

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LOGARITHMIC REGRET IN PREFERENCE LEARNING VIA OPTIMISTIC PAC-BAYESIAN PARTICLE ENSEM- BLES

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 The remarkable sample efficiency of preference-based reinforcement learning,
014 which underpins the alignment of large language models with human feedback
015 (RLHF), presents a significant theoretical puzzle. Existing analyses often rely on
016 idealized assumptions, such as infinite-particle ensembles or exact, full-batch gra-
017 dients, that are disconnected from the practical realities of deployed algorithms.
018 This paper **provides a statistically grounded abstraction of modern RLHF-style**
019 **training pipelines**. We introduce a unified optimistic PAC-Bayesian framework
020 that distills the statistical essence of complex, multi-stage RLHF pipelines into a
021 single, provably efficient online learning algorithm. Our central result is a high-
022 probability regret bound of $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$ for a rich, non-linear class of reward
023 models, demonstrating **when and why** logarithmic regret is achievable using *finite*
024 ensembles and noisy *stochastic gradient* updates **under preference feedback**. This
025 unified theory provides an explanation for the sample efficiency of pairwise pref-
026 erence optimization, extends naturally to full Markov Decision Processes, and es-
027 tablishes a theoretical foundation for the empirical success of methods like RLHF.

1 INTRODUCTION

030 The alignment of large language models (LLMs) through preference-based learning has become a
031 cornerstone of modern artificial intelligence, enabling the development of systems that are helpful,
032 harmless, and attuned to human intent (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024). A
033 striking empirical observation in this domain is the profound *sample efficiency* of these alignment
034 pipelines. Practitioners routinely steer billion-parameter models toward complex desired behaviors
035 using on the order of only tens of thousands of pairwise human preferences (Rafailov et al., 2023;
036 Christiano et al., 2017). This efficiency stands in stark contrast to the sheer dimensionality of the
037 models and suggests that the correct theoretical target for regret should exhibit a near-logarithmic
038 dependence on the number of interaction rounds, T . While classical online learning analyses for
039 expressive function classes typically yield regret bounds of $\tilde{\mathcal{O}}(\sqrt{T})$ (Russo & Van Roy, 2013; 2014),
040 the empirical reality of RLHF motivates a much sharper theoretical goal. This leads to a pivotal open
041 question: *Can we provide a rigorous theoretical explanation for the sample efficiency of practical*
042 *preference-based alignment pipelines that yields sharp, near-logarithmic regret guarantees?*

043 The standard practical pipeline for Reinforcement Learning from Human Feedback (RLHF) is a
044 complex, multi-stage process (Ouyang et al., 2022; Bai et al., 2022). It typically begins with Su-
045 pervised Fine-Tuning (SFT) on a high-quality dataset, proceeds to the training of a separate reward
046 model on collected human preference data, and culminates in policy optimization via an algorithm
047 like PPO against that static reward model. This multi-stage pipeline, while empirically successful,
048 presents a formidable challenge for unified theoretical analysis, as theoretical work often focuses on
049 specific stages in isolation.

050 In this work, we move beyond analyzing the pipeline’s components separately and instead propose
051 a more fundamental theoretical model, the **Optimistic Langevin Ensemble (OLE)**, that captures
052 the statistical core of preference-based learning in a single, cohesive online process. By analyzing
053 this unified algorithm, we explain the sample efficiency of existing complex pipelines and provide a
principled blueprint for a more theoretically grounded approach to alignment.

054 Bridging the empirical-theoretical divide requires that our unified model remains faithful to the
 055 realities of practical implementations. We identify four critical gaps¹ that must be addressed:
 056

- 057 • **Gap 1: Mean-Field vs. Finite Ensembles.** Theoretical analyses often study a mean-field
 058 (infinite-particle) posterior flow for analytical tractability (Jordan et al., 1998; Sznitman, 2006),
 059 whereas practical implementations maintain a (often small) *finite* ensemble of reward models.
- 060 • **Gap 2: Exact vs. Stochastic Gradients.** Continuous-time or full-batch gradient derivations ob-
 061 scure the fact that all large-scale implementations rely on noisy mini-batch updates.
- 062 • **Gap 3: Continuous-Time vs. Discrete-Time Dynamics.** Mathematical tools like Wasserstein
 063 gradient flows offer an elegant continuous-time perspective (Ambrosio et al., 2008), but deployed
 064 algorithms operate in discrete time with a finite step size η .
- 065 • **Gap 4: Intractable vs. Tractable Uncertainty.** The principle of optimism requires an upper
 066 confidence bound on the true reward, but the exact Bayesian posterior uncertainty is intractable
 067 for deep neural networks. Practical algorithms rely on computationally feasible proxies, such as
 068 ensemble variance.

069 In this work, we develop an *optimistic PAC-Bayesian particle* framework for preference-based rein-
 070 forcement learning that resolves these four gaps within our unified OLE model. Our framework
 071 is designed to be faithful to the algorithms used in practice while providing sharp, meaningful
 072 performance guarantees. We prove that such procedures attain a cumulative regret that scales as
 073 $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$, where d_{eluder} is the eluder dimension of the function class (Russo & Van Roy,
 074 2013; Li et al., 2022). Our analysis achieves this by coupling a PAC-Bayesian control of gener-
 075 alization (McAllester, 1999; Catoni, 2007) with concentration inequalities for stochastic dynam-
 076 ics (Freedman, 1975) and Wasserstein stability bounds for particle approximations (Fournier &
 077 Guilllin, 2015), thereby addressing the four gaps within a single, cohesive theory.

079 **Positioning and Scope.** Our work is complementary to the important and emerging body of the-
 080 ory on *KL-regularized* bandits and RL, which has also achieved logarithmic regret guarantees but
 081 in the distinct setting of *numeric rewards* (Zhao et al., 2024; 2025b) for *KL-regularized contextual*
 082 *bandits and MDPs under eluder-dimension assumptions*. We, in contrast, focus on the more foun-
 083 dational problem of learning from *pairwise preference feedback*, which is the canonical setup for
 084 RLHF and DPO where a reward model is itself learned from human comparisons (Christiano et al.,
 085 2017; Bradley & Terry, 1952; Luce et al., 1959). *Our contribution is an $\mathcal{O}(d_{\text{eluder}} \log T)$ bound for*
 086 *standard cumulative regret in the pairwise-preference setting*. Our analysis is algorithm-native, de-
 087 riving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from the
 088 specific optimization landscape of a KL-regularized objective. Conceptually, our approach is related
 089 to optimism-in-the-face-of-uncertainty and to feel-good Thompson sampling (Zhang, 2022), but our
 090 setting, estimators, and guarantees are novel. A comprehensive survey and detailed comparisons
 091 appear in Appendix B.

092 Table 1: Our work achieves logarithmic regret for pairwise preference feedback with general func-
 093 tion approximation in a framework that models practical algorithmic constraints. *Detailed analysis*
 094 *on the differences in assumptions and problem settings can be found in Appendix B.1.*

Setting	Feedback Model	Key Assumptions	Regret (Leading Term)
This work (OLE)	Pairwise Preference	Realizable + Eluder Dim.	$\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$
KL-Reg. Bandits (Zhao et al., 2025a)	Numeric Reward	Realizable + Eluder Dim.	$\tilde{\mathcal{O}}(d \log T)$
Preference RL (Wang et al., 2023)	Pairwise Preference	Realizable	$\tilde{\mathcal{O}}(\sqrt{T})$
Dueling Bandits (Yue et al., 2012)	Pairwise Preference	Tabular/Linear	$\tilde{\mathcal{O}}(\log T)$ or $\tilde{\mathcal{O}}(\sqrt{T})$
Optimistic Bandits (Russo & Van Roy, 2014)	Numeric Reward	Realizable + Eluder Dim.	$\tilde{\mathcal{O}}(d\sqrt{T})$

101 We summarize our main results for preference-based learning as follows.

102 • **Unified PAC-Bayesian Particle Analysis with Logarithmic Regret.** For preference-based
 103 contextual bandits, we analyze a practical algorithm using finite ensembles and mini-batch
 104 SGD. We prove that, with high probability, the cumulative regret is bounded by $\text{Regret}(T) =$
 105 $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T) +$ lower-order terms for discretization, finite ensembles, and mini-batching,

106
 107 ¹More discussion on the four gaps in Appendix Section A.3.

108 where the leading term captures the statistical cost of exploration, and the lower-order terms
 109 explicitly quantify the practical algorithmic costs.

110 • **Optimistic Langevin Ensembles.** We introduce and analyze an optimistic Langevin-style
 111 ensemble update that provides exploration bonuses online and connects to standard preference op-
 112 timization methods in the offline limit. Our analysis combines PAC-Bayesian inequalities with
 113 martingale concentration to provide non-asymptotic stability and concentration bounds.

114 • **Extension to Markov Decision Processes.** We extend our framework to preference-based RL
 115 with dynamics (e.g., discounted MDPs), obtaining analogous near-logarithmic regret guarantees.
 116 This complements results for numeric-reward MDPs (Zhao et al., 2025a) while operating in the
 117 more fundamental pairwise feedback regime.

118 • **Practical Implications.** Our bounds provide a direct theoretical explanation for the sample ef-
 119 ficiency of methods like RLHF and DPO (Rafailov et al., 2023) and offer principled guidance
 120 for setting hyperparameters. We also show how parameter-efficient fine-tuning methods like
 121 LoRA (Hu et al., 2022) naturally lead to a small eluder dimension, connecting our theory to the
 122 practice of large-scale model alignment.

124 2 PROBLEM SETUP AND STRUCTURAL ASSUMPTIONS

126 This section formally establishes the mathematical foundation² for our analysis. We begin by defin-
 127 ing the preference-based contextual bandit model and the notion of cumulative preference regret. We
 128 then introduce the key structural assumptions³ on the underlying reward function class that enable
 129 efficient, low-regret learning.

131 2.1 THE PREFERENCE-BASED CONTEXTUAL BANDIT MODEL

133 We consider an online learning problem that unfolds over T rounds. At each round $t \in \{1, \dots, T\}$,
 134 the environment presents a context $x_t \in \mathcal{X}$. The learning agent then selects a pair of actions to be
 135 compared, typically to maximize information gain about the optimal action. The agent receives feed-
 136 back in the form of a pairwise preference. This process models the core interaction loop in RLHF,
 137 where a context might be a user prompt and the actions are different model-generated responses
 138 (Ouyang et al., 2022; Christiano et al., 2017).

139 Underlying this preference feedback is a latent, unknown reward function $r^* : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R}$. This
 140 function represents the true, unobserved quality or utility of an action y in a context x . The observed
 141 preferences are stochastic manifestations of this latent function. We model this relationship using
 142 the standard and widely adopted Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce
 143 et al., 1959). Given a pair of actions (y_w, y_ℓ) , the probability that y_w is preferred over y_ℓ (denoted
 144 $y_w \succ y_\ell$) in context x is given by a logistic link function:

$$145 p(y_w \succ y_\ell | x) = \sigma(r^*(x, y_w) - r^*(x, y_\ell)). \quad (2.1)$$

146 Whenever we query a comparison between (y_w, y_ℓ) in context x , denote by $\text{feedback}_t \in \{0, 1\}$ the
 147 resulting binary preference at round t , taking value 1 when event $y_w \succ y_\ell$ occurs and 0 otherwise.
 148 The likelihood in Equation (2.1) is the BTL model, where $\sigma(z) = (1 + e^{-z})^{-1}$ is the sigmoid
 149 function. This model is central to many preference-based algorithms, including Direct Preference
 150 Optimization (Rafailov et al., 2023), and forms the basis of our likelihood-based objective.

151 The agent’s goal is to learn a policy π that, for any given context x , selects actions that have high
 152 latent reward $r^*(x, y)$. The performance of the agent is measured by the *cumulative preference*
 153 *regret*, which quantifies the total opportunity cost incurred over T rounds. Let y_t be the action
 154 selected by the agent’s policy at round t in context x_t , and let $y_t^* = \arg \max_{y \in \mathcal{Y}} r^*(x_t, y)$ be the
 155 optimal action for that context. The regret at round t is the difference in expected reward between
 156 the optimal action and the chosen action. The cumulative regret over T rounds is defined as:

$$158 \text{Regret}(T) = \sum_{t=1}^T (r^*(x_t, y_t^*) - r^*(x_t, y_t)). \quad (2.2)$$

161 ²Frequently used symbols are summarized in Table 2 in Appendix Section A.

³An assumption checklist appears in Table 3 in Appendix Section A.

162 We will use Equation (2.2) as our formal notion of cumulative regret throughout the paper. The
 163 objective is to design an algorithm whose cumulative regret grows as slowly as possible with T .
 164 A logarithmic growth rate, $\text{Regret}(T) = \tilde{\mathcal{O}}(\log T)$, is the theoretical ideal, indicating extremely
 165 efficient learning.
 166

167 **2.2 STRUCTURAL ASSUMPTIONS ON THE REWARD CLASS**
 168

169 To enable tractable learning from preference data alone, we impose a set of structural assumptions on
 170 the class of possible reward functions \mathcal{R} . These assumptions are standard in the theoretical analysis
 171 of learning with function approximation (Foster & Rakhlin, 2023) and are chosen to be as general
 172 as possible while still permitting strong performance guarantees.

173 **Assumption 2.1** (Realizability and bounded parameter space). *We assume that the true latent
 174 reward function r^* belongs to a known, parameterized function class $\mathcal{R} = \{r_\theta : \theta \in \Theta\}$,
 175 where each $r_\theta : \mathcal{X} \times \mathcal{Y} \rightarrow [0, 1]$. The parameter space $\Theta \subset \mathbb{R}^d$ is a closed Euclidean ball
 176 $\Theta = \{\theta \in \mathbb{R}^d : \|\theta\| \leq B\}$ for some known radius $B < \infty$, and we assume the prior Π_0 and all
 177 subsequent posteriors Π_t are supported on Θ .*
 178

179 This is a common starting point for theoretical analysis, allowing us to focus on the learning problem
 180 without the additional complication of model misspecification (Azar et al., 2024).

181 **Assumption 2.2** (Lipschitz Continuity). *We assume that the reward function parameterization is
 182 smooth. Specifically, the function class is L -Lipschitz with respect to the parameters: for all $\theta, \theta' \in$
 183 Θ and all (x, y) , we have:*

$$|r_\theta(x, y) - r_{\theta'}(x, y)| \leq L\|\theta - \theta'\|_2. \quad (2.3)$$

185 This assumption is satisfied by many practical models, including neural networks with bounded
 186 weights and smooth activation functions. It is a crucial property that ensures that small changes in
 187 the parameter space lead to correspondingly small changes in the reward space, which is essential for
 188 generalization, optimization stability, and for relating parameter-space uncertainty to function-space
 189 uncertainty (Zhang, 2023).

190 **Assumption 2.3.** *This is the most critical assumption for enabling efficient exploration and achieving
 191 logarithmic regret. We assume that the function class \mathcal{R} has a finite eluder dimension (Russo &
 192 Van Roy, 2013; 2014).*
 193

194 **Eluder dimension.** We adopt the ϵ -eluder dimension $d_{\text{eluder}}(\mathcal{R}, \epsilon)$ as the intrinsic complexity
 195 controlling regret in our analysis. For completeness, a concise definition together with its variance–
 196 information connection appears in Appendix D.2. Moreover, for LoRA-parameterized reward
 197 classes we establish sharp eluder control; see Proposition D.4 in Appendix D.3.

199 **3 PAC-BAYESIAN GENERALIZATION AND WASSERSTEIN GRADIENT FLOW**
 200

201 This section connects PAC-Bayesian generalization objective to a Wasserstein gradient-flow (WGF)
 202 description of the learning dynamics. We (i) motivate a PAC-Bayes objective as the optimization
 203 target, (ii) introduce a smoothed/projected–KL device that yields a sharpened bound suitable for par-
 204 ticle posteriors⁴, and (iii) show that steepest descent of this objective in the 2-Wasserstein geometry
 205 yields a Langevin diffusion and the associated Fokker–Planck (continuity) equation. Full statements
 206 with constants and all proofs are deferred to Section C and Section E.

207 Let $S = \{z_i\}_{i=1}^m \stackrel{\text{i.i.d.}}{\sim} \mathcal{D}$, parameter space $\Theta \subseteq \mathbb{R}^d$, prior Π on Θ , posterior $\mu \in \mathcal{P}(\Theta)$,
 208 and per-example loss $\ell_\theta(z) \in [0, 1]$ that is L -Lipschitz in θ for each z . We write $\hat{L}_S(\mu) :=$
 209 $\frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\theta \sim \mu} \ell_\theta(z_i)$ and $\text{Risk}_{\mu, \mathcal{D}} := \mathbb{E}_{z \sim \mathcal{D}} \mathbb{E}_{\theta \sim \mu} \ell_\theta(z)$. For a Markov kernel S on Θ , $S_\# \mu$ de-
 210 notes the push forward, and the *projected KL* is
 211

$$D_{\text{KL}}(\mu \parallel \Pi) := D_{\text{KL}}(S_\# \mu \parallel S_\# \Pi),$$

212
 213
 214 ⁴Throughout this section we consider the *Gibbs posterior*, defined by $Q_\lambda(d\theta) \propto \exp(-\lambda \hat{L}_m(\theta)) P(d\theta)$,
 215 for a fixed prior over parameters P and the empirical preference loss $\hat{L}_m(\theta)$. Note that Gibbs posterior differs
 216 the vanilla Bayesian posterior with respect to the environment’s generative model.

216 which satisfies $D_{\text{KLS}}(\mu\|\Pi) \leq D_{\text{KL}}(\mu\|\Pi)$ by data processing (see Theorem C.3 and Section C).

217 A classical PAC-Bayes inequality for a posterior μ independent of S reads

$$219 \quad \text{Risk}_{\mathcal{D}}(\mu) \leq \hat{L}_S(\mu) + \sqrt{\frac{D_{\text{KL}}(\mu\|\Pi) + \ln \frac{2\sqrt{m}}{\delta}}{2m}}. \quad (3.1)$$

220 This suggests optimizing the right-hand side by trading empirical fit against complexity. Introducing
221 an inverse-temperature parameter $\beta > 0$ yields the variational objective
222

$$223 \quad J_{\text{PAC}}(\mu) = \hat{L}_S(\mu) + \beta D_{\text{KL}}(\mu\|\Pi), \quad (3.2)$$

224 which is the *free energy* associated with empirical risk and prior regularization.
225

226 **Per-example loss.** Each feedback example is denoted by z (e.g., a bandit or preference obser-
227 vation), and we define the per-example loss as $\ell_{\theta}(z) := -\log p_{\theta}(z)$, the negative log-likelihood
228 of z under the parametric feedback model p_{θ} . The PAC-Bayesian objective at time t is then
229 $J_t(\theta) := \mathbb{E}_{z \sim D_t} [\ell_{\theta}(z)] + \beta(\log \mu(\theta) - \log \Pi(\theta))$, where D_t is the dataset (or replay buffer) at
230 time t . Our regret analysis only requires that $\ell_{\theta}(z)$ be bounded and Lipschitz in θ on Θ , so any
231 choice of loss satisfying these conditions yields the same asymptotic regret rate (the constants de-
232 pend on the Lipschitz constant and range of ℓ_{θ} but not on T or d_{eluder}).
233

234 3.1 SMOOTHED/PROJECTED-KL PAC-BAYES BOUND

235 We now state the smoothed/projected variant that will be used both for theory (to control finite-
236 particle posteriors) and for algorithms (to motivate noise schedules). The definition is given here,
237 while the full theorem and constants appear in Section C.
238

239 **Definition 3.1** (Projected/Smoothed KL). For $\mu, \Pi \in \mathcal{P}(\Theta)$ and any smoothing kernel (confer
240 Definition C.1) S , define the projected (smoothed) KL by
241

$$242 \quad D_{\text{KLS}}(\mu\|\Pi) := D_{\text{KL}}(S_{\#}\mu\|S_{\#}\Pi).$$

243 By data processing for f -divergences, $D_{\text{KLS}}(\mu\|\Pi) \leq D_{\text{KL}}(\mu\|\Pi)$ when the right-hand side is finite.
244 For the Gaussian kernel, we write $D_{\text{KLS}_h}(\mu\|\Pi) := D_{\text{KL}}(S_{h,\#}\mu\|S_{h,\#}\Pi)$.
245

246 **Theorem 3.2** (PAC-Bayes via smoothing). Assume $\ell_{\theta}(z) \in [0, 1]$ is L -Lipschitz in θ . Let $\mu^N =$
247 $\frac{1}{N} \sum_{i=1}^N \delta_{\theta_i}$ be an N -particle posterior and let S_h denote Gaussian smoothing with variance $h^2 I_d$.
248 For any prior Π independent of S and any $h > 0$, with probability at least $1 - \delta$,

$$249 \quad \text{Risk}_{\mathcal{D}}(\mu^N) \leq \text{Risk}_{\mathcal{D}}(\mu^N_S) + Lh \mathbb{E}\|Z\| + \sqrt{\frac{D_{\text{KLS}_h}(\mu^N\|\Pi) + \ln(2m/\delta)}{2m}},$$

250 where $Z \sim \mathcal{N}(0, I_d)$ so $\mathbb{E}\|Z\| \leq \sqrt{d}$. Moreover, if $\Pi = \mathcal{N}(\theta_0, \sigma_0^2 I_d)$ then
251

$$252 \quad D_{\text{KLS}_h}(\mu^N\|\Pi) \leq \frac{1}{2N(\sigma_0^2 + h^2)} \sum_{i=1}^N \|\theta_i - \theta_0\|^2 + \frac{d}{2} \phi\left(\frac{h^2}{\sigma_0^2 + h^2}\right), \text{ with } \phi(\rho) = \rho - 1 - \ln \rho.$$

253 3.2 OPTIMIZATION DYNAMICS AS A WASSERSTEIN GRADIENT FLOW

254 Interpreting Equation (3.2) as a free-energy functional on $\mathcal{P}(\Theta)$, the 2-Wasserstein gradient flow of
255 J_{PAC} is the continuity equation
256

$$257 \quad \partial_t \mu_t = \nabla_{\theta} \cdot (\mu_t \nabla_{\theta} V[\mu_t]), \quad (3.3)$$

258 where $V[\mu]$ is any C^1 potential whose gradient equals the Wasserstein gradient of J_{PAC} at μ . Con-
259 cretely, one may take

$$260 \quad \nabla_{\theta} V[\mu](\theta) = \nabla_{\theta} \mathbb{E}_{z \sim S} \ell_{\theta}(z) + \beta \nabla_{\theta} (\log \mu(\theta) - \log \Pi(\theta)),$$

261 so that equation 3.3 coincides with the Fokker–Planck equation of the Langevin diffusion
262

$$263 \quad d\theta(t) = -\nabla_{\theta} V[\mu_t](\theta(t)) dt + \sqrt{2\beta} dW(t), \quad (3.4)$$

270 see, e.g., Jordan et al. (1998); Ambrosio et al. (2008); Villani (2008). Thus, gradient-based training
 271 of the free energy J_{PAC} admits an exact continuum description as WGF.

272 A first-order time discretization of equation 3.4 (Euler–Maruyama) with step size $\eta > 0$ yields the
 273 particle update $\theta_{k+1} = \theta_k - \eta \nabla_{\theta} V[\mu_k](\theta_k) + \sqrt{2\eta\beta} \xi_k$, with $\xi_k \sim \mathcal{N}(0, I_d)$.

274 Replacing full gradients with mini-batch estimates recovers SGLD. This principled discretizations
 275 exposes and quantifies the approximation gaps that drive our regret analysis (precise bounds in
 276 Section E): **Finite-ensemble gap** (Monte Carlo drift error): $\tilde{\mathcal{O}}(\sqrt{\sum_t v_t^2 / N_t})$. **Stochastic-gradient**
 277 **gap** (mini-batch noise): $\tilde{\mathcal{O}}(\sqrt{\sum_t \sigma_t^2 / B_t})$. **Discretization gap** (time stepping): $\tilde{\mathcal{O}}(\eta T)$. These terms
 278 map exactly onto the four sources of error isolated in the Introduction.

279

280 4 THE OPTIMISTIC LANGEVIN ENSEMBLE (OLE) ALGORITHM

281

282 This section translates the theoretical framework developed in the preceding sections into a concrete,
 283 self-contained algorithm for preference-based contextual bandits. The algorithm, which we
 284 call the **Optimistic Langevin Ensemble (OLE)**, instantiates the discretized Wasserstein gradient
 285 flow perspective. It maintains a finite ensemble of reward models, updates them using stochastic
 286 Langevin dynamics, and makes decisions using an optimistic selection rule based on ensemble
 287 statistics. The specific variant for online contextual bandits is termed Optimistic Thompson Sam-
 288 pling with Langevin Ensembles (O-TSLE).

289

290 The OLE algorithm operates in rounds. At each round t , it leverages its current posterior belief about
 291 the reward function, represented by an ensemble of particles, to optimistically select an action. It
 292 then observes the resulting preference feedback and updates its posterior belief using a Langevin
 293 step. [A discussion on the computational cost of OLE is in Appendix G.1.](#) Pseudo-code of additional
 294 variants are provided in Appendix G.2, such as for online contextual bandits and MDP scenarios.

