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ABSTRACT

The remarkable sample efficiency of preference-based reinforcement learning,
which underpins the alignment of large language models with human feedback
(RLHF), presents a significant theoretical puzzle. Existing analyses often rely on
idealized assumptions, such as infinite-particle ensembles or exact, full-batch gra-
dients, that are disconnected from the practical realities of deployed algorithms.
This paper provides a statistically grounded abstraction of modern RLHF-style
training pipelines. We introduce a unified optimistic PAC-Bayesian framework
that distills the statistical essence of complex, multi-stage RLHF pipelines into a
single, provably efficient online learning algorithm. Our central result is a high-
probability regret bound of Õ(deluder log T ) for a rich, non-linear class of reward
models, demonstrating when and why logarithmic regret is achievable using finite
ensembles and noisy stochastic gradient updates under preference feedback. This
unified theory provides an explanation for the sample efficiency of pairwise pref-
erence optimization, extends naturally to full Markov Decision Processes, and es-
tablishes a theoretical foundation for the empirical success of methods like RLHF.

1 INTRODUCTION

The alignment of large language models (LLMs) through preference-based learning has become a
cornerstone of modern artificial intelligence, enabling the development of systems that are helpful,
harmless, and attuned to human intent (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024). A
striking empirical observation in this domain is the profound sample efficiency of these alignment
pipelines. Practitioners routinely steer billion-parameter models toward complex desired behaviors
using on the order of only tens of thousands of pairwise human preferences (Rafailov et al., 2023;
Christiano et al., 2017). This efficiency stands in stark contrast to the sheer dimensionality of the
models and suggests that the correct theoretical target for regret should exhibit a near-logarithmic
dependence on the number of interaction rounds, T . While classical online learning analyses for
expressive function classes typically yield regret bounds of Õ(

√
T ) (Russo & Van Roy, 2013; 2014),

the empirical reality of RLHF motivates a much sharper theoretical goal. This leads to a pivotal open
question: Can we provide a rigorous theoretical explanation for the sample efficiency of practical
preference-based alignment pipelines that yields sharp, near-logarithmic regret guarantees?

The standard practical pipeline for Reinforcement Learning from Human Feedback (RLHF) is a
complex, multi-stage process (Ouyang et al., 2022; Bai et al., 2022). It typically begins with Su-
pervised Fine-Tuning (SFT) on a high-quality dataset, proceeds to the training of a separate reward
model on collected human preference data, and culminates in policy optimization via an algorithm
like PPO against that static reward model. This multi-stage pipeline, while empirically successful,
presents a formidable challenge for unified theoretical analysis, as theoretical work often focuses on
specific stages in isolation.

In this work, we move beyond analyzing the pipeline’s components separately and instead propose
a more fundamental theoretical model, the Optimistic Langevin Ensemble (OLE), that captures
the statistical core of preference-based learning in a single, cohesive online process. By analyzing
this unified algorithm, we explain the sample efficiency of existing complex pipelines and provide a
principled blueprint for a more theoretically grounded approach to alignment.
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Bridging the empirical-theoretical divide requires that our unified model remains faithful to the
realities of practical implementations. We identify four critical gaps1 that must be addressed:

• Gap 1: Mean-Field vs. Finite Ensembles. Theoretical analyses often study a mean-field
(infinite-particle) posterior flow for analytical tractability (Jordan et al., 1998; Sznitman, 2006),
whereas practical implementations maintain a (often small) finite ensemble of reward models.

• Gap 2: Exact vs. Stochastic Gradients. Continuous-time or full-batch gradient derivations ob-
scure the fact that all large-scale implementations rely on noisy mini-batch updates.

• Gap 3: Continuous-Time vs. Discrete-Time Dynamics. Mathematical tools like Wasserstein
gradient flows offer an elegant continuous-time perspective (Ambrosio et al., 2008), but deployed
algorithms operate in discrete time with a finite step size η.

• Gap 4: Intractable vs. Tractable Uncertainty. The principle of optimism requires an upper
confidence bound on the true reward, but the exact Bayesian posterior uncertainty is intractable
for deep neural networks. Practical algorithms rely on computationally feasible proxies, such as
ensemble variance.

In this work, we develop an optimistic PAC-Bayesian particle framework for preference-based rein-
forcement learning that resolves these four gaps within our unified OLE model. Our framework
is designed to be faithful to the algorithms used in practice while providing sharp, meaningful
performance guarantees. We prove that such procedures attain a cumulative regret that scales as
Õ(deluder log T ), where deluder is the eluder dimension of the function class (Russo & Van Roy,
2013; Li et al., 2022). Our analysis achieves this by coupling a PAC-Bayesian control of gener-
alization (McAllester, 1999; Catoni, 2007) with concentration inequalities for stochastic dynam-
ics (Freedman, 1975) and Wasserstein stability bounds for particle approximations (Fournier &
Guillin, 2015), thereby addressing the four gaps within a single, cohesive theory.

Positioning and Scope. Our work is complementary to the important and emerging body of the-
ory on KL-regularized bandits and RL, which has also achieved logarithmic regret guarantees but
in the distinct setting of numeric rewards (Zhao et al., 2024; 2025b) for KL-regularized contextual
bandits and MDPs under eluder-dimension assumptions. We, in contrast, focus on the more foun-
dational problem of learning from pairwise preference feedback, which is the canonical setup for
RLHF and DPO where a reward model is itself learned from human comparisons (Christiano et al.,
2017; Bradley & Terry, 1952; Luce et al., 1959). Our contribution is an O(deluder log T ) bound for
standard cumulative regret in the pairwise-preference setting. Our analysis is algorithm-native, de-
riving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from the
specific optimization landscape of a KL-regularized objective. Conceptually, our approach is related
to optimism-in-the-face-of-uncertainty and to feel-good Thompson sampling (Zhang, 2022), but our
setting, estimators, and guarantees are novel. A comprehensive survey and detailed comparisons
appear in Appendix B.

Table 1: Our work achieves logarithmic regret for pairwise preference feedback with general func-
tion approximation in a framework that models practical algorithmic constraints. Detailed analysis
on the differences in assumptions and problem settings can be found in Appendix B.1.

Setting Feedback Model Key Assumptions Regret (Leading Term)

This work (OLE) Pairwise Preference Realizable + Eluder Dim. Õ(deluder logT )

KL-Reg. Bandits (Zhao et al., 2025a) Numeric Reward Realizable + Eluder Dim. Õ(d log T )

Preference RL (Wang et al., 2023) Pairwise Preference Realizable Õ(
√
T )

Dueling Bandits (Yue et al., 2012) Pairwise Preference Tabular/Linear Õ(log T ) or Õ(
√
T )

Optimistic Bandits (Russo & Van Roy, 2014) Numeric Reward Realizable + Eluder Dim. Õ(d
√
T )

We summarize our main results for preference-based learning as follows.

• Unified PAC-Bayesian Particle Analysis with Logarithmic Regret. For preference-based
contextual bandits, we analyze a practical algorithm using finite ensembles and mini-batch
SGD. We prove that, with high probability, the cumulative regret is bounded by Regret(T ) =

Õ(deluder log T ) + lower-order terms for discretization, finite ensembles, and mini-batching,

1More discussion on the four gaps in Appendix Section A.3.
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where the leading term captures the statistical cost of exploration, and the lower-order terms
explicitly quantify the practical algorithmic costs.

• Optimistic Langevin Ensembles. We introduce and analyze an optimistic Langevin-style en-
semble update that provides exploration bonuses online and connects to standard preference op-
timization methods in the offline limit. Our analysis combines PAC-Bayesian inequalities with
martingale concentration to provide non-asymptotic stability and concentration bounds.

• Extension to Markov Decision Processes. We extend our framework to preference-based RL
with dynamics (e.g., discounted MDPs), obtaining analogous near-logarithmic regret guarantees.
This complements results for numeric-reward MDPs (Zhao et al., 2025a) while operating in the
more fundamental pairwise feedback regime.

• Practical Implications. Our bounds provide a direct theoretical explanation for the sample ef-
ficiency of methods like RLHF and DPO (Rafailov et al., 2023) and offer principled guidance
for setting hyperparameters. We also show how parameter-efficient fine-tuning methods like
LoRA (Hu et al., 2022) naturally lead to a small eluder dimension, connecting our theory to the
practice of large-scale model alignment.

2 PROBLEM SETUP AND STRUCTURAL ASSUMPTIONS

This section formally establishes the mathematical foundation2 for our analysis. We begin by defin-
ing the preference-based contextual bandit model and the notion of cumulative preference regret. We
then introduce the key structural assumptions3 on the underlying reward function class that enable
efficient, low-regret learning.

2.1 THE PREFERENCE-BASED CONTEXTUAL BANDIT MODEL

We consider an online learning problem that unfolds over T rounds. At each round t ∈ {1, . . . , T},
the environment presents a context xt ∈ X . The learning agent then selects a pair of actions to be
compared, typically to maximize information gain about the optimal action. The agent receives feed-
back in the form of a pairwise preference. This process models the core interaction loop in RLHF,
where a context might be a user prompt and the actions are different model-generated responses
(Ouyang et al., 2022; Christiano et al., 2017).

Underlying this preference feedback is a latent, unknown reward function r∗ : X × Y → R. This
function represents the true, unobserved quality or utility of an action y in a context x. The observed
preferences are stochastic manifestations of this latent function. We model this relationship using
the standard and widely adopted Bradley-Terry-Luce (BTL) model (Bradley & Terry, 1952; Luce
et al., 1959). Given a pair of actions (yw, yℓ), the probability that yw is preferred over yℓ (denoted
yw ≻ yℓ) in context x is given by a logistic link function:

p(yw ≻ yℓ | x) = σ (r∗(x, yw)− r∗(x, yℓ)) . (2.1)

Whenever we query a comparison between (yw, yℓ) in context x, denote by feedbackt ∈ {0, 1} the
resulting binary preference at round t, taking value 1 when event yw ≻ yℓ occurs and 0 otherwise.
The likelihood in Equation (2.1) is the BTL model, where σ(z) = (1 + e−z)−1 is the sigmoid
function. This model is central to many preference-based algorithms, including Direct Preference
Optimization (Rafailov et al., 2023), and forms the basis of our likelihood-based objective.

The agent’s goal is to learn a policy π that, for any given context x, selects actions that have high
latent reward r∗(x, y). The performance of the agent is measured by the cumulative preference
regret, which quantifies the total opportunity cost incurred over T rounds. Let yt be the action
selected by the agent’s policy at round t in context xt, and let y∗t = argmaxy∈Y r∗(xt, y) be the
optimal action for that context. The regret at round t is the difference in expected reward between
the optimal action and the chosen action. The cumulative regret over T rounds is defined as:

Regret(T ) =

T∑
t=1

(r∗(xt, y
∗
t )− r∗(xt, yt)) . (2.2)

2Frequently used symbols are summarized in Table 2 in Appendix Section A.
3An assumption checklist appears in Table 3 in Appendix Section A.
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We will use Equation (2.2) as our formal notion of cumulative regret throughout the paper. The
objective is to design an algorithm whose cumulative regret grows as slowly as possible with T .
A logarithmic growth rate, Regret(T ) = Õ(log T ), is the theoretical ideal, indicating extremely
efficient learning.

2.2 STRUCTURAL ASSUMPTIONS ON THE REWARD CLASS

To enable tractable learning from preference data alone, we impose a set of structural assumptions on
the class of possible reward functionsR. These assumptions are standard in the theoretical analysis
of learning with function approximation (Foster & Rakhlin, 2023) and are chosen to be as general
as possible while still permitting strong performance guarantees.

Assumption 2.1 (Realizability and bounded parameter space). We assume that the true latent
reward function r∗ belongs to a known, parameterized function class R = {rθ : θ ∈ Θ},
where each rθ : X × Y → [0, 1]. The parameter space Θ ⊂ Rd is a closed Euclidean ball
Θ = {θ ∈ Rd : ∥θ∥ ≤ B} for some known radius B < ∞, and we assume the prior Π0 and all
subsequent posteriors Πt are supported on Θ.

This is a common starting point for theoretical analysis, allowing us to focus on the learning problem
without the additional complication of model misspecification (Azar et al., 2024).
Assumption 2.2 (Lipschitz Continuity). We assume that the reward function parameterization is
smooth. Specifically, the function class is L-Lipschitz with respect to the parameters: for all θ, θ′ ∈
Θ and all (x, y), we have:

|rθ(x, y)− rθ′(x, y)| ≤ L∥θ − θ′∥2. (2.3)

This assumption is satisfied by many practical models, including neural networks with bounded
weights and smooth activation functions. It is a crucial property that ensures that small changes in
the parameter space lead to correspondingly small changes in the reward space, which is essential for
generalization, optimization stability, and for relating parameter-space uncertainty to function-space
uncertainty (Zhang, 2023).
Assumption 2.3. This is the most critical assumption for enabling efficient exploration and achiev-
ing logarithmic regret. We assume that the function class R has a finite eluder dimension (Russo &
Van Roy, 2013; 2014).

Eluder dimension. We adopt the ϵ-eluder dimension deluder(R, ϵ) as the intrinsic complexity con-
trolling regret in our analysis. For completeness, a concise definition together with its variance–
information connection appears in Appendix D.2. Moreover, for LoRA-parameterized reward
classes we establish sharp eluder control; see Proposition D.4 in Appendix D.3.

3 PAC-BAYESIAN GENERALIZATION AND WASSERSTEIN GRADIENT FLOW

This section connects PAC-Bayesian generalization objective to a Wasserstein gradient-flow (WGF)
description of the learning dynamics. We (i) motivate a PAC-Bayes objective as the optimization
target, (ii) introduce a smoothed/projected–KL device that yields a sharpened bound suitable for par-
ticle posteriors4, and (iii) show that steepest descent of this objective in the 2-Wasserstein geometry
yields a Langevin diffusion and the associated Fokker–Planck (continuity) equation. Full statements
with constants and all proofs are deferred to Section C and Section E.

Let S = {zi}mi=1
i.i.d.∼ D, parameter space Θ ⊆ Rd, prior Π on Θ, posterior µ ∈ P(Θ),

and per-example loss ℓθ(z) ∈ [0, 1] that is L-Lipschitz in θ for each z. We write L̂S(µ) :=
1
m

∑m
i=1 Eθ∼µ ℓθ(zi) and RiskµD := Ez∼DEθ∼µ ℓθ(z). For a Markov kernel S on Θ, S#µ de-

notes the push forward, and the projected KL is

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
,

4Throughout this section we consider the Gibbs posterior, defined by Qλ(dθ) ∝ exp
(
−λ L̂m(θ)

)
P (dθ),

for a fixed prior over parameters P and the empirical preference loss L̂m(θ). Note that Gibbs posterior differs
the vanilla Bayesian posterior with respect to the environment’s generative model.

