) = EϵES⊆N

[(
yS −w⊤(J(xS) + ϵ)

)2]
, (42)

= EE

[
1

2n
∥y − (J + E)w∥22

]
, (43)

=
1

2n
EE

[
(y − (J + E)w)⊤(y − (J + E)w)

]
, (44)

=
1

2n
(
y⊤y − 2y⊤EE [(J + E)]w +w⊤EE

[
(J + E)⊤(J + E)

]
w
)
. (45)

Taking the derivative with respect to w and setting it to zero, we get:

∂L̃

∂w
= −2EE

[
(J + E)⊤y

]
+ 2EE

[
(J + E)⊤(J + E)w

]
= 0, (46)

⇒ EE
[
(J + E)⊤(J + E)

]
w = EE

[
(J + E)⊤y

]
, (47)

⇒ (J⊤J + EE [E⊤J ] + J⊤EE [E] + EE [E⊤E])w = J⊤y, (48)

⇒ (J⊤J + EE [E⊤E])w = J⊤y. // because E[E] = 0 (49)

Notice that the sample covariance matrix 1
mE⊤E converges to the true covariance matrix Cov(E),

when m = 2n is large. Therefore, EE [E⊤E]) = EE [2
nCov(E)]) = 2nCov(E). Because we assume

noises on different interactions are independent, it is a diagonal matrix, denoted by Cov(E) = diag(c),
where c = vec({Var[ϵT ] : T ⊆ N}) = vec({2|T |σ2 : T ⊆ N}) ∈ R2n denotes the vector of
variances of the triggering strength of 2n interactions.

Thus, we have:

(J⊤J + 2ndiag(c))w = J⊤y. (50)

Next, we can prove that the matrix J⊤J + 2ndiag(c) is always invertible, as follows. (1) We can
prove that J⊤J is positive semi-definite, because ∀u ̸= 0,u⊤J⊤Ju = ∥Ju∥22 ≥ 0. (2) We can
further prove that J⊤J is positive definite. Let us denote the eigenvalues of J⊤J as λ1, · · · , λ2n ∈ R
(because J⊤J is real symmetric, its eigenvalues must be real). Note that the diagonal elements
of J⊤J are all positive, so we have

∏2n

i=1 λi =
∏2n

i=1(J
⊤J)ii > 0. Combining the positive

semi-definiteness, we know that the eigenvalues of J⊤J must be all positive, without having a
zero eigenvalue. It means that J⊤J is positive definite. (3) We can prove that J⊤J + 2ndiag(c)
is positive definite. The diagonal matrix 2ndiag(c) is positive definite, because all its diagonal
elements are positive. The sum of two positive definite matrices is still positive definite. (4) Since
J⊤J + 2ndiag(c) is positive definite, it cannot have a zero eigenvalue, and is thus invertible.
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So the optimal weights can be solved as

ŵ = (J⊤J + 2ndiag(c))−1J⊤y. (51)

Next we will show that y = J⊤w∗. Recall that definition of y(xS) is given by y(xS) = v(x∅) +∑
∅̸=T⊆S w∗

T in the main paper. According to the Lemma 2, we have JT (x) = 1(T ⊆ S). Therefore,

y(xS) can be rewritten as y(xS) =
∑

T⊆N JT (xS)w
∗
T , where we define w∗

∅
def
= v(x∅) for simplicity

of notation. Writing the sum in vector norm, we obtain y(xS) = J(xS)
⊤w∗. Furthermore, the

whole vector y can be written as y = J⊤w∗.

With y = J⊤w∗, we have ŵ = (J⊤J + 2ndiag(c))−1J⊤Jw∗ = M̂w∗.

F.5 Proof of Lemma 2
Proof. According to Eq. (7), the interaction triggering function on an arbitrarily given sample x̂ is
given by

JT (x) =
∑

π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣
x=x∅

∏
i∈T

(xi − bi)
πi /wT (52)

where wT = I(T |x = x̂), and QT = {[π1, . . . , πn]
⊤ : ∀i ∈ T, πi ∈ N+;∀i ̸∈ T, πi = 0}.