295

296 Algorithm 1: Optimistic Langevin Ensemble (OLE): Generic Template

297 **Input:** Prior Π_0 ; step sizes $\{\eta_t\}$; ensemble sizes $\{N_t\}$; batch sizes $\{B_t\}$; optimism schedule
 298 $\{\kappa_t\}$

299 1 **for** $t = 1, 2, \dots, T$ **do**
 300 Observe context x_t ;
 // Optimistic Selection
 301 Compute ensemble mean $\hat{r}_t(x_t, y)$ and variance $\widehat{\text{Var}}_t(x_t, y)$ for all $y \in \mathcal{Y}$;
 302 Construct optimistic index: $I_t(x_t, y) \leftarrow \hat{r}_t(x_t, y) + \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y)}$;
 303 Select action pair $(y_t^{(w)}, y_t^{(\ell)})$ based on maximizing information gain using $\{I_t(x_t, y)\}_{y \in \mathcal{Y}}$;
 304 Receive preference feedback, forming data batch \mathcal{D}_t ;
 // Posterior Update (SGLD)
 305 **Sample a mini-batch $B_t \subset \mathcal{D}_t$ and compute the stochastic gradient**
 306 $\hat{\nabla}_t := \frac{1}{|B_t|} \sum_{z \in B_t} \nabla_{\theta} \ell_{\theta}(z) + \beta \nabla_{\theta} (\log \mu(\theta) - \log \Pi(\theta))$;
 307 Compute mini-batch gradient $\hat{\nabla}_t$ of $J_{\text{PAC}}(\theta) = \hat{L}_{\mathcal{D}_t}(\theta) + \beta D_{\text{KL}}(\delta_{\theta} \parallel \Pi_{t-1})$;
 308 **for** $i = 1, \dots, N_t$ **do**
 309 Draw Gaussian noise $\xi_t^{(i)} \sim \mathcal{N}(0, I)$;
 310 $\theta_{t+1}^{(i)} \leftarrow \theta_t^{(i)} - \eta_t \hat{\nabla}_t J_{\text{PAC}}(\theta_t^{(i)}) + \sqrt{2\eta_t\beta} \xi_t^{(i)}$, $\theta_{t+1}^{(i)} \leftarrow \text{Proj}_{\Theta}(\tilde{\theta}_{t+1}^{(i)})$;

311

312 The core components of the algorithm are as follows:

313

- 314 • **Ensemble Maintenance:** The algorithm’s belief about the true reward parameter θ^* is represented
 315 by an ensemble of N_t particles, $\{\theta_t^{(i)}\}_{i=1}^{N_t}$. This ensemble serves as a Monte Carlo approximation
 316 of the posterior distribution μ_t . At the start of learning ($t = 0$), these particles are drawn from a
 317 prior distribution Π_0 .
- 318 • **Langevin Update Step:** This is the learning step of the algorithm. After receiving new preference
 319 data \mathcal{D}_t , each particle in the ensemble is updated using one step of Stochastic Gradient Langevin
 320 Dynamics (SGLD). The gradient is computed with respect to the PAC-Bayesian objective J_{PAC}

324 on a mini-batch of the new data. This update moves the particles towards regions of the parameter
 325 space that better explain the observed preferences, while the injected Gaussian noise ensures that
 326 the ensemble continues to represent a distribution and does not collapse to a single point.

327 • **Optimistic Selection Rule:** This is the exploration mechanism of the algorithm and the component
 328 that addresses the fourth implementation gap (intractable uncertainty). To make decisions that
 329 efficiently balance exploration and exploitation, the agent needs an upper confidence bound (UCB)
 330 on the true, unknown reward function r^* . Computing the exact Bayesian UCB is intractable for
 331 complex models. The OLE algorithm therefore uses a computationally feasible proxy based on
 332 the statistics of its particle ensemble. For each candidate action y in the current context x_t , it
 333 computes an optimistic index:

$$I_t(x_t, y) = \hat{r}_t(x_t, y) + \kappa_t \cdot \sqrt{\text{Var}_t(x_t, y)}. \quad (4.1)$$

334 The exploration bonus in Equation (4.1) follows the eluder-dimension view of exploration (Russo
 335 & Van Roy, 2013; 2014) and yields the desired logarithmic-regret scaling (Hazan et al., 2007).

336 • **Projection onto the bounded parameter space:** In the theoretical analysis we interpret the
 337 Langevin update as a projected SGLD step. Each unconstrained update is followed by the non-
 338 expansive Euclidean projection onto the ball $\Theta = \{\theta : \|\theta\| \leq B\}$. Since Π_0 is supported on Θ ,
 339 this ensures that all particles $\theta_t^{(i)}$ remain in Θ for all t , matching Assumption 2.1. In practice, this
 340 projection corresponds to weight clipping (or weight decay, softly) to the ball of radius B ; if any
 341 iterate leaves Θ , it is projected back before being used for action selection.

342 Here, $\hat{r}_t(x_t, y)$ is the mean reward predicted by the ensemble, serving as the best guess for the true
 343 reward. $\text{Var}_t(x_t, y)$ is the variance of the reward predictions across the ensemble, which serves as a
 344 proxy for the posterior uncertainty about the reward of that action. The parameter κ_t is an optimism
 345 coefficient that controls the weight given to this uncertainty, effectively determining how much the
 346 agent prioritizes exploration. The agent then selects a pair of actions to query for a preference based
 347 on these optimistic indices, typically choosing a pair that is expected to be most informative for
 348 resolving the current uncertainty. While the exact Bayesian posterior uncertainty is intractable for
 349 complex models, we will show in our analysis (Section 5) that the ensemble variance serves as a the-
 350 oretically sound proxy. This is because of a fundamental duality between variance and information
 351 gain, which ensures that exploring regions of high ensemble variance leads to an efficient reduction
 352 of uncertainty about the true reward function, thereby enabling logarithmic regret.

353 **Remark 4.1** (Initialization of particles). *In the theoretical analysis we work with a fixed number
 354 of particles N and initialize them i.i.d. from the prior Π_0 at $t = 1$, so $\theta_1^{(i)} \sim \Pi_0$ for all i . In
 355 practical variants where the number of particles N_t is allowed to grow with t , we initialize any
 356 new particle with index $i > N_{t-1}$ from the current empirical posterior approximation Π_{t-1} (i.e.,
 357 by resampling from the existing particles). This implementation choice only affects constant factors
 358 in mixing and variance; the regret analysis is stated for the idealized setting with a fixed number of
 359 particles initialized from Π_0 .*

360 5 REGRET ANALYSIS

361 This section presents the main theoretical result of the paper: a unified, high-probability regret
 362 bound for the Optimistic Langevin Ensemble (OLE) algorithm. The bound demonstrates that the
 363 algorithm achieves a cumulative regret that scales logarithmically with the time horizon T , plus
 364 explicit, sublinear terms that quantify the costs of the practical approximations corresponding to
 365 the “four gaps.” This result provides a rigorous theoretical explanation for the remarkable sample
 366 efficiency of preference-based learning. Full proofs are in Appendix Section E.

367 Our main theorem bounds the cumulative preference regret of the OLE algorithm. It shows that
 368 the regret is controlled by the intrinsic complexity of the reward function class, as measured by the
 369 eluder dimension, and by the parameters governing the algorithmic approximations.

370 **Theorem 5.1.** *Let Assumptions 2.1 (Realizability), 2.2 (Lipschitz Continuity), and 2.3 (Finite Eluder
 371 Dimension) hold. For any $\delta \in (0, 1)$, consider the OLE algorithm run for T rounds with step sizes
 372 $\{\eta_t\}$, ensemble sizes $\{N_t\}$, mini-batch sizes $\{B_t\}$, and an optimism schedule $\kappa_t = C_0 \sqrt{\log(T/\delta)}$
 373 for a suitable constant C_0 . Let v_t^2 be an upper bound on the conditional variance of the Monte Carlo*

378 estimate of the optimistic value, and let σ_t^2 be an upper bound on the conditional variance of the
 379 mini-batch gradient estimator. Then with probability at least $1 - \delta$, the cumulative regret satisfies:
 380

$$381 \text{Regret}(T) \leq \underbrace{C_1 d_{\text{eluder}} \log T}_{\text{Exploration Cost}} + C_2 \left(\underbrace{\sum_{t=1}^T \eta_t}_{\text{Discretization}} + \underbrace{\tilde{\mathcal{O}} \left(\sqrt{\sum_{t=1}^T \frac{v_t^2}{N_t}} \right)}_{\text{Finite Ensemble}} + \underbrace{\tilde{\mathcal{O}} \left(\sqrt{\sum_{t=1}^T \frac{\sigma_t^2}{B_t}} \right)}_{\text{Stochastic Gradient}} \right), \quad (5.1)$$

386 where C_1 and C_2 are absolute constants. The eluder dimension d_{eluder} is evaluated at a precision
 387 scale ϵ that decreases with t , such as $\epsilon_t = 1/(1+t)$.

388 **Remark 5.2** (On tightness of the leading term and Uniformity). Up to polylogarithmic factors,
 389 the $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$ leading term in our regret bound matches known lower bounds and optimal
 390 algorithms for contextual bandits with rich (e.g., generalized linear) function classes, where the
 391 eluder dimension governs sample complexity (Russo & Van Roy, 2013; 2014). In particular, the
 392 $\log T$ factor is information-theoretically unavoidable even in parametric bandit settings with well-
 393 specified models (Hazan et al., 2007).

394 Our leading $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$ term is a uniform guarantee over all instances that satisfy our struc-
 395 tural assumptions (realizability, boundedness, Lipschitz continuity, finite eluder dimension, and the
 396 Bradley–Terry–Luce preference model). Here $d_{\text{eluder}} = \dim_E(\mathcal{R}, T^{-1})$ is a complexity measure of
 397 the function class \mathcal{R} , and T is the horizon; the bound does not expose explicit gap or margin pa-
 398 rameters. The fast-rate behaviour comes from coupling two ingredients: (i) a variance–information
 399 lemma for the BTL model, which shows that the mutual information gained at round t is at least a
 400 constant multiple of the squared prediction error; and (ii) an eluder-dimension bound on the cumu-
 401 lative squared widths (Lemma D.7).

402 This bound provides a comprehensive picture of the algorithm’s performance and completes the
 403 narrative arc of bridging the four gaps. Each term has a precise interpretation:

404 • **The Exploration Term:** $C_1 d_{\text{eluder}} \log T$. This is the leading-order term and represents the fun-
 405 damental statistical cost of exploration. Its logarithmic dependence on the horizon T is the key
 406 result, confirming that the algorithm learns extremely efficiently. The cost scales linearly with the
 407 eluder dimension d_{eluder} , which captures the intrinsic complexity of the learning problem. This
 408 term arises directly from the use of an optimistic exploration strategy.

409 • **The Discretization Error:** $\sum_{t=1}^T \eta_t$. This term quantifies the cost of Gap 3: approximating
 410 the continuous-time Wasserstein gradient flow with a discrete-time algorithm. It represents the
 411 cumulative bias from the Euler–Maruyama discretization. For a constant step size η , this error is
 412 $\tilde{\mathcal{O}}(\eta T)$. However, as shown in the corollary below, this term can be made negligible by using a
 413 decreasing step size schedule.

414 • **The Finite-Ensemble Error:** $\tilde{\mathcal{O}}(\sqrt{\sum_{t=1}^T v_t^2 / N_t})$. This term quantifies the cost of Gap 1: ap-
 415 proximating the true posterior distribution with a finite ensemble of N_t particles. It represents the
 416 accumulated Monte Carlo estimation error. The term grows sub-linearly in T and decreases as
 417 the ensemble size N_t increases, explicitly characterizing the trade-off between computational cost
 418 and statistical accuracy.

419 • **The Stochastic Gradient Error:** $\tilde{\mathcal{O}}(\sqrt{\sum_{t=1}^T \sigma_t^2 / B_t})$. This term quantifies the cost of Gap 2: us-
 420 ing noisy mini-batch gradients instead of exact full-batch gradients. It represents the accumulated
 421 noise from the stochastic optimization process. Like the ensemble error, it grows sub-linearly and
 422 decreases as the mini-batch size B_t increases.

423 In the idealized limit where $\eta_t \rightarrow 0$, $N_t \rightarrow \infty$, and $B_t \rightarrow \infty$, all three lower-order terms vanish,
 424 and we are left with a purely logarithmic regret bound, $\text{Regret}(T) = \tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$. Our theorem
 425 provides the first analysis that makes this trade-off explicit for preference-based RL.

426 **Corollary 5.3.** If the step sizes and resource allocation schedules are chosen such that $\sum_{t=1}^T \eta_t =$
 427 $\tilde{\mathcal{O}}(1)$, $\sum_{t=1}^T v_t^2 / N_t = \tilde{\mathcal{O}}(1)$, and $\sum_{t=1}^T \sigma_t^2 / B_t = \tilde{\mathcal{O}}(1)$, then under the assumptions of Theorem
 428 5.1, the cumulative regret is:

$$429 \text{Regret}(T) = \tilde{\mathcal{O}}(d_{\text{eluder}} \log T). \quad (5.2)$$

432 This corollary shows that by using standard schedules, such as a decreasing step size $\eta_t \propto 1/t$ and
 433 geometrically increasing ensemble and batch sizes, the approximation errors can be rendered into
 434 constant, lower-order terms, achieving the theoretical ideal.

435 **Remark 5.4.** As discussed in Section 2, the eluder dimension can be related to the intrinsic dimen-
 436 sionality of the learning task. For models fine-tuned with low-rank adaptation (LoRA), the eluder
 437 dimension d_{eluder} is controlled not by the total number of parameters d , but by the much smaller in-
 438 trinsic rank d_* (Hu et al., 2022; Yang et al., 2023). Consequently, the regret bounds in Theorem 5.1
 439 and Corollary 5.3 scale as $\tilde{O}(d_* \log T)$. This provides a direct and rigorous theoretical explanation
 440 for the empirical observation that parameter-efficient fine-tuning methods can achieve high sample
 441 efficiency even on massive models.

443 6 EXTENSIONS TO MARKOV DECISION PROCESSES

444 To demonstrate the versatility and power of our theoretical framework, we extend the analysis from
 445 the contextual bandit setting to the more general and challenging setting of Markov Decision Pro-
 446 cesses (MDPs). This extension requires handling temporal dependencies, long-term credit assign-
 447 ment, and the propagation of uncertainty through Bellman updates. We show that our optimistic
 448 PAC-Bayesian ensemble approach can be naturally adapted to both finite-horizon and discounted
 449 MDPs, yielding analogous logarithmic regret guarantees. Proofs in Appendix Section F.

451 6.1 SETUP FOR PREFERENCE-BASED MDPs

452 A finite-horizon MDP is defined by a tuple $(\mathcal{S}, \mathcal{A}, H, P, r^*, \rho_0)$, where \mathcal{S} is the state space, \mathcal{A} is
 453 the action space, H is the horizon, P are the transition dynamics, r^* is the latent reward function,
 454 and ρ_0 is the initial state distribution. In the preference-based RL setting, the agent does not ob-
 455 serve the numeric rewards $r^*(s, a)$. Instead, it receives preference feedback, typically comparing
 456 entire trajectories or state-action pairs. The agent’s objective is to learn a policy $\pi = \{\pi_h\}_{h=1}^H$ that
 457 maximizes the expected cumulative latent reward.

458 To enable value-based learning algorithms, we require an additional structural assumption beyond
 459 those for the bandit case.

460 **Assumption 6.1.** We assume the function class for the action-value function (Q-function) is ap-
 461 proximately closed under the Bellman optimality operator. That is, for any Q-function in our class,
 462 applying one step of Bellman backup results in a function that is still close to (or within) the class
 463 (Agarwal et al., 2023; Jin et al., 2021). This is a standard assumption in the theory of RL with
 464 function approximation, ensuring that the value functions produced during learning remain repre-
 465 sentable within our chosen model class.

466 6.2 THE O-TDLE ALGORITHM FOR MDPs

467 We adapt our OLE algorithm to the MDP setting, resulting in a method we call Optimistic TD with
 468 Langevin Ensembles (O-TDLE). The core idea remains the same: maintain an ensemble of models
 469 to represent the posterior distribution and use optimistic exploration. The key difference is that the
 470 ensemble now represents the Q-function, and the updates are driven by temporal difference errors.

471 The O-TDLE algorithm (detailed in Algorithm 5) proceeds in episodes. At each step h within an
 472 episode, the agent is in state s_h . It uses its ensemble of Q-function models, $\{Q_{\theta^{(i)}}\}_{i=1}^N$, to compute
 473 an optimistic index for each action $a \in \mathcal{A}$:

$$474 I_h(s_h, a) = \hat{Q}_h(s_h, a) + \kappa_h \cdot \sqrt{\widehat{\text{Var}}_h(Q(s_h, a))}, \quad (6.1)$$

475 where \hat{Q}_h and $\widehat{\text{Var}}_h$ are the mean and variance of the Q-value predictions across the ensemble. The
 476 agent then selects the action $a_h = \arg \max_{a \in \mathcal{A}} I_h(s_h, a)$. After executing the action and observing
 477 the next state s_{h+1} , the agent collects preference data (e.g., by comparing the executed trajectory
 478 segment to a reference—such as a SFT model). This data is then used to perform an SGLD update
 479 on the ensemble parameters $\{\theta^{(i)}\}$, using a loss derived from a Bellman-style TD error consistent
 480 with the preference feedback.

481 **Using the learned reward in MDPs.** In the MDP setting we never assume access to the environ-
 482 ment’s numeric single-step rewards. Instead, as in standard preference-based RL, we posit a latent

486 per-step reward function $r_{\theta^*}(x, a)$ such that preferences over finite trajectories are induced by their
 487 cumulative latent return. Given the observed pairwise preferences, our PAC-Bayesian update on
 488 θ produces a posterior distribution over reward models $r_\theta(\cdot, \cdot)$. At any time t , for a sampled pa-
 489 rameter θ_t we can evaluate the *pseudo-reward* $\tilde{R}_t := r_{\theta_t}(x_t, A_t)$ on the visited state-action pair
 490 (x_t, A_t) . The TD targets in our MDP extension are defined in terms of these pseudo-rewards, e.g.
 491 $y_t = \tilde{R}_t + \gamma V_{\phi_t}(x_{t+1}) = r_{\theta_t}(x_t, A_t) + \gamma V_{\phi_t}(x_{t+1})$, for a value function V_{ϕ_t} with parameters
 492 ϕ_t . Thus the algorithm is implementable from preference feedback: the environment is queried only
 493 for pairwise comparisons, which are used to update the posterior over θ , and all numeric quantities
 494 required by TD are supplied by the learned reward model r_θ .

496 6.3 REGRET ANALYSIS FOR MDPs

497 We prove that the O-TDLE algorithm achieves a logarithmic regret bound in the MDP setting. The
 498 bound now includes a polynomial dependence on the horizon H , which is expected as errors can
 499 propagate and compound over the steps of an episode.

500 **Theorem 6.2.** *Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes,
 501 achieves a cumulative regret that satisfies, with high probability:*

$$503 \text{Regret}(T) = \tilde{\mathcal{O}}(H^2 \cdot d_{\text{eluder}} \cdot \log T) + \text{lower-order approximation terms.} \quad (6.2)$$

504 The lower-order terms for discretization, finite-ensemble, and stochastic gradient errors have a
 505 similar structure to the bandit case, now summed over all steps and episodes.

506 **Remark 6.3** (On the H -dependence). *Our bound incurs an H^2 factor in the leading term, which
 507 is standard for episodic finite-horizon analyses under function approximation. Improving the H -
 508 dependence typically requires stronger structural assumptions (e.g., linear MDPs or Bellman com-
 509 pleteness with additional mixing/realizability properties) or refined variance decompositions; see,
 510 e.g., Azar et al. (2024); Jin et al. (2021).*

511 Our proof for the MDP setting employs a powerful policy decomposition technique, inspired by
 512 recent advances in the analysis of KL-regularized RL with numeric rewards Zhao et al. (2025a).
 513 This technique allows us to reduce the multi-step credit assignment problem to a sequence of bandit-
 514 like analyses, to which our core optimistic exploration argument can be applied. The novelty of
 515 our approach lies in adapting this tool to the preference-based feedback setting and integrating it
 516 within our PAC-Bayesian particle ensemble framework. A similar analysis can be performed for the
 517 infinite-horizon discounted MDP setting, yielding a regret bound with a polynomial dependence on
 518 the effective horizon $(1 - \gamma)^{-1}$.

520 7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

521 In this work, we developed a unified optimistic PAC-Bayesian framework for preference-based
 522 learning that closes several critical gaps between theory and practice. Our analysis provides the
 523 first theoretical explanation for the sample efficiency of modern alignment pipelines by establishing
 524 a near-logarithmic regret bound, $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$, that explicitly accounts for the algorithmic costs
 525 of using finite ensembles, stochastic gradients, and discrete-time updates. Our framework provides
 526 a firm theoretical foundation for the empirical success of methods like DPO (Rafailov et al., 2023)
 527 and connects the complexity of exploration to the intrinsic dimensionality of parameter-efficient
 528 fine-tuning (Aghajanyan et al., 2020; Hu et al., 2022).

529 **Limitations and Future works.** Our theoretical guarantees rely on standard but strong structural
 530 assumptions. The realizability assumption, which posits that the true reward function lies within
 531 the model class, is a significant idealization for complex models like LLMs, which are likely to
 532 be misspecified (Foster & Rakhlin, 2023). Similarly, our extension to MDPs requires Bellman
 533 completeness, a condition known to be restrictive for reinforcement learning with general func-
 534 tion approximation (Agarwal et al., 2023; Golowich & Moitra, 2024; Wu et al., 2024). Finally, the
 535 decoupled structure of our regret bound opens the door to designing adaptive algorithms that can
 536 dynamically schedule computational resources, such as ensemble and mini-batch sizes, to optimally
 537 balance the statistical and computational trade-offs inherent in practical alignment. **Our analysis is**
 538 **purely theoretical. A systematic empirical evaluation of OLE on preference-based RL benchmarks,**
 539 **as well as large-scale RLHF pipelines, is an important direction for future work.**

540
541
ETHICS STATEMENT

542 This work is theoretical, focusing on the algorithmic foundations of preference learning for the
 543 alignment of large language models. As with any alignment methodology, the practical application
 544 of our framework carries potential risks. These include *over-optimization* to the learned reward
 545 model, which may not perfectly capture nuanced human intent, and the potential for malicious *re-
 546 ward hacking*. We emphasize that our algorithms are designed for statistical and computational
 547 efficiency in optimizing a given preference model; they do not define the values inherent in that
 548 model. The collection and curation of the preference data that serves as the source of these values
 549 must be approached with care to respect privacy and mitigate the encoding and amplification of so-
 550 cietal biases. Appropriate guardrails, diverse data sourcing, and multi-faceted evaluation of aligned
 551 models remain necessary to mitigate unintended consequences.

552
553 **THE USE OF LARGE LANGUAGE MODELS**

554 In this work, the authors used generative AI tools (ChatGPT-5) to aid in and polish the writing of this
 555 paper. We use the following prompt to check the language section by section (including abstract):
 556 “Check the following statement, examine if the narrative is professional and understandable for
 557 broader audience in the area of machine learning community, and examine if the language meets
 558 native speaker standard. If not, generate feedback on how should I modify my narratives.” All LLM-
 559 generated content was thoroughly reviewed and verified by the authors prior to inclusion. Research
 560 design, critical analyses, and all final decisions were carried out independently by the authors.

561
562 **REPRODUCIBILITY STATEMENT**
563

564 This work is entirely theoretical. To ensure the reproducibility of our results, we provide complete
 565 and self-contained proofs for all theorems, propositions, and lemmas in the appendix. The appendix
 566 also contains detailed pseudocode for our proposed algorithms (Appendix G), a full discussion of
 567 the structural assumptions (Appendix A), and guidance on the hyperparameter schedules required to
 568 achieve the stated regret bounds. All cross-references within the document are hyperlinked for ease
 569 of navigation.

570
571 **REFERENCES**
572

573 Alekh Agarwal, Yujia Jin, and Tong Zhang. *Vo q l: Towards optimal regret in model-free rl with*
 574 *nonlinear function approximation*. In *The Thirty Sixth Annual Conference on Learning Theory*,
 575 pp. 987–1063. PMLR, 2023.

576 Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. *Intrinsic dimensionality explains the ef-
 577 fectiveness of language model fine-tuning*. *arXiv preprint arXiv:2012.13255*, 2020.

578 Pierre Alquier. *User-friendly introduction to pac-bayes bounds*. *arXiv preprint arXiv:2110.11216*,
 579 2021.

580 Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. *Gradient Flows in Metric Spaces and in*
 581 *the Space of Probability Measures*. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, 2
 582 edition, 2008.

583 Mohammad Gheshlaghi Azar, Zhaohan Daniel Guo, Bilal Piot, Remi Munos, Mark Rowland,
 584 Michal Valko, and Daniele Calandriello. *A general theoretical paradigm to understand learn-
 585 ing from human preferences*. In *International Conference on Artificial Intelligence and Statistics*,
 586 pp. 4447–4455. PMLR, 2024.

587 Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
 588 Yu Han, Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu,
 589 Chengqiang Lu, Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi
 590 Tan, Sinan Tan, Jianhong Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng
 591 Xu, Jin Xu, An Yang, Hao Yang, Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi
 592 Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang, Yichang Zhang, Zhenru Zhang, Chang

594 Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen technical report, 2023. URL
 595 <https://arxiv.org/abs/2309.16609>.

596

597 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
 598 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
 599 assistant with reinforcement learning from human feedback. *arXiv preprint arXiv:2204.05862*,
 600 2022.

601 Viktor Bengs, Aadirupa Saha, and Eyke Hüllermeier. Stochastic contextual dueling bandits under
 602 linear stochastic transitivity models. In *International Conference on Machine Learning*, pp. 1764–
 603 1786. PMLR, 2022.

604 Ralph Allan Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. the method
 605 of paired comparisons. *Biometrika*, 39(3/4):324–345, 1952.

606

607 Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning.
 608 *arXiv preprint arXiv:0712.0248*, 2007.

609

610 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
 611 reinforcement learning from human preferences. *Advances in neural information processing sys-
 612 tems*, 30, 2017.