4
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which satisfies DKLS(µ∥Π) ≤ DKL(µ∥Π) by data processing (see Theorem C.3 and Section C).

A classical PAC-Bayes inequality for a posterior µ independent of S reads

RiskD(µ) ≤ L̂S(µ) +

√
DKL(µ∥Π) + ln 2

√
m

δ

2m
. (3.1)

This suggests optimizing the right-hand side by trading empirical fit against complexity. Introducing
an inverse-temperature parameter β > 0 yields the variational objective

JPAC(µ) = L̂S(µ) + β DKL(µ ∥Π), (3.2)

which is the free energy associated with empirical risk and prior regularization.

Per-example loss. Each feedback example is denoted by z (e.g., a bandit or preference obser-
vation), and we define the per-example loss as ℓθ(z) := − log pθ(z), the negative log-likelihood
of z under the parametric feedback model pθ. The PAC-Bayesian objective at time t is then
Jt(θ) := Ez∼Dt

[
ℓθ(z)

]
+ β

(
log µ(θ) − log Π(θ)

)
, where Dt is the dataset (or replay buffer) at

time t. Our regret analysis only requires that ℓθ(z) be bounded and Lipschitz in θ on Θ, so any
choice of loss satisfying these conditions yields the same asymptotic regret rate (the constants de-
pend on the Lipschitz constant and range of ℓθ but not on T or deluder).
3.1 SMOOTHED/PROJECTED–KL PAC-BAYES BOUND

We now state the smoothed/projected variant that will be used both for theory (to control finite-
particle posteriors) and for algorithms (to motivate noise schedules). The definition is given here,
while the full theorem and constants appear in Section C.

Definition 3.1 (Projected/Smoothed KL). For µ,Π ∈ P(Θ) and any smoothing kernel (confer
Definition C.1) S, define the projected (smoothed) KL by

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
.

By data processing for f -divergences, DKLS(µ∥Π) ≤ DKL(µ∥Π) when the right-hand side is finite.
For the Gaussian kernel, we write DKLSh

(µ∥Π) := DKL(Sh,#µ∥Sh,#Π).

Theorem 3.2 (PAC-Bayes via smoothing). Assume ℓθ(z) ∈ [0, 1] is L-Lipschitz in θ. Let µN =
1
N

∑N
i=1 δθi be an N -particle posterior and let Sh denote Gaussian smoothing with variance h2Id.

For any prior Π independent of S and any h > 0, with probability at least 1− δ,

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,

where Z ∼ N (0, Id) so E∥Z∥ ≤
√
d. Moreover, if Π = N (θ0, σ

2
0Id) then

DKLSh
(µN∥Π) ≤ 1

2N(σ2
0+h2)

N∑
i=1

∥θi − θ0∥2 +
d

2
ϕ
(

h2

σ2
0+h2

)
,with ϕ(ρ) = ρ− 1− ln ρ.

.

3.2 OPTIMIZATION DYNAMICS AS A WASSERSTEIN GRADIENT FLOW

Interpreting Equation (3.2) as a free-energy functional on P(Θ), the 2-Wasserstein gradient flow of
JPAC is the continuity equation

∂tµt = ∇θ ·
(
µt∇θV [µt]

)
, (3.3)

where V [µ] is any C1 potential whose gradient equals the Wasserstein gradient of JPAC at µ. Con-
cretely, one may take

∇θV [µ](θ) = ∇θ Ez∼S ℓθ(z) + β∇θ

(
logµ(θ)− log Π(θ)

)
,

so that equation 3.3 coincides with the Fokker–Planck equation of the Langevin diffusion

dθ(t) = −∇θV [µt]
(
θ(t)

)
dt +

√
2β dW (t), (3.4)

5
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see, e.g., Jordan et al. (1998); Ambrosio et al. (2008); Villani (2008). Thus, gradient-based training
of the free energy JPAC admits an exact continuum description as WGF.

A first-order time discretization of equation 3.4 (Euler–Maruyama) with step size η > 0 yields the
particle update θk+1 = θk − η∇θV [µk](θk) +

√
2ηβ ξk,with ξk ∼ N (0, Id).

Replacing full gradients with mini-batch estimates recovers SGLD. This principled discretizations
exposes and quantifies the approximation gaps that drive our regret analysis (precise bounds in
Section E):Finite-ensemble gap (Monte Carlo drift error): Õ

(√∑
t v

2
t /Nt

)
. Stochastic-gradient

gap (mini-batch noise): Õ
(√∑

t σ
2
t /Bt

)
. Discretization gap (time stepping): Õ(ηT ). These terms

map exactly onto the four sources of error isolated in the Introduction.

4 THE OPTIMISTIC LANGEVIN ENSEMBLE (OLE) ALGORITHM

This section translates the theoretical framework developed in the preceding sections into a con-
crete, self-contained algorithm for preference-based contextual bandits. The algorithm, which we
call the Optimistic Langevin Ensemble (OLE), instantiates the discretized Wasserstein gradient
flow perspective. It maintains a finite ensemble of reward models, updates them using stochas-
tic Langevin dynamics, and makes decisions using an optimistic selection rule based on ensemble
statistics. The specific variant for online contextual bandits is termed Optimistic Thompson Sam-
pling with Langevin Ensembles (O-TSLE).

The OLE algorithm operates in rounds. At each round t, it leverages its current posterior belief about
the reward function, represented by an ensemble of particles, to optimistically select an action. It
then observes the resulting preference feedback and updates its posterior belief using a Langevin
step. A discussion on the computational cost of OLE is in Appendix G.1.Pseudo-code of additional
variants are provided in Appendix G.2, such as for online contextual bandits and MDP scenarios.

Algorithm 1: Optimistic Langevin Ensemble (OLE): Generic Template
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection

3 Compute ensemble mean r̂t(xt, y) and variance V̂art(xt, y) for all y ∈ Y;

4 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

5 Select action pair (y(w)
t , y

(ℓ)
t ) based on maximizing information gain using {It(xt, y)}y∈Y ;

6 Receive preference feedback, forming data batch Dt;
// Posterior Update (SGLD)

7 Sample a mini-batch Bt ⊂ Dt and compute the stochastic gradient
∇̂t := 1

|Bt|
∑

z∈Bt
∇θℓθ(z) + β∇θ

(
log µ(θ)− log Π(θ)

)
;

8 Compute mini-batch gradient ∇̂t of JPAC(θ) = L̂Dt
(θ) + βDKL(δθ∥Πt−1);

9 for i = 1, . . . , Nt do
10 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

11 θ
(i)
t+1 ← θ

(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t , θ(i)t+1 ← ProjΘ

(
θ̃
(i)
t+1

)
;

The core components of the algorithm are as follows:

• Ensemble Maintenance: The algorithm’s belief about the true reward parameter θ∗ is represented
by an ensemble of Nt particles, {θ(i)t }

Nt
i=1. This ensemble serves as a Monte Carlo approximation

of the posterior distribution µt. At the start of learning (t = 0), these particles are drawn from a
prior distribution Π0.

• Langevin Update Step: This is the learning step of the algorithm. After receiving new preference
data Dt, each particle in the ensemble is updated using one step of Stochastic Gradient Langevin
Dynamics (SGLD). The gradient is computed with respect to the PAC-Bayesian objective JPAC

6
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on a mini-batch of the new data. This update moves the particles towards regions of the parameter
space that better explain the observed preferences, while the injected Gaussian noise ensures that
the ensemble continues to represent a distribution and does not collapse to a single point.

• Optimistic Selection Rule: This is the exploration mechanism of the algorithm and the compo-
nent that addresses the fourth implementation gap (intractable uncertainty). To make decisions that
efficiently balance exploration and exploitation, the agent needs an upper confidence bound (UCB)
on the true, unknown reward function r∗. Computing the exact Bayesian UCB is intractable for
complex models. The OLE algorithm therefore uses a computationally feasible proxy based on
the statistics of its particle ensemble. For each candidate action y in the current context xt, it
computes an optimistic index:

It(xt, y) = r̂t(xt, y) + κt ·
√

V̂art(xt, y). (4.1)

The exploration bonus in Equation (4.1) follows the eluder-dimension view of exploration (Russo
& Van Roy, 2013; 2014) and yields the desired logarithmic-regret scaling (Hazan et al., 2007).

• Projection onto the bounded parameter space: In the theoretical analysis we interpret the
Langevin update as a projected SGLD step. Each unconstrained update is followed by the non-
expansive Euclidean projection onto the ball Θ = {θ : ∥θ∥ ≤ B}. Since Π0 is supported on Θ,
this ensures that all particles θ(i)t remain in Θ for all t, matching Assumption 2.1. In practice, this
projection corresponds to weight clipping (or weight decay, softly) to the ball of radius B; if any
iterate leaves Θ, it is projected back before being used for action selection.

Here, r̂t(xt, y) is the mean reward predicted by the ensemble, serving as the best guess for the true
reward. V̂art(xt, y) is the variance of the reward predictions across the ensemble, which serves as a
proxy for the posterior uncertainty about the reward of that action. The parameter κt is an optimism
coefficient that controls the weight given to this uncertainty, effectively determining how much the
agent prioritizes exploration. The agent then selects a pair of actions to query for a preference based
on these optimistic indices, typically choosing a pair that is expected to be most informative for
resolving the current uncertainty. While the exact Bayesian posterior uncertainty is intractable for
complex models, we will show in our analysis (Section 5) that the ensemble variance serves as a the-
oretically sound proxy. This is because of a fundamental duality between variance and information
gain , which ensures that exploring regions of high ensemble variance leads to an efficient reduction
of uncertainty about the true reward function, thereby enabling logarithmic regret.
Remark 4.1 (Initialization of particles). In the theoretical analysis we work with a fixed number
of particles N and initialize them i.i.d. from the prior Π0 at t = 1, so θ

(i)
1 ∼ Π0 for all i. In

practical variants where the number of particles Nt is allowed to grow with t, we initialize any
new particle with index i > Nt−1 from the current empirical posterior approximation Πt−1 (i.e.,
by resampling from the existing particles). This implementation choice only affects constant factors
in mixing and variance; the regret analysis is stated for the idealized setting with a fixed number of
particles initialized from Π0.

5 REGRET ANALYSIS

This section presents the main theoretical result of the paper: a unified, high-probability regret
bound for the Optimistic Langevin Ensemble (OLE) algorithm. The bound demonstrates that the
algorithm achieves a cumulative regret that scales logarithmically with the time horizon T , plus
explicit, sublinear terms that quantify the costs of the practical approximations corresponding to
the “four gaps.” This result provides a rigorous theoretical explanation for the remarkable sample
efficiency of preference-based learning. Full proofs are in Appendix Section E.

Our main theorem bounds the cumulative preference regret of the OLE algorithm. It shows that
the regret is controlled by the intrinsic complexity of the reward function class, as measured by the
eluder dimension, and by the parameters governing the algorithmic approximations.
Theorem 5.1. Let Assumptions 2.1 (Realizability), 2.2 (Lipschitz Continuity), and 2.3 (Finite Eluder
Dimension) hold. For any δ ∈ (0, 1), consider the OLE algorithm run for T rounds with step sizes
{ηt}, ensemble sizes {Nt}, mini-batch sizes {Bt}, and an optimism schedule κt = C0

√
log(T/δ)

for a suitable constant C0. Let v2t be an upper bound on the conditional variance of the Monte Carlo
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estimate of the optimistic value, and let σ2
t be an upper bound on the conditional variance of the

mini-batch gradient estimator. Then with probability at least 1− δ, the cumulative regret satisfies:

Regret(T ) ≤ C1 deluder log T︸ ︷︷ ︸
Exploration Cost

+C2


T∑

t=1

ηt︸ ︷︷ ︸
Discretization

+ Õ


√√√√ T∑

t=1

v2t
Nt


︸ ︷︷ ︸

Finite Ensemble

+ Õ


√√√√ T∑

t=1

σ2
t

Bt


︸ ︷︷ ︸

Stochastic Gradient

 , (5.1)

where C1 and C2 are absolute constants. The eluder dimension deluder is evaluated at a precision
scale ϵ that decreases with t, such as ϵt = 1/(1 + t).
Remark 5.2 (On tightness of the leading term and Uniformity). Up to polylogarithmic factors,
the Õ(deluder log T ) leading term in our regret bound matches known lower bounds and optimal
algorithms for contextual bandits with rich (e.g., generalized linear) function classes, where the
eluder dimension governs sample complexity (Russo & Van Roy, 2013; 2014). In particular, the
log T factor is information-theoretically unavoidable even in parametric bandit settings with well-
specified models (Hazan et al., 2007).

Our leading Õ(deluder log T ) term is a uniform guarantee over all instances that satisfy our struc-
tural assumptions (realizability, boundedness, Lipschitz continuity, finite eluder dimension, and the
Bradley–Terry–Luce preference model). Here deluder = dimE(R, T−1) is a complexity measure of
the function class R, and T is the horizon; the bound does not expose explicit gap or margin pa-
rameters. The fast-rate behaviour comes from coupling two ingredients: (i) a variance–information
lemma for the BTL model, which shows that the mutual information gained at round t is at least a
constant multiple of the squared prediction error; and (ii) an eluder-dimension bound on the cumu-
lative squared widths (Lemma D.7).

This bound provides a comprehensive picture of the algorithm’s performance and completes the
narrative arc of bridging the four gaps. Each term has a precise interpretation:

• The Exploration Term: C1deluder log T . This is the leading-order term and represents the fun-
damental statistical cost of exploration. Its logarithmic dependence on the horizon T is the key
result, confirming that the algorithm learns extremely efficiently. The cost scales linearly with the
eluder dimension deluder, which captures the intrinsic complexity of the learning problem. This
term arises directly from the use of an optimistic exploration strategy.

• The Discretization Error:
∑T

t=1 ηt. This term quantifies the cost of Gap 3: approximating
the continuous-time Wasserstein gradient flow with a discrete-time algorithm. It represents the
cumulative bias from the Euler-Maruyama discretization. For a constant step size η, this error is
Õ(ηT ). However, as shown in the corollary below, this term can be made negligible by using a
decreasing step size schedule.

• The Finite-Ensemble Error: Õ(
√∑T

t=1 v
2
t /Nt). This term quantifies the cost of Gap 1: ap-

proximating the true posterior distribution with a finite ensemble of Nt particles. It represents the
accumulated Monte Carlo estimation error. The term grows sub-linearly in T and decreases as
the ensemble size Nt increases, explicitly characterizing the trade-off between computational cost
and statistical accuracy.

• The Stochastic Gradient Error: Õ(
√∑T

t=1 σ
2
t /Bt). This term quantifies the cost of Gap 2: us-

ing noisy mini-batch gradients instead of exact full-batch gradients. It represents the accumulated
noise from the stochastic optimization process. Like the ensemble error, it grows sub-linearly and
decreases as the mini-batch size Bt increases.