Specifically, now we consider a masked sample x̂S , and we will prove that JT (x̂S) = 1(T ⊆ S).
We consider the following two cases.

Case 1: T ⊈ S. Then, there exists some j ∈ T \S. Since j /∈ S, according to the masking rule of the
sample x̂S , we have (x̂S)j−bj = 0. Since j ∈ T , we have πj ∈ N+. Therefore, ((x̂S)j−bj)

πj = 0.
In this way, we have

∀π ∈ QT ,
∏
i∈T

((x̂S)i − bi)
πi = 0. (53)

Since each term in the summation equals zero, we have JT (x̂S) = 0.

Case 2: T ⊆ S. In this case, ∀i ∈ T , we have i ∈ S. Therefore, according to the masking rule, we
have ∀i ∈ T ⇒ i ∈ S ⇒ (x̂S)i = x̂i.

According to the analytic form of I(T |x) in Eq. (19) in the proof in Appendix F.2, we can derive the
value of wT as

wT = I(T |x = x̂) =
∑

π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣
x=x∅

∏
i∈T

(x̂i − bi)
πi . (54)

Therefore, we can derive the value of JT (x̂S) as follows.

JT (x̂S) =
∑

π∈QT

1∏n
i=1 πi!

∂π1+···+πnv

∂xπ1
1 · · · ∂xπn

n

∣∣∣
x=x∅

∏
i∈T

((x̂S)i − bi)
πi /wT (55)

=

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T ((x̂S)i − bi)

πi

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T (x̂i − bi)

πi

// by Eq. (54) (56)

=

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T (x̂i − bi)

πi

∑
π∈QT

1∏n
i=1 πi!

∂π1+···+πnv
∂x

π1
1 ···∂xπn

n

∣∣∣
x=x∅

∏
i∈T (x̂i − bi)

πi

(57)

// because we have proven ∀i ∈ T, (x̂S)i = x̂i (58)
= 1 (59)

Combining the two cases, we can conclude that JT (x̂S) = 1(T ⊆ S).

In this way, no matter how we change the DNN v(·) or the input sample x, the matrix J =

[J(xS1),J(xS2), · · · ,J(xS2n
)]⊤ ∈ {0, 1}2

n×2n in Eq. (10) is a always a fixed binary matrix.
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F.6 Proof of Theorem 4
Proof. We prove that for any two subsets T, T ′ ⊆ N of the same order, the vector m̂T is a permuta-
tion of the vector m̂T ′ .

The proof consists of two steps. First, we show that there exists a symmetric matrix transformation
T (·) = PkPk−1 · · ·P1(·)P1P2 · · ·Pk−1Pk, where Pi is a permutation matrix, that maps both J⊤J
and J⊤J + 2ndiag(c) to themselves, i.e., T (J⊤J) = J⊤J , T (J⊤J + 2ndiag(c)) = J⊤J +
2ndiag(c). We will show that this transformation T (·) applies permutation to the rows and columns
of the same order.

Second, we show that this transformation also maps M̂ to itself, i.e., T (M̂) = M̂ , implying that
row vectors of the same order in M̂ are permutations of each other.

From Theorem 3, we have:
(J⊤J + 2ndiag(c))M̂ = J⊤J (60)

To simplify the notation, we denote B := J⊤J and D := 2ndiag(c). Then, we have:

(B +D)M̂ = B (61)

Step 1: We construct a transformation T (·) which permutes the rows and columns of a 2n × 2n

matrix based on element selection. Let us first consider the matrix B. For the matrix D, the analysis
is similar because its diagonal elements 2|T |+nσ2 are the same for each order. Thus, if T (·) maps B
to itself, it also maps D to itself.

Given the set N = {1, 2, · · · , n}, the subsets S1, S2, · · · , S2n can be regarded as selec-
tions from the power set of N , denoted as 2N . Consider a permutation P acting on N .
Under this permutation, the selections S1, S2, · · · , S2n transform correspondingly. For ex-
ample, if N = {1, 2, 3} is mapped to N = {3, 2, 1} under the permutation P , the list
of subsets [S1, S2, · · · , S2n ] = [∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}] is mapped to
[∅, {3}, {2}, {1}, {3, 2}, {3, 1}, {2, 1}, {3, 2, 1}].