613

614 Xiangxiang Chu, Hailang Huang, Xiao Zhang, Fei Wei, and Yong Wang. Gpg: A simple and strong
 615 reinforcement learning baseline for model reasoning. *arXiv preprint arXiv:2504.02546*, 2025.

616

617 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 618 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 619 Schulman. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*,
 620 2021.

621

622 Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
 623 Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
 624 *arXiv preprint arXiv:2405.07863*, 2024.

625

626 Dylan J Foster and Alexander Rakhlin. Foundations of reinforcement learning and interactive deci-
 627 sion making. *arXiv preprint arXiv:2312.16730*, 2023.

628

629 Nicolas Fournier and Arnaud Guillin. On the rate of convergence in wasserstein distance of the
 630 empirical measure. *Probability theory and related fields*, 162(3):707–738, 2015.

631

632 David A Freedman. On tail probabilities for martingales. *the Annals of Probability*, pp. 100–118,
 633 1975.

634

635 Noah Golowich and Ankur Moitra. Linear bellman completeness suffices for efficient online re-
 636 enforcement learning with few actions. In *The Thirty Seventh Annual Conference on Learning
 637 Theory*, pp. 1939–1981. PMLR, 2024.

638

639 Benjamin Guedj. A primer on pac-bayesian learning. *arXiv preprint arXiv:1901.05353*, 2019.

640

641 Maxime Haddouche, Paul Viallard, Umut Simsekli, and Benjamin Guedj. A pac-bayesian link
 642 between generalisation and flat minima. *arXiv preprint arXiv:2402.08508*, 2024.

643

644 Elad Hazan, Amit Agarwal, and Satyen Kale. Logarithmic regret algorithms for online convex
 645 optimization. *Machine Learning*, 69(2):169–192, 2007.

646

647 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 648 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

649

650 Chi Jin, Qinghua Liu, and Sobhan Miryoosefi. Bellman eluder dimension: New rich classes of rl
 651 problems, and sample-efficient algorithms. *Advances in neural information processing systems*,
 652 34:13406–13418, 2021.

653

654 Richard Jordan, David Kinderlehrer, and Felix Otto. The variational formulation of the fokker-
 655 planck equation. *SIAM Journal on Mathematical Analysis*, 29(1):1–17, 1998.

648 Tze Leung Lai and Herbert Robbins. Asymptotically efficient adaptive allocation rules. *Advances
649 in applied mathematics*, 6(1):4–22, 1985.
650

651 Gene Li, Pritish Kamath, Dylan J Foster, and Nati Srebro. Understanding the eluder dimension.
652 *Advances in Neural Information Processing Systems*, 35:23737–23750, 2022.
653

654 Linshan Liu, Mateusz B. Majka, and Łukasz Szpruch. Polyak–Łojasiewicz inequality on the space
655 of measures and convergence of mean-field birth-death processes. *Applied Mathematics & Opti-
656 mization*, 87(2):48, 2023.
657

658 Sanae Lotfi, Marc Finzi, Sanyam Kapoor, Andres Potapczynski, Micah Goldblum, and Andrew G
659 Wilson. Pac-bayes compression bounds so tight that they can explain generalization. *Advances
660 in Neural Information Processing Systems*, 35:31459–31473, 2022.
661

662 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.
663

664 David A. McAllester. PAC-bayesian model averaging. In *Proceedings of the Twelfth Annual Con-
665 ference on Computational Learning Theory*, pp. 164–170, 1999.
666

667 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
668 reference-free reward. *Advances in Neural Information Processing Systems*, 37:124198–124235,
669 2024.
670

671 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
672 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
673 low instructions with human feedback. *Advances in neural information processing systems*, 35:
674 27730–27744, 2022.
675

676 A. Pacchiano, A. Saha, and J. Lee. Dueling rl: reinforcement learning with trajectory preferences.
677 *arXiv preprint arXiv:2111.04850*, 2021.
678

679 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
680 Finn. Direct preference optimization: Your language model is secretly a reward model. *Advances
681 in neural information processing systems*, 36:53728–53741, 2023.
682

683 Daniel Russo and Benjamin Van Roy. Eluder dimension and the sample complexity of optimistic
684 exploration. *Advances in Neural Information Processing Systems*, 26, 2013.
685

686 Daniel Russo and Benjamin Van Roy. Learning to optimize via posterior sampling. *Mathematics of
687 Operations Research*, 39(4):1221–1243, 2014.
688

689 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
690 optimization algorithms, 2017.
691

692 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
693 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
694 reasoning in open language models, 2024.
695

696 Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
697 Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. In *EuroSys*,
698 2025.
699

700 Taiji Suzuki, Denny Wu, and Atsushi Nitanda. Mean-field langevin dynamics: Time-space dis-
cretization, stochastic gradient, and variance reduction. In *NeurIPS*, 2023.
701

702 Alain-Sol Sznitman. Topics in propagation of chaos. In *Ecole d’été de probabilités de Saint-Flour
XIX—1989*, pp. 165–251. Springer, 2006.
703

704 Louis L Thurstone. A law of comparative judgment. In *Scaling*, pp. 81–92. Routledge, 2017.
705

706 Cédric Villani. *Optimal Transport: Old and New*, volume 338. Springer, 2008.
707

708 Yuanhao Wang, Qinghua Liu, and Chi Jin. Is rlhf more difficult than standard rl? a theoretical
709 perspective. *Advances in Neural Information Processing Systems*, 36:76006–76032, 2023.
710

702 Runzhe Wu, Ayush Sekhari, Akshay Krishnamurthy, and Wen Sun. Computationally efficient rl
 703 under linear bellman completeness for deterministic dynamics. *arXiv preprint arXiv:2406.11810*,
 704 2024.

705 W. Xiong, H. Dong, C. Ye, Z. Wang, H. Zhong, H. Ji, N. Jiang, and T Zhang. Iterative preference
 706 learning from human feedback: Bridging theory and practice for rlhf under kl-constraint. In
 707 *Forty-first International Conference on Machine Learning*, 2024.

708 Adam X Yang, Maxime Robeysns, Xi Wang, and Laurence Aitchison. Bayesian low-rank adaptation
 709 for large language models. *arXiv preprint arXiv:2308.13111*, 2023.

710 Qiyi Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 711 Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
 712 at scale, 2025.

713 Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval systems as a
 714 dueling bandits problem. In *Proceedings of the 26th Annual International Conference on Machine
 715 Learning*, 2009.

716 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten Joachims. The k-armed dueling bandits
 717 problem. *Journal of Computer and System Sciences*, 78(5):1538–1556, 2012.

718 T Zhang. *Mathematical analysis of machine learning algorithms*. Cambridge University Press,
 719 2023.

720 Tong Zhang. Feel-good thompson sampling for contextual bandits and reinforcement learning. *SIAM
 721 Journal on Mathematics of Data Science*, 4(2):834–857, 2022.

722 Heyang Zhao, Chenlu Ye, Quanquan Gu, and Tong Zhang. Sharp analysis for kl-regularized con-
 723 textual bandits and rlhf. *arXiv preprint arXiv:2411.04625*, 2024.

724 Heyang Zhao, Chenlu Ye, Wei Xiong, Quanquan Gu, and Tong Zhang. Logarithmic regret for online
 725 kl-regularized reinforcement learning. *arXiv preprint arXiv:2502.07460*, 2025a.

726 Qingyue Zhao, Kaixuan Ji, Heyang Zhao, Tong Zhang, and Quanquan Gu. Nearly optimal sample
 727 complexity of offline kl-regularized contextual bandits under single-policy concentrability. *arXiv
 728 e-prints*, pp. arXiv–2502, 2025b.

733

734 APPENDIX CONTENTS

735

736 • **Section A:** Notation used throughout and additional background definitions (including the
 737 formal eluder definition and its variance–information link).

738 • **Section B:** Extended related work.

739 • **Section C:** Canonical smoothed/projected–KL PAC-Bayes bound with full proofs.

740 • **Section D:** Technical lemmas (variance–information inequality, discretization, stochastic-
 741 gradient control, Monte Carlo concentration).

742 • **Section E:** Complete statements and proofs of the unified regret theorem and supporting
 743 results.

744 • **Section F:** Full proofs for finite-horizon and discounted MDP extensions.

745 • **Section G:** Implementation notes and additional pseudocode.

746 • **Section H:** Minimal empirical study validating the efficacy of OLE algorithm.

747 • **Section I:** Discuss the logarithmic lower bound in the BTL preference setting.

750

751 A NOTATION AND ADDITIONAL BACKGROUND

752

753 This appendix provides the complete theoretical underpinnings for the results presented in the main
 754 paper. We begin by establishing a unified notational system and providing a deeper discussion of
 755 the foundational concepts that motivate our work. This ensures the appendix is self-contained and
 accessible to readers with background in machine learning.

756 A.1 NOTATION
757758 We summarize the most frequently used symbols throughout the paper and this appendix in Table 2
759 for ease of reference. This consistent notation is crucial for maintaining clarity throughout the
760 complex derivations that follow.
761762 Table 2: Notation used throughout the paper and appendix.
763

764 Symbol	764 Meaning
765 \mathcal{X}, \mathcal{Y}	765 Context and candidate/output spaces
766 \mathcal{S}, \mathcal{A}	766 State and action spaces (for MDPs)
767 $r^*(\cdot)$	767 Ground-truth latent reward function, parameterized by θ^*
768 Θ	768 Parameter space for the reward models
769 $\mathcal{R} = \{r_\theta : \theta \in \Theta\}$	769 Realizable reward function class
770 π, π_t	770 Policy (at round t)
771 Π_t, μ_t	771 Posterior distribution over parameters θ at round t
772 μ_t^N	772 Empirical measure of the N -particle ensemble at time t
773 $(\mathcal{F}_t)_{t \geq 0}$	773 Natural filtration (history) up to the end of round t
774 feedback $_t$	774 Preference feedback observed at round t
775 N_t, B_t, η_t	775 Ensemble size, mini-batch size, and step size at round t
776 w_t	776 Width of the confidence set \mathcal{G}_t at the queried pair at round t
777 V_t	777 Posterior predictive variance of the queried logit difference at round t
778 v_t^2, σ_t^2	778 Conditional variance and sub-Gaussian noise proxy at round t
779 d_{eluder}	779 Eluder dimension of the reward function class \mathcal{R}
780 γ	780 Discount factor (for discounted MDPs)
781 β	781 Inverse temperature in the PAC-Bayesian objective and SGLD updates
782 κ_t	782 Optimism/bonus coefficient at round t
783 Regret(T)	783 Cumulative preference regret up to time T
784 $W_2(\cdot, \cdot)$	784 2-Wasserstein distance between probability measures

785 A.2 ASSUMPTION CHECKLIST
786787 *How to read Table 3.* Each row states an assumption (or group of related assumptions), its informal
788 meaning, and the main theorems/lemmas where it is used. This makes it easier to trace which
789 structural conditions drive each part of the regret analysis.
790791 *How to read Table 4.* We separate the bandit and finite-horizon MDP settings and indicate which
792 assumptions are required in each case. This helps clarify which structural conditions are specific to
793 the MDP extension (e.g., Bellman completeness) versus those already present in the bandit analysis.
794795 A.3 DETAILED DISCUSSION OF THEORETICAL GAPS
796797 The introduction highlighted four critical gaps between idealized theory and practical RLHF imple-
798 ments. Here, we elaborate on why each gap presents a formidable theoretical challenge and
799 how their interplay necessitates a unified analysis.

- 800 **• Gap 1 (Finite Ensembles vs. Mean-Field):** Many theoretical analyses of particle-based systems,
801 especially those leveraging tools from optimal transport (Jordan et al., 1998; Ambrosio et al.,
802 2008), operate in the mean-field limit where the number of particles $N \rightarrow \infty$. In this limit, the
803 empirical distribution of particles converges to the solution of a deterministic partial differential
804 equation (the Fokker-Planck equation), a phenomenon known as propagation of chaos (Sznitman,
805 2006). However, practical implementations use small, finite ensembles (N is often less than 10).
806 This introduces a non-trivial Monte Carlo sampling error at each step, as the interaction term in
807 the particle dynamics depends on the empirical measure, not the true mean-field distribution. Our
808 analysis must quantify this error and ensure it does not accumulate uncontrollably.
- 809 **• Gap 2 (Stochastic vs. Exact Gradients):** Large-scale model training is computationally in-
feasible without mini-batch stochastic gradients. While the noise introduced by mini-batching is

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 3: Assumptions at a glance: informal summary and where they enter the analysis.

Name	Informal content	Used in
Realizability and bounded Θ	Rewards lie in the model class \mathcal{R} ; parameters lie in a bounded ball Θ	Theorem 5.1, Theorem D.8, Theorem D.1
Lipschitz continuity	Reward model (and loss) are L -Lipschitz in θ on Θ	Theorem 3.2, Theorem D.8, Theorems D.10 and E.2, Theorem 5.1
Finite eluder dimension	\mathcal{R} has finite ε -eluder dimension	Theorem D.8, Theorem E.4, Theorem 5.1
Langevin drift regularity	Drift of the mean-field Langevin SDE is Lipschitz and coercive	Theorem E.3
Martingale / variance control	Martingale increments are sub-Gaussian with bounded conditional variances	Theorems D.10, D.11, E.1 and E.2

Table 4: Assumptions by setting.

Setting	Active assumptions
Contextual bandits / preference bandits	Theorems 2.1 to 2.3
Finite-horizon MDPs with preference feedback	Theorems 2.1, 2.2 and 6.1

zero-mean, its cumulative effect over T rounds is a significant source of error. The variance of this noise depends on the batch size B_t and the local curvature of the loss landscape. A rigorous analysis cannot simply assume gradients are exact; it must employ tools like martingale concentration inequalities to bound the accumulated deviation caused by this stochasticity.

- **Gap 3 (Discrete-Time vs. Continuous-Time):** The Wasserstein gradient flow perspective provides a powerful, continuous-time picture of the ideal optimization path. However, algorithms are implemented with a discrete step size η_t . The standard method for discretizing the underlying Langevin SDE is the Euler-Maruyama scheme. This introduces a discretization bias at each step, and the cumulative bias can grow linearly with T if not carefully controlled, potentially overwhelming the desired logarithmic regret term. Our analysis must explicitly account for this weak error and show how to manage it with a proper step-size schedule.

- **Gap 4 (Tractable vs. Intractable Uncertainty):** The principle of optimism requires an upper confidence bound on the true reward function. For complex models like neural networks, the true Bayesian posterior variance is intractable to compute. Practical algorithms use the variance of predictions across the finite ensemble as a proxy for uncertainty. While intuitive, it is not a priori guaranteed that this ensemble variance is a valid upper bound on the true posterior uncertainty. A central part of our theoretical contribution is to formally justify this proxy and prove that it is sufficient to drive efficient exploration.

A crucial point is the interdependence of these gaps. The noise from stochastic gradients (Gap 2) can interact with and amplify the discretization error (Gap 3). The quality of the finite-ensemble approximation (Gap 1) directly determines the reliability of the uncertainty proxy used for exploration (Gap 4). A successful theory, therefore, cannot analyze these in isolation. Our unified framework is designed to bound the sum of these interacting error terms, demonstrating that their interplay does not lead to a catastrophic amplification of regret.

A.4 CONTRIBUTIONS TO FORMAL RESULTS MAP

To provide a clear roadmap for the reader, Table 5 explicitly links the main contributions of this work to the formal theorems and proofs contained within this appendix. This table serves as a guide to verifying each of our central claims.

Table 5: Map of contributions to their formal statements and proofs in the appendix.

Contribution	Formal statement (proof location)
Unified PAC-Bayesian particle theory	Theorem D.1 (App. D.1)
Unified regret bound for bandits	Statement Theorem 5.1 (App. E.2)
Finite-sample approximation error decomposition	Theorems E.1 to E.3 and equation E.16 (App. D.4)
Extension to finite-horizon MDPs with preferences	Theorem 6.2 and Section F.1 (App. F.2)
Extension to discounted MDPs with preferences	Section F.1 (App. F.3)
Eluder dimension for LoRA-style parametrizations	Theorem D.4 (App. D.3)
Fast-rate exploration term (logarithmic regret mechanism)	Theorem E.4 (App. E.2)
Algorithmic pseudocode (OLE / OTSLE / OTDLE)	Algorithms 2, 3 and 5 (App. G.2)

864 **B EXTENDED RELATED WORK**
865866 Our work connects to and builds upon several distinct but related lines of research in machine learn-
867 ing theory and practice.
868869 **RLHF and Direct Preference Optimization.** The modern paradigm of aligning LLMs was es-
870 tablished by large-scale RLHF pipelines (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024),
871 which combine preference data collection, reward modeling, and policy optimization. More recent
872 direct preference optimization methods, such as DPO and its variants (Rafailov et al., 2023; Meng
873 et al., 2024), have streamlined this process and demonstrated strong empirical performance. Our
874 work provides a foundational theoretical explanation for the remarkable sample efficiency observed
875 in these practical systems, showing that near-logarithmic regret is achievable.
876877 **Preference Learning, Dueling Bandits, and RL with Preferences.** The problem of learning
878 from comparative feedback has a long history, rooted in foundational statistical models like the
879 Bradley-Terry-Luce model (Bradley & Terry, 1952; Luce et al., 1959; Thurstone, 2017). In the
880 online setting, this problem is formalized as the *dueling bandits* problem, for which a rich body
881 of literature provides sample complexity guarantees, typically achieving $\tilde{\mathcal{O}}(\sqrt{T})$ regret in general
882 settings and $\tilde{\mathcal{O}}(\log T)$ in more restricted tabular or linear cases (Yue & Joachims, 2009; Yue et al.,
883 2012). Extensions to reinforcement learning with preferences have been studied, but these analyses
884 often yield sub-optimal $\tilde{\mathcal{O}}(\sqrt{T})$ regret for general function classes (Wang et al., 2023; Pacchiano
885 et al., 2021). Our work is the first to establish a near-logarithmic regret bound for preference-based
886 RL with general non-linear function approximation.
887888 **Relation to contextual dueling bandits.** In the linear contextual dueling bandit setting of Bengs
889 et al. (2022), the learner chooses a *pair* of actions at each round and receives a noisy comparison
890 between them. They study weak/strong dueling regret, defined in terms of how often the chosen
891 pair loses (or fails to win) against the best arm, and show a minimax $\Omega(d\sqrt{T})$ lower bound for this
892 pairwise regret. In contrast, our setting is single-action selection with pairwise feedback: the learner
893 chooses a single action y_t , may query preferences involving y_t , and we measure *standard* single-
894 action cumulative regret $\text{Regret}(T) = \sum_{t=1}^T (r^*(x_t, y^*(x_t)) - r^*(x_t, y_t))$. Our $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$
895 bound is a uniform fast-rate guarantee over all instances that satisfy our structural assumptions
896 (realizability, boundedness, Lipschitz continuity, finite eluder dimension, and a BTL preference
897 model), for this single-action regret. Since the action space and regret notion are different, the
898 $\Omega(d\sqrt{T})$ dueling lower bound does not apply directly to our setting, and there is no contradiction
899 between their result and our minimax bound.
900901 **KL-Regularized Bandits and RL (Numeric Rewards).** Our work is complementary to the im-
902 portant and emerging body of theory on KL-regularized bandits and RL, which has also achieved
903 logarithmic regret guarantees but in the distinct setting of *numeric rewards* (Xiong et al., 2024; Zhao
904 et al., 2024; 2025a;b) and often under additional structural assumptions like data coverage. While
905 this parallel line of work provides deep insights into policy optimization given a numeric reward, our
906 work addresses the more foundational problem of learning the reward function itself from *pairwise*
907 *preference feedback*. This is the canonical setup for RLHF and DPO, where the reward model is the
908 primary object to be learned from human comparisons. Our analysis is therefore algorithm-native,
909 deriving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from
910 the specific optimization landscape of a KL-regularized objective.
911912 Specifically, we would like to highlight the difference between our result and the result developed
913 by Zhao et al. (2025a). Zhao et al. (2025a) has established $\tilde{\mathcal{O}}(\log T)$ bounds for the *KL-regularized*
914 *regret*, namely the suboptimality of the KL-regularized objective itself. Our results are comple-
915 *mentary*: we obtain a $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$ bound for the *standard cumulative regret* $\text{Regret}(T)$ in a
916 pairwise-preference setting under realizability condition. We reference Zhao et al. (2025a) to high-
917 light a shared eluder-dimension mechanism—in both cases, a sum-of-squares uncertainty term con-
918 trols the cumulative suboptimality—rather than to equate their KL-regularized objective with our
919 standard regret.
920

918 **PAC-Bayes, Optimism, and Thompson Sampling.** Our theoretical approach is built on the foun-
 919 dations of PAC-Bayesian learning theory, which provides powerful, high-probability generalization
 920 bounds for randomized predictors (McAllester, 1999; Catoni, 2007; Alquier, 2021; Guedj, 2019).
 921 Recent work has shown the power of PAC-Bayesian analysis for explaining generalization in deep
 922 learning (Lotfi et al., 2022; Haddouche et al., 2024). We combine these tools with the classical
 923 principle of optimism-in-the-face-of-uncertainty from the bandit literature (Hazan et al., 2007). The
 924 complexity of exploration in our framework is measured by the eluder dimension (Russo & Van Roy,
 925 2013; 2014), a concept central to achieving logarithmic regret in benign regimes. Our optimistic pos-
 926 terior update mechanism is conceptually related to feel-good Thompson sampling (Zhang, 2022), but
 927 is tailored to the preference-based setting and analyzed via PAC-Bayesian tools.

928 **Particle Approximations and Optimal-Transport Tools.** To rigorously analyze the behavior of
 929 our finite-ensemble algorithm, we interpret its dynamics as a discretization of a Wasserstein gradient
 930 flow on the space of probability measures (Jordan et al., 1998). We control the approximation error
 931 introduced by the finite number of particles using tools from optimal transport theory and the study
 932 of empirical measures (Ambrosio et al., 2008; Villani, 2008; Fournier & Guillin, 2015; Sznitman,
 933 2006). The analysis of the stochastic gradient and discretization errors is informed by the literature
 934 on the convergence of stochastic-gradient Langevin-type methods (Liu et al., 2023; Suzuki et al.,
 935 2023), allowing us to derive explicit, non-asymptotic lower-order terms in our regret bound.

936 In summary, prior analyses for preference-based learning typically achieve $\tilde{\mathcal{O}}(\sqrt{T})$ regret for gen-
 937 eral function classes. In parallel, analyses of KL-regularized learning with numeric rewards have
 938 achieved $\tilde{\mathcal{O}}(\log T)$ regret, sometimes under strong assumptions. Our work is the first to deliver a
 939 near-logarithmic regret bound for the fundamental problem of *pairwise preference feedback* within
 940 a framework that is faithful to the practical algorithms used in RLHF, thereby **helps bridge the gap**
 941 **between theory and practice by providing logarithmic regret guarantees for preference-based RL in**
 942 **a framework that mirrors key aspects of RLHF-style pipelines (KL-regularized objectives, pairwise**
 943 **feedback, finite ensembles, and noisy stochastic gradients), while leaving a full empirical study for**
 944 **future work.**

946 B.1 COMPARISON AGAINST CLOSELY RELATED WORKS

947 **Comparison with the works in Table B.1.** Table B.1 collects the most closely related results
 948 and makes explicit that they differ along three axes: (i) the *setting and feedback model* (dueling
 949 vs. single-action, non-contextual vs. contextual, bandit vs. MDP, absolute rewards vs. preference
 950 feedback), (ii) the *objective / regret notion* (single-action regret, dueling regret, KL-regularized
 951 regret, Bayesian regret, or ε -optimality sample complexity), and (iii) the *assumptions* (realizability
 952 and bounded eluder dimension, stochastic transitivity, coverage conditions, etc.).

953 **Yue et al. (2012).** They study a non-contextual K -armed dueling bandit problem where the *action*
 954 is a pair of arms and the feedback is a noisy comparison between them. Regret is defined in terms
 955 of the probability that the unique best arm would win a duel against the chosen pair, with separate
 956 notions of strong and weak dueling regret. Under strong stochastic transitivity and a stochastic trian-
 957 gle inequality on pairwise win probabilities, they obtain expected regret $\mathbb{E}[R_T] = O(K\varepsilon_{1,2}^{-1} \log T)$
 958 and prove a matching lower bound $\Omega(K\varepsilon^{-1} \log T)$. Our setting is contextual and optimizes *single-
 959 action regret* (the gap in latent reward between the chosen action and the optimal action), while only
 960 the *observations* are pairwise. We do not assume a finite K or a total order over a fixed set of arms.

961 **Wang et al. (2023).** This work analyzes RLHF with preference feedback and gives *sample-
 962 complexity* guarantees for learning an ε -optimal policy (or a von Neumann winner) via re-
 963 ductions from preference-based RL to standard reward-based RL. Their bounds scale as
 964 $\tilde{\mathcal{O}}(H^2 d_P |\Pi_{\text{exp}}|^2 \log |\mathcal{P}|/\varepsilon^2 + H d_R |\Pi_{\text{exp}}|/\varepsilon)$ episodes (plus a separate query-complexity term),
 965 and they do not study online regret as a function of T . By contrast, our focus is on online regret in
 966 our preference-based model; the induced sample complexity follows from standard online-to-batch
 967 conversion.

