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ABSTRACT

The remarkable sample efficiency of preference-based reinforcement learning,
which underpins the alignment of large language models with human feedback
(RLHF), presents a significant theoretical puzzle. Existing analyses often rely on
idealized assumptions, such as infinite-particle ensembles or exact, full-batch gra-
dients, that are disconnected from the practical realities of deployed algorithms.
This paper closes this theory-practice gap. We introduce a unified optimistic PAC-
Bayesian framework that distills the statistical essence of complex, multi-stage
RLHF pipelines into a single, provably efficient online learning algorithm. Our
central result is a high-probability regret bound of O(deluder log T ) for a rich, non-
linear class of reward models, demonstrating that logarithmic regret is achievable
even when using finite ensembles and noisy stochastic gradient updates. This
unified theory provides an explanation for the sample efficiency of pairwise pref-
erence optimization, extends naturally to full Markov Decision Processes, and es-
tablishes a theoretical foundation for the empirical success of methods like RLHF.

1 INTRODUCTION

The alignment of large language models (LLMs) through preference-based learning has become a
cornerstone of modern artificial intelligence, enabling the development of systems that are helpful,
harmless, and attuned to human intent (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024). A
striking empirical observation in this domain is the profound sample efficiency of these alignment
pipelines. Practitioners routinely steer billion-parameter models toward complex desired behaviors
using on the order of only tens of thousands of pairwise human preferences (Rafailov et al., 2023;
Christiano et al., 2017). This efficiency stands in stark contrast to the sheer dimensionality of the
models and suggests that the correct theoretical target for regret should exhibit a near-logarithmic
dependence on the number of interaction rounds, T . While classical online learning analyses for
expressive function classes typically yield regret bounds of O(

√
T ) (Russo & Van Roy, 2013; 2014),

the empirical reality of RLHF motivates a much sharper theoretical goal. This leads to a pivotal open
question: Can we provide a rigorous theoretical explanation for the sample efficiency of practical
preference-based alignment pipelines that yields sharp, near-logarithmic regret guarantees?

The standard practical pipeline for Reinforcement Learning from Human Feedback (RLHF) is a
complex, multi-stage process (Ouyang et al., 2022; Bai et al., 2022). It typically begins with Su-
pervised Fine-Tuning (SFT) on a high-quality dataset, proceeds to the training of a separate reward
model on collected human preference data, and culminates in policy optimization via an algorithm
like PPO against that static reward model. This multi-stage pipeline, while empirically successful,
presents a formidable challenge for unified theoretical analysis, as theoretical work often focuses on
specific stages in isolation.

In this work, we move beyond analyzing the pipeline’s components separately and instead propose
a more fundamental theoretical model, the Optimistic Langevin Ensemble (OLE), that captures
the statistical core of preference-based learning in a single, cohesive online process. By analyzing
this unified algorithm, we explain the sample efficiency of existing complex pipelines and provide a
principled blueprint for a more theoretically grounded approach to alignment.
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Bridging the empirical-theoretical divide requires that our unified model remains faithful to the
realities of practical implementations. We identify four critical gaps1 that must be addressed:

• Gap 1: Mean-Field vs. Finite Ensembles. Theoretical analyses often study a mean-field
(infinite-particle) posterior flow for analytical tractability (Jordan et al., 1998; Sznitman, 2006),
whereas practical implementations maintain a (often small) finite ensemble of reward models.

• Gap 2: Exact vs. Stochastic Gradients. Continuous-time or full-batch gradient derivations ob-
scure the fact that all large-scale implementations rely on noisy mini-batch updates.

• Gap 3: Continuous-Time vs. Discrete-Time Dynamics. Mathematical tools like Wasserstein
gradient flows offer an elegant continuous-time perspective (Ambrosio et al., 2008), but deployed
algorithms operate in discrete time with a finite step size η.

• Gap 4: Intractable vs. Tractable Uncertainty. The principle of optimism requires an upper
confidence bound on the true reward, but the exact Bayesian posterior uncertainty is intractable
for deep neural networks. Practical algorithms rely on computationally feasible proxies, such as
ensemble variance.

In this work, we develop an optimistic PAC-Bayesian particle framework for preference-based rein-
forcement learning that resolves these four gaps within our unified OLE model. Our framework
is designed to be faithful to the algorithms used in practice while providing sharp, meaningful
performance guarantees. We prove that such procedures attain a cumulative regret that scales as
O(deluder log T ), where deluder is the eluder dimension of the function class (Russo & Van Roy,
2013; Li et al., 2022). Our analysis achieves this by coupling a PAC-Bayesian control of gener-
alization (McAllester, 1999; Catoni, 2007) with concentration inequalities for stochastic dynam-
ics (Freedman, 1975) and Wasserstein stability bounds for particle approximations (Fournier &
Guillin, 2015), thereby addressing the four gaps within a single, cohesive theory.

Positioning and Scope. Our work is complementary to the important and emerging body of theory
on KL-regularized bandits and RL, which has also achieved logarithmic regret guarantees but in
the distinct setting of numeric rewards and often under additional structural assumptions like data
coverage (Zhao et al., 2024; 2025b). We, in contrast, focus on the more foundational problem
of learning from pairwise preference feedback, which is the canonical setup for RLHF and DPO
where a reward model is itself learned from human comparisons (Christiano et al., 2017; Bradley
& Terry, 1952; Luce et al., 1959). Our analysis is algorithm-native, deriving guarantees directly
from a PAC-Bayesian treatment of particle ensembles, rather than from the specific optimization
landscape of a KL-regularized objective. Conceptually, our approach is related to optimism-in-the-
face-of-uncertainty and to feel-good Thompson sampling (Zhang, 2022), but our setting, estimators,
and guarantees are novel. A comprehensive survey and detailed comparisons appear in Appendix B.

Table 1: Our work achieves logarithmic regret for pairwise preference feedback with general func-
tion approximation in a framework that models practical algorithmic constraints.

Setting Feedback Model Key Assumptions Regret (Leading Term)

This work (OLE) Pairwise Preference Realizable + Eluder Dim. O(deluder logT )
KL-Reg. Bandits (Zhao et al., 2025a) Numeric Reward Realizable + Eluder Dim. O(d log T )

Preference RL (Wang et al., 2023) Pairwise Preference Realizable O(
√
T )

Dueling Bandits (Yue et al., 2012) Pairwise Preference Tabular/Linear O(log T ) or O(
√
T )

Optimistic Bandits (Russo & Van Roy, 2014) Numeric Reward Realizable + Eluder Dim. O(deluder log T )

We summarize our main results, which provide a comprehensive theoretical account of preference-
based learning.

• Unified PAC-Bayesian Particle Analysis with Logarithmic Regret. For preference-based
contextual bandits, we analyze a practical algorithm using finite ensembles and mini-batch
SGD. We prove that, with high probability, the cumulative regret is bounded by Regret(T ) =
O(deluder log T ) + lower-order terms for discretization, finite ensembles, and mini-batching,
where the leading term captures the statistical cost of exploration, and the lower-order terms
explicitly quantify the practical algorithmic costs.

1More discussion on the four gaps in Appendix Section A.3.
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• Optimistic Langevin Ensembles. We introduce and analyze an optimistic Langevin-style en-
semble update that provides exploration bonuses online and connects to standard preference op-
timization methods in the offline limit. Our analysis combines PAC-Bayesian inequalities with
martingale concentration to provide non-asymptotic stability and concentration bounds.

• Extension to Markov Decision Processes. We extend our framework to preference-based RL
with dynamics (e.g., discounted MDPs), obtaining analogous near-logarithmic regret guarantees.
This complements results for numeric-reward MDPs (Zhao et al., 2025a) while operating in the
more fundamental pairwise feedback regime.

• Practical Implications. Our bounds provide a direct theoretical explanation for the sample ef-
ficiency of methods like RLHF and DPO (Rafailov et al., 2023) and offer principled guidance
for setting hyperparameters. We also show how parameter-efficient fine-tuning methods like
LoRA (Hu et al., 2022) naturally lead to a small eluder dimension, connecting our theory to the
practice of large-scale model alignment.

2 PROBLEM SETUP AND STRUCTURAL ASSUMPTIONS

This section formally establishes the mathematical foundation2 for our analysis. We begin by defin-
ing the preference-based contextual bandit model and the notion of cumulative preference regret. We
then introduce the key structural assumptions3 on the underlying reward function class that enable
efficient, low-regret learning.

2.1 THE PREFERENCE-BASED CONTEXTUAL BANDIT MODEL

We consider an online learning problem that unfolds over T rounds. At each round t ∈ {1, . . . , T},
the environment presents a context xt ∈ X . The learning agent then selects a pair of actions to be
compared, typically to maximize information gain about the optimal action. The agent receives feed-
back in the form of a pairwise preference. This process models the core interaction loop in RLHF,
where a context might be a user prompt and the actions are different model-generated responses
(Ouyang et al., 2022; Christiano et al., 2017).

Underlying this preference feedback is a latent, unknown reward function r∗ : X × Y → R. This
function represents the true, unobserved quality or utility of an action y in a context x. The observed
preferences are stochastic manifestations of this latent function. We model this relationship using
the standard and widely adopted Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce
et al., 1959). Given a pair of actions (yw, yℓ), the probability that yw is preferred over yℓ (denoted
yw ≻ yℓ) in context x is given by a logistic link function:

p(yw ≻ yℓ | x) = σ (r∗(x, yw)− r∗(x, yℓ)) . (2.1)
The preference likelihood in Equation (2.1) is the Bradley–Terry–Luce model (Bradley & Terry,
1952; Mosteller, 1951; Luce et al., 1959), where σ(z) = (1 + e−z)−1 is the sigmoid function.
This model is central to many preference-based learning algorithms, including Direct Preference
Optimization (DPO) (Rafailov et al., 2023), and forms the basis of our likelihood-based objective.

The agent’s goal is to learn a policy π that, for any given context x, selects actions that have high
latent reward r∗(x, y). The performance of the agent is measured by the cumulative preference
regret, which quantifies the total opportunity cost incurred over T rounds. Let yt be the action
selected by the agent’s policy at round t in context xt, and let y∗t = argmaxy∈Y r∗(xt, y) be the
optimal action for that context. The regret at round t is the difference in expected reward between
the optimal action and the chosen action. The cumulative regret over T rounds is defined as:

Regret(T ) =

T∑
t=1

(r∗(xt, y
∗
t )− r∗(xt, yt)) . (2.2)

We will use Equation (2.2) as our formal notion of cumulative regret throughout the paper. The
objective is to design an algorithm whose cumulative regret grows as slowly as possible with T .
A logarithmic growth rate, Regret(T ) = O(log T ), is the theoretical ideal, indicating extremely
efficient learning.