This permutation induces a transformation T (·) = PkPk−1 · · ·P1(·)P1P2 · · ·Pk−1Pk on the matrix
B = J⊤J by permuting its rows and columns.

Since the permutation acts on N and preserves the inclusion relation, the transformation T (·) is
invariant, meaning T (B) = B. Similarly, we have T (B +D) = B +D.

Step 2: We apply T (·) to the matrices B + D and B in Eq. (61). Since the transformation is
invariant, we have:

T (B +D)M̂ = T (B) (62)

Thus:

PkPk−1 · · ·P1(B +D)P1P2 · · ·Pk−1PkM̂ = PkPk−1 · · ·P1(B)P1P2 · · ·Pk−1Pk (63)

We can easily see that if M̂ is a solution to this equation, then T (M̂) =

PkPk−1 · · ·P1M̂P1P2 · · ·Pk−1Pk is also a solution, since P 2
i = I, i = 1, · · · , k, where I is

the identity matrix. In addition, because B+D is invertible (as shown in Appendix F.4), this solution
is unique. Therefore:

T (M̂) = M̂ (64)

This shows that the transformation T (·) also maps M̂ to itself.

Conclusion: We have shown that, under the transformation T (·), the affected rows of M̂ are
permutations of each other. Note that only the rows with the same order will be permuted to each
other because T (·) is derived from the permutation of the power set of N , so the order of the rows is
preserved.

For any two subsets T, T ′ ⊆ N of the same order, we can construct a permutation of indices from T
to T ′ that maps m̂T to m̂T ′ . Therefore, m̂T is a permutation of m̂T ′ .
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Output function v(·) v(x) = log p(ytruth|x)

1−p(ytruth|x)

Threshold τ τ=0.03 Ex[|v(x)− v(x∅)|]

Baseline value b
Image data: using the zero baseline on the feature map after ReLU
Text data: using the [MASK] token
Point cloud data: using the cluster center of each point cluster

Table 1: Mathematical setting of hyper-parameters for interactions.

F.7 Proof of Theorem 5
Proof. From Eq. (10), when there is no noise (i.e., σ = 0), it is obvious that ŵ =
(J⊤J)−1J⊤Jw∗ = w∗, which means that the optimal weights ŵ are the same as the true weights
w∗. So ∀ ∅ ≠ T ⊆ N, ŵT = w∗

T .

G Experimental details
G.1 Models and datasets
We trained various DNNs on different datasets. Specifically, for image data, we trained VGG-11
on the MNIST dataset (Creative Commons Attribution-Share Alike 3.0 license), VGG-11/VGG-16
on the CIFAR-10 dataset (MIT license), AlexNet/VGG-16 on the CUB-200-2011 dataset (license
unknown), and VGG-16 on the Tiny ImageNet dataset (license unknown). For natural language data,
we trained BERT-Tiny and BERT-Medium on the SST-2 dataset (license unknown). For point cloud
data, we trained DGCNN on the ShapeNet dataset (Custom (non-commerical) license).

For the CUB-200-2011 dataset, we cropped the images to remove the background regions, using
the bounding box provided by the dataset. These cropped images were resized to 224×224 and
fed into the DNN. For the Tiny ImageNet dataset, due to the computational cost, we selected 50
classes from the total 200 classes at equal intervals (i.e., the 4th, 8th,..., 196th, 200th classes). All
these images were resized to 224×224. For the MNIST dataset, all images were resized to 32×32
for classification. To better demonstrate that the learning of higher-order interactions in the second
phase was closely related to overfitting, we added a small ratio of label noise to the MNIST dataset,
the CIFAR-10 dataset, and the CUB-200-2011 dataset to boost the significance of over-fitting of
the DNNs. Specifically, we randomly selected 1% training samples in the MNIST dataset and the
CIFAR-10 dataset, and randomly reset their labels. We randomly selected 5% training samples in the
CUB-200-2011 dataset and randomly reset their labels.