968 **Zhao et al. (2025).** Zhao et al. consider contextual bandits and MDPs with *absolute reward* feedback
 969 and optimize the *KL-regularized objective* $J(\pi) = \mathbb{E}[R^*(x, a)] - \eta^{-1} \text{KL}(\pi(\cdot|x) \parallel \pi_{\text{ref}}(\cdot|x))$. They

972
973 **Table 6: Comparison of our results with closely related studies. The rows differ in setting/feedback,**
974 **objective/regret notion, and assumptions. Our main contribution is a logarithmic-in- T single-action**
975 **regret bound under preference feedback and bounded eluder dimension.**

Work	Setting & feedback	Objective / regret notion	Key assumptions & guarantee (in T or ε)
This paper	Contextual bandit / episodic; single action chosen, <i>pairwise</i> (preference) observations.	Standard cumulative <i>single-action regret</i> (latent reward gap between chosen and optimal action).	Realizability of reward/preference in a function class with bounded eluder dimension; mild curvature/low-noise condition on the link. Regret $\tilde{O}(d_E \log T)$ in T .
Yue et al. (2012)	Non-contextual K -armed dueling bandits; action is a <i>pair</i> of arms with noisy comparison feedback.	Strong/weak <i>dueling regret</i> w.r.t. win probability of the best arm vs. chosen pair.	Strong stochastic transitivity and stochastic triangle inequality on pairwise win probabilities. $\mathbb{E}[R_T] = O(K\varepsilon_{1,2}^{-1} \log T)$ and lower bound $\Omega(K\varepsilon^{-1} \log T)$.
Wang et al. (2023)	General RLHF (MDPs with $H > 1$); trajectory or (s, a) -level preference feedback.	<i>Sample complexity</i> to obtain an ε -optimal policy (or von Neumann winner); no explicit regret in T .	Realizability of reward or preference classes; Bellman- or generalized-eluder dimension bounds. Sample complexity $\tilde{O}(H^2 d_P \Pi_{\text{exp}} ^2 \log \mathcal{P} / \varepsilon^2 + H d_R \Pi_{\text{exp}} / \varepsilon)$ (plus query complexity).
Zhao et al. (2025)	Contextual bandits and MDPs with <i>absolute</i> rewards and known reference policy.	<i>KL-regularized</i> regret in $J(\pi) = \mathbb{E}[R^*] - \eta^{-1} \text{KL}(\pi \ \pi_{\text{ref}})$.	Realizability for reward class with bounded eluder dimension. Regret $O(\eta d_R \log(N_R T))$ for bandits, and analogous bound with H -dependence for MDPs.
Russo & Van Roy (2014)	Stochastic bandits (including contextual) with general function approximation; absolute rewards.	<i>Bayesian</i> cumulative regret under a prior; no preferences or KL-regularization.	Eluder dimension and Kolmogorov dimension of reward class. $\text{BayesRegret}(T) \leq \tilde{O}(\sigma \sqrt{d_E(F, 1/T) T})$, giving $\tilde{O}(d\sqrt{T})$ for linear models (not $O(d \log T)$).

1006 prove that their KL-UCB and KL-LSVI-UCB algorithms achieve $O(\eta d_R \log(N_R T))$ regret in this
1007 KL-regularized objective (with additional H -dependence in MDPs). We cite this work because it
1008 also uses eluder-based *sum-of-squares* arguments to obtain logarithmic dependence on T , but the
1009 objective differs: our main theorems are stated for standard cumulative regret in our preference-
1010 based model.

1011 **Russo & Van Roy (2014).** Russo and Van Roy introduce the eluder dimension and analyze pos-
1012 terior sampling (Thompson sampling) for general stochastic bandit models. Their main results are
1013 *Bayesian regret* bounds of the form $\text{BayesRegret}(T) \leq \tilde{O}(\sigma \sqrt{d_E(F, 1/T) T})$, which specialize to
1014 $\tilde{O}(d\sqrt{T})$ (up to logarithms) for linear models. We only use their notion of eluder dimension as a
1015 complexity measure; our logarithmic dependence on T arises from a different squared-gap decom-
1016 position that is specific to our model. In the revised version, we will correct our earlier informal
1017 summary from $O(d \log T)$ to $\tilde{O}(d\sqrt{T})$.

1019 **C SMOOTHED/PROJECTED-KL PAC-BAYES AND WGF: FULL STATEMENTS
1020 AND PROOFS**

1021 This section collects the technical results that underlie the smoothed/projected-KL PAC-Bayes
1022 bound and its Wasserstein gradient-flow interpretation used in the main text. We organize the mate-
1023 rial as follows:

1026 (i) In Theorems C.1 and C.3 we formalize the smoothing kernel S and the induced projected
 1027 KL divergence D_{KLS} , and we record the basic properties needed later (chiefly the data-
 1028 processing inequality).
 1029 (ii) Theorem C.4 states and proves the full smoothed/projected–KL PAC-Bayes generalization
 1030 bound, including the Gaussian specialization that we plug into the regret analysis.
 1031 (iii) In the final subsection we spell out the Wasserstein gradient-flow calculus for the PAC-
 1032 Bayesian free-energy functional J_{PAC} , and we show how it gives the Fokker–Planck equa-
 1033 tion tracked by our idealized particle dynamics.
 1034

1035 Purely measure-theoretic details and the episode budget/scheduling lemmas used in the regret proof
 1036 are deferred to Section D and Section E.

1037 C.1 PROJECTED–KL SMOOTHING AND BASIC PROPERTIES

1039 We recall the projected divergence used in the main text.

1040 **Definition C.1** (Smoothing kernel and pushforward). *Let (Θ, \mathcal{B}) be a measurable parameter space.
 1041 A smoothing kernel is a Markov kernel $S : \Theta \times \mathcal{B} \rightarrow [0, 1]$, i.e., for each $\theta \in \Theta$, $S(\theta, \cdot)$ is a
 1042 probability measure and for each $A \in \mathcal{B}$, $\theta \mapsto S(\theta, A)$ is measurable. For a probability measure
 1043 $\mu \in \mathcal{P}(\Theta)$, its pushforward by S is*

$$1044 (S_{\#}\mu)(A) := \int_{\Theta} S(\theta, A) \mu(d\theta), \quad A \in \mathcal{B}.$$

1045 When $\Theta = \mathbb{R}^d$ and $h > 0$, the Gaussian smoothing kernel is $S_h(\theta, \cdot) := \mathcal{N}(\theta, h^2 I_d)$, in which case
 1046 $S_{h,\#}\mu = \mu * \mathcal{N}(0, h^2 I_d)$ is the usual Gaussian convolution. We write $S_h := S_{h,\#}\mu$ for brevity.

1047 **Remark C.2** (Interpretation of smoothing and projected KL). *Intuitively, the kernel $S(\theta, \cdot)$ replaces
 1048 a deterministic parameter θ by a small cloud of nearby parameters. Sampling $\theta \sim \mu$ and then $\tilde{\theta} \sim
 1049 S(\theta, \cdot)$ produces a random “smoothed parameter” $\tilde{\theta}$ with law $S_{\#}\mu$. The projected KL divergence
 1050*

$$1051 D_{\text{KLS}}(\mu \parallel \Pi) = D_{\text{KL}}(S_{\#}\mu \parallel S_{\#}\Pi)$$

1052 therefore compares μ and Π only through their smoothed versions. By the data-processing inequality
 1053 we always have $D_{\text{KLS}}(\mu \parallel \Pi) \leq D_{\text{KL}}(\mu \parallel \Pi)$ whenever the latter is finite, so D_{KLS} is a more forgiving
 1054 complexity term. This is precisely the divergence that appears in the smoothed PAC-Bayes bound of
 1055 Theorem C.4.

1056 **Definition C.3** (Projected/Smoothed KL). *For $\mu, \Pi \in \mathcal{P}(\Theta)$ and any smoothing kernel S , define the
 1057 projected (smoothed) KL by*

$$1058 D_{\text{KLS}}(\mu \parallel \Pi) := D_{\text{KL}}(S_{\#}\mu \parallel S_{\#}\Pi).$$

1059 By data processing for f -divergences, $D_{\text{KLS}}(\mu \parallel \Pi) \leq D_{\text{KL}}(\mu \parallel \Pi)$ when the right-hand side is finite.
 1060 For the Gaussian kernel of Definition C.1, we write $D_{\text{KLS}_h}(\mu \parallel \Pi) := D_{\text{KL}}(S_{h,\#}\mu \parallel S_{h,\#}\Pi)$.

1061 **Risk notation (for convenience).** For a distribution μ over parameters, a dataset $S = (z_1, \dots, z_m)$
 1062 of size m , and a data distribution \mathcal{D} over examples z , we recall the randomized predictor risks

$$1063 \text{Risk}\mu_S := \frac{1}{m} \sum_{i=1}^m \mathbb{E}_{\theta \sim \mu} \ell_{\theta}(z_i), \quad \text{Risk}\mu_{\mathcal{D}} := \mathbb{E}_{z \sim \mathcal{D}} \mathbb{E}_{\theta \sim \mu} \ell_{\theta}(z).$$

1064 These coincide with the empirical and population risks used in the main text.

1065 C.2 SMOOTHED/PROJECTED–KL PAC-BAYES BOUND: FULL STATEMENT AND PROOF

1066 We now give the full version of Theorem 3.2 including constants and a convenient specialization for
 1067 Gaussian priors.

1068 **Theorem C.4** (PAC-Bayes via smoothing; full). *Assume $\ell_{\theta}(z) \in [0, 1]$ is L -Lipschitz in θ for each
 1069 z . Let $S = \{z_i\}_{i=1}^m \stackrel{i.i.d.}{\sim} \mathcal{D}$, and let $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_i}$ be any N -particle posterior (possibly data-
 1070 dependent). For any prior Π independent of S , any $h > 0$, and any $\delta \in (0, 1)$, with probability at
 1071 least $1 - \delta$ over S ,*

$$1072 \text{Risk}\mu_{\mathcal{D}}^N \leq \text{Risk}\mu_S^N + Lh \mathbb{E}\|Z\| + \sqrt{\frac{D_{\text{KLS}_h}(\mu^N \parallel \Pi) + \ln(2m/\delta)}{2m}},$$

1080 where $Z \sim \mathcal{N}(0, I_d)$ so that $\mathbb{E}\|Z\| \leq \sqrt{d}$. Moreover, if $\Pi = \mathcal{N}(\theta_0, \sigma_0^2 I_d)$, then
 1081

$$1082 D_{\text{KLS}_h}(\mu^N \|\Pi) \leq \frac{1}{2N(\sigma_0^2 + h^2)} \sum_{i=1}^N \|\theta_i - \theta_0\|^2 + \frac{d}{2} \phi\left(\frac{h^2}{\sigma_0^2 + h^2}\right), \\ 1083 1084$$

1085 with $\phi(\rho) = \rho - 1 - \ln \rho$.

1086 **Remark C.5** (Connection to the main regret bound). In the regret analysis of Section E.1 we would
 1087 apply Theorem C.4 with μ^N equal to the empirical measure of the N particles at the beginning of
 1088 an episode, and with the smoothing scale h chosen according to the schedule specified in Section E.
 1089 The Gaussian specialization controls the complexity term $D_{\text{KLS}_h}(\mu^N \|\Pi)$ by the squared distance
 1090 of the particles from the Gaussian prior mean θ_0 :

$$1091 D_{\text{KLS}_h}(\mu^N \|\Pi) \lesssim \frac{1}{N(\sigma_0^2 + h^2)} \sum_{i=1}^N \|\theta_i - \theta_0\|^2 + d, \\ 1092 1093$$

1094 which is in turn bounded along the dynamics using the stability and step-size conditions proved in
 1095 Section E. This is the only place where the explicit form of D_{KLS_h} for Gaussian priors enters the
 1096 regret bound.
 1097

1098 *Proof.* Apply a standard PAC-Bayes bound for bounded losses (e.g., empirical Bernstein/McAllester-style) to the smoothed posterior $\mathsf{S}_{h,\#}\mu^N$ and prior $\mathsf{S}_{h,\#}\Pi$:

$$1101 \text{Risk}\mathsf{S}_{h,\#}\mu^N_{\mathcal{D}} \leq \text{Risk}\mathsf{S}_{h,\#}\mu^N_{\mathcal{S}} + \sqrt{\frac{D_{\text{KL}}(\mathsf{S}_{h,\#}\mu^N \|\mathsf{S}_{h,\#}\Pi) + \ln(2m/\delta)}{2m}}. \\ 1102 1103$$

1104 Lipschitzness and Gaussian smoothing yield the bias control $\text{Risk}\mu^N_{\mathcal{D}} \leq \text{Risk}\mathsf{S}_{h,\#}\mu^N_{\mathcal{D}} +$
 1105 $Lh\mathbb{E}\|Z\|$ and $\text{Risk}\mathsf{S}_{h,\#}\mu^N_{\mathcal{S}} \leq \text{Risk}\mu^N_{\mathcal{S}} + Lh\mathbb{E}\|Z\|$, whence

$$1107 \text{Risk}\mu^N_{\mathcal{D}} \leq \text{Risk}\mu^N_{\mathcal{S}} + Lh\mathbb{E}\|Z\| + \sqrt{\frac{D_{\text{KLS}_h}(\mu^N \|\Pi) + \ln(2m/\delta)}{2m}}, \\ 1108$$

1109 using $D_{\text{KLS}_h}(\mu^N \|\Pi) = D_{\text{KL}}(\mathsf{S}_{h,\#}\mu^N \|\mathsf{S}_{h,\#}\Pi)$ (definition) and $\mathbb{E}\|Z\| \leq \sqrt{d}$. For the Gaussian-
 1110 prior specialization, compute the KL between Gaussians:

$$1112 D_{\text{KL}}\left(\mathcal{N}(\theta_i, h^2 I_d) \middle\| \mathcal{N}(\theta_0, (\sigma_0^2 + h^2) I_d)\right) = \frac{\|\theta_i - \theta_0\|^2}{2(\sigma_0^2 + h^2)} + \frac{d}{2} \phi\left(\frac{h^2}{\sigma_0^2 + h^2}\right), \\ 1113$$

1114 and average over $i = 1, \dots, N$. This proves the claim. \square
 1115

1116 **Gaussian prior specialization.** If $\Pi = \mathcal{N}(\theta_0, \sigma_0^2 I_d)$ and $\mu^N = \frac{1}{N} \sum_{i=1}^N \delta_{\theta_i}$, then
 1117

$$1118 D_{\text{KLS}_h}(\mu^N \|\Pi) = \frac{1}{N} \sum_{i=1}^N D_{\text{KL}}\left(\mathcal{N}(\theta_i, h^2 I_d) \middle\| \mathcal{N}(\theta_0, (\sigma_0^2 + h^2) I_d)\right) \\ 1119 1120$$

1121 with

$$1123 D_{\text{KL}}\left(\mathcal{N}(\theta_i, h^2 I_d) \middle\| \mathcal{N}(\theta_0, (\sigma_0^2 + h^2) I_d)\right) = \frac{\|\theta_i - \theta_0\|^2}{2(\sigma_0^2 + h^2)} + \frac{d}{2} \phi\left(\frac{h^2}{\sigma_0^2 + h^2}\right), \quad \phi(\rho) = \rho - 1 - \ln \rho. \\ 1124$$

1125 C.3 WASSERSTEIN GRADIENT-FLOW CALCULUS USED IN THE MAIN TEXT

1127 For completeness we record the standard Wasserstein gradient-flow formulation of the PAC-
 1128 Bayesian objective used in Section 3. Recall that the PAC-Bayesian free-energy functional is
 1129

$$1130 J_{\text{PAC}}(\mu) := \hat{L}_S(\mu) + \beta D_{\text{KL}}(\mu \|\Pi) = \int_{\Theta} \left(\mathbb{E}_{z \sim S} [\ell_{\theta}(z)] \right) \mu(d\theta) + \beta \int_{\Theta} \log\left(\frac{\mu(\theta)}{\Pi(\theta)}\right) \mu(d\theta), \\ 1131 1132$$

1133 where μ is a probability measure on Θ with density (still denoted by μ) with respect to Lebesgue
 1134 measure, and Π is a fixed prior with a strictly positive density on the support of μ .

1134 Standard results in optimal transport (see, e.g., Jordan et al. (1998); Ambrosio et al. (2008); Villani
 1135 (2008)) imply that the 2-Wasserstein gradient flow of J_{PAC} is governed by the continuity equation
 1136

$$1137 \quad \partial_t \mu_t(\theta) = \nabla_\theta \cdot \left(\mu_t(\theta) \nabla_\theta \frac{\delta J_{\text{PAC}}}{\delta \mu}(\theta) \right), \quad (\text{C.2})$$

1139 where the first variation of J_{PAC} is given by

$$1140 \quad \frac{\delta J_{\text{PAC}}}{\delta \mu}(\theta) = \mathbb{E}_{z \sim S} [\ell_\theta(z)] + \beta (\log \mu(\theta) - \log \Pi(\theta)) + c_t. \quad (\text{C.3})$$

1143 Here c_t is an arbitrary time-dependent constant (arising from the normalization of μ_t) whose gradient
 1144 is zero and hence does not affect the flow in equation C.2.

1145 Expanding the divergence in equation C.2 using equation C.3 yields

$$1146 \quad \partial_t \mu_t = \nabla_\theta \cdot \left(\mu_t \nabla_\theta \mathbb{E}_{z \sim S} [\ell_\theta(z)] \right) + \beta \Delta_\theta \mu_t - \beta \nabla_\theta \cdot \left(\mu_t \nabla_\theta \log \Pi(\theta) \right),$$

1148 which is exactly the Fokker–Planck equation Equation (3.3) associated with the Langevin diffusion
 1149 targeting the Gibbs posterior with density proportional to $\exp(-\mathbb{E}_{z \sim S} [\ell_\theta(z)] \Pi(\theta))$. This is the
 1150 correspondence used in the main text to connect the population-level idealized dynamics to the
 1151 particle algorithm.

1153 **Where to find the end-to-end regret analysis.** The budget allocation across episodes/iterations
 1154 and the root-time Monte Carlo accumulation lemmas used for our final regret bounds appear in
 1155 Section D and Section E. This avoids duplicating those results here while keeping this appendix
 1156 focused on the PAC-Bayes smoothing and the WGF calculus.

1158 D TECHNICAL LEMMAS AND AUXILIARY RESULTS

1160 This section gathers technical lemmas (variance–information coupling, discretization, stochastic
 1161 gradients, Monte Carlo concentration) used by Section E.

1162 We start by recalling the PAC-Bayesian objective and its connection to the Wasserstein gradient
 1163 flow, and then proceed to rigorously analyze each source of approximation error.

1165 D.1 PAC-BAYESIAN GENERALIZATION AND THE LEARNING OBJECTIVE

1167 The PAC-Bayesian framework provides high-probability guarantees on the population loss of a ran-
 1168 domized predictor Q in terms of its empirical loss and its divergence to a fixed, data-independent
 1169 prior P . Let $S = \{z_i\}_{i=1}^m$ be drawn i.i.d. from \mathcal{D} , define the population loss

$$1170 \quad L(\theta) := \mathbb{E}_{z \sim \mathcal{D}} [\ell_\theta(z)],$$

1172 and the empirical loss

$$1173 \quad \hat{L}_m(\theta) := \frac{1}{m} \sum_{i=1}^m \ell_\theta(z_i) \quad \text{on the dataset } S.$$

1175 A standard PAC-Bayes bound (see, e.g., Catoni (2007)) states that for any prior distribution P on Θ ,
 1176 any $\delta \in (0, 1)$, and any (possibly data-dependent) posterior Q on Θ , with probability at least $1 - \delta$
 1177 over the draw of S ,

$$1179 \quad \mathbb{E}_{\theta \sim Q} [L(\theta)] \leq \mathbb{E}_{\theta \sim Q} [\hat{L}_m(\theta)] + \sqrt{\frac{D_{\text{KL}}(Q \| P) + \ln(m/\delta)}{2m}}. \quad (\text{D.1})$$

1181 In words, the true risk of Q is controlled by its empirical risk plus a complexity term depending on
 1182 how far Q deviates from the prior P .

1183 It is convenient to collect the empirical-risk and complexity terms into the *PAC-Bayesian free-energy*
 1184 *functional*

$$1186 \quad J_{\text{PAC}}(\mu) := \hat{L}_S(\mu) + \beta D_{\text{KL}}(\mu \| P), \quad (\text{D.2})$$

1187 where $\hat{L}_S(\mu) := \mathbb{E}_{\theta \sim \mu} [\hat{L}_m(\theta)]$ and $\beta > 0$ plays the role of an inverse temperature. For an ap-
 1188 propriate choice of β , minimizing the right-hand side of equation D.1 over Q is equivalent (up to

1188 additive constants independent of Q) to minimizing J_{PAC} , and the unique minimizer of J_{PAC} is the
 1189 Gibbs posterior

$$1190 \quad Q_\lambda(d\theta) \propto \exp(-\lambda \hat{L}_m(\theta)) P(d\theta), \quad \lambda = 1/\beta.$$

1191 The Langevin update step in our OLE algorithm is therefore a noisy gradient step on the functional
 1192 J_{PAC} , with the measure μ represented in practice by the empirical distribution of the particle
 1193 ensemble.

1194 In the smoothed PAC-Bayesian and Wasserstein gradient-flow analysis below we denote the prior
 1195 by Π and write $(\Pi_t)_{t \geq 0}$ for the time-indexed posteriors generated by the idealized dynamics. In our
 1196 setting we simply take $\Pi = P$ and use the notation Π_0 for the initial prior and Π_t for its evolution
 1197 over time.

1198 **Theorem D.1.** *The posterior distribution Π_t maintained by the idealized (continuous-time, infinite-
 1199 particle) Langevin dynamics minimizes the PAC-Bayesian functional $J_{\text{PAC}}(\mu)$ over the space of
 1200 probability measures. The finite-ensemble, discrete-time, stochastic-gradient implementation ap-
 1201 proximates this ideal posterior, and its generalization error is controlled by the sum of the PAC-
 1202 Bayesian objective and the approximation error terms.*

1203 *Proof.* The proof follows from the variational characterization of the Fokker-Planck equation as the
 1204 Wasserstein gradient flow of the free energy functional, which in our case is $J_{\text{PAC}}(\mu)$ (Jordan et al.,
 1205 1998). The practical algorithm is a numerical approximation of this flow, and its deviation from the
 1206 ideal posterior is bounded by the lemmas in Section D.4. \square

1207 **Informal interpretation of Theorem D.1** Informally, Theorem D.1 says that the empirical parti-
 1208 cle posterior produced by OLE tracks the Wasserstein gradient flow of the PAC-Bayesian objective
 1209 J_{PAC} up to controlled approximation errors. As a consequence, any decrease of J_{PAC} along the
 1210 idealized continuous-time dynamics is mirrored (up to the bounds established in Section D.4) by the
 1211 finite-particle algorithm used in our implementation. This is the bridge between the PAC-Bayesian
 1212 generalization theory and the actual learning dynamics analyzed in the regret bound.

1215 D.2 ELUDER DIMENSION AND THE VARIANCE-INFORMATION BOUND

1216 The key to bounding the exploration cost is the eluder dimension (Russo & Van Roy, 2013; 2014).

1217 Throughout this section, we write $(\mathcal{F}_t)_{t \geq 0}$ for the natural filtration generated by all randomness up
 1218 to the end of round t (contexts x_s , actions y_s , preference observations feedback_s, and the internal
 1219 randomness of the algorithm for $s \leq t$). We denote by $\text{feedback}_t \in \{0, 1\}$ the binary preference
 1220 feedback observed at round t , with $\text{feedback}_t = 1$ corresponding to the event that the “winning”
 1221 action $y_t^{(w)}$ is preferred to the “losing” action $y_t^{(\ell)}$ under the Bradley-Terry-Luce model in Equa-
 1222 tion (2.1).

1223 **Definition D.2.** *A sequence of context-action pairs $(x_1, y_1), \dots, (x_k, y_k)$ is ϵ -independent for a
 1224 function class \mathcal{R} if for every $i \in \{1, \dots, k\}$, there exist two functions $r_1, r_2 \in \mathcal{R}$ such that
 1225 $|r_1(x_j, y_j) - r_2(x_j, y_j)| \leq \epsilon$ for all $j < i$, but $|r_1(x_i, y_i) - r_2(x_i, y_i)| > \epsilon$. The ϵ -eluder dimension,
 1226 $d_{\text{eluder}}(\mathcal{R}, \epsilon)$, is the length of the longest such sequence.*

1227 A low eluder dimension means that after a few queries, any two functions consistent with the obser-
 1228 vations must be close everywhere, enabling efficient learning. This complexity measure is connected
 1229 to regret via the following lemma.