2Frequently used symbols are summarized in Table 2 in Appendix Section A.
3An assumption checklist appears in Table 3 in Appendix Section A.
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2.2 STRUCTURAL ASSUMPTIONS ON THE REWARD CLASS

To enable tractable learning from preference data alone, we impose a set of structural assumptions on
the class of possible reward functionsR. These assumptions are standard in the theoretical analysis
of learning with function approximation (Foster & Rakhlin, 2023) and are chosen to be as general
as possible while still permitting strong performance guarantees.
Assumption 2.1. We assume that the true latent reward function r∗ belongs to a known, parame-
terized function class R = {rθ : θ ∈ Θ ⊆ Rd}. This means there exists a true parameter vector
θ∗ ∈ Θ such that r∗(x, y) = rθ∗(x, y) for all (x, y). The parameter space Θ is assumed to be a
compact set, implying a bounded norm ∥θ∥ ≤ B for all θ ∈ Θ.

This is a common starting point for theoretical analysis, allowing us to focus on the learning problem
without the additional complication of model misspecification (Azar et al., 2024).
Assumption 2.2 (Lipschitz Continuity). We assume that the reward function parameterization is
smooth. Specifically, the function class is L-Lipschitz with respect to the parameters: for all θ, θ′ ∈
Θ and all (x, y), we have:

|rθ(x, y)− rθ′(x, y)| ≤ L∥θ − θ′∥2. (2.3)

This assumption is satisfied by many practical models, including neural networks with bounded
weights and smooth activation functions. It is a crucial property that ensures that small changes in
the parameter space lead to correspondingly small changes in the reward space, which is essential for
generalization, optimization stability, and for relating parameter-space uncertainty to function-space
uncertainty (Zhang, 2023).
Assumption 2.3. This is the most critical assumption for enabling efficient exploration and achiev-
ing logarithmic regret. We assume that the function class R has a finite eluder dimension (Russo &
Van Roy, 2013; 2014).

Eluder dimension. We adopt the ϵ-eluder dimension deluder(R, ϵ) as the intrinsic complexity con-
trolling regret in our analysis. For completeness, a concise definition together with its variance–
information connection appears in Appendix D.2. Moreover, for LoRA-parameterized reward
classes we establish sharp eluder control; see Proposition D.4 in Appendix D.3.

3 PAC-BAYESIAN GENERALIZATION AND WASSERSTEIN GRADIENT FLOW

This section connects PAC-Bayesian generalization objective to a Wasserstein gradient-flow (WGF)
description of the learning dynamics. We (i) motivate a PAC-Bayes objective as the optimization
target, (ii) introduce a smoothed/projected–KL device that yields a sharpened bound suitable for par-
ticle posteriors, and (iii) show that steepest descent of this objective in the 2-Wasserstein geometry
yields a Langevin diffusion and the associated Fokker–Planck (continuity) equation. Full statements
with constants and all proofs are deferred to Section C and Section E.

Let S = {zi}mi=1
i.i.d.∼ D, parameter space Θ ⊆ Rd, prior Π on Θ, posterior µ ∈ P(Θ),

and per-example loss ℓθ(z) ∈ [0, 1] that is L-Lipschitz in θ for each z. We write L̂S(µ) :=
1
m

∑m
i=1 Eθ∼µ ℓθ(zi) and RiskµD := Ez∼DEθ∼µ ℓθ(z). For a Markov kernel S on Θ, S#µ de-

notes the push forward, and the projected KL is

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
,

which satisfies DKLS(µ∥Π) ≤ DKL(µ∥Π) by data processing (see Theorem C.2 and Section C).

A classical PAC-Bayes inequality for a posterior µ independent of S reads

RiskD(µ) ≤ L̂S(µ) +

√
DKL(µ∥P ) + ln 2

√
m

δ

2m
. (3.1)

This suggests optimizing the right-hand side by trading empirical fit against complexity. Introducing
an inverse-temperature parameter β > 0 yields the variational objective

JPAC(µ) = L̂S(µ) + β DKL(µ ∥Π), (3.2)

which is the free energy associated with empirical risk and prior regularization.

4
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3.1 SMOOTHED/PROJECTED–KL PAC-BAYES BOUND

We now state the smoothed/projected variant that will be used both for theory (to control finite-
particle posteriors) and for algorithms (to motivate noise schedules). The definition is given here,
while the full theorem and constants appear in Section C.
Definition 3.1 (Projected/Smoothed KL). For µ,Π ∈ P(Θ) and any smoothing kernel (confer
Definition C.1) S, define the projected (smoothed) KL by

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
.

By data processing for f -divergences, DKLS(µ∥Π) ≤ DKL(µ∥Π) when the right-hand side is finite.
For the Gaussian kernel, we write DKLSh

(µ∥Π) := DKL(Sh,#µ∥Sh,#Π).

Theorem 3.2 (PAC-Bayes via smoothing). Assume ℓθ(z) ∈ [0, 1] is L-Lipschitz in θ. Let µN =
1
N

∑N
i=1 δθi be an N -particle posterior and let Sh denote Gaussian smoothing with variance h2Id.

For any prior Π independent of S and any h > 0, with probability at least 1− δ,

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,

where Z ∼ N (0, Id) so E∥Z∥ ≤
√
d. Moreover, if Π = N (θ0, σ

2
0Id) then

DKLSh
(µN∥Π) ≤ 1

2N(σ2
0+h2)

N∑
i=1

∥θi − θ0∥2 +
d

2
ϕ
(

h2

σ2
0+h2

)
,with ϕ(ρ) = ρ− 1− ln ρ.

.

3.2 OPTIMIZATION DYNAMICS AS A WASSERSTEIN GRADIENT FLOW

Interpreting Equation (3.2) as a free-energy functional on P(Θ), the 2-Wasserstein gradient flow of
JPAC is the continuity equation

∂tµt = ∇θ ·
(
µt∇θV [µt]

)
, (3.3)

where V [µ] is any C1 potential whose gradient equals the Wasserstein gradient of JPAC at µ. Con-
cretely, one may take

∇θV [µ](θ) = ∇θ Ez∼S ℓθ(z) + β∇θ

(
logµ(θ)− log Π(θ)

)
,

so that equation 3.3 coincides with the Fokker–Planck equation of the Langevin diffusion

dθ(t) = −∇θV [µt]
(
θ(t)

)
dt +

√
2β dW (t), (3.4)

see, e.g., Jordan et al. (1998); Ambrosio et al. (2008); Villani (2008). Thus, gradient-based training
of the free energy JPAC admits an exact continuum description as WGF.

A first-order time discretization of equation 3.4 (Euler–Maruyama) with step size η > 0 yields the
particle update

θk+1 = θk − η∇θV [µk](θk) +
√

2ηβ ξk,with ξk ∼ N (0, Id)

Replacing full gradients with mini-batch estimates recovers SGLD. This principled discretizations
exposes and quantifies the approximation gaps that drive our regret analysis (precise bounds in
Section E):Finite-ensemble gap (Monte Carlo drift error): O

(√∑
t v

2
t /Nt

)
. Stochastic-gradient

gap (mini-batch noise): O
(√∑

t σ
2
t /Bt

)
. Discretization gap (time stepping): O(ηT ). These terms

map exactly onto the four sources of error isolated in the Introduction.

4 THE OPTIMISTIC LANGEVIN ENSEMBLE (OLE) ALGORITHM

This section translates the theoretical framework developed in the preceding sections into a con-
crete, self-contained algorithm for preference-based contextual bandits. The algorithm, which we
call the Optimistic Langevin Ensemble (OLE), instantiates the discretized Wasserstein gradient
flow perspective. It maintains a finite ensemble of reward models, updates them using stochas-
tic Langevin dynamics, and makes decisions using an optimistic selection rule based on ensemble

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

statistics. The specific variant for online contextual bandits is termed Optimistic Thompson Sam-
pling with Langevin Ensembles (O-TSLE).

The OLE algorithm operates in rounds. At each round t, it leverages its current pos-
terior belief about the reward function, represented by an ensemble of particles, to op-
timistically select an action. It then observes the resulting preference feedback and up-
dates its posterior belief using a Langevin step. Pseudo-code of additional variants are
provided in Appendix G.1, such as for online contextual bandits and MDP scenarios.

Algorithm 1: Optimistic Langevin Ensemble (OLE): Generic Template
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection

3 Compute ensemble mean r̂t(xt, y) and variance V̂art(xt, y) for all y ∈ Y;

4 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

5 Select action pair (y(w)
t , y

(ℓ)
t ) based on maximizing information gain using {It(xt, y)}y∈Y ;

6 Receive preference feedback, forming data batch Dt;
// Posterior Update (SGLD)

7 Compute mini-batch gradient ∇̂t of JPAC(θ) = L̂Dt
(θ) + βDKL(δθ∥Πt−1);

8 for i = 1, . . . , Nt do
9 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

10 θ
(i)
t+1 ← θ

(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t ;

The core components of the algorithm are as follows:

• Ensemble Maintenance: The algorithm’s belief about the true reward parameter θ∗ is represented
by an ensemble of Nt particles, {θ(i)t }

Nt
i=1. This ensemble serves as a Monte Carlo approximation

of the posterior distribution µt. At the start of learning (t = 0), these particles are drawn from a
prior distribution Π0.

• Langevin Update Step: This is the learning step of the algorithm. After receiving new preference
data Dt, each particle in the ensemble is updated using one step of Stochastic Gradient Langevin
Dynamics (SGLD). The gradient is computed with respect to the PAC-Bayesian objective JPAC

on a mini-batch of the new data. This update moves the particles towards regions of the parameter
space that better explain the observed preferences, while the injected Gaussian noise ensures that
the ensemble continues to represent a distribution and does not collapse to a single point.