In the idealized limit where ηt → 0, Nt → ∞, and Bt → ∞, all three lower-order terms vanish,
and we are left with a purely logarithmic regret bound, Regret(T ) = Õ(deluder log T ). Our theorem
provides the first analysis that makes this trade-off explicit for preference-based RL.

Corollary 5.3. If the step sizes and resource allocation schedules are chosen such that
∑T

t=1 ηt =

Õ(1),
∑T

t=1 v
2
t /Nt = Õ(1), and

∑T
t=1 σ

2
t /Bt = Õ(1), then under the assumptions of Theorem

5.1, the cumulative regret is:

Regret(T ) = Õ (deluder log T ) . (5.2)
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This corollary shows that by using standard schedules, such as a decreasing step size ηt ∝ 1/t and
geometrically increasing ensemble and batch sizes, the approximation errors can be rendered into
constant, lower-order terms, achieving the theoretical ideal.
Remark 5.4. As discussed in Section 2, the eluder dimension can be related to the intrinsic dimen-
sionality of the learning task. For models fine-tuned with low-rank adaptation (LoRA), the eluder
dimension deluder is controlled not by the total number of parameters d, but by the much smaller in-
trinsic rank d∗ (Hu et al., 2022; Yang et al., 2023). Consequently, the regret bounds in Theorem 5.1
and Corollary 5.3 scale as Õ(d∗ log T ). This provides a direct and rigorous theoretical explanation
for the empirical observation that parameter-efficient fine-tuning methods can achieve high sample
efficiency even on massive models.

6 EXTENSIONS TO MARKOV DECISION PROCESSES

To demonstrate the versatility and power of our theoretical framework, we extend the analysis from
the contextual bandit setting to the more general and challenging setting of Markov Decision Pro-
cesses (MDPs). This extension requires handling temporal dependencies, long-term credit assign-
ment, and the propagation of uncertainty through Bellman updates. We show that our optimistic
PAC-Bayesian ensemble approach can be naturally adapted to both finite-horizon and discounted
MDPs, yielding analogous logarithmic regret guarantees. Proofs in Appendix Section F.

6.1 SETUP FOR PREFERENCE-BASED MDPS

A finite-horizon MDP is defined by a tuple (S,A, H, P, r∗, ρ0), where S is the state space, A is
the action space, H is the horizon, P are the transition dynamics, r∗ is the latent reward function,
and ρ0 is the initial state distribution. In the preference-based RL setting, the agent does not ob-
serve the numeric rewards r∗(s, a). Instead, it receives preference feedback, typically comparing
entire trajectories or state-action pairs. The agent’s objective is to learn a policy π = {πh}Hh=1 that
maximizes the expected cumulative latent reward.

To enable value-based learning algorithms, we require an additional structural assumption beyond
those for the bandit case.
Assumption 6.1. We assume the function class for the action-value function (Q-function) is ap-
proximately closed under the Bellman optimality operator. That is, for any Q-function in our class,
applying one step of Bellman backup results in a function that is still close to (or within) the class
(Agarwal et al., 2023; Jin et al., 2021). This is a standard assumption in the theory of RL with
function approximation, ensuring that the value functions produced during learning remain repre-
sentable within our chosen model class.

6.2 THE O-TDLE ALGORITHM FOR MDPS

We adapt our OLE algorithm to the MDP setting, resulting in a method we call Optimistic TD with
Langevin Ensembles (O-TDLE). The core idea remains the same: maintain an ensemble of models
to represent the posterior distribution and use optimistic exploration. The key difference is that the
ensemble now represents the Q-function, and the updates are driven by temporal difference errors.

The O-TDLE algorithm (detailed in Algorithm 5 )proceeds in episodes. At each step h within an
episode, the agent is in state sh. It uses its ensemble of Q-function models, {Qθ(i)}Ni=1, to compute
an optimistic index for each action a ∈ A:

Ih(sh, a) = Q̂h(sh, a) + κh ·
√

V̂arh(Q(sh, a)), (6.1)

where Q̂h and V̂arh are the mean and variance of the Q-value predictions across the ensemble. The
agent then selects the action ah = argmaxa∈A Ih(sh, a). After executing the action and observing
the next state sh+1, the agent collects preference data (e.g., by comparing the executed trajectory
segment to a reference—such as a SFT model). This data is then used to perform an SGLD update
on the ensemble parameters {θ(i)}, using a loss derived from a Bellman-style TD error consistent
with the preference feedback.

Using the learned reward in MDPs. In the MDP setting we never assume access to the environ-
ment’s numeric single-step rewards. Instead, as in standard preference-based RL, we posit a latent
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per-step reward function rθ⋆(x, a) such that preferences over finite trajectories are induced by their
cumulative latent return. Given the observed pairwise preferences, our PAC-Bayesian update on
θ produces a posterior distribution over reward models rθ(·, ·). At any time t, for a sampled pa-
rameter θt we can evaluate the pseudo-reward R̃t := rθt(xt, At) on the visited state–action pair
(xt, At). The TD targets in our MDP extension are defined in terms of these pseudo-rewards, e.g.
yt = R̃t + γVϕt(xt+1) = rθt(xt, At) + γVϕt(xt+1), for a value function Vϕt with parameters
ϕt. Thus the algorithm is implementable from preference feedback: the environment is queried only
for pairwise comparisons, which are used to update the posterior over θ, and all numeric quantities
required by TD are supplied by the learned reward model rθ.

6.3 REGRET ANALYSIS FOR MDPS

We prove that the O-TDLE algorithm achieves a logarithmic regret bound in the MDP setting. The
bound now includes a polynomial dependence on the horizon H , which is expected as errors can
propagate and compound over the steps of an episode.
Theorem 6.2. Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes,
achieves a cumulative regret that satisfies, with high probability:

Regret(T ) = Õ
(
H2 · deluder · log T

)
+ lower-order approximation terms. (6.2)

The lower-order terms for discretization, finite-ensemble, and stochastic gradient errors have a
similar structure to the bandit case, now summed over all steps and episodes.
Remark 6.3 (On the H-dependence). Our bound incurs an H2 factor in the leading term, which
is standard for episodic finite-horizon analyses under function approximation. Improving the H-
dependence typically requires stronger structural assumptions (e.g., linear MDPs or Bellman com-
pleteness with additional mixing/realizability properties) or refined variance decompositions; see,
e.g., Azar et al. (2024); Jin et al. (2021).

Our proof for the MDP setting employs a powerful policy decomposition technique, inspired by
recent advances in the analysis of KL-regularized RL with numeric rewards Zhao et al. (2025a).
This technique allows us to reduce the multi-step credit assignment problem to a sequence of bandit-
like analyses, to which our core optimistic exploration argument can be applied. The novelty of
our approach lies in adapting this tool to the preference-based feedback setting and integrating it
within our PAC-Bayesian particle ensemble framework. A similar analysis can be performed for the
infinite-horizon discounted MDP setting, yielding a regret bound with a polynomial dependence on
the effective horizon (1− γ)−1.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we developed a unified optimistic PAC-Bayesian framework for preference-based
learning that closes several critical gaps between theory and practice. Our analysis provides the
first theoretical explanation for the sample efficiency of modern alignment pipelines by establishing
a near-logarithmic regret bound, Õ(deluder log T ), that explicitly accounts for the algorithmic costs
of using finite ensembles, stochastic gradients, and discrete-time updates. Our framework provides
a firm theoretical foundation for the empirical success of methods like DPO (Rafailov et al., 2023)
and connects the complexity of exploration to the intrinsic dimensionality of parameter-efficient
fine-tuning (Aghajanyan et al., 2020; Hu et al., 2022).

Limitations and Future works. Our theoretical guarantees rely on standard but strong structural
assumptions. The realizability assumption, which posits that the true reward function lies within
the model class, is a significant idealization for complex models like LLMs, which are likely to
be misspecified (Foster & Rakhlin, 2023). Similarly, our extension to MDPs requires Bellman
completeness, a condition known to be restrictive for reinforcement learning with general func-
tion approximation (Agarwal et al., 2023; Golowich & Moitra, 2024; Wu et al., 2024). Finally, the
decoupled structure of our regret bound opens the door to designing adaptive algorithms that can
dynamically schedule computational resources, such as ensemble and mini-batch sizes, to optimally
balance the statistical and computational trade-offs inherent in practical alignment. Our analysis is
purely theoretical. A systematic empirical evaluation of OLE on preference-based RL benchmarks,
as well as large-scale RLHF pipelines, is an important direction for future work.
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ETHICS STATEMENT

This work is theoretical, focusing on the algorithmic foundations of preference learning for the
alignment of large language models. As with any alignment methodology, the practical applica-
tion of our framework carries potential risks. These include over-optimization to the learned reward
model, which may not perfectly capture nuanced human intent, and the potential for malicious re-
ward hacking. We emphasize that our algorithms are designed for statistical and computational
efficiency in optimizing a given preference model; they do not define the values inherent in that
model. The collection and curation of the preference data that serves as the source of these values
must be approached with care to respect privacy and mitigate the encoding and amplification of so-
cietal biases. Appropriate guardrails, diverse data sourcing, and multi-faceted evaluation of aligned
models remain necessary to mitigate unintended consequences.

THE USE OF LARGE LANGUAGE MODELS

In this work, the authors used generative AI tools (ChatGPT-5) to aid in and polish the writing of this
paper. We use the following prompt to check the language section by section (including abstract):
“Check the following statement, examine if the narrative is professional and understandable for
broader audience in the area of machine learning community, and examine if the language meets
native speaker standard. If not, generate feedback on how should I modify my narratives.” All LLM-
generated content was thoroughly reviewed and verified by the authors prior to inclusion. Research
design, critical analyses, and all final decisions were carried out independently by the authors.

REPRODUCIBILITY STATEMENT

This work is entirely theoretical. To ensure the reproducibility of our results, we provide complete
and self-contained proofs for all theorems, propositions, and lemmas in the appendix. The appendix
also contains detailed pseudocode for our proposed algorithms (Appendix G), a full discussion of
the structural assumptions (Appendix A), and guidance on the hyperparameter schedules required to
achieve the stated regret bounds. All cross-references within the document are hyperlinked for ease
of navigation.
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APPENDIX CONTENTS

• Section A: Notation used throughout and additional background definitions (including the
formal eluder definition and its variance–information link).

• Section B: Extended related work.
• Section C: Canonical smoothed/projected–KL PAC-Bayes bound with full proofs.
• Section D: Technical lemmas (variance–information inequality, discretization, stochastic-

gradient control, Monte Carlo concentration).
• Section E: Complete statements and proofs of the unified regret theorem and supporting

results.
• Section F: Full proofs for finite-horizon and discounted MDP extensions.
• Section G: Implementation notes and additional pseudocode.
• Section H: Minimal empirical study validating the efficacy of OLE algorithm.
• Section I: Discuss the logarithmic lower bound in the BTL preference setting.

A NOTATION AND ADDITIONAL BACKGROUND

This appendix provides the complete theoretical underpinnings for the results presented in the main
paper. We begin by establishing a unified notational system and providing a deeper discussion of
the foundational concepts that motivate our work. This ensures the appendix is self-contained and
accessible to readers with background in machine learning.
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A.1 NOTATION

We summarize the most frequently used symbols throughout the paper and this appendix in Table 2
for ease of reference. This consistent notation is crucial for maintaining clarity throughout the
complex derivations that follow.

Table 2: Notation used throughout the paper and appendix.
Symbol Meaning

X ,Y Context and candidate/output spaces
S,A State and action spaces (for MDPs)
r∗(·) Ground-truth latent reward function, parameterized by θ∗

Θ Parameter space for the reward models
R = {rθ : θ ∈ Θ} Realizable reward function class
π, πt Policy (at round t)
Πt, µt Posterior distribution over parameters θ at round t
µN
t Empirical measure of the N -particle ensemble at time t

(Ft)t≥0 Natural filtration (history) up to the end of round t
feedbackt Preference feedback observed at round t
Nt, Bt, ηt Ensemble size, mini-batch size, and step size at round t
wt Width of the confidence set Gt at the queried pair at round t
Vt Posterior predictive variance of the queried logit difference at round t
v2t , σ

2
t Conditional variance and sub-Gaussian noise proxy at round t

deluder Eluder dimension of the reward function classR
γ Discount factor (for discounted MDPs)
β Inverse temperature in the PAC-Bayesian objective and SGLD updates
κt Optimism/bonus coefficient at round t
Regret(T ) Cumulative preference regret up to time T
W2(·, ·) 2-Wasserstein distance between probability measures

A.2 ASSUMPTION CHECKLIST

How to read Table 3. Each row states an assumption (or group of related assumptions), its informal
meaning, and the main theorems/lemmas where it is used. This makes it easier to trace which
structural conditions drive each part of the regret analysis.

How to read Table 4. We separate the bandit and finite-horizon MDP settings and indicate which
assumptions are required in each case. This helps clarify which structural conditions are specific to
the MDP extension (e.g., Bellman completeness) versus those already present in the bandit analysis.

A.3 DETAILED DISCUSSION OF THEORETICAL GAPS

The introduction highlighted four critical gaps between idealized theory and practical RLHF imple-
mentations. Here, we elaborate on why each gap presents a formidable theoretical challenge and
how their interplay necessitates a unified analysis.

• Gap 1 (Finite Ensembles vs. Mean-Field): Many theoretical analyses of particle-based systems,
especially those leveraging tools from optimal transport (Jordan et al., 1998; Ambrosio et al.,
2008), operate in the mean-field limit where the number of particles N → ∞. In this limit, the
empirical distribution of particles converges to the solution of a deterministic partial differential
equation (the Fokker-Planck equation), a phenomenon known as propagation of chaos (Sznitman,
2006). However, practical implementations use small, finite ensembles (N is often less than 10).
This introduces a non-trivial Monte Carlo sampling error at each step, as the interaction term in
the particle dynamics depends on the empirical measure, not the true mean-field distribution. Our
analysis must quantify this error and ensure it does not accumulate uncontrollably.