G.2 Training settings
We trained all DNNs using the SGD optimizer with a learning rate of 0.01 and a momentum of 0.9.
No learning rate decay was used. We trained VGG models, AlexNet models, and BERT models for
256 epochs, and trained the DGCNN model for 512 epochs. The batchsize was set to 128 for all
DNNs on all datasets.

G.3 Details on computing interactions
First, we provide a summary of the mathematical settings of the hyper-parameters for interactions
in Table 1, including the scalar output function of the DNN v(·), the baseline value b for masking,
and the threshold τ . These settings are uniformly applied to all DNNs. More detailed settings for
different datasets can be found below.

Image data. For image data, we considered image patches as input variables to the DNN. To generate
a masked sample xS , we followed [41] to mask the patch on the intermediate-layer feature map
corresponding to each image patch in the set N \ S. Specifically, we considered the feature map
after the second ReLU layer for VGG-11/VGG-16 and the feature map after the first ReLU layer for
AlexNet. For the VGG models and the AlexNet model, we uniformly partitioned the feature map
into 8×8 patches, randomly selected 10 patches from the central 6×6 region (i.e., we did not select
patches that were on the edges), and considered each of the 10 patches as an input variable in the set
N to calculate interactions. We considered each of the 10 patches as an input variable in the set N to
calculate interactions. We used a zero baseline value to mask the input variables in the set N \ S to
obtain the masked sample xS .
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Natural language data. We considered the input tokens as input variables for each input sentence.
Specifically, we randomly selected 10 words that are meaningful (i.e., not including stopwords,
special characters, and punctuations) as input variables in the set N to calculate interactions. We
used the “mask” token with the token id 103 to mask the tokens in the set N \ S to obtain the masked
sample xS .

Point cloud data. We clustered all the points into 30 clusters using K-means clustering, and randomly
selected 10 clusters as the input variables in the set N to calculate interactions. We used the average
coordinate of the points in each cluster to mask the corresponding cluster in N \ S and obtained the
masked sample xS .

For all DNNs and datasets, we randomly selected 50 samples from the testing set to compute
interactions, and averaged the interaction strength of the k-th order on each sample to obtain I

(k)
real .

G.4 Compute resources

All DNNs can be trained within 12 hours on a single NVIDIA GeForce RTX 3090 GPU (with 24G
GPU memory). Computing all interactions on a single input sample usually takes 35-40 seconds,
which is acceptable in real applications.

H Potential limitations of the theoretical proof

In this study, we have assumed that during the training process, the noise on the parameters gradually
decreased (σ2 gradually became smaller). Although experiments in Figure 4 and Figure 8 have
verified that the theoretical distribution of interaction strength can well match the real distribution by
using a set of decreasing σ2 values, it is not exactly clear how the value of σ2 is related to the training
process. The value of σ2 probably does not decrease linearly along with the training epochs/iterations,
which needs more precise formulations.

I More discussions about the two-phase dynamics

I.1 Does the model re-learn the initial interactions during the second phase?

Our theory does not claim that in the second phase, a DNN will not re-encode an interaction that is
removed in the first phase. Instead, Theorem 4 and Proposition 1 collectively indicate the possibility
of a DNN gradually re-encoding a few higher-order interactions in the second phase along with the
decrease of the parameter noise.

The key point to this question is that the massive interactions in a fully initialized DNN are all chaotic
and meaningless patterns caused by randomly initialized network parameters. Therefore, the crux
of the matter is not whether the DNN re-learns the initially removed interactions, but the fact that
the DNN mainly removes chaotic and meaningless initial interactions in the first phase, and learns
potential target interactions in the second phase. In this way, although a few interactions may be
re-encoded later in the second phase, we do not consider this as a problem with the training of a
DNN.

I.2 About extending the theoretical analysis to specific network architectures

Our current analysis is agnostic to the network architecture, and aims to explain the common two-
phase dynamics of interactions that is shared by different network architectures for various tasks. Fig.
2 and Fig. 5 demonstrate this shared two-phase dynamics.