• Optimistic Selection Rule: This is the exploration mechanism of the algorithm and the compo-
nent that addresses the fourth implementation gap (intractable uncertainty). To make decisions that
efficiently balance exploration and exploitation, the agent needs an upper confidence bound (UCB)
on the true, unknown reward function r∗. Computing the exact Bayesian UCB is intractable for
complex models. The OLE algorithm therefore uses a computationally feasible proxy based on
the statistics of its particle ensemble. For each candidate action y in the current context xt, it
computes an optimistic index:

It(xt, y) = r̂t(xt, y) + κt ·
√

V̂art(xt, y). (4.1)

The exploration bonus in Equation (4.1) follows the eluder-dimension view of exploration (Russo
& Van Roy, 2013; 2014) and yields the desired logarithmic-regret scaling (Hazan et al., 2007).

Here, r̂t(xt, y) is the mean reward predicted by the ensemble, serving as the best guess for the true
reward. V̂art(xt, y) is the variance of the reward predictions across the ensemble, which serves as a
proxy for the posterior uncertainty about the reward of that action. The parameter κt is an optimism
coefficient that controls the weight given to this uncertainty, effectively determining how much the
agent prioritizes exploration. The agent then selects a pair of actions to query for a preference based
on these optimistic indices, typically choosing a pair that is expected to be most informative for

6
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resolving the current uncertainty. While the exact Bayesian posterior uncertainty is intractable for
complex models, we will show in our analysis (Section 5) that the ensemble variance serves as a the-
oretically sound proxy. This is because of a fundamental duality between variance and information
gain , which ensures that exploring regions of high ensemble variance leads to an efficient reduction
of uncertainty about the true reward function, thereby enabling logarithmic regret.

5 REGRET ANALYSIS

This section presents the main theoretical result of the paper: a unified, high-probability regret
bound for the Optimistic Langevin Ensemble (OLE) algorithm. The bound demonstrates that the
algorithm achieves a cumulative regret that scales logarithmically with the time horizon T , plus
explicit, sublinear terms that quantify the costs of the practical approximations corresponding to
the “four gaps.” This result provides a rigorous theoretical explanation for the remarkable sample
efficiency of preference-based learning. Full proofs are in Appendix Section E.

Our main theorem bounds the cumulative preference regret of the OLE algorithm. It shows that
the regret is controlled by the intrinsic complexity of the reward function class, as measured by the
eluder dimension, and by the parameters governing the algorithmic approximations.
Theorem 5.1. Let Assumptions 2.1 (Realizability), 2.2 (Lipschitz Continuity), and 2.3 (Finite Eluder
Dimension) hold. For any δ ∈ (0, 1), consider the OLE algorithm run for T rounds with step sizes
{ηt}, ensemble sizes {Nt}, mini-batch sizes {Bt}, and an optimism schedule κt = C0

√
log(T/δ)

for a suitable constant C0. Let v2t be an upper bound on the conditional variance of the Monte Carlo
estimate of the optimistic value, and let σ2

t be an upper bound on the conditional variance of the
mini-batch gradient estimator. Then with probability at least 1− δ, the cumulative regret satisfies:

Regret(T ) ≤ C1 deluder log T︸ ︷︷ ︸
Exploration Cost

+C2


T∑

t=1

ηt︸ ︷︷ ︸
Discretization

+O


√√√√ T∑

t=1

v2t
Nt


︸ ︷︷ ︸

Finite Ensemble

+O


√√√√ T∑

t=1

σ2
t

Bt


︸ ︷︷ ︸

Stochastic Gradient

 , (5.1)

where C1 and C2 are absolute constants. The eluder dimension deluder is evaluated at a precision
scale ϵ that decreases with t, such as ϵt = 1/(1 + t).
Remark 5.2 (On tightness of the leading term). Up to polylogarithmic factors, the O(deluder log T )
leading term in our regret bound matches known lower bounds and optimal algorithms for con-
textual bandits with rich (e.g., generalized linear) function classes, where the eluder dimension
governs sample complexity (Russo & Van Roy, 2013; 2014). In particular, the log T factor is
information-theoretically unavoidable even in parametric bandit settings with well-specified models
(Hazan et al., 2007).

This bound provides a comprehensive picture of the algorithm’s performance and completes the
narrative arc of bridging the four gaps. Each term has a precise interpretation:

• The Exploration Term: C1deluder log T . This is the leading-order term and represents the fun-
damental statistical cost of exploration. Its logarithmic dependence on the horizon T is the key
result, confirming that the algorithm learns extremely efficiently. The cost scales linearly with the
eluder dimension deluder, which captures the intrinsic complexity of the learning problem. This
term arises directly from the use of an optimistic exploration strategy.

• The Discretization Error:
∑T

t=1 ηt. This term quantifies the cost of Gap 3: approximating
the continuous-time Wasserstein gradient flow with a discrete-time algorithm. It represents the
cumulative bias from the Euler-Maruyama discretization. For a constant step size η, this error is
O(ηT ). However, as shown in the corollary below, this term can be made negligible by using a
decreasing step size schedule.

• The Finite-Ensemble Error: O(
√∑T

t=1 v
2
t /Nt). This term quantifies the cost of Gap 1: ap-

proximating the true posterior distribution with a finite ensemble of Nt particles. It represents the
accumulated Monte Carlo estimation error. The term grows sub-linearly in T and decreases as
the ensemble size Nt increases, explicitly characterizing the trade-off between computational cost
and statistical accuracy.
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• The Stochastic Gradient Error: O(
√∑T

t=1 σ
2
t /Bt). This term quantifies the cost of Gap 2: us-

ing noisy mini-batch gradients instead of exact full-batch gradients. It represents the accumulated
noise from the stochastic optimization process. Like the ensemble error, it grows sub-linearly and
decreases as the mini-batch size Bt increases.

In the idealized limit where ηt → 0, Nt → ∞, and Bt → ∞, all three lower-order terms vanish,
and we are left with a purely logarithmic regret bound, Regret(T ) = O(deluder log T ). Our theorem
provides the first analysis that makes this trade-off explicit for preference-based RL.

Corollary 5.3. If the step sizes and resource allocation schedules are chosen such that
∑T

t=1 ηt =

O(1),
∑T

t=1 v
2
t /Nt = O(1), and

∑T
t=1 σ

2
t /Bt = O(1), then under the assumptions of Theorem 5.1,

the cumulative regret is:
Regret(T ) = O (deluder log T ) . (5.2)

This corollary shows that by using standard schedules, such as a decreasing step size ηt ∝ 1/t and
geometrically increasing ensemble and batch sizes, the approximation errors can be rendered into
constant, lower-order terms, achieving the theoretical ideal.
Remark 5.4. As discussed in Section 2, the eluder dimension can be related to the intrinsic dimen-
sionality of the learning task. For models fine-tuned with low-rank adaptation (LoRA), the eluder
dimension deluder is controlled not by the total number of parameters d, but by the much smaller in-
trinsic rank d∗ (Hu et al., 2022; Yang et al., 2023). Consequently, the regret bounds in Theorem 5.1
and Corollary 5.3 scale as O(d∗ log T ). This provides a direct and rigorous theoretical explanation
for the empirical observation that parameter-efficient fine-tuning methods can achieve high sample
efficiency even on massive models.

6 EXTENSIONS TO MARKOV DECISION PROCESSES

To demonstrate the versatility and power of our theoretical framework, we extend the analysis from
the contextual bandit setting to the more general and challenging setting of Markov Decision Pro-
cesses (MDPs). This extension requires handling temporal dependencies, long-term credit assign-
ment, and the propagation of uncertainty through Bellman updates. We show that our optimistic
PAC-Bayesian ensemble approach can be naturally adapted to both finite-horizon and discounted
MDPs, yielding analogous logarithmic regret guarantees. Proofs in Appendix Section F.

6.1 SETUP FOR PREFERENCE-BASED MDPS

A finite-horizon MDP is defined by a tuple (S,A, H, P, r∗, ρ0), where S is the state space, A is
the action space, H is the horizon, P are the transition dynamics, r∗ is the latent reward function,
and ρ0 is the initial state distribution. In the preference-based RL setting, the agent does not ob-
serve the numeric rewards r∗(s, a). Instead, it receives preference feedback, typically comparing
entire trajectories or state-action pairs. The agent’s objective is to learn a policy π = {πh}Hh=1 that
maximizes the expected cumulative latent reward.

To enable value-based learning algorithms, we require an additional structural assumption beyond
those for the bandit case.
Assumption 6.1. We assume the function class for the action-value function (Q-function) is ap-
proximately closed under the Bellman optimality operator. That is, for any Q-function in our class,
applying one step of Bellman backup results in a function that is still close to (or within) the class
(Agarwal et al., 2023; Jin et al., 2021). This is a standard assumption in the theory of RL with
function approximation, ensuring that the value functions produced during learning remain repre-
sentable within our chosen model class.

6.2 THE O-TDLE ALGORITHM FOR MDPS

We adapt our OLE algorithm to the MDP setting, resulting in a method we call Optimistic TD with
Langevin Ensembles (O-TDLE). The core idea remains the same: maintain an ensemble of models
to represent the posterior distribution and use optimistic exploration. The key difference is that the
ensemble now represents the Q-function, and the updates are driven by temporal difference errors.
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The O-TDLE algorithm (detailed in Algorithm 5 )proceeds in episodes. At each step h within an
episode, the agent is in state sh. It uses its ensemble of Q-function models, {Qθ(i)}Ni=1, to compute
an optimistic index for each action a ∈ A:

Ih(sh, a) = Q̂h(sh, a) + κh ·
√

V̂arh(Q(sh, a)), (6.1)

where Q̂h and V̂arh are the mean and variance of the Q-value predictions across the ensemble. The
agent then selects the action ah = argmaxa∈A Ih(sh, a). After executing the action and observing
the next state sh+1, the agent collects preference data (e.g., by comparing the executed trajectory
segment to a reference—such as a SFT model). This data is then used to perform an SGLD update
on the ensemble parameters {θ(i)}, using a loss derived from a Bellman-style TD error consistent
with the preference feedback.

6.3 REGRET ANALYSIS FOR MDPS

We prove that the O-TDLE algorithm achieves a logarithmic regret bound in the MDP setting. The
bound now includes a polynomial dependence on the horizon H , which is expected as errors can
propagate and compound over the steps of an episode.
Theorem 6.2. Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes,
achieves a cumulative regret that satisfies, with high probability:

Regret(T ) = O
(
H2 · deluder · log T

)
+ lower-order approximation terms. (6.2)

The lower-order terms for discretization, finite-ensemble, and stochastic gradient errors have a
similar structure to the bandit case, now summed over all steps and episodes.
Remark 6.3 (On the H-dependence). Our bound incurs an H2 factor in the leading term, which
is standard for episodic finite-horizon analyses under function approximation. Improving the H-
dependence typically requires stronger structural assumptions (e.g., linear MDPs or Bellman com-
pleteness with additional mixing/realizability properties) or refined variance decompositions; see,
e.g., Azar et al. (2024); Jin et al. (2021).