• Gap 2 (Stochastic vs. Exact Gradients): Large-scale model training is computationally in-
feasible without mini-batch stochastic gradients. While the noise introduced by mini-batching is
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Table 3: Assumptions at a glance: informal summary and where they enter the analysis.
Name Informal content Used in
Realizability and bounded Θ Rewards lie in the model classR; parameters lie in a bounded ball Θ Theorem 5.1, Theorem D.8, Theorem D.1
Lipschitz continuity Reward model (and loss) are L-Lipschitz in θ on Θ Theorem 3.2,Theorem D.8, Theorems D.10 and E.2, Theorem 5.1
Finite eluder dimension R has finite ε-eluder dimension Theorem D.8, Theorem E.4, Theorem 5.1
Langevin drift regularity Drift of the mean-field Langevin SDE is Lipschitz and coercive Theorem E.3
Martingale / variance control Martingale increments are sub-Gaussian with bounded conditional variances Theorems D.10, D.11, E.1 and E.2

Table 4: Assumptions by setting.
Setting Active assumptions
Contextual bandits / preference bandits Theorems 2.1 to 2.3
Finite-horizon MDPs with preference feedback Theorems 2.1, 2.2 and 6.1

zero-mean, its cumulative effect over T rounds is a significant source of error. The variance of this
noise depends on the batch size Bt and the local curvature of the loss landscape. A rigorous anal-
ysis cannot simply assume gradients are exact; it must employ tools like martingale concentration
inequalities to bound the accumulated deviation caused by this stochasticity.

• Gap 3 (Discrete-Time vs. Continuous-Time): The Wasserstein gradient flow perspective pro-
vides a powerful, continuous-time picture of the ideal optimization path. However, algorithms are
implemented with a discrete step size ηt. The standard method for discretizing the underlying
Langevin SDE is the Euler-Maruyama scheme. This introduces a discretization bias at each step,
and the cumulative bias can grow linearly with T if not carefully controlled, potentially over-
whelming the desired logarithmic regret term. Our analysis must explicitly account for this weak
error and show how to manage it with a proper step-size schedule.

• Gap 4 (Tractable vs. Intractable Uncertainty): The principle of optimism requires an upper
confidence bound on the true reward function. For complex models like neural networks, the true
Bayesian posterior variance is intractable to compute. Practical algorithms use the variance of
predictions across the finite ensemble as a proxy for uncertainty. While intuitive, it is not a priori
guaranteed that this ensemble variance is a valid upper bound on the true posterior uncertainty.
A central part of our theoretical contribution is to formally justify this proxy and prove that it is
sufficient to drive efficient exploration.

A crucial point is the interdependence of these gaps. The noise from stochastic gradients (Gap 2)
can interact with and amplify the discretization error (Gap 3). The quality of the finite-ensemble ap-
proximation (Gap 1) directly determines the reliability of the uncertainty proxy used for exploration
(Gap 4). A successful theory, therefore, cannot analyze these in isolation. Our unified framework is
designed to bound the sum of these interacting error terms, demonstrating that their interplay does
not lead to a catastrophic amplification of regret.

A.4 CONTRIBUTIONS TO FORMAL RESULTS MAP

To provide a clear roadmap for the reader, Table 5 explicitly links the main contributions of this
work to the formal theorems and proofs contained within this appendix. This table serves as a guide
to verifying each of our central claims.

Table 5: Map of contributions to their formal statements and proofs in the appendix.
Contribution Formal statement (proof location)
Unified PAC–Bayesian particle theory Theorem D.1 (App. D.1)
Unified regret bound for bandits Statement Theorem 5.1 (App. E.2)
Finite-sample approximation error decomposition Theorems E.1 to E.3 and equation E.16 (App. D.4)
Extension to finite-horizon MDPs with preferences Theorem 6.2 and Section F.1 (App. F.2)
Extension to discounted MDPs with preferences Section F.1 (App. F.3)
Eluder dimension for LoRA-style parametrizations Theorem D.4 (App. D.3)
Fast-rate exploration term (logarithmic regret mechanism) Theorem E.4 (App. E.2)
Algorithmic pseudocode (OLE / OTSLE / OTDLE) Algorithms 2, 3 and 5 (App. G.2)
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B EXTENDED RELATED WORK

Our work connects to and builds upon several distinct but related lines of research in machine learn-
ing theory and practice.

RLHF and Direct Preference Optimization. The modern paradigm of aligning LLMs was es-
tablished by large-scale RLHF pipelines (Ouyang et al., 2022; Bai et al., 2022; Dong et al., 2024),
which combine preference data collection, reward modeling, and policy optimization. More recent
direct preference optimization methods, such as DPO and its variants (Rafailov et al., 2023; Meng
et al., 2024), have streamlined this process and demonstrated strong empirical performance. Our
work provides a foundational theoretical explanation for the remarkable sample efficiency observed
in these practical systems, showing that near-logarithmic regret is achievable.

Preference Learning, Dueling Bandits, and RL with Preferences. The problem of learning
from comparative feedback has a long history, rooted in foundational statistical models like the
Bradley-Terry-Luce model (Bradley & Terry, 1952; Luce et al., 1959; Thurstone, 2017). In the
online setting, this problem is formalized as the dueling bandits problem, for which a rich body
of literature provides sample complexity guarantees, typically achieving Õ(

√
T ) regret in general

settings and Õ(log T ) in more restricted tabular or linear cases (Yue & Joachims, 2009; Yue et al.,
2012). Extensions to reinforcement learning with preferences have been studied, but these analyses
often yield sub-optimal Õ(

√
T ) regret for general function classes (Wang et al., 2023; Pacchiano

et al., 2021). Our work is the first to establish a near-logarithmic regret bound for preference-based
RL with general non-linear function approximation.

Relation to contextual dueling bandits. In the linear contextual dueling bandit setting of Bengs
et al. (2022), the learner chooses a pair of actions at each round and receives a noisy comparison
between them. They study weak/strong dueling regret, defined in terms of how often the chosen
pair loses (or fails to win) against the best arm, and show a minimax Ω(d

√
T ) lower bound for this

pairwise regret. In contrast, our setting is single-action selection with pairwise feedback: the learner
chooses a single action yt, may query preferences involving yt, and we measure standard single-
action cumulative regret Regret(T ) =

∑T
t=1

(
r∗(xt, y

∗(xt)) − r∗(xt, yt)
)
. Our Õ(deluder log T )

bound is a uniform fast-rate guarantee over all instances that satisfy our structural assumptions
(realizability, boundedness, Lipschitz continuity, finite eluder dimension, and a BTL preference
model), for this single-action regret. Since the action space and regret notion are different, the
Ω(d
√
T ) dueling lower bound does not apply directly to our setting, and there is no contradiction

between their result and our minimax bound.

KL-Regularized Bandits and RL (Numeric Rewards). Our work is complementary to the im-
portant and emerging body of theory on KL-regularized bandits and RL, which has also achieved
logarithmic regret guarantees but in the distinct setting of numeric rewards (Xiong et al., 2024; Zhao
et al., 2024; 2025a;b) and often under additional structural assumptions like data coverage. While
this parallel line of work provides deep insights into policy optimization given a numeric reward, our
work addresses the more foundational problem of learning the reward function itself from pairwise
preference feedback. This is the canonical setup for RLHF and DPO, where the reward model is the
primary object to be learned from human comparisons. Our analysis is therefore algorithm-native,
deriving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from
the specific optimization landscape of a KL-regularized objective.

Specifically, we would like o highlight the difference between our result and the result developed
byZhao et al. (2025a). Zhao et al. (2025a) has established Õ(log T ) bounds for the KL-regularized
regret, namely the suboptimality of the KL-regularized objective itself. Our results are comple-
mentary: we obtain a Õ(deluder log T ) bound for the standard cumulative regret Regret(T ) in a
pairwise-preference setting under realizability condition. We reference Zhao et al. (2025a) to high-
light a shared eluder-dimension mechanism—in both cases, a sum-of-squares uncertainty term con-
trols the cumulative suboptimality—rather than to equate their KL-regularized objective with our
standard regret.
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PAC-Bayes, Optimism, and Thompson Sampling. Our theoretical approach is built on the foun-
dations of PAC-Bayesian learning theory, which provides powerful, high-probability generalization
bounds for randomized predictors (McAllester, 1999; Catoni, 2007; Alquier, 2021; Guedj, 2019).
Recent work has shown the power of PAC-Bayesian analysis for explaining generalization in deep
learning (Lotfi et al., 2022; Haddouche et al., 2024). We combine these tools with the classical
principle of optimism-in-the-face-of-uncertainty from the bandit literature (Hazan et al., 2007). The
complexity of exploration in our framework is measured by the eluder dimension (Russo & Van Roy,
2013; 2014), a concept central to achieving logarithmic regret in benign regimes. Our optimistic pos-
terior update mechanism is conceptually related to feel-good Thompson sampling (Zhang, 2022), but
is tailored to the preference-based setting and analyzed via PAC-Bayesian tools.

Particle Approximations and Optimal-Transport Tools. To rigorously analyze the behavior of
our finite-ensemble algorithm, we interpret its dynamics as a discretization of a Wasserstein gradient
flow on the space of probability measures (Jordan et al., 1998). We control the approximation error
introduced by the finite number of particles using tools from optimal transport theory and the study
of empirical measures (Ambrosio et al., 2008; Villani, 2008; Fournier & Guillin, 2015; Sznitman,
2006). The analysis of the stochastic gradient and discretization errors is informed by the literature
on the convergence of stochastic-gradient Langevin-type methods (Liu et al., 2023; Suzuki et al.,
2023), allowing us to derive explicit, non-asymptotic lower-order terms in our regret bound.

In summary, prior analyses for preference-based learning typically achieve Õ(
√
T ) regret for gen-

eral function classes. In parallel, analyses of KL-regularized learning with numeric rewards have
achieved Õ(log T ) regret, sometimes under strong assumptions. Our work is the first to deliver a
near-logarithmic regret bound for the fundamental problem of pairwise preference feedback within
a framework that is faithful to the practical algorithms used in RLHF, thereby helps bridge the gap
between theory and practice by providing logarithmic regret guarantees for preference-based RL in
a framework that mirrors key aspects of RLHF-style pipelines (KL-regularized objectives, pairwise
feedback, finite ensembles, and noisy stochastic gradients), while leaving a full empirical study for
future work.

B.1 COMPARISON AGAINST CLOSELY RELATED WORKS

Comparison with the works in Table B.1. Table B.1 collects the most closely related results
and makes explicit that they differ along three axes: (i) the setting and feedback model (dueling
vs. single–action, non–contextual vs. contextual, bandit vs. MDP, absolute rewards vs. preference
feedback), (ii) the objective / regret notion (single–action regret, dueling regret, KL–regularized
regret, Bayesian regret, or ε–optimality sample complexity), and (iii) the assumptions (realizability
and bounded eluder dimension, stochastic transitivity, coverage conditions, etc.).

Yue et al. (2012). They study a non–contextual K–armed dueling bandit problem where the action
is a pair of arms and the feedback is a noisy comparison between them. Regret is defined in terms
of the probability that the unique best arm would win a duel against the chosen pair, with separate
notions of strong and weak dueling regret. Under strong stochastic transitivity and a stochastic trian-
gle inequality on pairwise win probabilities, they obtain expected regret E[RT ] = O

(
Kε−1

1,2 log T
)

and prove a matching lower bound Ω
(
Kε−1 log T

)
. Our setting is contextual and optimizes single–

action regret (the gap in latent reward between the chosen action and the optimal action), while only
the observations are pairwise. We do not assume a finite K or a total order over a fixed set of arms.

Wang et al. (2023). This work analyzes RLHF with preference feedback and gives sample–
complexity guarantees for learning an ε–optimal policy (or a von Neumann winner) via re-
ductions from preference–based RL to standard reward–based RL. Their bounds scale as
Õ
(
H2dP |Πexp|2 log |P|/ε2 + HdR|Πexp|/ε

)
episodes (plus a separate query–complexity term),

and they do not study online regret as a function of T . By contrast, our focus is on online regret in
our preference–based model; the induced sample complexity follows from standard online–to–batch
conversion.

Zhao et al. (2025). Zhao et al. consider contextual bandits and MDPs with absolute reward feedback
and optimize the KL–regularized objective J(π) = E[R∗(x, a)] − η−1KL(π(·|x)∥πref(·|x)). They
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Table 6: Comparison of our results with closely related studies. The rows differ in setting/feedback,
objective/regret notion, and assumptions. Our main contribution is a logarithmic–in–T single–action
regret bound under preference feedback and bounded eluder dimension.

Work Setting & feedback Objective / regret notion Key assumptions & guarantee (in
T or ε)

This paper Contextual bandit / episodic;
single action chosen, pair-
wise (preference) observa-
tions.

Standard cumulative single–
action regret (latent reward
gap between chosen and op-
timal action).

Realizability of re-
ward/preference in a function
class with bounded eluder
dimension; mild curvature/low–
noise condition on the link.
Regret Õ(dE log T ) in T .

Yue et al.
(2012)

Non–contextual K–armed
dueling bandits; action is
a pair of arms with noisy
comparison feedback.

Strong/weak dueling regret
w.r.t. win probability of the
best arm vs. chosen pair.

Strong stochastic transitivity and
stochastic triangle inequality
on pairwise win probabilities.
E[RT ] = O

(
Kε−1

1,2 log T
)

and
lower bound Ω

(
Kε−1 log T

)
.

Wang et al.
(2023)

General RLHF (MDPs with
H > 1); trajectory or (s, a)–
level preference feedback.

Sample complexity to obtain
an ε–optimal policy (or von
Neumann winner); no ex-
plicit regret in T .

Realizability of reward or pref-
erence classes; Bellman– or
generalized–eluder dimension
bounds. Sample complexity
Õ
(
H2dP |Πexp|2 log |P|/ε2 +

HdR|Πexp|/ε
)

(plus query
complexity).

Zhao et al.
(2025)

Contextual bandits and
MDPs with absolute re-
wards and known reference
policy.

KL–regularized re-
gret in J(π) =
E[R∗]− η−1KL(π∥πref).

Realizability for reward class
with bounded eluder dimension.
Regret O

(
η dR log(NRT )

)
for

bandits, and analogous bound
with H–dependence for MDPs.

Russo &
Van Roy
(2014)

Stochastic bandits (includ-
ing contextual) with general
function approximation; ab-
solute rewards.

Bayesian cumulative regret
under a prior; no preferences
or KL–regularization.

Eluder dimension and Kol-
mogorov dimension of reward
class. BayesRegret(T ) ≤
Õ
(
σ
√

dE(F, 1/T )T
)
, giving

Õ(d
√
T ) for linear models (not

O(d log T )).

prove that their KL–UCB and KL–LSVI–UCB algorithms achieve O
(
η dR log(NRT )

)
regret in this

KL–regularized objective (with additional H–dependence in MDPs). We cite this work because it
also uses eluder–based sum–of–squares arguments to obtain logarithmic dependence on T , but the
objective differs: our main theorems are stated for standard cumulative regret in our preference–
based model.

Russo & Van Roy (2014). Russo and Van Roy introduce the eluder dimension and analyze pos-
terior sampling (Thompson sampling) for general stochastic bandit models. Their main results are
Bayesian regret bounds of the form BayesRegret(T ) ≤ Õ

(
σ
√
dE(F, 1/T )T

)
, which specialize to

Õ(d
√
T ) (up to logarithms) for linear models. We only use their notion of eluder dimension as a

complexity measure; our logarithmic dependence on T arises from a different squared–gap decom-
position that is specific to our model. In the revised version, we will correct our earlier informal
summary from O(d log T ) to Õ(d

√
T ).