1230 **Lemma D.3** (Variance-information lemma, Restated emphasizing the BTL model). *Fix a round t
 1231 and condition on the σ -algebra \mathcal{F}_{t-1} and on the chosen context x_t and comparison pair $(y_t^{(w)}, y_t^{(\ell)})$.
 1232 Let μ_t denote the posterior distribution of θ^* given \mathcal{F}_{t-1} , and define the posterior predictive vari-
 1233 ance of the logit difference at the queried pair by*

$$1234 \quad V_t := \text{Var}_{\theta \sim \mu_t} (r_\theta(x_t, y_t^{(w)}) - r_\theta(x_t, y_t^{(\ell)})).$$

1235 *Under Assumption 2.1 and the Bradley-Terry-Luce preference model equation 2.1, there exists a
 1236 constant $\lambda_{\text{BTL}} > 0$, depending only on the logistic link and the reward range, such that*

$$1237 \quad I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) \geq \lambda_{\text{BTL}} V_t. \quad (\text{D.3})$$

1242 This inequality connects the conditional mutual information at round t to the posterior predictive
 1243 variance V_t of the queried logit difference, and will be combined with the eluder-dimension analysis
 1244 below to control the cumulative predictive variances $\sum_{t=1}^T V_t$.
 1245

1246 *Proof.* Throughout the proof we work conditionally on \mathcal{F}_{t-1} , x_t and $(y_t^{(w)}, y_t^{(\ell)})$ and suppress this
 1247 conditioning from the notation.
 1248

1249 **Step 1: Reducing to the random preference probability.** Define, for each parameter θ ,
 1250

$$1251 \quad z_\theta := r_\theta(x_t, y_t^{(w)}) - r_\theta(x_t, y_t^{(\ell)}), \quad p_\theta := \sigma(z_\theta),$$

1252 and let Z_t and P_t denote the random variables obtained by drawing $\theta \sim \mu_t$ and applying these
 1253 maps. By Assumption 2.1 we have $r_\theta(x, y) \in [0, 1]$ for all (x, y) and θ , so $z_\theta \in [-1, 1]$ and hence
 1254 $P_t \in [\sigma(-1), \sigma(1)] \subset (0, 1)$.
 1255

1256 Under the BTL model equation 2.1, the binary preference feedback $\text{feedback}_t \in \{0, 1\}$ satisfies
 1257

$$1258 \quad \mathbb{P}(\text{feedback}_t = 1 \mid \theta) = p_\theta, \quad \mathbb{P}(\text{feedback}_t = 0 \mid \theta) = 1 - p_\theta.$$

1259 In particular, feedback_t depends on θ only through the scalar P_t , and we have the Markov chain
 1260

$$1261 \quad \theta^* \rightarrow Z_t \rightarrow P_t \rightarrow \text{feedback}_t.$$

1262 Because P_t is a deterministic function of θ^* and feedback_t is conditionally independent of θ^* given
 1263 P_t , standard properties of mutual information give

$$1264 \quad I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) = I(P_t; \text{feedback}_t \mid \mathcal{F}_{t-1}).$$

1266 It therefore suffices to lower bound the mutual information between the random Bernoulli parameter
 1267 P_t and the feedback.

1268 **Step 2: Mutual information as entropy drop.** Let $H(p) = -p \log p - (1-p) \log(1-p)$ denote
 1269 the binary entropy (in nats). Conditioning on \mathcal{F}_{t-1} , write
 1270

$$1271 \quad \bar{p}_t := \mathbb{E}[P_t],$$

1273 where the expectation is with respect to $\theta \sim \mu_t$. Since $\text{feedback}_t \mid P_t \sim \text{Bernoulli}(P_t)$, we have
 1274

$$1275 \quad H(\text{feedback}_t \mid P_t) = H(P_t), \quad H(\text{feedback}_t) = H(\bar{p}_t),$$

1276 and thus

$$1277 \quad I(P_t; \text{feedback}_t \mid \mathcal{F}_{t-1}) = H(\bar{p}_t) - \mathbb{E}[H(P_t)], \quad (\text{D.4})$$

1278 where the expectation is over P_t .
 1279

1280 **Step 3: Strong concavity of binary entropy.** The binary entropy is twice differentiable on $(0, 1)$
 1281 with

$$1282 \quad H''(p) = -\frac{1}{p} - \frac{1}{1-p}, \quad p \in (0, 1).$$

1284 For all $p \in (0, 1)$ we have $H''(p) \leq -4$, with equality at $p = 1/2$. Hence H is 4-strongly concave
 1285 on any compact subinterval of $(0, 1)$, and in particular on $[\sigma(-1), \sigma(1)]$.
 1286

We now recall a standard fact about strongly concave functions.
 1287

1288 **Claim.** Let f be twice differentiable and λ -strongly concave on an interval $I \subset \mathbb{R}$, that is, $f''(x) \leq$
 1289 $-\lambda$ for all $x \in I$. If X is a real random variable taking values in I with mean $m = \mathbb{E}[X]$, then
 1290

$$1291 \quad f(m) - \mathbb{E}[f(X)] \geq \frac{\lambda}{2} \text{Var}(X).$$

1293 *Proof of the claim.* For each realization $X = x$ there exists (by Taylor's theorem with Lagrange
 1294 remainder) a point ξ_x on the line segment between m and x such that
 1295

$$f(x) = f(m) + f'(m)(x - m) + \frac{1}{2} f''(\xi_x)(x - m)^2.$$

1296 Taking expectations, and using $\mathbb{E}[X - m] = 0$, we obtain
 1297

$$1298 \mathbb{E}[f(X)] = f(m) + \frac{1}{2} \mathbb{E}[f''(\xi_x)(X - m)^2].$$

1299 Since $f''(\xi_x) \leq -\lambda$ for all $\xi_x \in I$, we conclude
 1300

$$1301 f(m) - \mathbb{E}[f(X)] = -\frac{1}{2} \mathbb{E}[f''(\xi_x)(X - m)^2] \geq \frac{\lambda}{2} \mathbb{E}[(X - m)^2] = \frac{\lambda}{2} \text{Var}(X),$$

1302 which proves the claim. \square
 1303

1304 Applying the claim with $f = H$, $\lambda = 4$ and $X = P_t$ (which is supported on $[\sigma(-1), \sigma(1)]$) yields
 1305

$$1306 H(\bar{p}_t) - \mathbb{E}[H(P_t)] \geq 2 \text{Var}(P_t). \quad (\text{D.5})$$

1308 Combining equation D.4 and equation D.5 we obtain
 1309

$$1310 I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1}) = I(P_t; \text{feedback}_t | \mathcal{F}_{t-1}) \geq 2 \text{Var}(P_t). \quad (\text{D.6})$$

1311 **Step 4: Relating variance of P_t to variance of the logit.** The sigmoid function $\sigma(z) = (1 + e^{-z})^{-1}$ is continuously differentiable on \mathbb{R} with derivative $\sigma'(z) = \sigma(z)(1 - \sigma(z))$. On the compact interval $[-1, 1]$ we have
 1312

$$1315 0 < c_{\min} \leq \sigma'(z) \leq c_{\max} < 1/4, \quad z \in [-1, 1],$$

1316 where $c_{\min} := \min_{z \in [-1, 1]} \sigma'(z) = \sigma(-1)(1 - \sigma(-1)) > 0$. Thus σ is strictly increasing with derivative bounded away from 0 on $[-1, 1]$, and its inverse $g := \sigma^{-1}$ is well-defined and Lipschitz on $[\sigma(-1), \sigma(1)]$ with Lipschitz constant $L = 1/c_{\min}$.
 1317

1318 By definition $P_t = \sigma(Z_t)$ and $Z_t \in [-1, 1]$, so $Z_t = g(P_t)$ and
 1319

$$1322 \text{Var}(Z_t) = \text{Var}(g(P_t)) = \mathbb{E}[(g(P_t) - \mathbb{E}[g(P_t)])^2] \\ 1323 \leq \mathbb{E}[(g(P_t) - g(\mathbb{E}[P_t]))^2] \leq L^2 \mathbb{E}[(P_t - \mathbb{E}[P_t])^2] = L^2 \text{Var}(P_t),$$

1325 where we used the Lipschitz property of g and the fact that the variance is upper bounded by the
 1326 second moment around any fixed reference point. Rearranging yields
 1327

$$1328 \text{Var}(P_t) \geq c_{\min}^2 \text{Var}(Z_t).$$

1329 Recalling that $Z_t = r_\theta(x_t, y_t^{(w)}) - r_\theta(x_t, y_t^{(\ell)})$, we conclude that
 1330

$$1331 \text{Var}(P_t) \geq c_{\min}^2 \text{Var}_{\theta \sim \mu_t} (r_\theta(x_t, y_t^{(w)}) - r_\theta(x_t, y_t^{(\ell)})) = c_{\min}^2 V_t. \quad (\text{D.7})$$

1333 **Step 5: Combine.** Combining equation D.6 and equation D.7 we obtain
 1334

$$1335 I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1}) \geq 2 \text{Var}(P_t) \geq 2c_{\min}^2 V_t.$$

1337 Defining

$$1338 \lambda_{\text{BTL}} := 2c_{\min}^2 = 2 \left(\sigma(-1)(1 - \sigma(-1)) \right)^2 > 0,$$

1340 we arrive at the desired inequality $I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1}) \geq \lambda_{\text{BTL}} V_t$. This constant depends only
 1341 on the BTL link function σ and the reward range $r_\theta(x, y) \in [0, 1]$ (which ensures $Z_t \in [-1, 1]$). \square
 1342

1343 **Curvature of the BTL link.** By Assumption 2.1 we have $r_\theta(x, y) \in [0, 1]$ for all (x, y) and θ , so
 1344 the logit differences $z_\theta(x, y_w, y_\ell) := r_\theta(x, y_w) - r_\theta(x, y_\ell)$ lie in $[-1, 1]$. On this compact interval
 1345 the negative log-likelihood of the Bradley–Terry–Luce model equation 2.1 is uniformly strongly
 1346 convex. Consequently, there exists a constant $\lambda_{\text{BTL}} > 0$ such that the Kullback–Leibler divergence
 1347 between any two preference models is bounded below by λ_{BTL} times the squared difference in their
 1348 logits. This curvature is exactly what underlies the variance–information Lemma D.3.
 1349

1350
1351

D.3 SHARP ELUDER-DIMENSION CONTROL (FOR LoRA-BASED MODELS)

1352
1353
1354

A key argument for the practical relevance of our theory is that the eluder dimension for massive models is not as large as their parameter count might suggest, especially when using parameter-efficient fine-tuning methods like LoRA (Hu et al., 2022).

1355
1356
1357
1358
1359
1360

Proposition D.4. *Consider a reward function class \mathcal{R} parameterized by a large neural network with weights $W_0 \in \mathbb{R}^{d \times d'}$. Let the fine-tuning be restricted to a LoRA update $W = W_0 + AB$, where $A \in \mathbb{R}^{d \times d_*}$, $B \in \mathbb{R}^{d_* \times d'}$, and $d_* \ll d, d'$. The trainable parameters are the entries of A and B . Under standard smoothness assumptions on the network architecture, the eluder dimension of this class scales as $d_{\text{eluder}}(\mathcal{R}, \epsilon) = \tilde{\mathcal{O}}(d_*(d + d') \log(1/\epsilon))$, not with the full parameter count $d \times d'$.*

1361
1362
1363
1364
1365
1366
1367

Proof. The proof follows from the observation that the reward function $r_{A,B}(x, y)$ is a smooth function of the low-rank matrices A and B . The effective number of parameters is $d_*(d + d')$. Applying standard covering number arguments for Lipschitz function classes to this lower-dimensional parameter space yields the stated bound on the eluder dimension. This result formalizes the intuition that the intrinsic dimensionality of the fine-tuning task is what governs the exploration complexity (Aghajanyan et al., 2020; Li et al., 2022). \square

1368
1369
1370
1371
1372

Assumption D.5 (Blockwise Lipschitzness for LoRA layers). *For each modified layer $\ell \in [L]$ with base weight $W_\ell \in \mathbb{R}^{m_\ell \times n_\ell}$ and low-rank update $A_\ell B_\ell^\top$ with rank r_ℓ , we assume the reward (or preference log-likelihood) is L_ℓ -Lipschitz in each block parameter and smooth in the base activations, uniformly over the input domain. That is, for all admissible inputs, perturbations $(\Delta A_\ell, \Delta B_\ell)$ satisfy*

1373
1374

$$|\mathcal{R}(W_\ell + (A_\ell + \Delta A_\ell)(B_\ell + \Delta B_\ell)^\top) - \mathcal{R}(W_\ell + A_\ell B_\ell^\top)| \leq L_\ell (\|\Delta A_\ell\|_F + \|\Delta B_\ell\|_F).$$

1375
1376

Corollary D.6 (Intrinsic dimension under blockwise Lipschitz LoRA). *Under Theorem D.5, the eluder dimension of the LoRA-parameterized reward class satisfies, for any $\epsilon \in (0, 1]$,*

1377
1378
1379
1380

$$d_{\text{eluder}}(\epsilon; \mathcal{R}_{\text{LoRA}}) \leq C \left(\sum_{\ell=1}^L r_\ell (m_\ell + n_\ell - r_\ell) \right) \log \frac{C'}{\epsilon},$$

1381
1382
1383

for universal positive constants C, C' . In particular, the effective intrinsic dimension scales with the rank budget rather than the ambient parameter count, aligning with empirical observations on parameter-efficient fine-tuning (Hu et al., 2022; Aghajanyan et al., 2020).

1384
1385
1386
1387
1388

Proof. **Step 1 (Model class and parameterization).** Let \mathcal{R} denote the LoRA-parameterized reward class obtained by freezing a base network and adding, in each layer $\ell \in [L]$, a rank- r_ℓ update of the form $U_\ell V_\ell^\top$ with $U_\ell \in \mathbb{R}^{m_\ell \times r_\ell}$, $V_\ell \in \mathbb{R}^{n_\ell \times r_\ell}$. Assumption Theorem D.5 ensures *blockwise Lipschitzness*: for any two parameter tuples Θ, Θ' ,

1389
1390
1391
1392

$$\sup_{(x,y)} |r_\Theta(x, y) - r_{\Theta'}(x, y)| \leq \sum_{\ell=1}^L L_\ell \| [U_\ell, V_\ell] - [U'_\ell, V'_\ell] \|_F.$$

1393
1394
1395
1396
1397
1398
1399

Step 2 (Covering numbers for low-rank blocks). Fix radii R_ℓ so that $\|(U_\ell, V_\ell)\|_F \leq R_\ell$ for all admissible parameters (w.l.o.g. finite by compactness assumptions). For each block ℓ , the parameter set lives on a smooth manifold of dimension $d_\ell = r_\ell(m_\ell + n_\ell - r_\ell)$. Standard volumetric bounds give an ϵ_ℓ -net of size at most $(CR_\ell/\epsilon_\ell)^{d_\ell}$ in Frobenius norm. By the blockwise Lipschitzness, an (ϵ_ℓ/L_ℓ) -cover in parameters induces an ϵ_ℓ -cover in function sup-norm. Taking the product over blocks and distributing a total accuracy ϵ across blocks (e.g., $\epsilon_\ell = \epsilon/L$) yields the *function-class* covering bound

1400
1401
1402

$$\mathcal{N}(\epsilon, \mathcal{R}, \|\cdot\|_\infty) \leq \prod_{\ell=1}^L \left(\frac{C_\ell}{\epsilon} \right)^{d_\ell} = \left(\frac{C}{\epsilon} \right)^{\sum_{\ell=1}^L d_\ell}, \quad (\text{D.8})$$

1403

for constants C_ℓ depending on (L_ℓ, R_ℓ) and a universal $C = \prod_\ell C_\ell$. (See, e.g., standard covering-number bounds for low-rank matrix manifolds.)

1404
 1405 **Step 3 (From covering numbers to eluder dimension).** By the growth-function argument of Russo
 1406 & Van Roy (2013; 2014) (see also Lemma Theorem D.3), for any $\epsilon \in (0, 1]$ there exists a universal
 1407 $C' > 0$ such that

$$1408 \quad d_{\text{eluder}}(\mathcal{R}, \epsilon) \leq C' \sup_{\delta \in [\epsilon, 1]} \log \mathcal{N}(\delta, \mathcal{R}, \|\cdot\|_\infty). \quad (\text{D.9})$$

1409 Combining equation D.8 and equation D.9 gives

$$1410 \quad d_{\text{eluder}}(\mathcal{R}, \epsilon) \leq C' \left(\sum_{\ell=1}^L d_\ell \right) \log \frac{C}{\epsilon} = C' \left(\sum_{\ell=1}^L r_\ell (m_\ell + n_\ell - r_\ell) \right) \log \frac{C}{\epsilon},$$

1411 which is precisely the claimed bound (absorbing constants into C, C').

1412 **Step 4 (Interpretation).** The dependence is *intrinsic*: it scales with the low-rank degrees of freedom
 1413 and is independent of the ambient widths except through the block dimensions (m_ℓ, n_ℓ) and
 1414 Lipschitz constants L_ℓ . This matches the intuition that parameter-efficient fine-tuning reduces the
 1415 exploration burden. \square

1416 **Lemma D.7 (Cumulative squared widths).** Let $\{\mathcal{G}_t\}_{t=1}^T$ be confidence sets over the reward class \mathcal{R}
 1417 with radii $\{\beta_t\}_{t=1}^T$, and define the width at the chosen action $A_t = (x_t, y_t)$ by

$$1418 \quad w_t := w_{\mathcal{G}_t}(A_t) := \sup_{f, f' \in \mathcal{G}_t} |f(x_t, y_t) - f'(x_t, y_t)|.$$

1419 Assume rewards are bounded in $[0, 1]$, so $w_t \in [0, 1]$ for all t , and set

$$1420 \quad d_{\text{eluder}} := \dim_E(\mathcal{R}, T^{-1}), \quad \beta_T := \max_{1 \leq t \leq T} \beta_t.$$

1421 Then for all $T \geq 2$ there exists a universal constant $C_w > 0$ such that

$$1422 \quad \sum_{t=1}^T w_t^2 \leq C_w d_{\text{eluder}} \beta_T \log(eT), \quad (\text{D.10})$$

1423 and the same inequality holds for the expectations $\sum_{t=1}^T \mathbb{E}[w_t^2]$.

1424 *Proof.* We follow a dyadic decomposition over scales $\varepsilon \in [T^{-1}, 1]$ combined with Proposition 3 of
 1425 Russo & Van Roy (2013).

1426 **Step 1: Split very small widths.** We first separate rounds with tiny width:

$$1427 \quad \sum_{t=1}^T w_t^2 = \sum_{t=1}^T w_t^2 \mathbf{1}\{w_t \leq T^{-1}\} + \sum_{t=1}^T w_t^2 \mathbf{1}\{w_t > T^{-1}\}.$$

1428 Since $w_t \leq 1$, the first term is trivially bounded by $T(T^{-1})^2 = 1/T$.

1429 **Step 2: Dyadic partition of the nontrivial widths.** Let $K := \lfloor \log_2 T \rfloor$ and define dyadic scales
 1430 $\varepsilon_k := 2^{-k}$ for $k = 0, 1, \dots, K$. For each k define

$$1431 \quad S_k := \{t \leq T : \varepsilon_{k+1} < w_t \leq \varepsilon_k\}.$$

1432 Then each round with $w_t > T^{-1}$ belongs to some S_k , and

$$1433 \quad \sum_{t=1}^T w_t^2 \mathbf{1}\{w_t > T^{-1}\} \leq \sum_{k=0}^K \varepsilon_k^2 |S_k|. \quad (\text{D.11})$$

1434 **Step 3: Apply Proposition 3 at each scale.** For $t \in S_k$ we have $w_t > \varepsilon_{k+1}$, hence

$$1435 \quad |S_k| \leq \sum_{t=1}^T \mathbf{1}\{w_t > \varepsilon_{k+1}\}.$$

1458 Proposition 3 of Russo & Van Roy (2013) states that, for any $\varepsilon > 0$,

$$1460 \quad \sum_{t=1}^T \mathbf{1}\{w_t > \varepsilon\} \leq \left(\frac{4\beta_T}{\varepsilon^2} + 1\right) \dim_E(\mathcal{R}, \varepsilon) \quad \text{almost surely.}$$

1463 By monotonicity of the eluder dimension in its scale parameter and the definition of d_{eluder} ,

$$1464 \quad \dim_E(\mathcal{R}, \varepsilon_{k+1}) \leq \dim_E(\mathcal{R}, T^{-1}) = d_{\text{eluder}}$$

1466 for all k such that $\varepsilon_{k+1} \geq T^{-1}$, which holds for $k = 0, \dots, K$. Therefore

$$1468 \quad |S_k| \leq d_{\text{eluder}}\left(\frac{4\beta_T}{\varepsilon_{k+1}^2} + 1\right).$$

1470 Multiplying by ε_k^2 and using $\varepsilon_k = 2\varepsilon_{k+1}$ gives

$$1472 \quad \varepsilon_k^2 |S_k| \leq d_{\text{eluder}}\left(4\beta_T \frac{\varepsilon_k^2}{\varepsilon_{k+1}^2} + \varepsilon_k^2\right) = d_{\text{eluder}}(16\beta_T + \varepsilon_k^2).$$

1475 **Step 4: Sum over dyadic scales and combine.** Summing over k and using $\sum_{k=0}^{\infty} \varepsilon_k^2 =$
1476 $\sum_{k=0}^{\infty} 4^{-k} < 2$, we obtain

$$1478 \quad \sum_{t=1}^T w_t^2 \mathbf{1}\{w_t > T^{-1}\} \leq d_{\text{eluder}}(16\beta_T(K+1) + 2) \leq d_{\text{eluder}}(16\beta_T \log_2(2T) + 2).$$

1481 Combining with the $1/T$ bound from Step 1 and absorbing constants into a universal $C_w > 0$ yields
1482 equation D.10. The bound is deterministic conditional on $\{w_t\}$, so it also holds for $\sum_{t=1}^T \mathbb{E}[w_t^2]$.
1483 \square

1485 **Lemma D.8** (Information–eluder-dimension bound). *Let Assumption 2.1 hold and suppose the preference feedback is generated according to the Bradley–Terry–Luce model in equation 2.1. Let $\mathcal{R} = \{r_\theta : \theta \in \Theta\}$ and denote by $\dim_E(\mathcal{R}, \varepsilon)$ the ε -eluder dimension of \mathcal{R} (Russo & Van Roy, 2013). Assume:*

- 1489 1. (Bounded rewards) $r_\theta(x, y) \in [0, 1]$ for all (x, y) and all $\theta \in \Theta$.
- 1491 2. (Bounded preference noise) *Conditional on $(\theta^*, \mathcal{F}_{t-1}, x_t, y_t^{(w)}, y_t^{(\ell)})$, the binary preference feedback $\text{feedback}_t \in \{0, 1\}$ has mean $\mathbb{E}[\text{feedback}_t | \theta^*, \mathcal{F}_{t-1}] = p_{\theta^*}(x_t, y_t^{(w)}, y_t^{(\ell)})$ and is σ -sub-Gaussian for some $\sigma > 0$.*
- 1495 3. (Metric entropy growth) *There exists $C_{\text{cov}} > 0$ such that for all $\varepsilon \in (0, 1]$,*

$$1497 \quad \log N(\mathcal{R}, \varepsilon, \|\cdot\|_\infty) \leq C_{\text{cov}} \log(1/\varepsilon),$$

1498 where $N(\mathcal{R}, \varepsilon, \|\cdot\|_\infty)$ is the ε -covering number of \mathcal{R} in the sup-norm.

1500 Let $d_{\text{eluder}} := \dim_E(\mathcal{R}, T^{-1})$. Then there exists a constant $C_{\text{info}} > 0$, depending only on (σ, C_{cov})
1501 and the constants in Assumption 2.1, such that for any horizon $T \geq 2$,

$$1503 \quad I(\theta^*; \text{feedback}_{1:T}) \leq C_{\text{info}} d_{\text{eluder}} \log^2(eT), \quad (\text{D.12})$$

1504 where $\text{feedback}_{1:T} = (\text{feedback}_1, \dots, \text{feedback}_T)$.

1506 *Proof.* We follow the confidence-set and width analysis of Russo & Van Roy (2013), adapting it to
1507 our preference-learning setting and to mutual information.

1509 **Step 1: Confidence sets and widths.** Let $(\hat{f}_t^{\text{LS}})_{t \geq 1}$ be least-squares predictors based on past data
1510 and define confidence sets

$$1511 \quad \mathcal{G}_t := \left\{f \in \mathcal{R} : \|f - \hat{f}_t^{\text{LS}}\|_{2, E_t} \leq \sqrt{\beta_t}\right\},$$

1512 where $\|\cdot\|_{2,E_t}$ is the empirical 2-norm and β_t is chosen as in equation (4) of Russo & Van Roy
 1513 (2013). Their Proposition 2 implies that, with probability at least $1 - 1/T$, we have $f_{\theta^*} \in \mathcal{G}_t$ for all
 1514 $t \leq T$.

1515 Define the width of \mathcal{G}_t at the selected pair $(x_t, y_t^{(w)}, y_t^{(\ell)})$ by

$$1517 \quad 1518 \quad w_t := \sup_{f, f' \in \mathcal{G}_t} |f(x_t, y_t^{(w)}, y_t^{(\ell)}) - f'(x_t, y_t^{(w)}, y_t^{(\ell)})|.$$

1520 **Step 2: From widths to information.** Under the Bradley–Terry–Luce model, the preference prob-
 1521 ability $p_\theta(x_t, y_t^{(w)}, y_t^{(\ell)})$ is a smooth and bounded function of the reward difference $r_\theta(x_t, y_t^{(w)}) -$
 1522 $r_\theta(x_t, y_t^{(\ell)})$. Combining the variance–information lemma D.3 with the boundedness and Lipschitz
 1523 properties of the logistic link, one obtains an information–width inequality: there exists $c_0 > 0$,
 1524 depending only on the link function and the reward range, such that

$$1525 \quad I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) \leq c_0 \mathbb{E}[w_t^2 \mid \mathcal{F}_{t-1}].$$

1526 Summing over t and applying the tower property gives

$$1529 \quad 1530 \quad I(\theta^*; \text{feedback}_{1:T}) = \sum_{t=1}^T I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) \leq c_0 \sum_{t=1}^T \mathbb{E}[w_t^2].$$

1532 **Step 3: Bounding the cumulative squared widths.** Applying Lemma D.7 to the confidence sets
 1533 $\{\mathcal{F}_t\}$ and widths $w_t = w_{\mathcal{F}_t}(A_t)$ constructed in Step 1, we obtain

$$1535 \quad 1536 \quad \sum_{t=1}^T \mathbb{E}[w_t^2] \leq C_w d_{\text{eluder}} \beta_T \log(eT),$$

1538 where $d_{\text{eluder}} = \dim_E(\mathcal{R}, T^{-1})$ and $\beta_T = \max_{1 \leq t \leq T} \beta_t$ is the confidence radius.