Our proof for the MDP setting employs a powerful policy decomposition technique, inspired by
recent advances in the analysis of KL-regularized RL with numeric rewards Zhao et al. (2025a).
This technique allows us to reduce the multi-step credit assignment problem to a sequence of bandit-
like analyses, to which our core optimistic exploration argument can be applied. The novelty of
our approach lies in adapting this tool to the preference-based feedback setting and integrating it
within our PAC-Bayesian particle ensemble framework. A similar analysis can be performed for the
infinite-horizon discounted MDP setting, yielding a regret bound with a polynomial dependence on
the effective horizon (1− γ)−1.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we developed a unified optimistic PAC-Bayesian framework for preference-based
learning that closes several critical gaps between theory and practice. Our analysis provides the
first theoretical explanation for the sample efficiency of modern alignment pipelines by establishing
a near-logarithmic regret bound, O(deluder log T ), that explicitly accounts for the algorithmic costs
of using finite ensembles, stochastic gradients, and discrete-time updates. Our framework provides
a firm theoretical foundation for the empirical success of methods like DPO (Rafailov et al., 2023)
and connects the complexity of exploration to the intrinsic dimensionality of parameter-efficient
fine-tuning (Aghajanyan et al., 2020; Hu et al., 2022).

Limitations and Future works. Our theoretical guarantees rely on standard but strong structural
assumptions. The realizability assumption, which posits that the true reward function lies within
the model class, is a significant idealization for complex models like LLMs, which are likely to
be misspecified (Foster & Rakhlin, 2023). Similarly, our extension to MDPs requires Bellman
completeness, a condition known to be restrictive for reinforcement learning with general func-
tion approximation (Agarwal et al., 2023; Golowich & Moitra, 2024; Wu et al., 2024). Finally, the
decoupled structure of our regret bound opens the door to designing adaptive algorithms that can
dynamically schedule computational resources, such as ensemble and mini-batch sizes, to optimally
balance the statistical and computational trade-offs inherent in practical alignment.
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ETHICS STATEMENT

This work is theoretical, focusing on the algorithmic foundations of preference learning for the
alignment of large language models. As with any alignment methodology, the practical applica-
tion of our framework carries potential risks. These include over-optimization to the learned reward
model, which may not perfectly capture nuanced human intent, and the potential for malicious re-
ward hacking. We emphasize that our algorithms are designed for statistical and computational
efficiency in optimizing a given preference model; they do not define the values inherent in that
model. The collection and curation of the preference data that serves as the source of these values
must be approached with care to respect privacy and mitigate the encoding and amplification of so-
cietal biases. Appropriate guardrails, diverse data sourcing, and multi-faceted evaluation of aligned
models remain necessary to mitigate unintended consequences.

THE USE OF LARGE LANGUAGE MODELS

In this work, the authors used generative AI tools (ChatGPT-5) to aid in and polish the writing of this
paper. We use the following prompt to check the language section by section (including abstract):
“Check the following statement, examine if the narrative is professional and understandable for
broader audience in the area of machine learning community, and examine if the language meets
native speaker standard. If not, generate feedback on how should I modify my narratives.” All LLM-
generated content was thoroughly reviewed and verified by the authors prior to inclusion. Research
design, critical analyses, and all final decisions were carried out independently by the authors.

REPRODUCIBILITY STATEMENT

This work is entirely theoretical. To ensure the reproducibility of our results, we provide complete
and self-contained proofs for all theorems, propositions, and lemmas in the appendix. The appendix
also contains detailed pseudocode for our proposed algorithms (Appendix G), a full discussion of
the structural assumptions (Appendix A), and guidance on the hyperparameter schedules required to
achieve the stated regret bounds. All cross-references within the document are hyperlinked for ease
of navigation.
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APPENDIX CONTENTS

• Section A: Notation used throughout and additional background definitions (including the
formal eluder definition and its variance–information link).

• Section B: Extended related work.

• Section C: Canonical smoothed/projected–KL PAC-Bayes bound with full proofs.

• Section D: Technical lemmas (variance–information inequality, discretization, stochastic-
gradient control, Monte Carlo concentration).

• Section E: Complete statements and proofs of the unified regret theorem and supporting
results.

• Section F: Full proofs for finite-horizon and discounted MDP extensions.

• Section G: Implementation notes and additional pseudocode.

A NOTATION AND ADDITIONAL BACKGROUND

This appendix provides the complete theoretical underpinnings for the results presented in the main
paper. We begin by establishing a unified notational system and providing a deeper discussion of
the foundational concepts that motivate our work. This ensures the appendix is self-contained and
accessible to readers with background in machine learning.

A.1 NOTATION

We summarize the most frequently used symbols throughout the paper and this appendix in Table 2
for ease of reference. This consistent notation is crucial for maintaining clarity throughout the
complex derivations that follow.

Table 2: Notation used throughout the paper and appendix.
Symbol Meaning

X ,Y Context and candidate/output spaces
S,A State and action spaces (for MDPs)
r∗(·) Ground-truth latent reward function, parameterized by θ∗

π, πt Policy (at round t)
Πt, µt Posterior distribution over parameters θ at round t
µN
t Empirical measure of the N -particle ensemble at time t

Nt, Bt, ηt Ensemble size, mini-batch size, and step size at round t
deluder Eluder dimension of the reward function classR
γ Discount factor (for discounted MDPs)
β Inverse temperature in the PAC-Bayesian objective and SGLD updates
κt Optimism/bonus coefficient at round t
Regret(T ) Cumulative preference regret up to time T
W2(·, ·) The 2-Wasserstein distance between two probability measures

A.2 ASSUMPTION CHECKLIST

How to read Table 3. Each row states an assumption, its informal meaning, and where it is used
(by theorem/lemma label). This helps map the dependency structure of the proofs and where each
assumption is required.

How to read Table 4. We separate the bandit and MDP settings and indicate which assumptions are
active in each, together with any setting-specific constants.
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Table 3: Assumptions at a glance: informal summary and usage.
Name Informal content Used in
Realizability Rewards lie in the model class Theorem 5.1
Lipschitzness Gradients/Loss are L-Lipschitz in parameters Theorem 3.2, Theorem 5.1
Eluder finiteness Finite eluder dimension of the class Exploration term in Theorem 5.1
Block smoothness Stability of discretized flow Theorem D.7
Martingale control Freedman-style concentration Theorem D.10

Table 4: Assumptions at a glance (by setting).
Setting Assumptions
Bandits / Contextual preference Theorems 2.1 to 2.3
Finite-horizon MDPs Theorem 6.1

A.3 DETAILED DISCUSSION OF THEORETICAL GAPS

The introduction highlighted four critical gaps between idealized theory and practical RLHF imple-
mentations. Here, we elaborate on why each gap presents a formidable theoretical challenge and
how their interplay necessitates a unified analysis.

• Gap 1 (Finite Ensembles vs. Mean-Field): Many theoretical analyses of particle-based systems,
especially those leveraging tools from optimal transport (Jordan et al., 1998; Ambrosio et al.,
2008), operate in the mean-field limit where the number of particles N → ∞. In this limit, the
empirical distribution of particles converges to the solution of a deterministic partial differential
equation (the Fokker-Planck equation), a phenomenon known as propagation of chaos (Sznitman,
2006). However, practical implementations use small, finite ensembles (N is often less than 10).
This introduces a non-trivial Monte Carlo sampling error at each step, as the interaction term in
the particle dynamics depends on the empirical measure, not the true mean-field distribution. Our
analysis must quantify this error and ensure it does not accumulate uncontrollably.

• Gap 2 (Stochastic vs. Exact Gradients): Large-scale model training is computationally in-
feasible without mini-batch stochastic gradients. While the noise introduced by mini-batching is
zero-mean, its cumulative effect over T rounds is a significant source of error. The variance of this
noise depends on the batch size Bt and the local curvature of the loss landscape. A rigorous anal-
ysis cannot simply assume gradients are exact; it must employ tools like martingale concentration
inequalities to bound the accumulated deviation caused by this stochasticity.

• Gap 3 (Discrete-Time vs. Continuous-Time): The Wasserstein gradient flow perspective pro-
vides a powerful, continuous-time picture of the ideal optimization path. However, algorithms are
implemented with a discrete step size ηt. The standard method for discretizing the underlying
Langevin SDE is the Euler-Maruyama scheme. This introduces a discretization bias at each step,
and the cumulative bias can grow linearly with T if not carefully controlled, potentially over-
whelming the desired logarithmic regret term. Our analysis must explicitly account for this weak
error and show how to manage it with a proper step-size schedule.

• Gap 4 (Tractable vs. Intractable Uncertainty): The principle of optimism requires an upper
confidence bound on the true reward function. For complex models like neural networks, the true
Bayesian posterior variance is intractable to compute. Practical algorithms use the variance of
predictions across the finite ensemble as a proxy for uncertainty. While intuitive, it is not a priori
guaranteed that this ensemble variance is a valid upper bound on the true posterior uncertainty.
A central part of our theoretical contribution is to formally justify this proxy and prove that it is
sufficient to drive efficient exploration.

A crucial point is the interdependence of these gaps. The noise from stochastic gradients (Gap 2)
can interact with and amplify the discretization error (Gap 3). The quality of the finite-ensemble ap-
proximation (Gap 1) directly determines the reliability of the uncertainty proxy used for exploration
(Gap 4). A successful theory, therefore, cannot analyze these in isolation. Our unified framework is
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designed to bound the sum of these interacting error terms, demonstrating that their interplay does
not lead to a catastrophic amplification of regret.

A.4 CONTRIBUTIONS TO FORMAL RESULTS MAP

To provide a clear roadmap for the reader, Table 5 explicitly links the main contributions of this
work to the formal theorems and proofs contained within this appendix. This table serves as a guide
to verifying each of our central claims.