On the other hand, although DNNs with different architectures all exhibit the two-phase dynamics of
interactions, the length of the two phases and the finally converged state of the DNN are influenced
by the network architecture and can slightly vary among different architectures. Eq. (10) shows that
our current formulation is to use the finally converged state of a DNN to accurately predict the DNN’s
learning dynamics of interactions. Therefore, the learning dynamics predicted by our theory also
exhibits slight differences among different DNN architectures and datasets accordingly, but it still
matches well with the empirical dynamics of interactions. To this end, studying how the network
architecture affects the finally converged state of a DNN may be a good future direction.
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J More experimental results

J.1 More results for the two-phase phenomenon

In this subsection, we show the two-phase dynamics of learning interactions on more DNNs and
datasets. See Figure 5 and Figure 6 for details.
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Figure 5: The distribution of interaction strength I
(k)
real over different orders k. Each row shows

the change of the distribution during the training process. Experiments showed that the two-phase
phenomenon widely existed on different DNNs trained on various datasets.
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Figure 6: Demonstration of the two-phase dynamics of interactions on more textual datasets.
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J.2 More details for the alignment between the two phases and the loss gap

Besides the loss gap, in Figure 7, we also show the training loss and the testing loss separately. In
fact, instead of considering underfitting (or learning useful features) and overfitting (or learning
overfitted features) as two separate processes, the DNN simultaneously learns both useful features
and overfitted features during training. The learning of useful features decreases the training loss and
the testing loss, which alleviates underfitting. Meanwhile, the learning of overfitted features gradually
increases the loss gap.
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Figure 7: Demonstration of the training loss and the testing loss (the last column) in addition to the
two-phase dynamics of interactions (1st column to 6th column) and the loss gap (7th column).

J.3 More results for the experimental verification of our theory

In this subsection, we show results of using the theoretical distribution of interaction strength I
(k)
theo

to match the real distribution of interaction strength I
(k)
real on more DNNs and datasets, as shown in

Figure 8.
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Figure 8: Comparison between the theoretical distribution of interaction strength I
(k)
theo and the real

distribution of interaction strength I
(k)
real in the second phase on more DNNs and datasets.

J.4 Using the theoretical distribution I
(k)
theo to predict the real distribution of AND interactions

In this subsection, we show results of using the theoretical distribution of interaction strength I
(k)
theo to

match the real distribution of AND interactions (rather than the AND-OR interactions), as shown in
Figure 9.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims made in the abstract and introduction accurately reflect our
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Although we have no room for a separate Limitations section in the main
paper, we provide discussion of potential limitations in Appendix G.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the assumptions in the main paper, and the proof for all theorems
in Appendix E.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The contribution of this paper is mainly theoretical. Nevertheless, we provide
the detailed experimental settings in Appendix F to reproduce the experiment results. The
code will be released when the paper is accepted.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The code will be released when the paper is accepted. All datasets used in
this paper are publicly available. Nevertheless, to enhance reproducibility, we provide the
detailed experimental settings in Appendix F.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Details on dataset preprocessing can be found in Appendix F.1. Details on
training settings can be found in Appendix F.2. Details on how to compute interactions can
be found in Appendix F.3.
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Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The main contribution of this study is to provide theoretical proof for the two-
phase dynamics phenomenon discovered in previous studies. The experiments in this study
are mainly to reproduce the two-phase dynamics phenomenon for better illustration and to
verify that our theory can predict the trend of the interaction dynamics on real DNNs. This
study does not propose new methods to boost performance or discover a new phenomenon,
so we refrain from reporting error bars for clarity.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the compute resources needed in Appendix F.4, including the type
of GPU and the approximate amount of time for training DNNs and computing interactions.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The contribution of this paper is mainly theoretical, which has not yet been
applied to real applications. The social impact could be little, for now.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All models and datasets used in this paper are already publicly available.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the original paper for all datasets. The name of the license is included
for each dataset in Appendix F.1, although some licenses are unknown.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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