1540 **Step 4: Controlling β_T via metric entropy.** Our metric-entropy assumption implies $\log N(\mathcal{R}, \varepsilon, \|\cdot\|_\infty) \leq C_{\text{cov}} \log(1/\varepsilon)$. Substituting this into the definition of β_T (equation (4) in Russo & Van Roy
 1541 (2013)) with $\varepsilon = T^{-2}$ shows that there exists $C_\beta > 0$ such that

$$1543 \quad \beta_T \leq C_\beta \log T.$$

1545 Combining the displays from Steps 2 and 3 with this bound on β_T yields

$$1547 \quad I(\theta^*; \text{feedback}_{1:T}) \leq C_{\text{info}} d_{\text{eluder}} \log^2(eT)$$

1548 for a constant C_{info} depending only on (σ, C_{cov}) and the problem constants, as claimed. \square

1550 D.4 APPROXIMATION OF WASSERSTEIN GRADIENT FLOW

1552 This section outlines the approximation of the idealized Wasserstein gradient flow dynamics by a
 1553 finite ensemble of particles. The core idea is that the particles provide a discrete representation of
 1554 the continuous flow of probability measures, tracking the evolution of the PAC-Bayesian free-energy
 1555 functional J_{PAC} .

1556 Let the particles $\{\theta_i\}_{i=1}^N$ represent an empirical distribution of parameters at time t . We approximate
 1557 the gradient flow of the PAC-Bayesian objective J_{PAC} by evolving these particles according to the
 1558 following update rule:

$$1560 \quad 1561 \quad \theta_i^{t+1} = \theta_i^t - \eta \nabla_{\theta_i} \left(\frac{1}{N} \sum_{j=1}^N \ell_{\theta_j}(z) + \beta \log \frac{\mu_{\theta_j}}{\Pi(\theta_j)} \right) + \mathcal{N}(0, \sigma^2).$$

1563 Here, η is the step size, $\ell_{\theta_j}(z)$ is the loss, and μ_{θ_j} represents the empirical measure at time t .

1564 The error bound for this approximation depends on the step size η and the number of particles N ,
 1565 which is formalized in the subsequent lemmas.

1566 **Lemma D.9** (Finite-Particle Approximation Error). *Let μ_t be the mean-field law and μ_t^N be the
 1567 empirical measure of N particles. For any L -Lipschitz function ϕ , the error in estimating its expec-
 1568 tation is bounded in probability: $|\int \phi d\mu_t^N - \int \phi d\mu_t| = \tilde{O}(1/\sqrt{N})$ (Fournier & Guillin, 2015).*
 1569

1570 *Proof.* This follows from classical results on the convergence rate of the empirical measure in
 1571 Wasserstein distance and the duality between Wasserstein distance and expectations of Lipschitz
 1572 functions. The error from approximating the interaction term in the SGLD update accumulates,
 1573 leading to the term in the final regret bound. \square
 1574

1575 **Lemma D.10.** *Let $\hat{g}_t(\theta)$ be an unbiased mini-batch gradient estimator of the true gradient $g_t(\theta)$
 1576 with conditional variance $\text{Var}(\hat{g}_t - g_t \mid \mathcal{F}_{t-1}) \leq \sigma_t^2/B_t$. The cumulative error from the noise
 1577 sequence $\xi_t = \eta_t(\hat{g}_t - g_t)$ is bounded with high probability by $\tilde{O}(\sqrt{\sum_{t=1}^T \eta_t^2 \sigma_t^2/B_t})$.
 1578*

1579 *Proof.* Let $\hat{g}_t(\theta)$ be an unbiased mini-batch estimator of the population gradient $g_t(\theta)$ with $\mathbb{E}[\hat{g}_t(\theta) \mid$
 1580 $\mathcal{F}_{t-1}] = g_t(\theta)$ and conditional covariance $\mathbb{E}[\|\hat{g}_t(\theta) - g_t(\theta)\|^2 \mid \mathcal{F}_{t-1}] \leq \sigma_t^2/B_t$. Consider the
 1581 parameter update $\theta_{t+1} = \theta_t - \eta_t \hat{g}_t(\theta_t) + (\text{other terms})$ and track the noise contribution to the PAC
 1582 objective $J(\theta)$ through the descent lemma. Define the noise martingale $\zeta_t := \langle \nabla J(\theta_t), \hat{g}_t(\theta_t) -$
 1583 $g_t(\theta_t) \rangle$ with $\mathbb{E}[\zeta_t \mid \mathcal{F}_{t-1}] = 0$. Then

$$\sum_{t=1}^T \eta_t \zeta_t$$

1584 is a martingale with predictable quadratic variation bounded by

$$\sum_{t=1}^T \eta_t^2 \mathbb{E}[\zeta_t^2 \mid \mathcal{F}_{t-1}] \leq \sum_{t=1}^T \eta_t^2 \|\nabla J(\theta_t)\|^2 \frac{\sigma_t^2}{B_t} \leq G^2 \sum_{t=1}^T \eta_t^2 \frac{\sigma_t^2}{B_t},$$

1592 where G bounds $\|\nabla J(\theta)\|$ on the iterates (ensured by standard coercivity/compacity arguments in
 1593 our setting). Applying Freedman's inequality (or Azuma–Hoeffding with conditional variances)
 1594 yields, with probability at least $1 - \delta$,

$$\left| \sum_{t=1}^T \eta_t \zeta_t \right| \leq c_1 G \sqrt{\log \frac{2}{\delta}} \sqrt{\sum_{t=1}^T \eta_t^2 \frac{\sigma_t^2}{B_t}} + c_2 G \log \frac{2}{\delta} \max_t \eta_t \frac{\sigma_t}{\sqrt{B_t}},$$

1599 establishing the stated $\tilde{O}(\sqrt{\sum_t \eta_t^2 \sigma_t^2/B_t})$ high-probability control on the cumulative stochastic-
 1600 gradient error. \square

1602 **Lemma D.11** (Finite-Ensemble Monte Carlo Error). *Let the Monte Carlo error in estimating the
 1603 optimistic index be $\xi_t = \hat{I}_t - I_t$, with $\mathbb{E}[\xi_t \mid \mathcal{F}_{t-1}] = 0$ and $\text{Var}(\xi_t \mid \mathcal{F}_{t-1}) \leq v_t^2/N_t$. The
 1604 cumulative error $\sum_{t=1}^T \xi_t$ is bounded with high probability by $\tilde{O}(\sqrt{\sum_{t=1}^T v_t^2/N_t})$.
 1605*

1606 *Proofs of Theorem D.10 and Theorem D.11.* Both proofs rely on the same core argument. The error
 1607 sequences $\{\xi_t\}$ in both cases are martingale difference sequences with respect to the filtration \mathcal{F}_{t-1} .
 1608 We can therefore apply a concentration inequality for martingales. Freedman's inequality is partic-
 1609 ularly well-suited as it handles predictable, time-varying variance bounds (Freedman, 1975). Let
 1610 $S_T = \sum_{t=1}^T \xi_t$. Let $V_T = \sum_{t=1}^T \mathbb{E}[\xi_t^2 \mid \mathcal{F}_{t-1}]$ be the predictable quadratic variation. Freedman's
 1611 inequality states that for any $u, v > 0$:

$$\Pr(S_T \geq u \text{ and } V_T \leq v) \leq \exp\left(-\frac{u^2/2}{v + cu/3}\right)$$

1616 where c is a uniform bound on $|\xi_t|$. Setting v to be the sum of our variance bounds (e.g., $v =$
 1617 $\sum v_t^2/N_t$) and solving for u for a given probability level δ yields the stated $\tilde{O}(\sqrt{\cdot})$ bounds. \square
 1618

1619

1620 **Variance and noise parameters.** Throughout this paper we assume bounded rewards and sub-
 1621 Gaussian noise. In particular, there exist finite constants v^2 and σ^2 such that for all t ,
 1622

$$1623 \quad \text{Var}(\Delta M_t | \mathcal{F}_t) \leq v^2, \quad \mathbb{E}[\exp(\lambda \varepsilon_t) | \mathcal{F}_t] \leq \exp(\lambda^2 \sigma^2 / 2) \quad \forall \lambda \in \mathbb{R},$$

1624 where $(\mathcal{F}_t)_{t \geq 0}$ is the natural filtration introduced above, ΔM_t is the martingale increment in the
 1625 regret decomposition, and ε_t is the reward noise. We denote by v_t^2 and σ_t^2 the corresponding con-
 1626 ditional variance and sub-Gaussian proxy at time t , and the above assumptions imply $v_t^2 \leq v^2$ and
 1627 $\sigma_t^2 \leq \sigma^2$ for all t .
 1628

1630 E MAIN THEOREMS: FULL STATEMENTS AND PROOFS (BANDITS)

1631 This section contains the *full* proofs of the main results. It relies on auxiliary tools in Sections C
 1632 and D.
 1633

1635 E.1 RESTATEMENT OF MAIN THEOREMS

1637 Let Assumptions 2.1, 2.2, and 2.3 hold. For any $\delta \in (0, 1)$, consider the OLE algorithm run for T
 1638 rounds with step sizes $\{\eta_t\}$, ensemble sizes $\{N_t\}$, mini-batch sizes $\{B_t\}$, and an optimism schedule
 1639 $\kappa_t = C_0 \sqrt{\log(T/\delta)}$ for a suitable constant C_0 . Let v_t^2 be an upper bound on the conditional variance
 1640 of the Monte Carlo estimate of the optimistic value, and let σ_t^2 be an upper bound on the conditional
 1641 variance of the mini-batch gradient estimator. Then with probability at least $1 - \delta$, the cumulative
 1642 regret satisfies:
 1643

$$1644 \quad \text{Regret}(T) \leq \underbrace{C_1 d_{\text{eluder}} \log T}_{\text{Exploration Cost}} + \underbrace{C_2 \sum_{t=1}^T \eta_t}_{\text{Discretization}} + \underbrace{\tilde{\mathcal{O}}\left(\sqrt{\sum_{t=1}^T \frac{v_t^2}{N_t}}\right)}_{\text{Finite Ensemble}} + \underbrace{\tilde{\mathcal{O}}\left(\sqrt{\sum_{t=1}^T \frac{\sigma_t^2}{B_t}}\right)}_{\text{Stochastic Gradient}}, \quad (\text{E.1})$$

1649 where C_1 and C_2 are absolute constants depending on model parameters like the Lipschitz constant
 1650 L . The eluder dimension d_{eluder} is evaluated at a precision scale that decreases with t .
 1651

1652 E.2 PROOF OF THE UNIFIED REGRET BOUND (SECTION E.1)

1654 We now prove Section E.1. Throughout, we let $(\mathcal{F}_t)_{t \geq 0}$ denote the natural filtration generated by
 1655 all randomness up to the end of round t (contexts, actions, preference feedback, and the internal
 1656 randomness of the ensemble and SGLD).
 1657

1658 Recall that at each round t , the OLE algorithm computes, for each candidate action $y \in \mathcal{Y}$ in context
 1659 x_t , an optimistic index
 1660

$$1661 \quad I_t(x_t, y) = \hat{r}_t(x_t, y) + \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y)}, \quad (\text{E.2})$$

1663 where $\hat{r}_t(x_t, y)$ and $\widehat{\text{Var}}_t(x_t, y)$ are the ensemble mean and variance, respectively, and $\kappa_t =$
 1664 $C_0 \sqrt{\log(T/\delta)}$. We will bound the regret by: (i) decomposing the instantaneous regret at each round
 1665 into an optimism term and an estimation term; (ii) controlling the sum of optimism terms using
 1666 variance-information duality and the eluder dimension; and (iii) bounding the estimation term via a
 1667 careful decomposition into discretization, finite-ensemble, and stochastic-gradient contributions.
 1668

1669 **Step 1: Instantaneous regret decomposition.** Let $y_t^* \in \arg \max_{y \in \mathcal{Y}} r^*(x_t, y)$ denote an optimal
 1670 action in context x_t , and let y_t denote the action chosen by the OLE policy induced by the index I_t
 1671 (for simplicity, we write the regret in terms of the deployed action y_t , which is one element of the
 1672 selected comparison pair). The instantaneous regret is
 1673

$$r^*(x_t, y_t^*) - r^*(x_t, y_t).$$

1674 Introduce the shorthand $I_t^* := I_t(x_t, y_t^*)$, $I_t := I_t(x_t, y_t)$, $\hat{r}_t := \hat{r}_t(x_t, y_t)$, $r_t^* := r^*(x_t, y_t)$, and
 1675 note that by definition of y_t , we have $I_t \geq I_t^*$. Then
 1676

$$1677 r^*(x_t, y_t^*) - r^*(x_t, y_t) = \underbrace{(I_t^* - r^*(x_t, y_t))}_{(I)} - \underbrace{(I_t^* - r^*(x_t, y_t^*))}_{(II)} \quad (E.3)$$

$$1678 \leq \underbrace{(I_t - \hat{r}_t)}_{\text{Optimism term}} + \underbrace{(\hat{r}_t - r_t^*)}_{\text{Estimation error}} - (II). \quad (E.4)$$

1682 The inequality uses $I_t \geq I_t^*$ and inserts and subtracts \hat{r}_t . Define the “good optimism event”
 1683

$$1684 \mathcal{E}_t := \{ r^*(x, y) \leq I_t(x, y) \text{ for all } (x, y) \in \mathcal{X} \times \mathcal{Y} \}.$$

1685 By the PAC-Bayes and concentration arguments developed in Sections C and D, together with the
 1686 choice $\kappa_t = C_0 \sqrt{\log(T/\delta)}$, we can ensure that
 1687

$$1688 \Pr\left(\bigcap_{t=1}^T \mathcal{E}_t\right) \geq 1 - \delta. \quad (E.5)$$

1691 On the event \mathcal{E}_t , we have $r^*(x_t, y_t^*) \leq I_t^*$, so term (II) in equation E.3 is non-negative. Hence, on
 1692 $\bigcap_{t=1}^T \mathcal{E}_t$,
 1693

$$1694 r^*(x_t, y_t^*) - r^*(x_t, y_t) \leq \underbrace{\kappa_t \sqrt{\text{Var}_t(x_t, y_t)}}_{\Delta_t^{\text{opt}}} + \underbrace{(\hat{r}_t(x_t, y_t) - r^*(x_t, y_t))}_{\epsilon_t}, \quad (E.6)$$

1697 where we have set $\Delta_t^{\text{opt}} := I_t(x_t, y_t) - \hat{r}_t(x_t, y_t) = \kappa_t \sqrt{\text{Var}_t(x_t, y_t)}$ and $\epsilon_t := \hat{r}_t(x_t, y_t) -$
 1698 $r^*(x_t, y_t)$.
 1699

1700 Summing over $t = 1, \dots, T$ and working on the event $\mathcal{E} := \bigcap_{t=1}^T \mathcal{E}_t$ yields
 1701

$$1702 \text{Regret}(T) \leq \sum_{t=1}^T \Delta_t^{\text{opt}} + \sum_{t=1}^T \epsilon_t. \quad (E.7)$$

1705 We will bound the two sums on the right-hand side separately.
 1706

1707 **Step 2: Bounding the cumulative optimism term.** Write
 1708

$$1709 V_t := \widehat{\text{Var}}_t(x_t, y_t), \quad \Delta_t^{\text{opt}} = \kappa_t \sqrt{V_t}.$$

1710 By Cauchy–Schwarz,
 1711

$$1712 \sum_{t=1}^T \Delta_t^{\text{opt}} = \sum_{t=1}^T \kappa_t \sqrt{V_t} \leq \sqrt{\sum_{t=1}^T 1} \sqrt{\sum_{t=1}^T \kappa_t^2 V_t} = \sqrt{T} \sqrt{\sum_{t=1}^T \kappa_t^2 V_t}. \quad (E.8)$$

1716 Using the choice $\kappa_t^2 = C_0^2 \log(T/\delta)$, it remains to control $\sum_{t=1}^T V_t$.
 1717

1718 The variance–information lemma (Theorem D.3) states that, under the Bradley–Terry–Luce preference
 1719 model equation 2.1, for any posterior distribution μ_t over parameters at round t and any context
 1720 x_t and chosen pair $(y_t^{(w)}, y_t^{(\ell)})$, the conditional mutual information satisfies
 1721

$$I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) \geq C_{\text{var}} \cdot V_t, \quad (E.9)$$

1722 for some universal constant $C_{\text{var}} > 0$ (depending only on the fact that the logistic link keeps preferences
 1723 bounded away from 0 and 1).
 1724

1725 Summing equation E.9 over $t = 1, \dots, T$ and using the chain rule for mutual information, we obtain
 1726

$$1727 \sum_{t=1}^T V_t \leq C_{\text{var}}^{-1} \sum_{t=1}^T I(\theta^*; \text{feedback}_t \mid \mathcal{F}_{t-1}) = C_{\text{var}}^{-1} I(\theta^*; \text{feedback}_{1:T}). \quad (E.10)$$

The remaining ingredient is to bound the total information gain in terms of the eluder dimension. This is guaranteed by the lemma D.8. Combining equation E.10 and lemma D.8 yields

$$\sum_{t=1}^T V_t \leq C_{\text{var}}^{-1} C_{\text{info}} d_{\text{eluder}} \log^2(eT) =: C_V d_{\text{eluder}} \log^2(eT). \quad (\text{E.11})$$

Substituting equation E.11 and $\kappa_t^2 = C_0^2 \log(T/\delta)$ into equation E.8 gives

$$\begin{aligned} \sum_{t=1}^T \Delta_t^{\text{opt}} &\leq \sqrt{T} \sqrt{\sum_{t=1}^T \kappa_t^2 V_t} = \sqrt{T} \sqrt{C_0^2 \log(T/\delta) \sum_{t=1}^T V_t} \\ &\leq \sqrt{T} \sqrt{C_0^2 \log(T/\delta) C_V d_{\text{eluder}} \log^2(eT)} \\ &\leq C_1 \sqrt{d_{\text{eluder}} T} \log T, \end{aligned} \quad (\text{E.12})$$

for a suitable constant $C_1 > 0$ (absorbing $\log(T/\delta)$ into the $\log T$ factor via the $\tilde{\mathcal{O}}(\cdot)$ notation).

Step 3: Bounding the cumulative estimation error. We now bound the second sum in equation E.7, $\sum_{t=1}^T \epsilon_t$, which captures the discrepancy between the ensemble prediction \hat{r}_t and the true reward r^* evaluated at (x_t, y_t) .

Let $\bar{r}_t(x, y)$ denote the prediction of the *ideal*, continuous-time, infinite-particle mean-field posterior at round t . Then at the deployed action (x_t, y_t) we can write

$$\epsilon_t = \hat{r}_t(x_t, y_t) - r^*(x_t, y_t) = (\hat{r}_t(x_t, y_t) - \bar{r}_t(x_t, y_t)) + (\bar{r}_t(x_t, y_t) - r^*(x_t, y_t)). \quad (\text{E.13})$$

Summing over t we obtain

$$\sum_{t=1}^T \epsilon_t = \underbrace{\sum_{t=1}^T (\hat{r}_t(x_t, y_t) - \bar{r}_t(x_t, y_t))}_{S_{\text{approx}}} + \underbrace{\sum_{t=1}^T (\bar{r}_t(x_t, y_t) - r^*(x_t, y_t))}_{S_{\text{ideal}}}. \quad (\text{E.14})$$

Step 3(a): Ideal mean-field prediction error. The term S_{ideal} measures the deviation of the ideal mean-field posterior mean from the true reward. This is controlled by the PAC-Bayesian generalization bounds for the smoothed posterior in Section C, which imply that, under Assumption 2.1, the mean-field posterior concentrates around θ^* and the average generalization error is small. In particular, standard arguments (see Theorem 3.2 and subsequent discussion) yield

$$|S_{\text{ideal}}| \leq C_{\text{ideal}} \sqrt{T} \quad (\text{E.15})$$

for some constant C_{ideal} depending on the Lipschitz constant of the loss and the prior, and this term is dominated by the exploration term equation E.12 when T is large. For simplicity, we absorb S_{ideal} into the overall $\tilde{\mathcal{O}}(\sqrt{d_{\text{eluder}} T} \log T)$ term.

Step 3(b): Approximation error from discretization, finite ensemble, and stochastic gradients. The term S_{approx} in equation E.14 captures the effect of replacing the ideal mean-field posterior with a finite ensemble, with discrete-time SGLD dynamics and mini-batch gradients. We now decompose it into a martingale term and a bias term using the filtration (\mathcal{F}_t) .

By definition, both \hat{r}_t and \bar{r}_t are \mathcal{F}_t -measurable. We write

$$\begin{aligned} S_{\text{approx}} &= \sum_{t=1}^T (\hat{r}_t(x_t, y_t) - \bar{r}_t(x_t, y_t)) \\ &= \underbrace{\sum_{t=1}^T (\hat{r}_t(x_t, y_t) - \mathbb{E}[\hat{r}_t(x_t, y_t) | \mathcal{F}_{t-1}])}_{S_{\text{mart}}: \text{ martingale noise}} + \underbrace{\sum_{t=1}^T (\mathbb{E}[\hat{r}_t(x_t, y_t) | \mathcal{F}_{t-1}] - \bar{r}_t(x_t, y_t))}_{S_{\text{bias}}: \text{ bias/approximation term}}. \end{aligned}$$

1782
1783
1784
1785
1786
1787

The first term S_{mart} is a martingale difference sequence with conditionally sub-Gaussian increments whose conditional variances are bounded by v_t^2/N_t (finite-ensemble Monte Carlo noise) and by $\eta_t^2\sigma_t^2/B_t$ (stochastic-gradient noise). The second term S_{bias} collects the approximation bias arising from discretizing the Langevin dynamics.

1788
1789

The following lemmas, proved in Appendix D.4, give high-probability bounds for each contribution (we quote them here for convenience):

1790
1791

Lemma E.1 (Finite-ensemble Monte Carlo error). *Under the conditions of Theorems 2.1 and 2.2, the finite-ensemble Monte Carlo fluctuations satisfy*

1792
1793
1794
1795

$$\left| \sum_{t=1}^T \left(\hat{r}_t^{\text{MC}}(x_t, y_t) - \mathbb{E}[\hat{r}_t^{\text{MC}}(x_t, y_t) \mid \mathcal{F}_{t-1}] \right) \right| \leq C_{\text{ens}} \sqrt{\sum_{t=1}^T \frac{v_t^2}{N_t}}$$

1796
1797

with probability at least $1 - \delta/4$, for some constant $C_{\text{ens}} > 0$. (Here \hat{r}_t^{MC} denotes the Monte Carlo estimate of the ensemble mean.)

1798
1799
1800

Lemma E.2 (Stochastic-gradient error). *Let $\hat{g}_t(\theta)$ be an unbiased mini-batch gradient estimator with conditional variance bounded by σ_t^2/B_t . Then the cumulative error induced by using \hat{g}_t instead of the exact gradient in SGLD satisfies*

1801
1802
1803
1804

$$\left| \sum_{t=1}^T \eta_t \left(\hat{g}_t(\theta_t) - \mathbb{E}[\hat{g}_t(\theta_t) \mid \mathcal{F}_{t-1}] \right) \right| \leq C_{\text{sg}} \sqrt{\sum_{t=1}^T \eta_t^2 \frac{\sigma_t^2}{B_t}}$$

with probability at least $1 - \delta/4$.

1805
1806
1807
1808
1809

Lemma E.3 (Discretization bias). *Suppose the drift of the mean-field Langevin SDE is L -Lipschitz and satisfies the standard coercivity conditions ensuring existence of a unique invariant measure. Then the cumulative bias induced by using a time step η_t in the Euler–Maruyama discretization satisfies*

1810
1811

$$|S_{\text{bias}}| \leq C_{\text{disc}} \sum_{t=1}^T \eta_t,$$

1812
1813

for some constant $C_{\text{disc}} > 0$.

1814
1815

Combining equation E.2 with Theorems E.1 to E.3 and applying a union bound over the associated high-probability events yields

1816
1817
1818
1819

$$|S_{\text{approx}}| \leq C_2 \sum_{t=1}^T \eta_t + C_3 \sqrt{\sum_{t=1}^T \frac{v_t^2}{N_t}} + C_4 \sqrt{\sum_{t=1}^T \frac{\sigma_t^2}{B_t}}, \quad (\text{E.16})$$

for appropriate constants $C_2, C_3, C_4 > 0$.

1820
1821
1822
1823
1824
1825

Step 4: Combine. Combining the instantaneous decomposition equation E.7, the optimism bound equation E.12, and the bounds equation E.15 and equation E.16, and applying a final union bound over all the high-probability events (\mathcal{E} , the PAC-Bayes generalization bound, and the martingale concentration events), we obtain that with probability at least $1 - \delta$,

1826
1827
1828

$$\text{Regret}(T) \leq C_1 \sqrt{d_{\text{eluder}} T} \log T + C_2 \sum_{t=1}^T \eta_t + C_3 \sqrt{\sum_{t=1}^T \frac{v_t^2}{N_t}} + C_4 \sqrt{\sum_{t=1}^T \frac{\sigma_t^2}{B_t}},$$

1829
1830

which is exactly the statement of Section E.1. This completes the proof.

1831
1832
1833
1834

Proposition E.4 (Exploration term and logarithmic regret). *Under Assumptions 2.1, 2.2, and 2.3, and on the high-probability optimism event equation E.5, there exists a constant $C_{\text{opt}} > 0$ such that for all $T \geq 2$,*

1835

$$\sum_{t=1}^T \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y_t)} \leq C_{\text{opt}} d_{\text{eluder}} \log T. \quad (\text{E.17})$$

1836 *Proof.* Recall that \mathcal{F}_{t-1} denotes the σ -algebra generated by all randomness up to round $t-1$ (contexts, actions, feedback, and algorithm randomness), and that feedback_t denotes the preference observation at round t . For each t , we define the per-round mutual information

$$1839 \quad I_t := I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1}) = \mathbb{E} \left[D_{\text{KL}}(P(\text{feedback}_t | \theta^*, \mathcal{F}_{t-1}) \| P(\text{feedback}_t | \mathcal{F}_{t-1})) \right],$$

1840 where the expectation is taken over $(\theta^*, \text{feedback}_t)$ and \mathcal{F}_{t-1} .