Table 5: Map of contributions to their formal statements and proofs in the appendix.
Contribution Formal Statement (Proof Location)
Unified PAC-Bayesian particle theory Theorem D.1 (App. D.1)
Unified regret bound for bandits Theorem 5.1 (App. E.2)
Finite-sample error decomposition Lemmas D.7, D.8, D.9, D.10 (App. D.4)
Extension to finite-horizon MDPs Theorem 6.2 (App. F.2)
Extension to discounted MDPs Section F.1 (App. F.3)
Eluder dimension for LoRA Theorem D.4 (App. D.3)
Well-tuned schedules corollary Theorem 5.3 (App. E.2)
Algorithmic pseudocode OLE/OTSLE/OTDLE (App. G.1; Algs. 2, 3, 5)

B EXTENDED RELATED WORK

Our work connects to and builds upon several distinct but related lines of research in machine learn-
ing theory and practice.

RLHF and Direct Preference Optimization. The modern paradigm of aligning LLMs was es-
tablished by large-scale RLHF pipelines (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024),
which combine preference data collection, reward modeling, and policy optimization. More recent
direct preference optimization methods, such as DPO and its variants (Rafailov et al., 2023; Meng
et al., 2024), have streamlined this process and demonstrated strong empirical performance. Our
work provides a foundational theoretical explanation for the remarkable sample efficiency observed
in these practical systems, showing that near-logarithmic regret is achievable.

Preference Learning, Dueling Bandits, and RL with Preferences. The problem of learning
from comparative feedback has a long history, rooted in foundational statistical models like the
Bradley-Terry-Luce model (Bradley & Terry, 1952; Luce et al., 1959; Thurstone, 2017). In the
online setting, this problem is formalized as the dueling bandits problem, for which a rich body
of literature provides sample complexity guarantees, typically achieving O(

√
T ) regret in general

settings and O(log T ) in more restricted tabular or linear cases (Yue & Joachims, 2009; Yue et al.,
2012). Extensions to reinforcement learning with preferences have been studied, but these analyses
often yield sub-optimal O(

√
T ) regret for general function classes (Wang et al., 2023; Pacchiano

et al., 2021). Our work is the first to establish a near-logarithmic regret bound for preference-based
RL with general non-linear function approximation.

KL-Regularized Bandits and RL (Numeric Rewards). Our work is complementary to the im-
portant and emerging body of theory on KL-regularized bandits and RL, which has also achieved
logarithmic regret guarantees but in the distinct setting of numeric rewards (Xiong et al., 2024; Zhao
et al., 2024; 2025a;b) and often under additional structural assumptions like data coverage. While
this parallel line of work provides deep insights into policy optimization given a numeric reward, our
work addresses the more foundational problem of learning the reward function itself from pairwise
preference feedback. This is the canonical setup for RLHF and DPO, where the reward model is the
primary object to be learned from human comparisons. Our analysis is therefore algorithm-native,
deriving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from
the specific optimization landscape of a KL-regularized objective.
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PAC-Bayes, Optimism, and Thompson Sampling. Our theoretical approach is built on the foun-
dations of PAC-Bayesian learning theory, which provides powerful, high-probability generalization
bounds for randomized predictors (McAllester, 1999; Catoni, 2007; Alquier, 2021; Guedj, 2019).
Recent work has shown the power of PAC-Bayesian analysis for explaining generalization in deep
learning (Lotfi et al., 2022; Haddouche et al., 2024). We combine these tools with the classical
principle of optimism-in-the-face-of-uncertainty from the bandit literature (Hazan et al., 2007). The
complexity of exploration in our framework is measured by the eluder dimension (Russo & Van Roy,
2013; 2014), a concept central to achieving logarithmic regret in benign regimes. Our optimistic pos-
terior update mechanism is conceptually related to feel-good Thompson sampling (Zhang, 2022), but
is tailored to the preference-based setting and analyzed via PAC-Bayesian tools.

Particle Approximations and Optimal-Transport Tools. To rigorously analyze the behavior of
our finite-ensemble algorithm, we interpret its dynamics as a discretization of a Wasserstein gradient
flow on the space of probability measures (Jordan et al., 1998). We control the approximation error
introduced by the finite number of particles using tools from optimal transport theory and the study
of empirical measures (Ambrosio et al., 2008; Villani, 2008; Fournier & Guillin, 2015; Sznitman,
2006). The analysis of the stochastic gradient and discretization errors is informed by the literature
on the convergence of stochastic-gradient Langevin-type methods (Liu et al., 2023; Suzuki et al.,
2023), allowing us to derive explicit, non-asymptotic lower-order terms in our regret bound.

In summary, prior analyses for preference-based learning typically achieve O(
√
T ) regret for gen-

eral function classes. In parallel, analyses of KL-regularized learning with numeric rewards have
achieved O(log T ) regret, sometimes under strong assumptions. Our work is the first to deliver a
near-logarithmic regret bound for the fundamental problem of pairwise preference feedback within
a framework that is faithful to the practical algorithms used in RLHF, thereby closing a critical gap
between theory and practice.

C SMOOTHED/PROJECTED–KL PAC-BAYES AND WGF: FULL STATEMENTS
AND PROOFS

This section consolidates all technical material supporting Section 3. We (i) formalize the projected–
KL device and prove the smoothed PAC-Bayes theorem with full constants, (ii) record the standard
calculus linking the free energy to a Wasserstein gradient flow and the associated Langevin/Fokker–
Planck dynamics, and (iii) point to where the end-to-end regret proofs and allocation/scheduling
lemmas are proved in Section E.

C.1 PROJECTED–KL SMOOTHING AND BASIC PROPERTIES

We recall the projected divergence used in the main text.

Definition C.1 (Smoothing kernel and pushforward). Let (Θ,B) be a measurable parameter space.
A smoothing kernel is a Markov kernel S : Θ × B → [0, 1], i.e., for each θ ∈ Θ, S(θ, ·) is a
probability measure and for each A ∈ B, θ 7→ S(θ,A) is measurable. For a probability measure
µ ∈ P(Θ), its pushforward by S is

(S#µ)(A) :=

∫
Θ

S(θ,A)µ(dθ), A ∈ B.

When Θ = Rd and h > 0, the Gaussian smoothing kernel is Sh(θ, ·) := N
(
θ, h2Id

)
, in which case

Sh,#µ = µ ∗ N (0, h2Id) is the usual Gaussian convolution. We write Sh := Sh for brevity.

Definition C.2 (Projected/Smoothed KL). For µ,Π ∈ P(Θ) and any smoothing kernel S, define the
projected (smoothed) KL by

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
.

By data processing for f -divergences, DKLS(µ∥Π) ≤ DKL(µ∥Π) when the right-hand side is finite.
For the Gaussian kernel of Definition C.1, we write DKLSh

(µ∥Π) := DKL(Sh,#µ∥Sh,#Π).

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

C.2 SMOOTHED/PROJECTED–KL PAC-BAYES BOUND: FULL STATEMENT AND PROOF

We now give the full version of Theorem 3.2 including constants and a convenient specialization for
Gaussian priors.
Theorem C.3 (PAC-Bayes via smoothing; full). Assume ℓθ(z) ∈ [0, 1] is L-Lipschitz in θ for each

z. Let S = {zi}mi=1
i.i.d.∼ D, and let µN = 1

N

∑N
i=1 δθi be any N -particle posterior (possibly data-

dependent). For any prior Π independent of S, any h > 0, and any δ ∈ (0, 1), with probability at
least 1− δ over S,

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,

where Z ∼ N (0, Id) so that E∥Z∥ ≤
√
d. Moreover, if Π = N (θ0, σ

2
0Id), then

DKLSh
(µN∥Π) ≤ 1

2N(σ2
0+h2)

N∑
i=1

∥θi − θ0∥2 +
d

2
ϕ
(

h2

σ2
0+h2

)
,

with ϕ(ρ) = ρ− 1− ln ρ.

Proof. Apply a standard PAC-Bayes bound for bounded losses (e.g., empirical Bern-
stein/McAllester-style) to the smoothed posterior Sh,#µN and prior Sh,#Π:

RiskSh,#µ
N

D ≤ RiskSh,#µ
N

S +

√
DKL

(
Sh,#µN∥Sh,#Π

)
+ ln(2m/δ)

2m
.

Lipschitzness and Gaussian smoothing yield the bias control RiskµN
D ≤ RiskSh,#µ

N
D +

LhE∥Z∥ and RiskSh,#µ
N

S ≤ RiskµN
S + LhE∥Z∥, whence

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,

using DKLSh
(µN∥Π) = DKL(Sh,#µ

N∥Sh,#Π) (definition) and E∥Z∥ ≤
√
d. For the Gaussian-

prior specialization, compute the KL between Gaussians:

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

=
∥θi − θ0∥2

2(σ2
0+h2)

+
d

2
ϕ
(

h2

σ2
0+h2

)
,

and average over i = 1, . . . , N . This proves the claim.

Gaussian prior specialization. If Π = N (θ0, σ
2
0Id) and µN = 1

N

∑N
i=1 δθi , then

DKLSh
(µN∥Π) =

1

N

N∑
i=1

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

with

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

=
∥θi − θ0∥2

2(σ2
0+h2)

+
d

2
ϕ
(

h2

σ2
0+h2

)
, ϕ(ρ) = ρ− 1− ln ρ.

C.3 WASSERSTEIN GRADIENT-FLOW CALCULUS USED IN THE MAIN TEXT

For completeness we state the standard correspondence used in Section 3. Consider the free-energy
functional JPAC(µ) = L̂S(µ) + βDKL(µ∥Π) on P(Θ). Its 2-Wasserstein gradient flow is given by
the continuity equation

∂tµt = ∇θ·
(
µt∇θδJPAC/δµ(θ)

)
with

δJPAC

δµ
(θ) = Ez∼S ℓθ(z)+β

(
log µ(θ)−log Π(θ)

)
+ct,

which matches the Fokker–Planck equation in Equation (3.3) and the Langevin SDE in Equa-
tion (3.4) (up to the irrelevant additive constant ct). See Jordan et al. (1998); Ambrosio et al. (2008);
Villani (2008) for full details and the JKO scheme. We omit repetition of these standard proofs to
avoid redundancy.
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Where to find the end-to-end regret analysis. The budget allocation across episodes/iterations
and the root-time Monte Carlo accumulation lemmas used for our final regret bounds are proved once
in Section E (see “Restatement of Main Theorems” therein). This avoids duplicating those results
here while keeping this appendix focused on the PAC-Bayes smoothing and the WGF calculus.

D TECHNICAL LEMMAS AND AUXILIARY RESULTS

This section gathers technical lemmas (variance–information coupling, discretization, stochastic
gradients, Monte Carlo concentration) used by Section E.