C SMOOTHED/PROJECTED–KL PAC-BAYES AND WGF: FULL STATEMENTS
AND PROOFS

This section collects the technical results that underlie the smoothed/projected–KL PAC-Bayes
bound and its Wasserstein gradient-flow interpretation used in the main text. We organize the mate-
rial as follows:
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(i) In Theorems C.1 and C.3 we formalize the smoothing kernel S and the induced projected
KL divergence DKLS, and we record the basic properties needed later (chiefly the data-
processing inequality).

(ii) Theorem C.4 states and proves the full smoothed/projected–KL PAC-Bayes generalization
bound, including the Gaussian specialization that we plug into the regret analysis.

(iii) In the final subsection we spell out the Wasserstein gradient-flow calculus for the PAC-
Bayesian free-energy functional JPAC, and we show how it gives the Fokker–Planck equa-
tion tracked by our idealized particle dynamics.

Purely measure-theoretic details and the episode budget/scheduling lemmas used in the regret proof
are deferred to Section D and Section E.

C.1 PROJECTED–KL SMOOTHING AND BASIC PROPERTIES

We recall the projected divergence used in the main text.
Definition C.1 (Smoothing kernel and pushforward). Let (Θ,B) be a measurable parameter space.
A smoothing kernel is a Markov kernel S : Θ × B → [0, 1], i.e., for each θ ∈ Θ, S(θ, ·) is a
probability measure and for each A ∈ B, θ 7→ S(θ,A) is measurable. For a probability measure
µ ∈ P(Θ), its pushforward by S is

(S#µ)(A) :=

∫
Θ

S(θ,A)µ(dθ), A ∈ B.

When Θ = Rd and h > 0, the Gaussian smoothing kernel is Sh(θ, ·) := N
(
θ, h2Id

)
, in which case

Sh,#µ = µ ∗ N (0, h2Id) is the usual Gaussian convolution. We write Sh := Sh for brevity.
Remark C.2 (Interpretation of smoothing and projected KL). Intuitively, the kernel S(θ, ·) replaces
a deterministic parameter θ by a small cloud of nearby parameters. Sampling θ ∼ µ and then θ̃ ∼
S(θ, ·) produces a random “smoothed parameter” θ̃ with law S#µ. The projected KL divergence

DKLS(µ∥Π) = DKL

(
S#µ ∥S#Π

)
therefore compares µ and Π only through their smoothed versions. By the data-processing inequality
we always have DKLS(µ∥Π) ≤ DKL(µ∥Π) whenever the latter is finite, so DKLS is a more forgiving
complexity term. This is precisely the divergence that appears in the smoothed PAC-Bayes bound of
Theorem C.4.
Definition C.3 (Projected/Smoothed KL). For µ,Π ∈ P(Θ) and any smoothing kernel S, define the
projected (smoothed) KL by

DKLS(µ∥Π) := DKL

(
S#µ ∥S#Π

)
.

By data processing for f -divergences, DKLS(µ∥Π) ≤ DKL(µ∥Π) when the right-hand side is finite.
For the Gaussian kernel of Definition C.1, we write DKLSh

(µ∥Π) := DKL(Sh,#µ∥Sh,#Π).

Risk notation (for convenience). For a distribution µ over parameters, a dataset S = (z1, . . . , zm)
of size m, and a data distribution D over examples z, we recall the randomized predictor risks

RiskµS :=
1

m

m∑
i=1

Eθ∼µ ℓθ(zi), RiskµD := Ez∼DEθ∼µ ℓθ(z).

These coincide with the empirical and population risks used in the main text.

C.2 SMOOTHED/PROJECTED–KL PAC-BAYES BOUND: FULL STATEMENT AND PROOF

We now give the full version of Theorem 3.2 including constants and a convenient specialization for
Gaussian priors.
Theorem C.4 (PAC-Bayes via smoothing; full). Assume ℓθ(z) ∈ [0, 1] is L-Lipschitz in θ for each

z. Let S = {zi}mi=1
i.i.d.∼ D, and let µN = 1

N

∑N
i=1 δθi be any N -particle posterior (possibly data-

dependent). For any prior Π independent of S, any h > 0, and any δ ∈ (0, 1), with probability at
least 1− δ over S,

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,
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where Z ∼ N (0, Id) so that E∥Z∥ ≤
√
d. Moreover, if Π = N (θ0, σ

2
0Id), then

DKLSh
(µN∥Π) ≤ 1

2N(σ2
0+h2)

N∑
i=1

∥θi − θ0∥2 +
d

2
ϕ
(

h2

σ2
0+h2

)
,

with ϕ(ρ) = ρ− 1− ln ρ.
Remark C.5 (Connection to the main regret bound). In the regret analysis of Section E.1 we would
apply Theorem C.4 with µN equal to the empirical measure of the N particles at the beginning of
an episode, and with the smoothing scale h chosen according to the schedule specified in Section E.
The Gaussian specialization controls the complexity term DKLSh

(µN∥Π) by the squared distance
of the particles from the Gaussian prior mean θ0:

DKLSh
(µN∥Π) ≲

1

N(σ2
0+h2)

N∑
i=1

∥θi − θ0∥2 + d,

which is in turn bounded along the dynamics using the stability and step-size conditions proved in
Section E. This is the only place where the explicit form of DKLSh

for Gaussian priors enters the
regret bound.

Proof. Apply a standard PAC-Bayes bound for bounded losses (e.g., empirical Bern-
stein/McAllester-style) to the smoothed posterior Sh,#µN and prior Sh,#Π:

RiskSh,#µ
N

D ≤ RiskSh,#µ
N

S +

√
DKL

(
Sh,#µN∥Sh,#Π

)
+ ln(2m/δ)

2m
.

Lipschitzness and Gaussian smoothing yield the bias control RiskµN
D ≤ RiskSh,#µ

N
D +

LhE∥Z∥ and RiskSh,#µ
N

S ≤ RiskµN
S + LhE∥Z∥, whence

RiskµN
D ≤ RiskµN

S + LhE∥Z∥ +

√
DKLSh

(µN∥Π) + ln(2m/δ)

2m
,

using DKLSh
(µN∥Π) = DKL(Sh,#µ

N∥Sh,#Π) (definition) and E∥Z∥ ≤
√
d. For the Gaussian-

prior specialization, compute the KL between Gaussians:

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

=
∥θi − θ0∥2

2(σ2
0+h2)

+
d

2
ϕ
(

h2

σ2
0+h2

)
,

and average over i = 1, . . . , N . This proves the claim.

Gaussian prior specialization. If Π = N (θ0, σ
2
0Id) and µN = 1

N

∑N
i=1 δθi , then

DKLSh
(µN∥Π) =

1

N

N∑
i=1

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

with

DKL

(
N (θi, h

2Id)
∥∥∥N(θ0, (σ2

0+h2)Id
))

=
∥θi − θ0∥2

2(σ2
0+h2)

+
d

2
ϕ
(

h2

σ2
0+h2

)
, ϕ(ρ) = ρ− 1− ln ρ.

C.3 WASSERSTEIN GRADIENT-FLOW CALCULUS USED IN THE MAIN TEXT

For completeness we record the standard Wasserstein gradient-flow formulation of the PAC-
Bayesian objective used in Section 3. Recall that the PAC-Bayesian free-energy functional is

JPAC(µ) := L̂S(µ) + β DKL(µ∥Π) =

∫
Θ

(
Ez∼S

[
ℓθ(z)

])
µ(dθ) + β

∫
Θ

log
( µ(θ)
Π(θ)

)
µ(dθ),

(C.1)
where µ is a probability measure on Θ with density (still denoted by µ) with respect to Lebesgue
measure, and Π is a fixed prior with a strictly positive density on the support of µ.
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Standard results in optimal transport (see, e.g., Jordan et al. (1998); Ambrosio et al. (2008); Villani
(2008)) imply that the 2-Wasserstein gradient flow of JPAC is governed by the continuity equation

∂tµt(θ) = ∇θ ·
(
µt(θ)∇θ

δJPAC

δµ
(θ)
)
, (C.2)

where the first variation of JPAC is given by

δJPAC

δµ
(θ) = Ez∼S

[
ℓθ(z)

]
+ β

(
logµ(θ)− log Π(θ)

)
+ ct. (C.3)

Here ct is an arbitrary time-dependent constant (arising from the normalization of µt) whose gradient
is zero and hence does not affect the flow in equation C.2.

Expanding the divergence in equation C.2 using equation C.3 yields

∂tµt = ∇θ ·
(
µt∇θEz∼S

[
ℓθ(z)

])
+ β∆θµt − β∇θ ·

(
µt∇θ log Π(θ)

)
,

which is exactly the Fokker–Planck equation Equation (3.3) associated with the Langevin diffusion
targeting the Gibbs posterior with density proportional to exp(−Ez∼S [ℓθ(z)])Π(θ). This is the
correspondence used in the main text to connect the population-level idealized dynamics to the
particle algorithm.

Where to find the end-to-end regret analysis. The budget allocation across episodes/iterations
and the root-time Monte Carlo accumulation lemmas used for our final regret bounds appear in
Section D and Section E. This avoids duplicating those results here while keeping this appendix
focused on the PAC-Bayes smoothing and the WGF calculus.

D TECHNICAL LEMMAS AND AUXILIARY RESULTS

This section gathers technical lemmas (variance–information coupling, discretization, stochastic
gradients, Monte Carlo concentration) used by Section E.

We start by recalling the PAC-Bayesian objective and its connection to the Wasserstein gradient
flow, and then proceed to rigorously analyze each source of approximation error.

D.1 PAC-BAYESIAN GENERALIZATION AND THE LEARNING OBJECTIVE

The PAC-Bayesian framework provides high-probability guarantees on the population loss of a ran-
domized predictor Q in terms of its empirical loss and its divergence to a fixed, data-independent
prior P . Let S = {zi}mi=1 be drawn i.i.d. from D, define the population loss

L(θ) := Ez∼D
[
ℓθ(z)

]
,

and the empirical loss

L̂m(θ) :=
1

m

m∑
i=1

ℓθ(zi) on the dataset S.

A standard PAC-Bayes bound (see, e.g., Catoni (2007)) states that for any prior distribution P on Θ,
any δ ∈ (0, 1), and any (possibly data-dependent) posterior Q on Θ, with probability at least 1 − δ
over the draw of S,

Eθ∼Q

[
L(θ)

]
≤ Eθ∼Q

[
L̂m(θ)

]
+

√
DKL(Q∥P ) + ln(m/δ)

2m
. (D.1)

In words, the true risk of Q is controlled by its empirical risk plus a complexity term depending on
how far Q deviates from the prior P .

It is convenient to collect the empirical-risk and complexity terms into the PAC-Bayesian free-energy
functional

JPAC(µ) := L̂S(µ) + β DKL(µ∥P ), (D.2)

where L̂S(µ) := Eθ∼µ

[
L̂m(θ)

]
and β > 0 plays the role of an inverse temperature. For an ap-

propriate choice of β, minimizing the right-hand side of equation D.1 over Q is equivalent (up to
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additive constants independent of Q) to minimizing JPAC, and the unique minimizer of JPAC is the
Gibbs posterior

Qλ(dθ) ∝ exp
(
−λ L̂m(θ)

)
P (dθ), λ = 1/β.

The Langevin update step in our OLE algorithm is therefore a noisy gradient step on the func-
tional JPAC, with the measure µ represented in practice by the empirical distribution of the particle
ensemble.

In the smoothed PAC-Bayesian and Wasserstein gradient-flow analysis below we denote the prior
by Π and write (Πt)t≥0 for the time-indexed posteriors generated by the idealized dynamics. In our
setting we simply take Π = P and use the notation Π0 for the initial prior and Πt for its evolution
over time.
Theorem D.1. The posterior distribution Πt maintained by the idealized (continuous-time, infinite-
particle) Langevin dynamics minimizes the PAC-Bayesian functional JPAC(µ) over the space of
probability measures. The finite-ensemble, discrete-time, stochastic-gradient implementation ap-
proximates this ideal posterior, and its generalization error is controlled by the sum of the PAC-
Bayesian objective and the approximation error terms.

Proof. The proof follows from the variational characterization of the Fokker-Planck equation as the
Wasserstein gradient flow of the free energy functional, which in our case is JPAC(µ) (Jordan et al.,
1998). The practical algorithm is a numerical approximation of this flow, and its deviation from the
ideal posterior is bounded by the lemmas in Section D.4.

Informal interpretation of Theorem D.1 Informally, Theorem D.1 says that the empirical parti-
cle posterior produced by OLE tracks the Wasserstein gradient flow of the PAC-Bayesian objective
JPAC up to controlled approximation errors. As a consequence, any decrease of JPAC along the
idealized continuous-time dynamics is mirrored (up to the bounds established in Section D.4) by the
finite-particle algorithm used in our implementation. This is the bridge between the PAC-Bayesian
generalization theory and the actual learning dynamics analyzed in the regret bound.

D.2 ELUDER DIMENSION AND THE VARIANCE-INFORMATION BOUND

The key to bounding the exploration cost is the eluder dimension (Russo & Van Roy, 2013; 2014).

Throughout this section, we write (Ft)t≥0 for the natural filtration generated by all randomness up
to the end of round t (contexts xs, actions ys, preference observations feedbacks, and the internal
randomness of the algorithm for s ≤ t). We denote by feedbackt ∈ {0, 1} the binary preference
feedback observed at round t, with feedbackt = 1 corresponding to the event that the “winning”
action y

(w)
t is preferred to the “losing” action y

(ℓ)
t under the Bradley–Terry–Luce model in Equa-

tion (2.1).
Definition D.2. A sequence of context-action pairs (x1, y1), . . . , (xk, yk) is ϵ-independent for a
function class R if for every i ∈ {1, . . . , k}, there exist two functions r1, r2 ∈ R such that
|r1(xj , yj)− r2(xj , yj)| ≤ ϵ for all j < i, but |r1(xi, yi)− r2(xi, yi)| > ϵ. The ϵ-eluder dimension,
deluder(R, ϵ), is the length of the longest such sequence.

A low eluder dimension means that after a few queries, any two functions consistent with the obser-
vations must be close everywhere, enabling efficient learning. This complexity measure is connected
to regret via the following lemma.

Lemma D.3 (Variance–information lemma, Restated emphasizing the BTL model). Fix a round t

and condition on the σ-algebraFt−1 and on the chosen context xt and comparison pair (y(w)
t , y

(ℓ)
t ).

Let µt denote the posterior distribution of θ∗ given Ft−1, and define the posterior predictive vari-
ance of the logit difference at the queried pair by

Vt := Varθ∼µt

(
rθ(xt, y

(w)
t )− rθ(xt, y

(ℓ)
t )
)
.