1841 **Step 1: Chain rule for mutual information.** By the chain rule for mutual information applied to
1842 the sequence $\text{feedback}_{1:T} = (\text{feedback}_1, \dots, \text{feedback}_T)$ we have

$$1845 \quad I(\theta^*; \text{feedback}_{1:T}) = \sum_{t=1}^T I(\theta^*; \text{feedback}_t | \text{feedback}_{1:t-1}) = \sum_{t=1}^T I_t. \quad (\text{E.18})$$

1846 Since \mathcal{F}_{t-1} is the σ -algebra generated by $\text{feedback}_{1:t-1}$ together with the other past randomness of
1847 the algorithm, we can (and will) work with the conditional information $I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1})$.

1848 **Step 2: Information-width inequality for the BTL model.** Under the Bradley–Terry–Luce preference
1849 model with bounded rewards, the mutual information gained at round t can be controlled by the squared width of the corresponding confidence set. More precisely, combining the variance–
1850 information lemma (Lemma D.3) with the construction of the confidence sets $\{\mathcal{G}_t\}$ and the Lipschitz properties of the logistic link, there exists a constant $c_0 > 0$, depending only on the link and the reward range, such that for every t and every realization of \mathcal{F}_{t-1} ,

$$1851 \quad I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1}) \leq c_0 \mathbb{E}[w_t^2 | \mathcal{F}_{t-1}], \quad (\text{E.19})$$

1852 where w_t is the width at time t ,

$$1853 \quad w_t := \sup_{f, f' \in \mathcal{G}_t} |f(x_t, y_t^{(w)}, y_t^{(\ell)}) - f'(x_t, y_t^{(w)}, y_t^{(\ell)})|.$$

1854 (Informally, equation E.19 says that, given the past, the amount of information we can gain at round
1855 t is controlled by the squared width of the current confidence set at the queried comparison.)

1856 Taking expectations of both sides of equation E.19 and using the tower property yields

$$1857 \quad \mathbb{E}[I_t] = \mathbb{E}[I(\theta^*; \text{feedback}_t | \mathcal{F}_{t-1})] \leq c_0 \mathbb{E}[\mathbb{E}[w_t^2 | \mathcal{F}_{t-1}]] = c_0 \mathbb{E}[w_t^2]. \quad (\text{E.20})$$

1858 **Step 3: Summing over t and invoking cumulative squared widths.** Plugging equation E.20 into
1859 the chain rule equation E.18 and using linearity of expectation, we obtain

$$1860 \quad I(\theta^*; \text{feedback}_{1:T}) = \sum_{t=1}^T I_t = \sum_{t=1}^T \mathbb{E}[I_t] \quad (\text{E.21})$$

$$1861 \quad \leq \sum_{t=1}^T c_0 \mathbb{E}[w_t^2] = c_0 \sum_{t=1}^T \mathbb{E}[w_t^2]. \quad (\text{E.22})$$

1862 Lemma D.7 (cumulative squared widths) now gives

$$1863 \quad \sum_{t=1}^T \mathbb{E}[w_t^2] \leq C_w d_{\text{eluder}} \beta_T \log(eT),$$

1864 where $d_{\text{eluder}} := \dim_E(\mathcal{R}, T^{-1})$ is the T^{-1} -eluder dimension of the reward class. Combining this
1865 with equation E.22 yields

$$1866 \quad I(\theta^*; \text{feedback}_{1:T}) \leq c_0 C_w d_{\text{eluder}} \beta_T \log(eT). \quad (\text{E.23})$$

1867 Defining $C_{\text{info}} := c_0 C_w$ gives the claimed information bound.

1868 The remainder of the proof proceeds by combining this information bound with the variance-based
1869 optimism inequality (bounding the instantaneous regret by $\kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y_t)}$) and a dyadic decomposition
1870 argument on the predictive variances. This shows that the cumulative optimism term
1871 $\sum_{t=1}^T \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y_t)}$ is at most $C_{\text{opt}} d_{\text{eluder}} \log(eT)$, which is exactly the statement of Proposition
1872 E.4. \square

1890 **F FULL PROOFS FOR THE MDP EXTENSION**

1891

1892 This section extends our preference-based analysis from contextual bandits to Markov Decision
1893 Processes (MDPs) and provides full proofs for the finite-horizon and discounted regret bounds stated
1894 in Theorem 6.2 and Section F.1.

1895 **MDP SETUP AND NOTATION**

1896 We consider a finite-horizon MDP

1897
$$\mathcal{M} = (\mathcal{S}, \mathcal{A}, P, r^*, \rho, H),$$

1898 with state space \mathcal{S} , action space \mathcal{A} , transition kernel P , horizon H , and initial state distribution
1899 ρ over \mathcal{S} . The latent single-step reward function $r^* : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ is unknown but assumed
1900 realizable in our reward model class $\mathcal{R} = \{r_\theta : \theta \in \Theta\}$ as in the bandit setting.

1901 A (possibly non-stationary) policy π is a sequence $\pi = (\pi_h)_{h=1}^H$ with $\pi_h(\cdot | s) \in \Delta(\mathcal{A})$. We
1902 write $\pi_h(s) \in \mathcal{A}$ when π_h is deterministic. For any policy π we define the value and action-value
1903 functions in the usual way:

1904
$$V_h^\pi(s) := \mathbb{E}_\pi \left[\sum_{t=h}^H r^*(S_t, A_t) \mid S_h = s \right], \quad Q_h^\pi(s, a) := r^*(s, a) + \mathbb{E}_{S_{h+1} \sim P(\cdot | s, a)} [V_{h+1}^\pi(S_{h+1})].$$

1905 Let d_h^π denote the marginal distribution of S_h when $S_1 \sim \rho$ and the trajectory is generated by P
1906 under policy π for steps $1, \dots, h-1$. Note that d_h^π does not depend on the episode index.

1907 The OTD-LE algorithm maintains an ensemble of reward models $\{r_\theta : \theta \in \Theta\}$ updated from
1908 pairwise preferences using the same PAC-Bayesian machinery as in the bandit case. The environment
1909 never reveals numeric rewards; instead, in episode e the algorithm uses a particle θ_e to form
1910 *pseudo-rewards*

1911
$$\tilde{R}_{e,h} := r_{\theta_e}(S_{e,h}, A_{e,h}),$$

1912 which enter the temporal-difference targets used to update the value or Q -function parameters. For
1913 example, in a value-based implementation we may use

1914
$$Y_{e,h} := \tilde{R}_{e,h} + \gamma V_{\varphi_e, h+1}(S_{e,h+1}),$$

1915 with $\gamma = 1$ in the finite-horizon case and $\gamma \in (0, 1)$ in the discounted case. All numeric quantities in
1916 the TD updates are therefore computed from the learned reward model, while the environment pro-
1917 vides only preference feedback.⁵ We write $\pi_e = (\pi_{e,h})_{h=1}^H$ for the (non-stationary) policy executed
1918 in episode e and $\pi^* = (\pi_h^*)_{h=1}^H$ for an optimal policy for r^* .

1919 The episodic MDP regret after T episodes is

1920
$$\text{Regret}(T) := \sum_{e=1}^T (V_1^{\pi^*}(\rho) - V_1^{\pi_e}(\rho)),$$

1921 which coincides with the contextual-bandit regret when $H = 1$.

1922

1923 **Remark F.1 (MDP extension and preference feedback).** *In the MDP extension, the environment
1924 never reveals ground-truth numeric rewards. We assume a latent single-step reward function $r^* :
1925 \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$ that induces the Bradley-Terry-Luce preference model in Equation (2.1), and we
1926 fit a posterior over reward models $\{r_\theta : \theta \in \Theta\}$ from pairwise preferences exactly as in the bandit
1927 setting. In each episode e and at each stage h , OTD-LE forms a pseudo-reward*

1928
$$\tilde{R}_{e,h} := r_{\theta_e}(S_{e,h}, A_{e,h}),$$

1929 where θ_e is the particle used to act in episode e , and constructs TD targets (for value- or Q -function
1930 updates) only from these pseudo-rewards together with next-state value estimates. In particular,
1931 TD targets only ever use pseudo-rewards from r_θ ; the environment is queried solely for preference
1932 feedback, not for numeric rewards.

1933

1934 ⁵This mirrors the standard “reward-model + RL” pipeline used in preference-based RL and RLHF; see the
1935 discussion in App. I.

1944
1945

F.1 MDP REGRET BOUNDS

1946
1947

Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes, achieves a cumulative regret that satisfies, with high probability:

1948
1949

$$\text{Regret}(T) = \tilde{\mathcal{O}}(H^2 \cdot d_{\text{eluder}} \cdot \log T) + \text{lower-order approximation terms}, \quad (\text{F.1})$$

1950
1951

where the lower-order terms have a similar structure to the bandit case, summed over all $T \times H$ steps.

1952
1953

Under the same assumptions, for an infinite-horizon discounted MDP, the O-DQLE algorithm run for T steps achieves a cumulative regret that satisfies, with high probability:

1954
1955
1956

$$\text{Regret}(T) = \tilde{\mathcal{O}}\left(\frac{d_{\text{eluder}}}{(1-\gamma)^3} \cdot \log T\right) + \text{lower-order approximation terms}. \quad (\text{F.2})$$

1957
1958

F.2 PROOF FOR FINITE-HORIZON MDPs (SECTION F.1)

1959
1960
1961
1962

The proof requires adapting the regret decomposition to handle temporal dependencies. A naive application of the value-difference lemma can lead to errors compounding exponentially in the horizon H . To avoid this, we employ a more sophisticated policy decomposition technique.

1963
1964
1965
1966

Step 1: Regret decomposition via hybrid policies. Fix an episode e and write $\pi_e = (\pi_{e,h})_{h=1}^H$ for the policy executed by OTD-LE and $\pi^* = (\pi_h^*)_{h=1}^H$ for an optimal policy. For $h = 1, \dots, H+1$ define the hybrid policies $\pi^{(h)}$ by

1967
1968
1969

$$\pi_t^{(h)}(s) := \begin{cases} \pi_{e,t}(s), & t < h, \\ \pi_t^*(s), & t \geq h, \end{cases} \quad t = 1, \dots, H, s \in \mathcal{S}.$$

1970
1971

Thus $\pi^{(1)} = \pi^*$ (all steps optimal) and $\pi^{(H+1)} = \pi_e$ (all steps follow the learned policy). By telescoping we obtain

1972
1973
1974

$$V_1^{\pi^*}(\rho) - V_1^{\pi_e}(\rho) = \sum_{h=1}^H \left(V_1^{\pi^{(h)}}(\rho) - V_1^{\pi^{(h+1)}}(\rho) \right). \quad (\text{F.3})$$

1975
1976
1977
1978
1979

For each h , the three policies $\pi_e, \pi^{(h)}, \pi^{(h+1)}$ agree on steps $1, \dots, h-1$, so they induce the same state distribution $d_h^{\pi_e}$ at step h . Moreover $\pi^{(h)}$ and $\pi^{(h+1)}$ both follow π^* from step $h+1$ onward, so their Q -functions at step h coincide with $Q_h^{\pi^*}$. Applying the standard finite-horizon performance-difference lemma with these observations yields, for every $h \in \{1, \dots, H\}$,

1980
1981

$$V_1^{\pi^{(h)}}(\rho) - V_1^{\pi^{(h+1)}}(\rho) = \mathbb{E}_{S_{e,h} \sim d_h^{\pi_e}} \left[Q_h^{\pi^*}(S_{e,h}, \pi_h^*(S_{e,h})) - Q_h^{\pi^*}(S_{e,h}, \pi_{e,h}(S_{e,h})) \right]. \quad (\text{F.4})$$

1982
1983
1984

Equations equation F.3 and equation F.4 reduce the regret comparison between π_e and π^* to a sum of H single-step advantage terms, one for each stage h .

1985
1986

Step 2: Bounding the single-step deviations. For a fixed episode e and stage h , define the instantaneous MDP regret

1987
1988

$$\Delta_{e,h} := Q_h^{\pi^*}(S_{e,h}, \pi_h^*(S_{e,h})) - Q_h^{\pi^*}(S_{e,h}, \pi_{e,h}(S_{e,h})).$$

1989
1990
1991
1992
1993
1994

By equation F.4 we have $V_1^{\pi^{(h)}}(\rho) - V_1^{\pi^{(h+1)}}(\rho) = \mathbb{E}[\Delta_{e,h}]$. Unrolling the Bellman recursion shows that $\Delta_{e,h}$ is a bounded linear functional of the per-step latent reward function r^* along the suffix of the trajectory, so it can be written as the difference of two evaluations of r_θ at an $(\mathcal{S} \times \mathcal{A})$ -valued input. Consequently, the PAC-Bayesian posterior control, variance-information lemma, and cumulative squared-width bound developed for the contextual bandit setting apply to each pair (e, h) with the same eluder dimension d_{eluder} .

1995
1996
1997

On the high-probability optimism event from Theorem E.4, the same argument as in the bandit case yields

$$\Delta_{e,h} \leq \kappa_{e,h} \sqrt{V_{e,h}} + (\text{finite-ensemble, discretization, and stochastic-gradient terms}),$$

1998 where $V_{e,h}$ is the posterior predictive variance of the relevant logit difference at $(S_{e,h}, \pi_{e,h}(S_{e,h}))$,
 1999 and $\kappa_{e,h}$ is an exploration coefficient of order $\log(TH)$. Summing this inequality over $e = 1, \dots, T$
 2000 and $h = 1, \dots, H$ and applying the variance-information and cumulative squared-width bounds
 2001 from Sections D.2 and E.2 gives a leading exploration term of order $\tilde{\mathcal{O}}(H^2 d_{\text{eluder}} \log T)$; the extra
 2002 factor H comes from the hybrid-policy decomposition equation F.3.
 2003

2004 **Step 3: Bounding Approximation Errors.** The approximation errors from discretization, finite
 2005 ensembles, and stochastic gradients are summed over all $T \times H$ steps. The martingale concentration
 2006 arguments still apply, leading to lower-order terms of the form $\tilde{\mathcal{O}}(\sqrt{TH}(\cdot))$. With appropriate
 2007 scheduling of N_e and B_e , these can be controlled. \square
 2008

2009 **F.3 PROOF FOR DISCOUNTED MDPs (SECTION F.1)**
 2010

2011 We now consider an infinite-horizon γ -discounted MDP with the same state and action spaces $(\mathcal{S}, \mathcal{A})$
 2012 and latent reward model $r^* : \mathcal{S} \times \mathcal{A} \rightarrow [0, 1]$. For a policy π and initial distribution ρ we define
 2013

$$2014 V^\pi(\rho) := \mathbb{E}_\pi \left[\sum_{t=0}^{\infty} \gamma^t r^*(S_t, A_t) \mid S_0 \sim \rho \right].$$

$$2015$$

$$2016$$

2017 The γ -discounted state-occupancy measure of π is

$$2018 d^\pi(s) := (1 - \gamma) \sum_{t=0}^{\infty} \gamma^t \Pr_{\pi}^t(S_t = s \mid S_0 \sim \rho), \quad s \in \mathcal{S}.$$

$$2019$$

$$2020$$

2021 This is a probability distribution on \mathcal{S} . Let $Q^\pi(s, a)$ denote the usual γ -discounted action-value
 2022 function of π . The performance-difference lemma for discounted MDPs then states that for any two
 2023 policies π and π' ,

$$2024 V^{\pi'}(\rho) - V^\pi(\rho) = \frac{1}{1 - \gamma} \mathbb{E}_{s \sim d^\pi} \left[Q^{\pi'}(s, \pi'(s)) - Q^{\pi'}(s, \pi(s)) \right]. \quad (\text{F.5})$$

$$2025$$

$$2026$$

$$2027$$

2028 In our setting, the algorithm produces a sequence of policies $\pi_1, \pi_2, \dots, \pi_T$ via OTD-LE using
 2029 pseudo-rewards $r_{\theta_t}(s, a)$ from the learned reward model, exactly as described in the finite-horizon
 2030 case; the environment again supplies only preference feedback. Define the instantaneous regret at
 2031 round t by

$$2032 \Delta_t := Q^{\pi^*}(S_t, \pi^*(S_t)) - Q^{\pi^*}(S_t, \pi_t(S_t)),$$

$$2033$$

so that equation F.5 implies

$$2034 V^{\pi^*}(\rho) - V^{\pi_t}(\rho) = \frac{1}{1 - \gamma} \mathbb{E}[\Delta_t].$$

$$2035$$

$$2036$$

$$2037$$

2038 The same PAC-Bayesian, variance-information, and cumulative squared-width analysis as in the
 2039 contextual bandit setting shows that, on a high-probability event,

$$2040 \Delta_t \leq \kappa_t \sqrt{V_t} + (\text{finite-ensemble, discretization, and stochastic-gradient terms}),$$

$$2041$$

2042 where V_t is the posterior predictive variance of the queried logit difference at round t . Summing
 2043 over $t = 1, \dots, T$ and using the variance-information lemma together with the information-eluder
 2044 bound from Section D.2 yields

$$2045 \sum_{t=1}^T \mathbb{E}[\Delta_t] = \tilde{\mathcal{O}}(d_{\text{eluder}} \log T).$$

$$2046$$

$$2047$$

$$2048$$

2049 Combining this with the factor $1/(1 - \gamma)$ from equation F.5 and the finite-ensemble / discretization
 2050 / stochastic-gradient bounds from Section E.2 gives the discounted MDP regret bound stated in
 2051 Section F.1, with the leading term of order $\tilde{\mathcal{O}}(d_{\text{eluder}}(1 - \gamma)^{-2} \log T)$ and lower-order approximation
 terms analogous to the contextual bandit case. \square

2052 **G IMPLEMENTATION DETAILS AND ADDITIONAL PSEUDOCODE**
2053

2054 This section provides the [computation cost discussion of OLE](#), necessary details of pseudocode
2055 for the proposed algorithms and a discussion of hyperparameter schedules that achieve the optimal
2056 regret rates.
2057

2058 **G.1 COMPUTATIONAL COST OF OLE.**
2059

2060 At each round t , Algorithm 2 performs a single projected SGLD update for each of the N_t particles:
2061

2062
$$\tilde{\theta}_{t+1}^{(i)} = \theta_t^{(i)} - \eta_t \hat{\nabla} J_{\text{PAC}}(\theta_t^{(i)}) + \sqrt{2\eta_t\beta} \xi_t^{(i)}, \quad \theta_{t+1}^{(i)} = \Pi_{\Theta}(\tilde{\theta}_{t+1}^{(i)}).$$

2063

2064 The stochastic gradient $\hat{\nabla} J_{\text{PAC}}(\theta_t^{(i)})$ is computed on a mini-batch B_t of size $|B_t|$ from the replay
2065 buffer D_t , so its cost is $O(|B_t| \cdot \dim(\theta))$, exactly as in a standard SGD update on the same model.
2066 The additional Gaussian-noise and projection operations are $O(\dim(\theta))$ and therefore negligible
2067 compared to the gradient computation. Hence the overall per-round complexity of OLE is
2068

2069
$$O(N_t |B_t| \cdot \dim(\theta)),$$

2070

2071 and the total cost up to horizon T is $O(N |B| T \cdot \dim(\theta))$ when $N := \sup_t N_t$ and $|B| := \sup_t |B_t|$.
2072 In our regret analysis, N_t and $|B_t|$ are taken to be fixed (or at most polylogarithmic in T); the cor-
2073 responding approximation errors appear only in the lower-order ‘‘Finite Ensemble’’ and ‘‘Stochastic
2074 Gradient’’ terms of Theorem 5.1 and do not affect the leading dependence on T . Thus, OLE is com-
2075 putationally comparable to training a small ensemble of reward models with mini-batch SGD, and
2076 all operations are polynomial-time in the problem parameters.
2077

2078 **G.2 COMPLETE PSEUDOCODE**
2079

2080 The following algorithms formalize the procedures analyzed in this paper. Algorithm 2 provides the
2081 generic template, Algorithm 4 and Algorithm 3 specifies the contextual bandit variant online
2082 contextual bandit variant respectively, and Algorithm 5 details the extension to MDPs using temporal-
2083 difference learning.
2084

2085 **Algorithm 2: Optimistic Langevin Ensemble (OLE): Generic Template**
2086

2087 **Input:** Prior Π_0 ; step sizes $\{\eta_t\}$; ensemble sizes $\{N_t\}$; batch sizes $\{B_t\}$; optimism schedule
2088 $\{\kappa_t\}$
2089

2090 **1 for** $t = 1, 2, \dots, T$ **do**
2091 **2 Observe context** x_t ;
2092 **// Optimistic Selection**
2093 **3 Compute ensemble mean** $\hat{r}_t(x_t, y)$ and variance $\widehat{\text{Var}}_t(x_t, y)$ for all $y \in \mathcal{Y}$;
2094 **4 Construct optimistic index:** $I_t(x_t, y) \leftarrow \hat{r}_t(x_t, y) + \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y)}$;
2095 **5 Select action pair** $(y_t^{(w)}, y_t^{(\ell)})$ based on maximizing information gain using $\{I_t(x_t, y)\}_{y \in \mathcal{Y}}$;
2096 **6 Receive preference feedback, forming data batch** \mathcal{D}_t ;
2097 **// Posterior Update (SGLD)**
2098 **7 Compute mini-batch gradient** $\hat{\nabla}_t$ of $J_{\text{PAC}}(\theta) = \hat{L}_{\mathcal{D}_t}(\theta) + \beta D_{\text{KL}}(\delta_\theta \|\Pi_{t-1})$;
2099 **8 for** $i = 1, \dots, N_t$ **do**
2100 **9 Draw Gaussian noise** $\xi_t^{(i)} \sim \mathcal{N}(0, I)$;
2101 **10** $\theta_{t+1}^{(i)} \leftarrow \theta_t^{(i)} - \eta_t \hat{\nabla}_t J_{\text{PAC}}(\theta_t^{(i)}) + \sqrt{2\eta_t\beta} \xi_t^{(i)}$;
2102 **11** $\theta_{t+1}^{(i)} \leftarrow \text{Proj}_{\Theta}(\tilde{\theta}_{t+1}^{(i)})$;
2103

2106

Algorithm 3: Optimistic Thompson Sampling with Langevin Ensembles (O-TSLE)

2107

Input: Prior Π_0 , step size η , particles N_t , batch size B_t , optimism schedule κ_t .