We start by recalling the PAC-Bayesian objective and its connection to the Wasserstein gradient
flow, and then proceed to rigorously analyze each source of approximation error.

D.1 PAC-BAYESIAN GENERALIZATION AND THE LEARNING OBJECTIVE

The PAC-Bayesian framework provides high-probability bounds on the generalization error of ran-
domized predictors (McAllester, 1999; Catoni, 2007). A standard result, adapted to our setting
(Alquier, 2021; Guedj, 2019), states that for any prior distribution P on Θ, any posterior Q, and any
δ ∈ (0, 1), with probability at least 1− δ over the draw of a dataset S of size m:

Eθ∼Q ≤ Eθ∼Q +

√
DKL(Q∥P ) + ln(m/δ)

2m
, (D.1)

where LD is the true expected loss and L̂S is the empirical loss. This motivates minimizing the
right-hand side, which is equivalent to minimizing the regularized objective functional:

JPAC(µ) = L̂S(µ) + β DKL(µ∥P ). (D.2)

The Langevin update step in our OLE algorithm is precisely a noisy gradient step on this functional,
where µ is represented by the particle ensemble.
Theorem D.1. The posterior distribution Πt maintained by the idealized (continuous-time, infinite-
particle) Langevin dynamics minimizes the PAC-Bayesian functional JPAC(µ) over the space of
probability measures. The finite-ensemble, discrete-time, stochastic-gradient implementation ap-
proximates this ideal posterior, and its generalization error is controlled by the sum of the PAC-
Bayesian objective and the approximation error terms.

Proof. The proof follows from the variational characterization of the Fokker-Planck equation as the
Wasserstein gradient flow of the free energy functional, which in our case is JPAC(µ) (Jordan et al.,
1998). The practical algorithm is a numerical approximation of this flow, and its deviation from the
ideal posterior is bounded by the lemmas in Section D.4.

D.2 ELUDER DIMENSION AND THE VARIANCE-INFORMATION BOUND

The key to bounding the exploration cost is the eluder dimension (Russo & Van Roy, 2013; 2014).
Definition D.2. A sequence of context-action pairs (x1, y1), . . . , (xk, yk) is ϵ-independent for a
function class R if for every i ∈ {1, . . . , k}, there exist two functions r1, r2 ∈ R such that
|r1(xj , yj)− r2(xj , yj)| ≤ ϵ for all j < i, but |r1(xi, yi)− r2(xi, yi)| > ϵ. The ϵ-eluder dimension,
deluder(R, ϵ), is the length of the longest such sequence.

A low eluder dimension means that after a few queries, any two functions consistent with the obser-
vations must be close everywhere, enabling efficient learning. This complexity measure is connected
to regret via the following lemma.
Lemma D.3. Under the Bradley-Terry-Luce model for preferences, for any posterior distribution µ
over parameters, the mutual information gained from observing a preference for a pair (yw, yl) in
context x is bounded by the variance of the reward predictions:

I
(
θ∗; (yw, yl) | x,Ft−1

)
≥ C

(
Varθ∼µ

(
rθ(x, yw)

)
+Varθ∼µ

(
rθ(x, yl)

))
,

for a universal constant C > 0.
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Proof. The proof relates the mutual information to the expected KL-divergence between the con-
ditional likelihoods p(· | x, θ) and the marginal likelihood p(· | x) =

∫
p(· | x, θ)dµ(θ). For the

logistic link function, the KL-divergence can be lower-bounded by the squared difference of the
logits, which in turn relates to the variance of the reward predictions under µ. A detailed derivation
can be found in related contexts (Russo & Van Roy, 2014).

D.3 SHARP ELUDER-DIMENSION CONTROL FOR LORA-BASED MODELS

A key argument for the practical relevance of our theory is that the eluder dimension for massive
models is not as large as their parameter count might suggest, especially when using parameter-
efficient fine-tuning methods like LoRA (Hu et al., 2022).
Proposition D.4. Consider a reward function classR parameterized by a large neural network with
weights W0 ∈ Rd×d′

. Let the fine-tuning be restricted to a LoRA update W = W0 + AB, where
A ∈ Rd×d∗ , B ∈ Rd∗×d′

, and d∗ ≪ d, d′. The trainable parameters are the entries of A and B.
Under standard smoothness assumptions on the network architecture, the eluder dimension of this
class scales as deluder(R, ϵ) = O(d∗(d+ d′) log(1/ϵ)), not with the full parameter count d× d′.
Assumption D.5 (Blockwise Lipschitzness for LoRA layers). For each modified layer ℓ ∈ [L] with
base weight Wℓ ∈ Rmℓ×nℓ and low-rank update AℓB

⊤
ℓ with rank rℓ, we assume the reward (or

preference log-likelihood) is Lℓ-Lipschitz in each block parameter and smooth in the base activa-
tions, uniformly over the input domain. That is, for all admissible inputs, perturbations (∆Aℓ,∆Bℓ)
satisfy∣∣R(Wℓ + (Aℓ +∆Aℓ)(Bℓ +∆Bℓ)

⊤)−R(Wℓ +AℓB
⊤
ℓ

)∣∣ ≤ Lℓ

(
∥∆Aℓ∥F + ∥∆Bℓ∥F

)
.

Corollary D.6 (Intrinsic dimension under blockwise Lipschitz LoRA). Under Theorem D.5, the
eluder dimension of the LoRA-parameterized reward class satisfies, for any ϵ ∈ (0, 1],

deluder(ϵ;RLoRA) ≤ C

(
L∑

ℓ=1

rℓ
(
mℓ + nℓ − rℓ

))
log

C ′

ϵ
,

for universal positive constants C,C ′. In particular, the effective intrinsic dimension scales with
the rank budget rather than the ambient parameter count, aligning with empirical observations on
parameter-efficient fine-tuning (Hu et al., 2022; Aghajanyan et al., 2020).

Proof. Step 1 (Model class and parameterization). LetR denote the LoRA-parameterized reward
class obtained by freezing a base network and adding, in each layer ℓ ∈ [L], a rank-rℓ update of
the form UℓV

⊤
ℓ with Uℓ ∈ Rmℓ×rℓ , Vℓ ∈ Rnℓ×rℓ . Assumption Theorem D.5 ensures blockwise

Lipschitzness: for any two parameter tuples Θ,Θ′,

sup
(x,y)

∣∣rΘ(x, y)− rΘ′(x, y)
∣∣ ≤ L∑

ℓ=1

Lℓ

∥∥ [Uℓ, Vℓ]− [U ′
ℓ, V

′
ℓ ]
∥∥
F
.

Step 2 (Covering numbers for low-rank blocks). Fix radii Rℓ so that ∥(Uℓ, Vℓ)∥F ≤ Rℓ for all
admissible parameters (w.l.o.g. finite by compactness assumptions). For each block ℓ, the parameter
set lives on a smooth manifold of dimension dℓ = rℓ(mℓ + nℓ − rℓ). Standard volumetric bounds
give an ϵℓ-net of size at most (CRℓ/ϵℓ)

dℓ in Frobenius norm. By the blockwise Lipschitzness, an
(ϵℓ/Lℓ)-cover in parameters induces an ϵℓ-cover in function sup-norm. Taking the product over
blocks and distributing a total accuracy ϵ across blocks (e.g., ϵℓ = ϵ/L) yields the function-class
covering bound

N (ϵ,R, ∥ · ∥∞) ≤
L∏

ℓ=1

(
Cℓ

ϵ

)dℓ

=

(
C

ϵ

)∑L
ℓ=1 dℓ

, (D.3)

for constants Cℓ depending on (Lℓ, Rℓ) and a universal C =
∏

ℓ Cℓ. (See, e.g., standard covering-
number bounds for low-rank matrix manifolds.)

Step 3 (From covering numbers to eluder dimension). By the growth-function argument of Russo
& Van Roy (2013; 2014) (see also Lemma Theorem D.3), for any ϵ ∈ (0, 1] there exists a universal
C ′ > 0 such that

deluder(R, ϵ) ≤ C ′ sup
δ∈[ϵ,1]

logN (δ,R, ∥ · ∥∞) . (D.4)
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Combining equation D.3 and equation D.4 gives

deluder(R, ϵ) ≤ C ′
( L∑

ℓ=1

dℓ

)
log

C

ϵ
= C ′

( L∑
ℓ=1

rℓ
(
mℓ + nℓ − rℓ

))
log

C

ϵ
,

which is precisely the claimed bound (absorbing constants into C,C ′).

Step 4 (Interpretation). The dependence is intrinsic: it scales with the low-rank degrees of free-
dom and is independent of the ambient widths except through the block dimensions (mℓ, nℓ) and
Lipschitz constants Lℓ. This matches the intuition that parameter-efficient fine-tuning reduces the
exploration burden.

Proof. The proof follows from the observation that the reward function rA,B(x, y) is a smooth func-
tion of the low-rank matrices A and B. The effective number of parameters is d∗(d+ d′). Applying
standard covering number arguments for Lipschitz function classes to this lower-dimensional pa-
rameter space yields the stated bound on the eluder dimension. This result formalizes the intuition
that the intrinsic dimensionality of the fine-tuning task is what governs the exploration complexity
(Aghajanyan et al., 2020; Li et al., 2022).

D.4 DETAILED APPROXIMATION ERROR PROOFS

Here we provide the detailed proofs for the lemmas that quantify the three sources of algorithmic
approximation error.

Lemma D.7. Assume the drift of the mean-field Langevin SDE is L-Lipschitz. Let θt be the
continuous-time process and θηt be its Euler-Maruyama discretization with step size η. The cumula-
tive weak error in estimating the expected reward,

∑T
t=1 |E[rθt ]− E[rθη

t
]|, is bounded by O(ηT ).

Proof. Let R be the reward class realized by a base network with weight matrices {Wℓ}Lℓ=1 and
LoRA updates Wℓ 7→ Wℓ + UℓV

⊤
ℓ with Uℓ ∈ Rmℓ×rℓ , Vℓ ∈ Rnℓ×rℓ . Assume the network is

Lℓ-Lipschitz w.r.t. the Frobenius norm on each block: for any parameter tuples Θ,Θ′,

sup
(x,y)

|rΘ(x, y)− rΘ′(x, y)| ≤
L∑

ℓ=1

Lℓ∥[Uℓ, Vℓ]− [U ′
ℓ, V

′
ℓ ]∥F .