Under Assumption 2.1 and the Bradley–Terry–Luce preference model equation 2.1, there exists a
constant λBTL > 0, depending only on the logistic link and the reward range, such that

I
(
θ∗; feedbackt | Ft−1

)
≥ λBTL Vt. (D.3)
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This inequality connects the conditional mutual information at round t to the posterior predictive
variance Vt of the queried logit difference, and will be combined with the eluder-dimension analysis
below to control the cumulative predictive variances

∑T
t=1 Vt.

Proof. Throughout the proof we work conditionally on Ft−1, xt and (y
(w)
t , y

(ℓ)
t ) and suppress this

conditioning from the notation.

Step 1: Reducing to the random preference probability. Define, for each parameter θ,

zθ := rθ(xt, y
(w)
t )− rθ(xt, y

(ℓ)
t ), pθ := σ(zθ),

and let Zt and Pt denote the random variables obtained by drawing θ ∼ µt and applying these
maps. By Assumption 2.1 we have rθ(x, y) ∈ [0, 1] for all (x, y) and θ, so zθ ∈ [−1, 1] and hence
Pt ∈ [σ(−1), σ(1)] ⊂ (0, 1).

Under the BTL model equation 2.1, the binary preference feedback feedbackt ∈ {0, 1} satisfies

P
(
feedbackt = 1

∣∣ θ) = pθ, P
(
feedbackt = 0

∣∣ θ) = 1− pθ.

In particular, feedbackt depends on θ only through the scalar Pt, and we have the Markov chain

θ∗ → Zt → Pt → feedbackt.

Because Pt is a deterministic function of θ∗ and feedbackt is conditionally independent of θ∗ given
Pt, standard properties of mutual information give

I
(
θ∗; feedbackt | Ft−1

)
= I
(
Pt; feedbackt | Ft−1

)
.

It therefore suffices to lower bound the mutual information between the random Bernoulli parameter
Pt and the feedback.

Step 2: Mutual information as entropy drop. Let H(p) = −p log p− (1− p) log(1− p) denote
the binary entropy (in nats). Conditioning on Ft−1, write

p̄t := E[Pt],

where the expectation is with respect to θ ∼ µt. Since feedbackt | Pt ∼ Bernoulli(Pt), we have

H
(
feedbackt | Pt

)
= H(Pt), H

(
feedbackt

)
= H(p̄t),

and thus
I
(
Pt; feedbackt | Ft−1

)
= H(p̄t)− E

[
H(Pt)

]
, (D.4)

where the expectation is over Pt.

Step 3: Strong concavity of binary entropy. The binary entropy is twice differentiable on (0, 1)
with

H ′′(p) = −1

p
− 1

1− p
, p ∈ (0, 1).

For all p ∈ (0, 1) we have H ′′(p) ≤ −4, with equality at p = 1/2. Hence H is 4-strongly concave
on any compact subinterval of (0, 1), and in particular on [σ(−1), σ(1)].
We now recall a standard fact about strongly concave functions.

Claim. Let f be twice differentiable and λ-strongly concave on an interval I ⊂ R, that is, f ′′(x) ≤
−λ for all x ∈ I . If X is a real random variable taking values in I with mean m = E[X], then

f(m)− E[f(X)] ≥ λ

2
Var(X).

Proof of the claim. For each realization X = x there exists (by Taylor’s theorem with Lagrange
remainder) a point ξx on the line segment between m and x such that

f(x) = f(m) + f ′(m)(x−m) + 1
2f

′′(ξx)(x−m)2.
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Taking expectations, and using E[X −m] = 0, we obtain

E[f(X)] = f(m) + 1
2 E
[
f ′′(ξx)(X −m)2

]
.

Since f ′′(ξx) ≤ −λ for all ξx ∈ I , we conclude

f(m)− E[f(X)] = −1
2 E
[
f ′′(ξx)(X −m)2

]
≥ λ

2 E[(X −m)2] = λ
2 Var(X),

which proves the claim.

Applying the claim with f = H , λ = 4 and X = Pt (which is supported on [σ(−1), σ(1)]) yields

H(p̄t)− E
[
H(Pt)

]
≥ 2Var(Pt). (D.5)

Combining equation D.4 and equation D.5 we obtain

I
(
θ∗; feedbackt | Ft−1

)
= I
(
Pt; feedbackt | Ft−1

)
≥ 2Var(Pt). (D.6)

Step 4: Relating variance of Pt to variance of the logit. The sigmoid function σ(z) = (1 +
e−z)−1 is continuously differentiable on R with derivative σ′(z) = σ(z)

(
1−σ(z)

)
. On the compact

interval [−1, 1] we have

0 < cmin ≤ σ′(z) ≤ cmax < 1/4, z ∈ [−1, 1],

where cmin := minz∈[−1,1] σ
′(z) = σ(−1)

(
1 − σ(−1)

)
> 0. Thus σ is strictly increasing with

derivative bounded away from 0 on [−1, 1], and its inverse g := σ−1 is well-defined and Lipschitz
on [σ(−1), σ(1)] with Lipschitz constant L = 1/cmin.

By definition Pt = σ(Zt) and Zt ∈ [−1, 1], so Zt = g(Pt) and

Var(Zt) = Var
(
g(Pt)

)
= E

[
(g(Pt)− E[g(Pt)])

2
]

≤ E
[
(g(Pt)− g(E[Pt]))

2
]
≤ L2 E

[
(Pt − E[Pt])

2
]
= L2 Var(Pt),

where we used the Lipschitz property of g and the fact that the variance is upper bounded by the
second moment around any fixed reference point. Rearranging yields

Var(Pt) ≥ c2min Var(Zt).

Recalling that Zt = rθ(xt, y
(w)
t )− rθ(xt, y

(ℓ)
t ), we conclude that

Var(Pt) ≥ c2min Varθ∼µt

(
rθ(xt, y

(w)
t )− rθ(xt, y

(ℓ)
t )
)
= c2min Vt. (D.7)

Step 5: Combine. Combining equation D.6 and equation D.7 we obtain

I
(
θ∗; feedbackt | Ft−1

)
≥ 2Var(Pt) ≥ 2c2min Vt.

Defining

λBTL := 2 c2min = 2
(
σ(−1)

(
1− σ(−1)

))2
> 0,

we arrive at the desired inequality I(θ∗; feedbackt | Ft−1) ≥ λBTLVt. This constant depends only
on the BTL link function σ and the reward range rθ(x, y) ∈ [0, 1] (which ensures Zt ∈ [−1, 1]).

Curvature of the BTL link. By Assumption 2.1 we have rθ(x, y) ∈ [0, 1] for all (x, y) and θ, so
the logit differences zθ(x, yw, yℓ) := rθ(x, yw) − rθ(x, yℓ) lie in [−1, 1]. On this compact interval
the negative log-likelihood of the Bradley–Terry–Luce model equation 2.1 is uniformly strongly
convex. Consequently, there exists a constant λBTL > 0 such that the Kullback–Leibler divergence
between any two preference models is bounded below by λBTL times the squared difference in their
logits. This curvature is exactly what underlies the variance–information Lemma D.3.
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D.3 SHARP ELUDER-DIMENSION CONTROL (FOR LORA-BASED MODELS)

A key argument for the practical relevance of our theory is that the eluder dimension for massive
models is not as large as their parameter count might suggest, especially when using parameter-
efficient fine-tuning methods like LoRA (Hu et al., 2022).

Proposition D.4. Consider a reward function classR parameterized by a large neural network with
weights W0 ∈ Rd×d′

. Let the fine-tuning be restricted to a LoRA update W = W0 + AB, where
A ∈ Rd×d∗ , B ∈ Rd∗×d′

, and d∗ ≪ d, d′. The trainable parameters are the entries of A and B.
Under standard smoothness assumptions on the network architecture, the eluder dimension of this
class scales as deluder(R, ϵ) = Õ(d∗(d+ d′) log(1/ϵ)), not with the full parameter count d× d′.

Proof. The proof follows from the observation that the reward function rA,B(x, y) is a smooth func-
tion of the low-rank matrices A and B. The effective number of parameters is d∗(d+ d′). Applying
standard covering number arguments for Lipschitz function classes to this lower-dimensional pa-
rameter space yields the stated bound on the eluder dimension. This result formalizes the intuition
that the intrinsic dimensionality of the fine-tuning task is what governs the exploration complexity
(Aghajanyan et al., 2020; Li et al., 2022).

Assumption D.5 (Blockwise Lipschitzness for LoRA layers). For each modified layer ℓ ∈ [L] with
base weight Wℓ ∈ Rmℓ×nℓ and low-rank update AℓB

⊤
ℓ with rank rℓ, we assume the reward (or

preference log-likelihood) is Lℓ-Lipschitz in each block parameter and smooth in the base activa-
tions, uniformly over the input domain. That is, for all admissible inputs, perturbations (∆Aℓ,∆Bℓ)
satisfy∣∣R(Wℓ + (Aℓ +∆Aℓ)(Bℓ +∆Bℓ)

⊤)−R(Wℓ +AℓB
⊤
ℓ

)∣∣ ≤ Lℓ

(
∥∆Aℓ∥F + ∥∆Bℓ∥F

)
.

Corollary D.6 (Intrinsic dimension under blockwise Lipschitz LoRA). Under Theorem D.5, the
eluder dimension of the LoRA-parameterized reward class satisfies, for any ϵ ∈ (0, 1],

deluder(ϵ;RLoRA) ≤ C

(
L∑

ℓ=1

rℓ
(
mℓ + nℓ − rℓ

))
log

C ′

ϵ
,

for universal positive constants C,C ′. In particular, the effective intrinsic dimension scales with
the rank budget rather than the ambient parameter count, aligning with empirical observations on
parameter-efficient fine-tuning (Hu et al., 2022; Aghajanyan et al., 2020).

Proof. Step 1 (Model class and parameterization). LetR denote the LoRA-parameterized reward
class obtained by freezing a base network and adding, in each layer ℓ ∈ [L], a rank-rℓ update of
the form UℓV

⊤
ℓ with Uℓ ∈ Rmℓ×rℓ , Vℓ ∈ Rnℓ×rℓ . Assumption Theorem D.5 ensures blockwise

Lipschitzness: for any two parameter tuples Θ,Θ′,

sup
(x,y)

∣∣rΘ(x, y)− rΘ′(x, y)
∣∣ ≤ L∑

ℓ=1

Lℓ

∥∥ [Uℓ, Vℓ]− [U ′
ℓ, V

′
ℓ ]
∥∥
F
.

Step 2 (Covering numbers for low-rank blocks). Fix radii Rℓ so that ∥(Uℓ, Vℓ)∥F ≤ Rℓ for all
admissible parameters (w.l.o.g. finite by compactness assumptions). For each block ℓ, the parameter
set lives on a smooth manifold of dimension dℓ = rℓ(mℓ + nℓ − rℓ). Standard volumetric bounds
give an ϵℓ-net of size at most (CRℓ/ϵℓ)

dℓ in Frobenius norm. By the blockwise Lipschitzness, an
(ϵℓ/Lℓ)-cover in parameters induces an ϵℓ-cover in function sup-norm. Taking the product over
blocks and distributing a total accuracy ϵ across blocks (e.g., ϵℓ = ϵ/L) yields the function-class
covering bound

N (ϵ,R, ∥ · ∥∞) ≤
L∏

ℓ=1

(
Cℓ

ϵ

)dℓ

=

(
C

ϵ

)∑L
ℓ=1 dℓ

, (D.8)

for constants Cℓ depending on (Lℓ, Rℓ) and a universal C =
∏

ℓ Cℓ. (See, e.g., standard covering-
number bounds for low-rank matrix manifolds.)
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Step 3 (From covering numbers to eluder dimension). By the growth-function argument of Russo
& Van Roy (2013; 2014) (see also Lemma Theorem D.3), for any ϵ ∈ (0, 1] there exists a universal
C ′ > 0 such that

deluder(R, ϵ) ≤ C ′ sup
δ∈[ϵ,1]

logN (δ,R, ∥ · ∥∞) . (D.9)

Combining equation D.8 and equation D.9 gives

deluder(R, ϵ) ≤ C ′
( L∑

ℓ=1

dℓ

)
log

C

ϵ
= C ′

( L∑
ℓ=1

rℓ
(
mℓ + nℓ − rℓ

))
log

C

ϵ
,

which is precisely the claimed bound (absorbing constants into C,C ′).

Step 4 (Interpretation). The dependence is intrinsic: it scales with the low-rank degrees of free-
dom and is independent of the ambient widths except through the block dimensions (mℓ, nℓ) and
Lipschitz constants Lℓ. This matches the intuition that parameter-efficient fine-tuning reduces the
exploration burden.

Lemma D.7 (Cumulative squared widths). Let {Gt}Tt=1 be confidence sets over the reward classR
with radii {βt}Tt=1, and define the width at the chosen action At = (xt, yt) by

wt := wGt(At) := sup
f,f ′∈Gt

∣∣f(xt, yt)− f ′(xt, yt)
∣∣.

Assume rewards are bounded in [0, 1], so wt ∈ [0, 1] for all t, and set

deluder := dimE

(
R, T−1

)
, βT := max

1≤t≤T
βt.

Then for all T ≥ 2 there exists a universal constant Cw > 0 such that

T∑
t=1

w2
t ≤ Cw deluder βT log(eT ), (D.10)

and the same inequality holds for the expectations
∑T

t=1 E[w2
t ].

Proof. We follow a dyadic decomposition over scales ε ∈ [T−1, 1] combined with Proposition 3 of
Russo & Van Roy (2013).

Step 1: Split very small widths. We first separate rounds with tiny width:

T∑
t=1

w2
t =

T∑
t=1

w2
t 1{wt ≤ T−1}+

T∑
t=1

w2
t 1{wt > T−1}.

Since wt ≤ 1, the first term is trivially bounded by T (T−1)2 = 1/T .

Step 2: Dyadic partition of the nontrivial widths. Let K := ⌊log2 T ⌋ and define dyadic scales
εk := 2−k for k = 0, 1, . . . ,K. For each k define

Sk := { t ≤ T : εk+1 < wt ≤ εk }.

Then each round with wt > T−1 belongs to some Sk, and

T∑
t=1

w2
t 1{wt > T−1} ≤

K∑
k=0

ε2k |Sk|. (D.11)

Step 3: Apply Proposition 3 at each scale. For t ∈ Sk we have wt > εk+1, hence

|Sk| ≤
T∑

t=1

1{wt > εk+1}.
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Proposition 3 of Russo & Van Roy (2013) states that, for any ε > 0,

T∑
t=1

1{wt > ε} ≤
(4βT

ε2
+ 1
)
dimE(R, ε) almost surely.