2108

1 **for** $t = 1, 2, \dots, T$ **do**

2109

2 Draw $\{\theta_t^{(i)}\}_{i=1}^{N_t}$ by 1 SGLD step from Π_{t-1} using B_t samples;

2110

3 Compute predictive mean $\hat{r}_t(y)$ and uncertainty $\hat{\sigma}_t(y)$ over candidates $y \in \mathcal{Y}$;

2111

4 Select action $y_t \in \arg \max_y \hat{r}_t(y) + \kappa_t \hat{\sigma}_t(y)$;

2112

5 Observe (pairwise) feedback at y_t and update posterior to Π_t (PAC-Bayes loss);

2113

2114

Algorithm 4: Optimistic Langevin Ensemble (OLE) — Contextual Bandit Variant (O-TSLE)

2115

Input: Prior Π_0 ; step sizes $\{\eta_t\}$; ensemble sizes $\{N_t\}$; batch sizes $\{B_t\}$; optimism schedule $\{\kappa_t\}$

2116

1 **for** $t = 1, 2, \dots, T$ **do**

2117

2 Observe context x_t ;

2118

// Optimistic Selection

2119

3 Compute ensemble mean and variance for all $y \in \mathcal{Y}$:

2120

4 $\hat{r}_t(x_t, y) \leftarrow \frac{1}{N_t} \sum_{i=1}^{N_t} r_{\theta_t^{(i)}}(x_t, y)$;

2121

5 $\widehat{\text{Var}}_t(x_t, y) \leftarrow \frac{1}{N_t-1} \sum_{i=1}^{N_t} (r_{\theta_t^{(i)}}(x_t, y) - \hat{r}_t(x_t, y))^2$;

2122

6 Construct optimistic index: $I_t(x_t, y) \leftarrow \hat{r}_t(x_t, y) + \kappa_t \sqrt{\widehat{\text{Var}}_t(x_t, y)}$;

2123

7 Select action pair $(y_t^{(w)}, y_t^{(\ell)})$ to query, based on maximizing information gain using $\{I_t(x_t, y)\}_{y \in \mathcal{Y}}$;

2124

8 Receive preference feedback for the selected pair, forming data batch \mathcal{D}_t ;

2125

// Posterior Update

2126

9 Compute mini-batch gradient $\widehat{\nabla}_t$ of J_{PAC} using \mathcal{D}_t (batch size B_t);

2127

10 **for** $i = 1, \dots, N_t$ **do**

2128

11 Draw Gaussian noise $\xi_t^{(i)} \sim \mathcal{N}(0, I)$;

2129

12 **Langevin step:** $\theta_{t+1}^{(i)} \leftarrow \theta_t^{(i)} - \eta_t \widehat{\nabla}_t J_{\text{PAC}}(\theta_t^{(i)}) + \sqrt{2\eta_t \beta} \xi_t^{(i)}$;

2130

13 $\theta_{t+1}^{(i)} \leftarrow \text{Proj}_{\Theta}(\theta_{t+1}^{(i)})$;

2131

2132

2133

Algorithm 5: Optimistic TD with Langevin Ensembles (O-TDLE) for MDPs

2134

Input: Prior Π_0 on Q-function parameters; step sizes $\{\eta_e\}$; ensemble sizes $\{N_e\}$; batch sizes $\{B_e\}$; optimism schedule $\{\kappa_e\}$

2135

1 **for** episode $e = 1, 2, \dots, T$ **do**

2136

2 Initialize state s_1 ;

2137

3 **for** step $h = 1, 2, \dots, H$ **do**

2138

// Optimistic Action Selection

2139

4 Compute ensemble mean $\hat{Q}_{e,h}(s_h, a)$ and variance $\widehat{\text{Var}}_{e,h}(s_h, a)$ for all $a \in \mathcal{A}$;

2140

5 Select action $a_h = \arg \max_{a \in \mathcal{A}} \left(\hat{Q}_{e,h}(s_h, a) + \kappa_h \sqrt{\widehat{\text{Var}}_{e,h}(s_h, a)} \right)$;

2141

6 Execute a_h , observe next state s_{h+1} and collect preference data for the transition;

2142

7 Form a pseudo-reward $\tilde{R}_{e,h} \leftarrow r_{\theta_e}(s_h, a_h)$ using the current reward model ensemble;

2143

// Posterior Update (after episode)

2144

8 Form a batch of transitions and preferences \mathcal{D}_e from the episode;

2145

9 Compute TD targets $y_h = r(s_h, a_h) + \gamma \max_{a'} \hat{Q}_{e,H}(s_{h+1}, a')$ (using ensemble mean);

2146

10 Compute mini-batch gradient $\widehat{\nabla}_e$ of a TD-based loss on \mathcal{D}_e regularized by $D_{\text{KL}}(\cdot \parallel \Pi_{e-1})$;

2147

11 Update all particles $\{\theta_e^{(i)}\}$ to $\{\theta_{e+1}^{(i)}\}$ using one or more SGLD steps with gradient $\widehat{\nabla}_e$;

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160 G.3 DISCUSSION OF HYPERPARAMETER SCHEDULES
21612162 Corollary 5.3 states that if the algorithmic parameters are scheduled appropriately, the lower-order
2163 approximation error terms in the regret bound become asymptotically negligible, leaving a purely
2164 logarithmic regret. Here we specify schedules that achieve this.2165
2166

- **Step Size (η_t):** To ensure the cumulative discretization error $\sum \eta_t$ remains bounded, a
2167 decreasing step size schedule is required. A standard choice is $\eta_t = \eta_0/t$ or $\eta_t = \eta_0/\sqrt{t}$.
2168 With such schedules, the sum converges or grows slower than any linear function, making
2169 the $\tilde{\mathcal{O}}(\sum \eta_t)$ term sub-leading.
- **Ensemble Size (N_t) and Batch Size (B_t):** To control the finite-ensemble and stochastic
2170 gradient errors, whose cumulative sums scale as $\tilde{\mathcal{O}}(\sqrt{\sum 1/N_t})$ and $\tilde{\mathcal{O}}(\sqrt{\sum 1/B_t})$ re-
2171 spectively (assuming bounded variances), we need the sums $\sum 1/N_t$ and $\sum 1/B_t$ to be
2172 bounded. This can be achieved by increasing N_t and B_t over time. For example, setting
2173 $N_t = \lceil N_0 \log(t+1) \rceil$ and $B_t = \lceil B_0 \log(t+1) \rceil$ would suffice. A practical alternative is
2174 an episodic schedule where N_t and B_t are increased (e.g., doubled) at the start of geo-
2175 metrically spaced episodes. This ensures the approximation errors are effectively “paid for” by
2176 the logarithmic exploration term.

21772178 These schedules demonstrate that our theory provides an asymptotic guarantee, and offers concrete,
2179 practical guidance for algorithm design, directly connecting the theoretical results to the desired
2180 performance outcome.
21812182 H EXPERIMENT
21832184
2185
2186
2187 **Experiment Settings.** **(1) Datasets**. We evaluate our methods on the grade school math dataset
2188 *GSM8K* Cobbe et al. (2021), a collection of 8.5K high-quality, linguistically diverse word problems
2189 that test basic mathematical skills requiring multi-step reasoning. In addition, we adopt zero-shot
2190 prompts and rule-based evaluators to automatically assess the performance of LLMs. **(2) Back-**
2191 **bones.** We use *Qwen2.5-1.5B-Instruct*, *Qwen2.5-3B-Instruct* Bai et al. (2023) as language model
2192 backbones. **(3) Baselines.** Among widely adopted on-policy RL methods, **GRPO** Shao et al.
2193 (2024), **DAPO** Yu et al. (2025) and **GPG** Chu et al. (2025) share a common framework derived
2194 from PPO Schulman et al. (2017). Instead of using generalized advantage estimation (GAE), they
2195 adopt a group-wise relative estimation strategy. Concretely, a policy π_θ generates a group G_s of
2196 candidate rollouts for a given input, and the model is optimized to maximize the expected group-
2197 level reward. We combine these three baselines with OLE to test our performance. **(4) Evaluation.**
2198 In the experimental data processing phase, we strictly adhere to the original training-test set splits
2199 provided for the *GSM8K* dataset to ensure the reproducibility of results and comparability with
2200 prior studies. Specifically, for the original training set of each dataset, we further employ stratified
2201 random sampling to partition it into a training subset and a validation subset at an 80%:20% ratio.
2202 **(6) Hyper-parameters Details.** The maximum input sequence length is set to 512 tokens, and
2203 the maximum number of generated tokens is 2048. The learning rate is 1×10^{-6} . The number of
2204 rollouts G_s is set to 4. The ole threshold percent is set to 0.8. The rank of lora r is set to 16. For
2205 DAPO specifically, we set $\epsilon_{\text{low}} = 0.2$ and $\epsilon_{\text{high}} = 0.28$, with the number of resampling steps set to
2206 3. **(6) Implement Details.** To ensure reproducibility, all experiments are implemented in PyTorch
2207 with Python 3.11. Training and inference are conducted on 8×A800-80G GPUs. All on-policy
2208 RL baselines are implemented using the VeRL framework Sheng et al. (2025). All baselines are
2209 carefully re-implemented and hyperparameter-tuned to ensure fair comparisons. Code is available
2210 at https://anonymous.4open.science/r/ICLR_OLE-B243.
2211
22122213 From the experimental results, we observe a consistent pattern across different model sizes
(Qwen2.5-Instruct-1.5B and 3B) and optimization paradigms (GRPO, DAPO, GPG): after introduc-

2214

2215 Table 7: GSM8K results on Qwen2.5-Instruct models with OLE performance gain.

Model	Method	Base (\uparrow)	Drops (\uparrow)	Base+OLE (\uparrow)	Drops (\uparrow)	Performance Gain (\uparrow)
1.5B	GRPO	0.596	0	0.612	3944	2.69%
	DAPO	0.497	0	0.596	4344	19.9%
	GPG	0.596	0	0.613	4032	2.85%
3B	GRPO	0.667	0	0.704	5964	5.55%
	DAPO	0.707	0	0.712	5080	0.71%
	GPG	0.635	0	0.680	6408	7.09%

2224

2225 Table 8: GSM8K results of different training schedules for Qwen2.5-3B under GRPO.

Method	Acc (\uparrow)	Drops (\uparrow)	Performance Gain (\uparrow)
GRPO Only	0.667	0	–
GRPO + OLE (full steps)	0.704	5964	+5.55%
20-step GRPO → OLE-enabled GRPO	0.722	5820	+8.25%

2231

2232

2233 ing OLE, all method–model combinations achieve positive performance gains on GSM8K, while
 2234 simultaneously discarding a substantial number of training samples.

2235

2236 OLE works by estimating the *marginal contribution* of each sample to the overall optimization ob-
 2237 jective and selectively dropping those that provide limited benefit or introduce training noise. This
 2238 allows the training process to concentrate gradient updates on **higher-value samples** under the same
 2239 compute budget. On the efficiency side, the number of samples participating in backpropagation is
 2240 significantly reduced (e.g., thousands of samples are dropped for each configuration), which effec-
 2241 tively increases the number of informative updates per unit time. On the effectiveness side, we see
 2242 consistent improvements across both small and large models. The 1.5B+DAPO setting achieves the
 2243 largest relative gain of 19.9%, indicating that removing low-value samples is particularly benefi-
 2244 cial when the base optimizer is weaker or the model capacity is more constrained. Notably, even
 2245 the strong 3B+GRPO configuration now benefits from OLE, with a 5.55% relative improvement,
 2246 showing that sample filtering can still enhance performance in already competitive regimes.

2247

2248 Overall, these results support our theoretical hypothesis: **by estimating sample value online and**
dynamically discarding low-gain examples, OLE increases the “purity” of the training signal,
leading to both higher training efficiency and better final model performance, without increasing
computational cost.

2249

2250

2251

2252 **Remark H.1** (Empirical validation and connection to rejection sampling in RL). *The GSM8K exper-
 2253 iments with Qwen2.5-Instruct backbones and three on-policy RL baselines (GRPO, DAPO, GPG)
 2254 exhibit exactly the qualitative behavior predicted by our theory. Across all configurations in the
 2255 table, plugging OLE on top of the base RL optimizer yields consistent performance gains in the
 2256 Base+OLE column, while the Drops column shows that thousands of training updates are skipped
 2257 by the OLE filtering rule. This is consistent with the regret decomposition in Theorem 5.1: the lead-
 2258 ing $\tilde{O}(d_{\text{eluder}} \log T)$ exploration term depends on how quickly the optimistic posterior concentrates,
 2259 not on using every on-policy sample. Discarding low-gain updates primarily shrinks the lower-order
 2260 stochastic gradient and approximation terms without changing the asymptotic rate, so we expect to
 2261 see better empirical performance at a comparable computational budget, which is exactly what the
 2262 table reports.*

2263

2264

2265

2266

2267

2268 *From an RL perspective, the OLE filter can be interpreted as a principled form of rejection sampling
 2269 over on-policy rollouts. For each input, the base policy and RL optimizer (GRPO, DAPO, or GPG)
 2270 generate a small group of candidate responses. OLE then evaluates the marginal contribution of
 2271 each candidate to the PAC-Bayesian objective and keeps only those above the OLE threshold, while
 2272 rejecting the rest. This accept/reject step plays the same structural role as the heuristic rejection
 2273 sampling used in many practical RLHF pipelines (e.g., discarding low-reward or low-score trajec-
 2274 tories), but here the acceptance rule is derived directly from the PAC-Bayes/Wasserstein gradient-*

2268
 2269 *flow analysis rather than chosen ad hoc. The fact that Base+OLE dominates the base RL methods*
 2270 *in all settings, despite the substantial number of rejected samples reported in the Drops column,*
 2271 *empirically corroborates our theoretical claim that optimally accepting only the most informative*
 2272 *preference updates can improve both generalization and sample efficiency in preference-based RL.*

2273
 2274
 2275 **Optimism-Schedule Experiment.** To further test whether OLE serves as an implicit optimism
 2276 mechanism, we run an additional experiment on Qwen2.5-3B + GRPO. Instead of enabling OLE
 2277 from the start, we first train with standard GRPO for 20 steps, allowing the model to *exploit* the data
 2278 uniformly and stabilize its initial representations. We then activate GRPO+OLE for the remaining
 2279 steps. In this phase, OLE prioritizes higher-uncertainty samples that provide larger information gain,
 2280 effectively shifting the training dynamics toward *exploration*.

2281 This staged strategy achieves the best accuracy of **0.722**, outperforming both pure GRPO and full-
 2282 length GRPO+OLE. The result indicates that activating OLE later in training allows the model
 2283 to explore informative, high-uncertainty samples more effectively once a stable baseline has been
 2284 formed. Empirically, this supports the design in Algorithm 2, where both the number of particles N
 2285 and the optimism coefficient κ_t are gradually increased to achieve a practical and effective balance
 2286 between early exploitation and later exploration.

I LOWER BOUND AND OPTIMALITY

2291 **Remark I.1** (On lower bounds and optimality in T). *We demonstrate with a Proposition I.2 showing*
 2292 *that even in the non-contextual, finite-action special case of our model, with the same Bradley–*
 2293 *Terry–Luce (BTL) preference structure and bounded rewards as in Theorem 5.1, any uniformly good*
 2294 *algorithm must incur expected regret at least of order $\log T$. More precisely, for each fixed instance*
 2295 *with positive gaps $\Delta_y = r^*(y^*) - r^*(y) > 0$ one has $\mathbb{E}[\text{Regret}(T)] \geq c_{\text{low}}(r^*) \log T$ for all*
 2296 *sufficiently large T , and on a gap-separated subclass with minimum gap $\Delta_{\min} > 0$ there exists a*
 2297 *constant $c_{\text{low}}(\Delta_{\min}) > 0$ such that*

$$\sup_{\substack{\text{instances with gaps} \\ \geq \Delta_{\min}}} \mathbb{E}[\text{Regret}(T)] \geq c_{\text{low}}(\Delta_{\min}) \log T \quad \text{for all sufficiently large } T.$$

2300 *Within this structural class, the dependence on the horizon T in Theorem 5.1 can therefore not*
 2301 *be improved below logarithmic order: up to absolute constants, polylogarithmic factors, and the*
 2302 *eluder-dimension factor d_{eluder} , our upper bound is optimal in its T -dependence.*

2303 At the same time, our result is fully compatible with the well-known $\Omega(d\sqrt{T})$ minimax lower
 2304 bounds for *contextual dueling bandits*, such as the linear setting studied by Bengs et al. (2022).
 2305 In that literature the learner selects a *pair* of actions $(a_t^{(1)}, a_t^{(2)})$ at each round, observes a single
 2306 noisy comparison between them, and performance is measured by a dueling-regret notion (weak
 2307 or strong) over such pairs—roughly, how often the chosen pair loses or fails to beat the best arm.
 2308 The $\Omega(d\sqrt{T})$ lower bound is minimax for this pair-action, dueling-regret problem. By contrast,
 2309 in our setting the algorithm selects a *single* action y_t at each round (or per state in the MDP),
 2310 may query preferences involving y_t , and regret is the standard single-action cumulative regret
 2311 $\text{Regret}(T) = \sum_{t=1}^T (r^*(x_t, y^*(x_t)) - r^*(x_t, y_t))$. The contextual dueling lower bound does not
 2312 provide a lower bound for $\text{Regret}(T)$ in this single-action setting, just as Proposition I.2 does not
 2313 make any claim about dueling regret over pairs of actions. The two results address different minimax
 2314 problems and can hold simultaneously without contradiction.

2315 In summary, Theorem 5.1 should be read as a *uniform fast-rate* $\tilde{\mathcal{O}}(d_{\text{eluder}} \log T)$ bound for single-
 2316 action regret under our structural assumptions (realizability, boundedness, Lipschitz continuity, fi-
 2317 nite eluder dimension, and BTL preferences), and Proposition I.2 shows that its logarithmic depen-
 2318 dence on T is essentially optimal within this class.

2319 **Proposition I.2** (Logarithmic lower bound in the BTL preference setting). *Consider the non-*
 2320 *contextual special case of our model with a finite action set $\mathcal{Y} = \{1, \dots, K\}$ and Bradley–Terry–*
 2321 *Luce preferences generated from a latent reward vector $r^* \in [0, 1]^K$. At each round t , the algorithm*

2322 chooses a single action $y_t \in \mathcal{Y}$ and observes one bit of preference feedback comparing y_t to a fixed
 2323 baseline action $y_0 \in \mathcal{Y}$, according to

$$2325 \quad \mathbb{P}(y_t \succ y_0 \mid y_t) = \sigma(r^*(y_t) - r^*(y_0)),$$

2326 where σ is the logistic link. Regret is the standard single-action regret

$$2328 \quad \text{Regret}(T) = \sum_{t=1}^T (r^*(y^*) - r^*(y_t)), \quad y^* \in \arg \max_{y \in \mathcal{Y}} r^*(y).$$

2331 Assume there is a unique optimal action y^* and that all gaps $\Delta_y := r^*(y^*) - r^*(y)$ for $y \neq y^*$
 2332 are strictly positive. Let $p_y := \sigma(r^*(y) - r^*(y_0))$ and let $\text{KL}(\cdot \parallel \cdot)$ denote the Bernoulli Kullback–
 2333 Leibler divergence. Then, for any (possibly randomized) algorithm \mathcal{A} that is uniformly good in the
 2334 sense of Lai and Robbins (1985),

$$2336 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_{r^*} [\text{Regret}_{\mathcal{A}}(T)]}{\log T} \geq \sum_{y \neq y^*} \frac{\Delta_y}{\text{KL}(p_y \parallel p_{y^*})}. \quad (I.1)$$

2339 In particular, since $\{r^*(y)\}_y$ are bounded and the logistic logit range is therefore bounded, there
 2340 exists a constant $C_{\text{KL}} < \infty$ such that $\text{KL}(p_y \parallel p_{y^*}) \leq C_{\text{KL}} \Delta_y^2$ for all $y \neq y^*$, and hence for any
 2341 fixed instance there is a $c_{\text{low}}(r^*) > 0$ such that

$$2342 \quad \mathbb{E}_{r^*} [\text{Regret}_{\mathcal{A}}(T)] \geq c_{\text{low}}(r^*) \log T \quad \text{for all sufficiently large } T.$$

2346 *Proof.* Fix an instance specified by a latent reward vector $r^* \in [0, 1]^K$ and a baseline action $y_0 \in \mathcal{Y}$.
 2347 Recall that by assumption there is a unique optimal action $y^* \in \arg \max_{y \in \mathcal{Y}} r^*(y)$ and that the gaps
 2348 $\Delta_y := r^*(y^*) - r^*(y)$ are strictly positive for all $y \neq y^*$.

2349 **Step 1: Reduction to a Bernoulli bandit.** At each round t , the algorithm chooses a single action
 2350 $y_t \in \mathcal{Y}$. The feedback is one bit indicating whether y_t is preferred to the fixed baseline y_0 ; under the
 2351 BTL model equation 2.1 this bit is

$$2353 \quad Z_t = \mathbf{1}\{y_t \succ y_0\}, \quad Z_t \mid (y_t = y) \sim \text{Bernoulli}(p_y),$$

2354 with

$$2355 \quad p_y := \sigma(r^*(y) - r^*(y_0)), \quad \sigma(z) = (1 + e^{-z})^{-1}.$$

2356 Thus, from the viewpoint of the learning algorithm, this non-contextual preference problem is ex-
 2357 actly a K -armed stochastic bandit with Bernoulli rewards $\{p_y\}_{y=1}^K$: on each round the algorithm
 2358 chooses an arm y and observes an independent Bernoulli sample with mean p_y .

2360 Let $N_y(T) := \sum_{t=1}^T \mathbf{1}\{y_t = y\}$ denote the number of times arm y is played up to time T . By
 2361 definition of the regret in the proposition,

$$2363 \quad \text{Regret}(T) = \sum_{t=1}^T (r^*(y^*) - r^*(y_t)) = \sum_{y \neq y^*} \Delta_y N_y(T).$$

2365 Taking expectations under the fixed instance r^* gives

$$2367 \quad \mathbb{E}_{r^*} [\text{Regret}(T)] = \sum_{y \neq y^*} \Delta_y \mathbb{E}_{r^*} [N_y(T)]. \quad (I.2)$$

2370 **Step 2: Applying the Lai–Robbins lower bound.** The family of Bernoulli distributions
 2371 $\{\text{Bernoulli}(p_y) : y \in \mathcal{Y}\}$ is a one-parameter exponential family, with canonical parameter
 2372 $\theta_y = \log(p_y/(1 - p_y))$ and mean p_y . The classical theorem of Lai and Robbins (Lai–Robbins
 2373 bound) Lai & Robbins (1985) applies to this setting. In the notation of that theorem, an algorithm
 2374 is *uniformly good* if, for every bandit instance, its regret grows slower than any power of T : for all
 2375 $\alpha > 0$ and all arms y ,

$$2376 \quad \mathbb{E}[N_y(T)] = o(T^\alpha) \quad \text{as } T \rightarrow \infty.$$

Under this condition, Lai and Robbins show that for each suboptimal arm $y \neq y^*$,

$$\liminf_{T \rightarrow \infty} \frac{\mathbb{E}_{r^*}[N_y(T)]}{\log T} \geq \frac{1}{\text{KL}(\nu_y \parallel \nu_{y^*})}, \quad (\text{I.3})$$

where ν_y and ν_{y^*} are the reward distributions of arms y and y^* . In the Bernoulli case, ν_y is fully determined by p_y , and $\text{KL}(\nu_y \parallel \nu_{y^*}) = \text{KL}(p_y \parallel p_{y^*})$ is the usual Bernoulli Kullback–Leibler divergence.

We now combine equation I.2 and equation I.3. For each T ,

$$\frac{\mathbb{E}_{r^*}[\text{Regret}(T)]}{\log T} = \sum_{y \neq y^*} \Delta_y \frac{\mathbb{E}_{r^*}[N_y(T)]}{\log T}.$$

Because the sum is finite (over the $K - 1$ suboptimal arms) and all terms in the sum are nonnegative, we may pass the \liminf through the sum:

$$\begin{aligned} \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_{r^*}[\text{Regret}(T)]}{\log T} &= \liminf_{T \rightarrow \infty} \sum_{y \neq y^*} \Delta_y \frac{\mathbb{E}_{r^*}[N_y(T)]}{\log T} \\ &\geq \sum_{y \neq y^*} \Delta_y \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_{r^*}[N_y(T)]}{\log T} \\ &\geq \sum_{y \neq y^*} \frac{\Delta_y}{\text{KL}(p_y \parallel p_{y^*})}, \end{aligned}$$

which is exactly the bound stated in equation I.1.

Step 3: Positivity and logarithmic growth. We now argue that the right-hand side is strictly positive and finite, which yields the claimed logarithmic growth rate.

First, because $r^*(y^*) > r^*(y)$ for all $y \neq y^*$, we have $\Delta_y > 0$ for all $y \neq y^*$. The BTL link σ is strictly increasing, so $p_y < p_{y^*}$ for each $y \neq y^*$, and therefore $\text{KL}(p_y \parallel p_{y^*}) > 0$ for all $y \neq y^*$.

Second, the rewards are bounded in $[0, 1]$, so for any y we have $r^*(y) - r^*(y_0) \in [-1, 1]$ and hence $p_y = \sigma(r^*(y) - r^*(y_0))$ lies in the compact interval $[\sigma(-1), \sigma(1)] \subset (0, 1)$. Thus the pairs (p_y, p_{y^*}) all belong to the compact set

$$[\sigma(-1), \sigma(1)]^2 \subset (0, 1)^2.$$

The function

$$F(p, q) := \begin{cases} \frac{\text{KL}(p \parallel q)}{(p - q)^2}, & p \neq q, \\ \lim_{u \rightarrow p} \frac{\text{KL}(u \parallel p)}{(u - p)^2}, & p = q, \end{cases}$$

is continuous and finite on $(0, 1)^2$, and hence on the compact subset $[\sigma(-1), \sigma(1)]^2$. In particular, there exists a finite constant $C_{\text{KL}} < \infty$ such that

$$\text{KL}(p_y \parallel p_{y^*}) \leq C_{\text{KL}} (p_y - p_{y^*})^2 \quad \text{for all } y.$$

Since σ is smooth and strictly monotone on $[-1, 1]$, the mean-value theorem gives, for each $y \neq y^*$,

$$p_{y^*} - p_y = \sigma(r^*(y^*) - r^*(y_0)) - \sigma(r^*(y) - r^*(y_0)) = \sigma'(\xi_y) \Delta_y$$

for some ξ_y between $r^*(y^*) - r^*(y_0)$ and $r^*(y) - r^*(y_0)$. The derivative $\sigma'(z) = \sigma(z)(1 - \sigma(z))$ is strictly positive and continuous on \mathbb{R} , so on the compact interval $[-1, 1]$ it attains a positive minimum $\lambda_{\min} > 0$ and a finite maximum $\lambda_{\max} < \infty$. Hence

$$\lambda_{\min} \Delta_y \leq p_{y^*} - p_y \leq \lambda_{\max} \Delta_y \quad \text{for all } y \neq y^*.$$

Combining the two displays, we obtain

$$\text{KL}(p_y \parallel p_{y^*}) \leq C_{\text{KL}} (p_{y^*} - p_y)^2 \leq C_{\text{KL}} \lambda_{\max}^2 \Delta_y^2,$$

and thus

$$\frac{\Delta_y}{\text{KL}(p_y \parallel p_{y^*})} \geq \frac{1}{C_{\text{KL}} \lambda_{\max}^2} \cdot \frac{1}{\Delta_y} > 0 \quad \text{for each } y \neq y^*.$$

2430 Since there are finitely many suboptimal arms, the sum
 2431

$$2432 \quad L(r^*) := \sum_{y \neq y^*} \frac{\Delta_y}{\text{KL}(p_y \| p_{y^*})}$$

2433 is strictly positive and finite for every fixed instance r^* . From equation I.1 we have
 2434

$$2435 \quad \liminf_{T \rightarrow \infty} \frac{\mathbb{E}_{r^*}[\text{Regret}(T)]}{\log T} \geq L(r^*).$$

2436 By the definition of the \liminf , there exists $T_0(r^*) < \infty$ such that $\mathbb{E}_{r^*}[\text{Regret}(T)]/\log T \geq$
 2437 $\frac{1}{2}L(r^*)$ for all $T \geq T_0(r^*)$. Setting $c_{\text{low}}(r^*) := \frac{1}{2}L(r^*) > 0$ yields
 2438

$$2439 \quad \mathbb{E}_{r^*}[\text{Regret}(T)] \geq c_{\text{low}}(r^*) \log T \quad \text{for all } T \geq T_0(r^*),$$

2440 which is the claimed logarithmic lower bound. \square
 2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483