(i) Covering numbers. Restrict parameters to ∥Uℓ∥F ≤ Rℓ, ∥Vℓ∥F ≤ Rℓ; by compactness this
is w.l.o.g. for learning. The admissible parameter set for block ℓ lies on a smooth manifold of
dimension dℓ = rℓ(mℓ + nℓ − rℓ). Volumetric bounds yield an ϵℓ-net of size at most (CRℓ/ϵℓ)

dℓ

in Frobenius norm. By blockwise Lipschitzness, the induced function class has sup-norm cover of
size at most (C ′/ϵ)dℓ per block when we allocate ϵℓ = ϵ/L. Taking the product over blocks gives

N∞(ϵ,R) ≤
(C ′′

ϵ

)∑L
ℓ=1 dℓ

.

(ii) From covers to eluder dimension. Let d =
∑

ℓ dℓ. The growth function bound of Russo &
Van Roy (2013; 2014) implies that if logN∞(ϵ,R) ≤ d log(C ′′/ϵ), then for ϵ ∈ (0, 1),

deluder(R, ϵ) ≤ C1 d log
(C2

ϵ

)
.

(iii) Conclusion. Combining (i) and (ii) yields

deluder(R, ϵ) ≤ C
( L∑

ℓ=1

rℓ(mℓ + nℓ − rℓ)
)
log
(C ′

ϵ

)
,

which is the claimed bound.

Lemma D.8 (Finite-Particle Approximation Error). Let µt be the mean-field law and µN
t be the

empirical measure of N particles. For any L-Lipschitz function ϕ, the error in estimating its expec-
tation is bounded in probability: |

∫
ϕdµN

t −
∫
ϕdµt| = O(1/

√
N) (Fournier & Guillin, 2015).
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Proof. This follows from classical results on the convergence rate of the empirical measure in
Wasserstein distance and the duality between Wasserstein distance and expectations of Lipschitz
functions. The error from approximating the interaction term in the SGLD update accumulates,
leading to the term in the final regret bound.

Lemma D.9. Let ĝt(θ) be an unbiased mini-batch gradient estimator of the true gradient gt(θ) with
conditional variance Var(ĝt − gt | Ft−1) ≤ σ2

t /Bt. The cumulative error from the noise sequence

ξt = ηt(ĝt − gt) is bounded with high probability by O(
√∑T

t=1 η
2
t σ

2
t /Bt).

Proof. Let ĝt(θ) be an unbiased mini-batch estimator of the population gradient gt(θ) with E[ĝt(θ) |
Ft−1] = gt(θ) and conditional covariance E

[
∥ĝt(θ) − gt(θ)∥2 | Ft−1

]
≤ σ2

t /Bt. Consider the
parameter update θt+1 = θt − ηtĝt(θt) + (other terms) and track the noise contribution to the PAC
objective J(θ) through the descent lemma. Define the noise martingale ζt := ⟨∇J(θt), ĝt(θt) −
gt(θt)⟩ with E[ζt | Ft−1] = 0. Then

T∑
t=1

ηt ζt

is a martingale with predictable quadratic variation bounded by

T∑
t=1

η2t E[ζ2t | Ft−1] ≤
T∑

t=1

η2t ∥∇J(θt)∥2
σ2
t

Bt
≤ G2

T∑
t=1

η2t
σ2
t

Bt
,

where G bounds ∥∇J(θ)∥ on the iterates (ensured by standard coercivity/compacity arguments in
our setting). Applying Freedman’s inequality (or Azuma–Hoeffding with conditional variances)
yields, with probability at least 1− δ,

∣∣∣ T∑
t=1

ηt ζt

∣∣∣ ≤ c1 G
√
log 2

δ

√√√√ T∑
t=1

η2t
σ2
t

Bt
+ c2 G log 2

δ max
t

ηt
σt√
Bt

,

establishing the stated O
(√∑

t η
2
t σ

2
t /Bt

)
high-probability control on the cumulative stochastic-

gradient error.

Lemma D.10 (Finite-Ensemble Monte Carlo Error). Let the Monte Carlo error in estimating the
optimistic index be ξt = Ît − It, with E[ξt | Ft−1] = 0 and Var(ξt | Ft−1) ≤ v2t /Nt. The

cumulative error
∑T

t=1 ξt is bounded with high probability by O(
√∑T

t=1 v
2
t /Nt).

Proofs of Theorem D.9 and Theorem D.10. Both proofs rely on the same core argument. The error
sequences {ξt} in both cases are martingale difference sequences with respect to the filtration Ft−1.
We can therefore apply a concentration inequality for martingales. Freedman’s inequality is partic-
ularly well-suited as it handles predictable, time-varying variance bounds (Freedman, 1975). Let
ST =

∑T
t=1 ξt. Let VT =

∑T
t=1 E[ξ2t | Ft−1] be the predictable quadratic variation. Freedman’s

inequality states that for any u, v > 0:

Pr(ST ≥ u and VT ≤ v) ≤ exp

(
− u2/2

v + cu/3

)
where c is a uniform bound on |ξt|. Setting v to be the sum of our variance bounds (e.g., v =∑

v2t /Nt) and solving for u for a given probability level δ yields the stated O(
√
·) bounds.

E MAIN THEOREMS: FULL STATEMENTS AND PROOFS

This section contains the full proofs of the main results; it relies on auxiliary tools in Sections C
and D.
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E.1 RESTATEMENT OF MAIN THEOREMS

Let Assumptions 2.1, 2.2, and 2.3 hold. For any δ ∈ (0, 1), consider the OLE algorithm run for T
rounds with step sizes {ηt}, ensemble sizes {Nt}, mini-batch sizes {Bt}, and an optimism schedule
κt = C0

√
log(T/δ) for a suitable constant C0. Let v2t be an upper bound on the conditional variance

of the Monte Carlo estimate of the optimistic value, and let σ2
t be an upper bound on the conditional

variance of the mini-batch gradient estimator. Then with probability at least 1 − δ, the cumulative
regret satisfies:

Regret(T ) ≤ C1 deluder log T︸ ︷︷ ︸
Exploration Cost

+ C2

T∑
t=1

ηt︸ ︷︷ ︸
Discretization

+O


√√√√ T∑

t=1

v2t
Nt


︸ ︷︷ ︸

Finite Ensemble

+O


√√√√ T∑

t=1

σ2
t

Bt


︸ ︷︷ ︸

Stochastic Gradient

, (E.1)

where C1 and C2 are absolute constants depending on model parameters like the Lipschitz constant
L. The eluder dimension deluder is evaluated at a precision scale that decreases with t.

E.2 PROOF OF THE UNIFIED REGRET BOUND (SECTION E.1)

The proof proceeds by decomposing the instantaneous regret at each round and then bounding the
sum of each component over the horizon T .

Step 1: Instantaneous Regret Decomposition. The regret at a single round t is r∗(xt, y
∗
t ) −

r∗(xt, yt), where yt is the action chosen by the policy induced by the optimistic index It. Let
r̂t(x, y) be the ensemble mean and V̂art(x, y) be the ensemble variance. The optimistic index is

It(x, y) = r̂t(x, y)+κt

√
V̂art(x, y). The chosen action yt is one part of a pair selected to maximize

information gain, which implies it is a point of high optimistic value. For simplicity of analysis, we
consider the regret of selecting yt = argmaxy It(xt, y). The regret can be decomposed as:

r∗(xt, y
∗
t )− r∗(xt, yt) = (It(xt, y

∗
t )− r∗(xt, yt))︸ ︷︷ ︸

(I)

− (It(xt, y
∗
t )− r∗(xt, y

∗
t ))︸ ︷︷ ︸

(II)

(E.2)

≤ (It(xt, yt)− r̂t(xt, yt))︸ ︷︷ ︸
Optimism Term

+(r̂t(xt, yt)− r∗(xt, yt))︸ ︷︷ ︸
Estimation Error

−(II) (E.3)

Term (I) is upper-bounded by It(xt, yt) since y∗t ∈ Y . With a properly chosen optimism coefficient
κt, the optimistic index serves as a high-probability upper confidence bound on the true reward. Let
Et be the event that r∗(x, y) ≤ It(x, y) for all (x, y). On this event, Term (II) is non-negative. The
total error comes from the sum of optimism terms and the rounds where Et fails.

Step 2: Bounding the Sum of Optimism Gaps. This is the core of the exploration analysis.

The sum of the optimism terms is
∑T

t=1 κt

√
V̂art(xt, yt). By Cauchy-Schwarz, this is bounded

by
√

T
∑T

t=1 κ
2
t V̂art(xt, yt). A more refined analysis, following the potential function method of

optimistic algorithms (Russo & Van Roy, 2014; Hazan et al., 2007), bounds the sum of variances
directly. A key result, adapted to our setting in Theorem D.3, is the variance-information duality,
which states that high variance implies high information gain:

I(θ∗; feedbackt | Ft−1) ≥ C · V̂art(xt, yt)

for some constant C. Summing over t and using the chain rule for mutual information, we get:
T∑

t=1

V̂art(xt, yt) ≤ C−1
T∑

t=1

I(θ∗; feedbackt | Ft−1) = C−1I(θ∗; feedback1:T )

The total information gain from T observations about a parameter in a class with eluder di-
mension deluder is bounded by O(deluder log T ) (Russo & Van Roy, 2013). This implies that∑T

t=1 V̂art(xt, yt) = O(deluder log T ). This directly bounds the cumulative optimism, leading to
the leading term in our regret bound.
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Step 3: Bounding the Cumulative Approximation Errors. The remaining terms in the regret
come from the estimation error, which is influenced by the three practical gaps. We decompose the
total estimation error into components corresponding to each gap and bound their sum.

T∑
t=1

(r̂t − r∗) =

T∑
t=1

(r̂t − r̄t) +

T∑
t=1

(r̄t − r∗)

where r̄t is the mean prediction of the ideal, continuous-time, infinite-particle posterior.

• The term
∑

(r̄t − r∗) is a martingale difference sequence whose cumulative sum is
controlled by PAC-Bayesian generalization bounds, which are implicitly handled by the
information-theoretic argument above.

• The term
∑

(r̂t − r̄t) captures the approximation errors. We can decompose this further
into errors from discretization, finite particles, and stochastic gradients.

The cumulative effect of these errors on the regret is controlled by the following lemmas, which are
proven in Appendix D.4:

• Discretization Error: The bias from using a finite step size ηt accumulates. Theorem D.7
shows this contributes a term of order O(

∑T
t=1 ηt) to the regret.