By monotonicity of the eluder dimension in its scale parameter and the definition of deluder,

dimE(R, εk+1) ≤ dimE(R, T−1) = deluder

for all k such that εk+1 ≥ T−1, which holds for k = 0, . . . ,K. Therefore

|Sk| ≤ deluder

( 4βT

ε2k+1

+ 1
)
.

Multiplying by ε2k and using εk = 2εk+1 gives

ε2k|Sk| ≤ deluder

(
4βT

ε2k
ε2k+1

+ ε2k

)
= deluder

(
16βT + ε2k

)
.

Step 4: Sum over dyadic scales and combine. Summing over k and using
∑∞

k=0 ε
2
k =∑∞

k=0 4
−k < 2, we obtain

T∑
t=1

w2
t 1{wt > T−1} ≤ deluder

(
16βT (K + 1) + 2

)
≤ deluder

(
16βT log2(2T ) + 2

)
.

Combining with the 1/T bound from Step 1 and absorbing constants into a universal Cw > 0 yields
equation D.10. The bound is deterministic conditional on {wt}, so it also holds for

∑T
t=1 E[w2

t ].

Lemma D.8 (Information–eluder-dimension bound). Let Assumption 2.1 hold and suppose the pref-
erence feedback is generated according to the Bradley–Terry–Luce model in equation 2.1. Let
R = {rθ : θ ∈ Θ} and denote by dimE(R, ε) the ε-eluder dimension of R (Russo & Van Roy,
2013). Assume:

1. (Bounded rewards) rθ(x, y) ∈ [0, 1] for all (x, y) and all θ ∈ Θ.

2. (Bounded preference noise) Conditional on (θ∗,Ft−1, xt, y
(w)
t , y

(ℓ)
t ), the binary preference

feedback feedbackt ∈ {0, 1} has mean E[feedbackt | θ∗,Ft−1] = pθ∗(xt, y
(w)
t , y

(ℓ)
t ) and

is σ-sub-Gaussian for some σ > 0.

3. (Metric entropy growth) There exists Ccov > 0 such that for all ε ∈ (0, 1],

logN
(
R, ε, ∥ · ∥∞

)
≤ Ccov log(1/ε),

where N(R, ε, ∥ · ∥∞) is the ε-covering number ofR in the sup-norm.

Let deluder := dimE(R, T−1). Then there exists a constant Cinfo > 0, depending only on (σ,Ccov)
and the constants in Assumption 2.1, such that for any horizon T ≥ 2,

I
(
θ∗; feedback1:T

)
≤ Cinfo deluder log

2(eT ), (D.12)

where feedback1:T = (feedback1, . . . , feedbackT ).

Proof. We follow the confidence-set and width analysis of Russo & Van Roy (2013), adapting it to
our preference-learning setting and to mutual information.

Step 1: Confidence sets and widths. Let (f̂LS
t )t≥1 be least-squares predictors based on past data

and define confidence sets

Gt :=
{
f ∈ R : ∥f − f̂LS

t ∥2,Et
≤
√
βt

}
,
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where ∥ · ∥2,Et
is the empirical 2-norm and βt is chosen as in equation (4) of Russo & Van Roy

(2013). Their Proposition 2 implies that, with probability at least 1− 1/T , we have fθ∗ ∈ Gt for all
t ≤ T .

Define the width of Gt at the selected pair (xt, y
(w)
t , y

(ℓ)
t ) by

wt := sup
f,f ′∈Gt

∣∣f(xt, y
(w)
t , y

(ℓ)
t )− f ′(xt, y

(w)
t , y

(ℓ)
t )
∣∣.

Step 2: From widths to information. Under the Bradley–Terry–Luce model, the preference prob-
ability pθ(xt, y

(w)
t , y

(ℓ)
t ) is a smooth and bounded function of the reward difference rθ(xt, y

(w)
t ) −

rθ(xt, y
(ℓ)
t ). Combining the variance–information lemma D.3 with the boundedness and Lipschitz

properties of the logistic link, one obtains an information–width inequality: there exists c0 > 0,
depending only on the link function and the reward range, such that

I
(
θ∗; feedbackt | Ft−1

)
≤ c0 E

[
w2

t | Ft−1

]
.

Summing over t and applying the tower property gives

I
(
θ∗; feedback1:T

)
=

T∑
t=1

I
(
θ∗; feedbackt | Ft−1

)
≤ c0

T∑
t=1

E[w2
t ].

Step 3: Bounding the cumulative squared widths. Applying Lemma D.7 to the confidence sets
{Ft} and widths wt = wFt

(At) constructed in Step 1, we obtain

T∑
t=1

E[w2
t ] ≤ Cw deluder βT log(eT ),

where deluder = dimE(R, T−1) and βT = max1≤t≤T βt is the confidence radius.

Step 4: Controlling βT via metric entropy. Our metric-entropy assumption implies logN(R, ε, ∥·
∥∞) ≤ Ccov log(1/ε). Substituting this into the definition of βT (equation (4) in Russo & Van Roy
(2013)) with ε = T−2 shows that there exists Cβ > 0 such that

βT ≤ Cβ log T.

Combining the displays from Steps 2 and 3 with this bound on βT yields

I
(
θ∗; feedback1:T

)
≤ Cinfo deluder log

2(eT )

for a constant Cinfo depending only on (σ,Ccov) and the problem constants, as claimed.

D.4 APPROXIMATION OF WASSERSTEIN GRADIENT FLOW

This section outlines the approximation of the idealized Wasserstein gradient flow dynamics by a
finite ensemble of particles. The core idea is that the particles provide a discrete representation of
the continuous flow of probability measures, tracking the evolution of the PAC-Bayesian free-energy
functional JPAC.

Let the particles {θi}Ni=1 represent an empirical distribution of parameters at time t. We approximate
the gradient flow of the PAC-Bayesian objective JPAC by evolving these particles according to the
following update rule:

θt+1
i = θti − η∇θi

 1

N

N∑
j=1

ℓθj (z) + β log
µθj

Π(θj)

+N (0, σ2).

Here, η is the step size, ℓθj (z) is the loss, and µθj represents the empirical measure at time t.

The error bound for this approximation depends on the step size η and the number of particles N ,
which is formalized in the subsequent lemmas.
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Lemma D.9 (Finite-Particle Approximation Error). Let µt be the mean-field law and µN
t be the

empirical measure of N particles. For any L-Lipschitz function ϕ, the error in estimating its expec-
tation is bounded in probability: |

∫
ϕdµN

t −
∫
ϕdµt| = Õ(1/

√
N) (Fournier & Guillin, 2015).

Proof. This follows from classical results on the convergence rate of the empirical measure in
Wasserstein distance and the duality between Wasserstein distance and expectations of Lipschitz
functions. The error from approximating the interaction term in the SGLD update accumulates,
leading to the term in the final regret bound.

Lemma D.10. Let ĝt(θ) be an unbiased mini-batch gradient estimator of the true gradient gt(θ)
with conditional variance Var(ĝt − gt | Ft−1) ≤ σ2

t /Bt. The cumulative error from the noise

sequence ξt = ηt(ĝt − gt) is bounded with high probability by Õ(
√∑T

t=1 η
2
t σ

2
t /Bt).

Proof. Let ĝt(θ) be an unbiased mini-batch estimator of the population gradient gt(θ) with E[ĝt(θ) |
Ft−1] = gt(θ) and conditional covariance E

[
∥ĝt(θ) − gt(θ)∥2 | Ft−1

]
≤ σ2

t /Bt. Consider the
parameter update θt+1 = θt − ηtĝt(θt) + (other terms) and track the noise contribution to the PAC
objective J(θ) through the descent lemma. Define the noise martingale ζt := ⟨∇J(θt), ĝt(θt) −
gt(θt)⟩ with E[ζt | Ft−1] = 0. Then

T∑
t=1

ηt ζt

is a martingale with predictable quadratic variation bounded by

T∑
t=1

η2t E[ζ2t | Ft−1] ≤
T∑

t=1

η2t ∥∇J(θt)∥2
σ2
t

Bt
≤ G2

T∑
t=1

η2t
σ2
t

Bt
,

where G bounds ∥∇J(θ)∥ on the iterates (ensured by standard coercivity/compacity arguments in
our setting). Applying Freedman’s inequality (or Azuma–Hoeffding with conditional variances)
yields, with probability at least 1− δ,

∣∣∣ T∑
t=1

ηt ζt

∣∣∣ ≤ c1 G
√
log 2

δ

√√√√ T∑
t=1

η2t
σ2
t

Bt
+ c2 G log 2

δ max
t

ηt
σt√
Bt

,

establishing the stated Õ
(√∑

t η
2
t σ

2
t /Bt

)
high-probability control on the cumulative stochastic-

gradient error.

Lemma D.11 (Finite-Ensemble Monte Carlo Error). Let the Monte Carlo error in estimating the
optimistic index be ξt = Ît − It, with E[ξt | Ft−1] = 0 and Var(ξt | Ft−1) ≤ v2t /Nt. The

cumulative error
∑T

t=1 ξt is bounded with high probability by Õ(
√∑T

t=1 v
2
t /Nt).

Proofs of Theorem D.10 and Theorem D.11. Both proofs rely on the same core argument. The error
sequences {ξt} in both cases are martingale difference sequences with respect to the filtration Ft−1.
We can therefore apply a concentration inequality for martingales. Freedman’s inequality is partic-
ularly well-suited as it handles predictable, time-varying variance bounds (Freedman, 1975). Let
ST =

∑T
t=1 ξt. Let VT =

∑T
t=1 E[ξ2t | Ft−1] be the predictable quadratic variation. Freedman’s

inequality states that for any u, v > 0:

Pr(ST ≥ u and VT ≤ v) ≤ exp

(
− u2/2

v + cu/3

)
where c is a uniform bound on |ξt|. Setting v to be the sum of our variance bounds (e.g., v =∑

v2t /Nt) and solving for u for a given probability level δ yields the stated Õ(
√
·) bounds.
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Variance and noise parameters. Throughout this paper we assume bounded rewards and sub-
Gaussian noise. In particular, there exist finite constants v2 and σ2 such that for all t,

Var(∆Mt | Ft) ≤ v2, E
[
exp(λεt) | Ft

]
≤ exp(λ2σ2/2) ∀λ ∈ R,

where (Ft)t≥0 is the natural filtration introduced above, ∆Mt is the martingale increment in the
regret decomposition, and εt is the reward noise. We denote by v2t and σ2

t the corresponding con-
ditional variance and sub-Gaussian proxy at time t, and the above assumptions imply v2t ≤ v2 and
σ2
t ≤ σ2 for all t.

E MAIN THEOREMS: FULL STATEMENTS AND PROOFS (BANDITS)

This section contains the full proofs of the main results. It relies on auxiliary tools in Sections C
and D.

E.1 RESTATEMENT OF MAIN THEOREMS

Let Assumptions 2.1, 2.2, and 2.3 hold. For any δ ∈ (0, 1), consider the OLE algorithm run for T
rounds with step sizes {ηt}, ensemble sizes {Nt}, mini-batch sizes {Bt}, and an optimism schedule
κt = C0

√
log(T/δ) for a suitable constant C0. Let v2t be an upper bound on the conditional variance

of the Monte Carlo estimate of the optimistic value, and let σ2
t be an upper bound on the conditional

variance of the mini-batch gradient estimator. Then with probability at least 1 − δ, the cumulative
regret satisfies:

Regret(T ) ≤ C1 deluder log T︸ ︷︷ ︸
Exploration Cost

+ C2

T∑
t=1

ηt︸ ︷︷ ︸
Discretization

+ Õ


√√√√ T∑

t=1

v2t
Nt


︸ ︷︷ ︸

Finite Ensemble

+ Õ


√√√√ T∑

t=1

σ2
t

Bt


︸ ︷︷ ︸

Stochastic Gradient

, (E.1)

where C1 and C2 are absolute constants depending on model parameters like the Lipschitz constant
L. The eluder dimension deluder is evaluated at a precision scale that decreases with t.

E.2 PROOF OF THE UNIFIED REGRET BOUND (SECTION E.1)

We now prove Section E.1. Throughout, we let (Ft)t≥0 denote the natural filtration generated by
all randomness up to the end of round t (contexts, actions, preference feedback, and the internal
randomness of the ensemble and SGLD).

Recall that at each round t, the OLE algorithm computes, for each candidate action y ∈ Y in context
xt, an optimistic index

It(xt, y) = r̂t(xt, y) + κt

√
V̂art(xt, y), (E.2)

where r̂t(xt, y) and V̂art(xt, y) are the ensemble mean and variance, respectively, and κt =

C0

√
log(T/δ).We will bound the regret by: (i) decomposing the instantaneous regret at each round

into an optimism term and an estimation term; (ii) controlling the sum of optimism terms using
variance–information duality and the eluder dimension; and (iii) bounding the estimation term via a
careful decomposition into discretization, finite-ensemble, and stochastic-gradient contributions.

Step 1: Instantaneous regret decomposition. Let y∗t ∈ argmaxy∈Y r∗(xt, y) denote an optimal
action in context xt, and let yt denote the action chosen by the OLE policy induced by the index It
(for simplicity, we write the regret in terms of the deployed action yt, which is one element of the
selected comparison pair). The instantaneous regret is

r∗(xt, y
∗
t )− r∗(xt, yt).
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Introduce the shorthand I∗t := It(xt, y
∗
t ), It := It(xt, yt), r̂t := r̂t(xt, yt), r

∗
t := r∗(xt, yt), and

note that by definition of yt, we have It ≥ I∗t . Then

r∗(xt, y
∗
t )− r∗(xt, yt) =

(
I∗t − r∗(xt, yt)

)︸ ︷︷ ︸
(I)

−
(
I∗t − r∗(xt, y

∗
t )
)︸ ︷︷ ︸

(II)

(E.3)

≤
(
It − r̂t

)︸ ︷︷ ︸
Optimism term

+
(
r̂t − r∗t

)︸ ︷︷ ︸
Estimation error

−(II). (E.4)

The inequality uses It ≥ I∗t and inserts and subtracts r̂t. Define the “good optimism event”

Et := { r∗(x, y) ≤ It(x, y) for all (x, y) ∈ X × Y }.

By the PAC-Bayes and concentration arguments developed in Sections C and D, together with the
choice κt = C0

√
log(T/δ), we can ensure that

Pr
( T⋂
t=1

Et
)
≥ 1− δ. (E.5)

On the event Et, we have r∗(xt, y
∗
t ) ≤ I∗t , so term (II) in equation E.3 is non-negative. Hence, on⋂T

t=1 Et,

r∗(xt, y
∗
t )− r∗(xt, yt) ≤ κt

√
V̂art(xt, yt)︸ ︷︷ ︸
∆opt

t

+
(
r̂t(xt, yt)− r∗(xt, yt)

)︸ ︷︷ ︸
ϵt

, (E.6)

where we have set ∆opt
t := It(xt, yt) − r̂t(xt, yt) = κt

√
V̂art(xt, yt) and ϵt := r̂t(xt, yt) −

r∗(xt, yt).