• Finite-Ensemble and Stochastic Gradient Error: The errors from using a finite ensemble
and mini-batch gradients form martingale difference sequences. We apply Freedman’s
inequality for martingales (Theorem D.10 and Theorem D.9, based on (Freedman, 1975))
to bound their cumulative sum. This yields the high-probability bounds of O(

√∑
v2t /Nt)

and O(
√∑

σ2
t /Bt), respectively.

Step 4: Combine. Combining the bounds on the exploration term and the three approximation
error terms via a union bound over all high-probability events yields the final unified regret bound
as stated in the theorem. The structure of the bound reveals a fundamental decoupling: the ex-
ploration cost is a statistical quantity determined by the problem’s intrinsic complexity (deluder),
while the other terms are algorithmic costs determined by the allocation of computational resources
(Nt, Bt, ηt). This provides a clear path for practitioners: the logarithmic term is the best one can
hope for, while the other terms can be systematically reduced by investing more computation. □

F FULL PROOFS FOR THE MDP EXTENSION

This section extends our analysis to the more general setting of Markov Decision Processes (MDPs),
demonstrating the robustness of our framework. We provide full proofs for both finite-horizon and
discounted MDPs.

F.1 MDP REGRET BOUNDS

Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes, achieves a cumu-
lative regret that satisfies, with high probability:

Regret(T ) = O
(
H2 · deluder · log T

)
+ lower-order approximation terms, (F.1)

where the lower-order terms have a similar structure to the bandit case, summed over all T × H
steps.

Under the same assumptions, for an infinite-horizon discounted MDP, the O-DQLE algorithm run
for T steps achieves a cumulative regret that satisfies, with high probability:

Regret(T ) = O
(

deluder
(1− γ)3

· log T
)
+ lower-order approximation terms. (F.2)

F.2 PROOF FOR FINITE-HORIZON MDPS (SECTION F.1)

The proof requires adapting the regret decomposition to handle temporal dependencies. A naive ap-
plication of the value-difference lemma can lead to errors compounding exponentially in the horizon
H . To avoid this, we employ a more sophisticated policy decomposition technique.
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Step 1: Regret Decomposition via Policy Hybrids. Let πe be the (non-stationary) policy learned
by the algorithm in episode e, and let π∗ be the optimal policy. The regret in episode e is V π∗

1 (s1)−
V πe
1 (s1). We introduce a sequence of H hybrid policies {π(h)}Hh=1. Policy π(h) follows the learned

policy πe for the first h− 1 steps, and then switches to the optimal policy π∗ from step h onwards.
The total regret can be written as a telescoping sum:

V π∗

1 (s1)− V πe
1 (s1) =

H∑
h=1

(
V π(h)

1 (s1)− V π(h+1)

1 (s1)
)

where π(1) = π∗ and π(H+1) = πe. The key insight is that the difference V π(h)

1 − V π(h+1)

1 de-
pends only on the deviation of πe from π∗ at step h. This effectively reduces the multi-step credit
assignment problem to a sequence of H single-step analyses.

Step 2: Bounding the Single-Step Deviations. For each term in the sum, we have:

V π(h)

1 − V π(h+1)

1 = Esh∼dπe
h

[
Qπ∗

h (sh, π
∗
h(sh))−Qπ∗

h (sh, πe,h(sh))
]

where dπe

h is the state distribution at step h under policy πe. This is now a bandit-like regret term,
where the “reward” is the optimal Q-function Qπ∗

h . Under the Bellman completeness assumption
(Theorem 6.1), our optimistic Q-value estimates Ih(s, a) serve as high-probability upper bounds
on Qπ∗

h (s, a). We can therefore apply the same eluder-dimension-based argument from the bandit
setting to bound the sum of these single-step deviations over all episodes. The sum of variances is
bounded by O(H · deluder log T ), and the regret picks up an additional factor of H from the sum
over the hybrid policies, leading to the H2 dependence.

Step 3: Bounding Approximation Errors. The approximation errors from discretization, finite
ensembles, and stochastic gradients are summed over all T ×H steps. The martingale concentration
arguments still apply, leading to lower-order terms of the form O(

√
TH(·)). With appropriate

scheduling of Ne and Be, these can be controlled. □

F.3 PROOF FOR DISCOUNTED MDPS (SECTION F.1)

The proof for the discounted case follows a similar structure, but the regret decomposition is adapted.
We use the performance difference lemma for discounted MDPs:

V π∗
− V π =

1

1− γ
Es∼dπ

[
Qπ∗

(s, π∗(s))−Qπ∗
(s, π(s))

]
where dπ is the stationary state distribution under π. The analysis then proceeds by bounding the
advantage of the optimal policy at each step. The optimism argument again bounds the sum of
variances by O(deluder log T ). The factors of (1 − γ)−1 arise from the discounted sums and the
stationary distribution, leading to the final regret bound. The dependence is (1 − γ)−3 due to one
factor from the value difference, one from the concentration of the stationary distribution, and one
from the effective horizon in the variance sum. □

G IMPLEMENTATION DETAILS AND ADDITIONAL PSEUDOCODE

This section provides the necessary details of pseudocode for the proposed algorithms and a discus-
sion of hyperparameter schedules that achieve the optimal regret rates.

G.1 COMPLETE PSEUDOCODE

The following algorithms formalize the procedures analyzed in this paper. Algorithm 2 provides the
generic template, Algorithm 4 and Algorithm 3 specifies the contextual bandit variant online con-
textual bandit variant respectively, and Algorithm 5 details the extension to MDPs using temporal-
difference learning.
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Algorithm 2: Optimistic Langevin Ensemble (OLE): Generic Template
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection

3 Compute ensemble mean r̂t(xt, y) and variance V̂art(xt, y) for all y ∈ Y;

4 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

5 Select action pair (y(w)
t , y

(ℓ)
t ) based on maximizing information gain using {It(xt, y)}y∈Y ;

6 Receive preference feedback, forming data batch Dt;
// Posterior Update (SGLD)

7 Compute mini-batch gradient ∇̂t of JPAC(θ) = L̂Dt
(θ) + βDKL(δθ∥Πt−1);

8 for i = 1, . . . , Nt do
9 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

10 θ
(i)
t+1 ← θ

(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t ;

Algorithm 3: Optimistic Thompson Sampling with Langevin Ensembles (O-TSLE)
Input: Prior Π0, step size η, particles Nt, batch size Bt, optimism schedule κt.

1 for t = 1, 2, . . . , T do
2 Draw {θ(i)t }

Nt
i=1 by 1 SGLD step from Πt−1 using Bt samples;

3 Compute predictive mean r̂t(y) and uncertainty σ̂t(y) over candidates y ∈ Y;
4 Select action yt ∈ argmaxy r̂t(y) + κtσ̂t(y);
5 Observe (pairwise) feedback at yt and update posterior to Πt (PAC-Bayes loss);

Algorithm 4: Optimistic Langevin Ensemble (OLE) — Contextual Bandit Variant (O-TSLE)
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection
3 Compute ensemble mean and variance for all y ∈ Y:
4 r̂t(xt, y)← 1

Nt

∑Nt

i=1 rθ(i)
t
(xt, y);

5 V̂art(xt, y)← 1
Nt−1

∑Nt

i=1(rθ(i)
t
(xt, y)− r̂t(xt, y))

2;

6 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

7 Select action pair (y(w)
t , y

(ℓ)
t ) to query, based on maximizing information gain using

{It(xt, y)}y∈Y ;
8 Receive preference feedback for the selected pair, forming data batch Dt;

// Posterior Update

9 Compute mini-batch gradient ∇̂t of JPAC using Dt (batch size Bt);
10 for i = 1, . . . , Nt do
11 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

12 Langevin step: θ(i)t+1 ← θ
(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t
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Algorithm 5: Optimistic TD with Langevin Ensembles (O-TDLE) for MDPs
Input: Prior Π0 on Q-function parameters; step sizes {ηe}; ensemble sizes {Ne}; batch sizes

{Be}; optimism schedule {κh}
1 for episode e = 1, 2, . . . , T do
2 Initialize state s1;
3 for step h = 1, 2, . . . ,H do

// Optimistic Action Selection

4 Compute ensemble mean Q̂e,h(sh, a) and variance V̂are,h(sh, a) for all a ∈ A;

5 Select action ah = argmaxa∈A

(
Q̂e,h(sh, a) + κh

√
V̂are,h(sh, a)

)
;

6 Execute ah, observe next state sh+1 and collect preference data for the transition;
// Posterior Update (after episode)

7 Form a batch of transitions and preferences De from the episode;
8 Compute TD targets yh = r(sh, ah) + γmaxa′ Q̂e,H(sh+1, a

′) (using ensemble mean);
9 Compute mini-batch gradient ∇̂e of a TD-based loss on De regularized by DKL(·∥Πe−1);

10 Update all particles {θ(i)e } to {θ(i)e+1} using one or more SGLD steps with gradient ∇̂e;

G.2 DISCUSSION OF HYPERPARAMETER SCHEDULES

Corollary 5.3 states that if the algorithmic parameters are scheduled appropriately, the lower-order
approximation error terms in the regret bound become asymptotically negligible, leaving a purely
logarithmic regret. Here we specify schedules that achieve this.

• Step Size (ηt): To ensure the cumulative discretization error
∑

ηt remains bounded, a
decreasing step size schedule is required. A standard choice is ηt = η0/t or ηt = η0/

√
t.

With such schedules, the sum converges or grows slower than any linear function, making
the O(

∑
ηt) term sub-leading.

• Ensemble Size (Nt) and Batch Size (Bt): To control the finite-ensemble and stochas-
tic gradient errors, whose cumulative sums scale as O(

√∑
1/Nt) and O(

√∑
1/Bt) re-

spectively (assuming bounded variances), we need the sums
∑

1/Nt and
∑

1/Bt to be
bounded. This can be achieved by increasing Nt and Bt over time. For example, setting
Nt = ⌈N0 log(t + 1)⌉ and Bt = ⌈B0 log(t + 1)⌉ would suffice. A practical alternative is
an episodic schedule where Nt and Bt are increased (e.g., doubled) at the start of geomet-
rically spaced episodes. This ensures the approximation errors are effectively “paid for” by
the logarithmic exploration term.

These schedules demonstrate that our theory provides an asymptotic guarantee, and offers concrete,
practical guidance for algorithm design, directly connecting the theoretical results to the desired
performance outcome.
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