Summing over t = 1, . . . , T and working on the event E :=
⋂T

t=1 Et yields

Regret(T ) ≤
T∑

t=1

∆opt
t +

T∑
t=1

ϵt. (E.7)

We will bound the two sums on the right-hand side separately.

Step 2: Bounding the cumulative optimism term. Write

Vt := V̂art(xt, yt), ∆opt
t = κt

√
Vt.

By Cauchy–Schwarz,

T∑
t=1

∆opt
t =

T∑
t=1

κt

√
Vt ≤

√√√√ T∑
t=1

1

√√√√ T∑
t=1

κ2
tVt =

√
T

√√√√ T∑
t=1

κ2
tVt. (E.8)

Using the choice κ2
t = C2

0 log(T/δ), it remains to control
∑T

t=1 Vt.

The variance–information lemma (Theorem D.3) states that, under the Bradley–Terry–Luce prefer-
ence model equation 2.1, for any posterior distribution µt over parameters at round t and any context
xt and chosen pair (y(w)

t , y
(ℓ)
t ), the conditional mutual information satisfies

I
(
θ∗; feedbackt | Ft−1

)
≥ Cvar · Vt, (E.9)

for some universal constant Cvar > 0 (depending only on the fact that the logistic link keeps prefer-
ences bounded away from 0 and 1).

Summing equation E.9 over t = 1, . . . , T and using the chain rule for mutual information, we obtain

T∑
t=1

Vt ≤ C−1
var

T∑
t=1

I
(
θ∗; feedbackt | Ft−1

)
= C−1

varI
(
θ∗; feedback1:T

)
. (E.10)
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The remaining ingredient is to bound the total information gain in terms of the eluder dimension.
This is guaranteed by the lemma D.8. Combining equation E.10 and lemma D.8 yields

T∑
t=1

Vt ≤ C−1
varCinfo deluder log

2(eT ) =: CV deluder log
2(eT ). (E.11)

Substituting equation E.11 and κ2
t = C2

0 log(T/δ) into equation E.8 gives

T∑
t=1

∆opt
t ≤

√
T

√√√√ T∑
t=1

κ2
tVt =

√
T

√√√√C2
0 log(T/δ)

T∑
t=1

Vt

≤
√
T

√
C2

0 log(T/δ) CV deluder log
2(eT )

≤ C1

√
deluderT log T, (E.12)

for a suitable constant C1 > 0 (absorbing log(T/δ) into the log T factor via the Õ(·) notation).

Step 3: Bounding the cumulative estimation error. We now bound the second sum in equa-
tion E.7,

∑T
t=1 ϵt, which captures the discrepancy between the ensemble prediction r̂t and the true

reward r∗ evaluated at (xt, yt).

Let r̄t(x, y) denote the prediction of the ideal, continuous-time, infinite-particle mean-field posterior
at round t. Then at the deployed action (xt, yt) we can write

ϵt = r̂t(xt, yt)− r∗(xt, yt) =
(
r̂t(xt, yt)− r̄t(xt, yt)

)
+
(
r̄t(xt, yt)− r∗(xt, yt)

)
. (E.13)

Summing over t we obtain

T∑
t=1

ϵt =

T∑
t=1

(
r̂t(xt, yt)− r̄t(xt, yt)

)
︸ ︷︷ ︸

Sapprox

+

T∑
t=1

(
r̄t(xt, yt)− r∗(xt, yt)

)
︸ ︷︷ ︸

Sideal

. (E.14)

Step 3(a): Ideal mean-field prediction error. The term Sideal measures the deviation of the ideal
mean-field posterior mean from the true reward. This is controlled by the PAC-Bayesian general-
ization bounds for the smoothed posterior in Section C, which imply that, under Assumption 2.1,
the mean-field posterior concentrates around θ∗ and the average generalization error is small. In
particular, standard arguments (see Theorem 3.2 and subsequent discussion) yield

|Sideal| ≤ Cideal

√
T (E.15)

for some constant Cideal depending on the Lipschitz constant of the loss and the prior, and this term
is dominated by the exploration term equation E.12 when T is large. For simplicity, we absorb Sideal

into the overall Õ(
√
deluderT log T ) term.

Step 3(b): Approximation error from discretization, finite ensemble, and stochastic gradients. The
term Sapprox in equation E.14 captures the effect of replacing the ideal mean-field posterior with a
finite ensemble, with discrete-time SGLD dynamics and mini-batch gradients. We now decompose
it into a martingale term and a bias term using the filtration (Ft).

By definition, both r̂t and r̄t are Ft-measurable. We write

Sapprox =

T∑
t=1

(
r̂t(xt, yt)− r̄t(xt, yt)

)
=

T∑
t=1

(
r̂t(xt, yt)− E[r̂t(xt, yt) | Ft−1]

)
︸ ︷︷ ︸

Smart: martingale noise

+

T∑
t=1

(
E[r̂t(xt, yt) | Ft−1]− r̄t(xt, yt)

)
︸ ︷︷ ︸

Sbias: bias/approximation term

.
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The first term Smart is a martingale difference sequence with conditionally sub-Gaussian increments
whose conditional variances are bounded by v2t /Nt (finite-ensemble Monte Carlo noise) and by
η2t σ

2
t /Bt (stochastic-gradient noise). The second term Sbias collects the approximation bias arising

from discretizing the Langevin dynamics.

The following lemmas, proved in Appendix D.4, give high-probability bounds for each contribution
(we quote them here for convenience):
Lemma E.1 (Finite-ensemble Monte Carlo error). Under the conditions of Theorems 2.1 and 2.2,
the finite-ensemble Monte Carlo fluctuations satisfy∣∣∣∣∣

T∑
t=1

(
r̂MC
t (xt, yt)− E[r̂MC

t (xt, yt) | Ft−1]
)∣∣∣∣∣ ≤ Cens

√√√√ T∑
t=1

v2t
Nt

with probability at least 1− δ/4, for some constant Cens > 0. (Here r̂MC
t denotes the Monte Carlo

estimate of the ensemble mean.)
Lemma E.2 (Stochastic-gradient error). Let ĝt(θ) be an unbiased mini-batch gradient estimator
with conditional variance bounded by σ2

t /Bt. Then the cumulative error induced by using ĝt instead
of the exact gradient in SGLD satisfies∣∣∣∣∣

T∑
t=1

ηt

(
ĝt(θt)− E[ĝt(θt) | Ft−1]

)∣∣∣∣∣ ≤ Csg

√√√√ T∑
t=1

η2t
σ2
t

Bt

with probability at least 1− δ/4.
Lemma E.3 (Discretization bias). Suppose the drift of the mean-field Langevin SDE is L-Lipschitz
and satisfies the standard coercivity conditions ensuring existence of a unique invariant measure.
Then the cumulative bias induced by using a time step ηt in the Euler–Maruyama discretization
satisfies

|Sbias| ≤ Cdisc

T∑
t=1

ηt,

for some constant Cdisc > 0.

Combining equation E.2 with Theorems E.1 to E.3 and applying a union bound over the associated
high-probability events yields

|Sapprox| ≤ C2

T∑
t=1

ηt + C3

√√√√ T∑
t=1

v2t
Nt

+ C4

√√√√ T∑
t=1

σ2
t

Bt
, (E.16)

for appropriate constants C2, C3, C4 > 0.

Step 4: Combine. Combining the instantaneous decomposition equation E.7, the optimism bound
equation E.12, and the bounds equation E.15 and equation E.16, and applying a final union bound
over all the high-probability events (E , the PAC-Bayes generalization bound, and the martingale
concentration events), we obtain that with probability at least 1− δ,

Regret(T ) ≤ C1

√
deluderT log T + C2

T∑
t=1

ηt + C3

√√√√ T∑
t=1

v2t
Nt

+ C4

√√√√ T∑
t=1

σ2
t

Bt
,

which is exactly the statement of Section E.1. This completes the proof.

Proposition E.4 (Exploration term and logarithmic regret). Under Assumptions 2.1, 2.2, and 2.3,
and on the high-probability optimism event equation E.5, there exists a constant Copt > 0 such that
for all T ≥ 2,

T∑
t=1

κt

√
V̂art(xt, yt) ≤ Copt deluder log T. (E.17)
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Proof. Recall that Ft−1 denotes the σ-algebra generated by all randomness up to round t− 1 (con-
texts, actions, feedback, and algorithm randomness), and that feedbackt denotes the preference
observation at round t. For each t, we define the per-round mutual information

It := I
(
θ∗; feedbackt | Ft−1

)
= E

[
DKL

(
P (feedbackt | θ∗,Ft−1)

∥∥P (feedbackt | Ft−1)
)]
,

where the expectation is taken over (θ∗, feedbackt) and Ft−1.

Step 1: Chain rule for mutual information. By the chain rule for mutual information applied to
the sequence feedback1:T = (feedback1, . . . , feedbackT ) we have

I
(
θ∗; feedback1:T

)
=

T∑
t=1

I
(
θ∗; feedbackt | feedback1:t−1

)
=

T∑
t=1

It. (E.18)

Since Ft−1 is the σ-algebra generated by feedback1:t−1 together with the other past randomness of
the algorithm, we can (and will) work with the conditional information I(θ∗; feedbackt | Ft−1).

Step 2: Information–width inequality for the BTL model. Under the Bradley–Terry–Luce pref-
erence model with bounded rewards, the mutual information gained at round t can be controlled by
the squared width of the corresponding confidence set. More precisely, combining the variance–
information lemma (Lemma D.3) with the construction of the confidence sets {Gt} and the Lips-
chitz properties of the logistic link, there exists a constant c0 > 0, depending only on the link and
the reward range, such that for every t and every realization of Ft−1,

I
(
θ∗; feedbackt | Ft−1

)
≤ c0 E

[
w2

t | Ft−1

]
, (E.19)

where wt is the width at time t,

wt := sup
f,f ′∈Gt

∣∣f(xt, y
(w)
t , y

(ℓ)
t )− f ′(xt, y

(w)
t , y

(ℓ)
t )
∣∣.

(Informally, equation E.19 says that, given the past, the amount of information we can gain at round
t is controlled by the squared width of the current confidence set at the queried comparison.)

Taking expectations of both sides of equation E.19 and using the tower property yields
E[It] = E

[
I(θ∗; feedbackt | Ft−1)

]
≤ c0 E

[
E[w2

t | Ft−1]
]
= c0 E[w2

t ]. (E.20)

Step 3: Summing over t and invoking cumulative squared widths. Plugging equation E.20 into
the chain rule equation E.18 and using linearity of expectation, we obtain

I
(
θ∗; feedback1:T

)
=

T∑
t=1

It =

T∑
t=1

E[It] (E.21)

≤
T∑

t=1

c0 E[w2
t ] = c0

T∑
t=1

E[w2
t ]. (E.22)

Lemma D.7 (cumulative squared widths) now gives
T∑

t=1

E[w2
t ] ≤ Cw deluder βT log(eT ),

where deluder := dimE(R, T−1) is the T−1-eluder dimension of the reward class. Combining this
with equation E.22 yields

I
(
θ∗; feedback1:T

)
≤ c0Cw deluder βT log(eT ). (E.23)

Defining Cinfo := c0Cw gives the claimed information bound.

The remainder of the proof proceeds by combining this information bound with the variance-based

optimism inequality (bounding the instantaneous regret by κt

√
V̂art(xt, yt)) and a dyadic decom-

position argument on the predictive variances. This shows that the cumulative optimism term∑T
t=1 κt

√
V̂art(xt, yt) is at most Coptdeluder log(eT ), which is exactly the statement of Propo-

sition E.4.
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F FULL PROOFS FOR THE MDP EXTENSION

This section extends our preference-based analysis from contextual bandits to Markov Decision
Processes (MDPs) and provides full proofs for the finite-horizon and discounted regret bounds stated
in Theorem 6.2 and Section F.1.

MDP SETUP AND NOTATION

We consider a finite-horizon MDP

M = (S,A, P, r∗, ρ,H),

with state space S, action space A, transition kernel P , horizon H , and initial state distribution
ρ over S. The latent single-step reward function r∗ : S × A → [0, 1] is unknown but assumed
realizable in our reward model classR = {rθ : θ ∈ Θ} as in the bandit setting.

A (possibly non-stationary) policy π is a sequence π = (πh)
H
h=1 with πh(· | s) ∈ ∆(A). We

write πh(s) ∈ A when πh is deterministic. For any policy π we define the value and action-value
functions in the usual way:

V π
h (s) := Eπ

[ H∑
t=h

r∗(St, At)
∣∣∣ Sh = s

]
, Qπ

h(s, a) := r∗(s, a)+ESh+1∼P (·|s,a)
[
V π
h+1(Sh+1)

]
.

Let dπh denote the marginal distribution of Sh when S1 ∼ ρ and the trajectory is generated by P
under policy π for steps 1, . . . , h− 1. Note that dπh does not depend on the episode index.

The OTD–LE algorithm maintains an ensemble of reward models {rθ : θ ∈ Θ} updated from
pairwise preferences using the same PAC–Bayesian machinery as in the bandit case. The environ-
ment never reveals numeric rewards; instead, in episode e the algorithm uses a particle θe to form
pseudo-rewards

R̃e,h := rθe(Se,h, Ae,h),

which enter the temporal-difference targets used to update the value or Q-function parameters. For
example, in a value-based implementation we may use

Ye,h := R̃e,h + γVφe,h+1(Se,h+1),

with γ = 1 in the finite-horizon case and γ ∈ (0, 1) in the discounted case. All numeric quantities in
the TD updates are therefore computed from the learned reward model, while the environment pro-
vides only preference feedback.5 We write πe = (πe,h)

H
h=1 for the (non-stationary) policy executed

in episode e and π∗ = (π∗
h)

H
h=1 for an optimal policy for r∗.

The episodic MDP regret after T episodes is

Regret(T ) :=

T∑
e=1

(
V π∗

1 (ρ)− V πe
1 (ρ)

)
,

which coincides with the contextual-bandit regret when H = 1.

Remark F.1 (MDP extension and preference feedback). In the MDP extension, the environment
never reveals ground-truth numeric rewards. We assume a latent single-step reward function r∗ :
S × A → [0, 1] that induces the Bradley–Terry–Luce preference model in Equation (2.1), and we
fit a posterior over reward models {rθ : θ ∈ Θ} from pairwise preferences exactly as in the bandit
setting. In each episode e and at each stage h, OTD–LE forms a pseudo-reward

R̃e,h := rθe(Se,h, Ae,h),

where θe is the particle used to act in episode e, and constructs TD targets (for value- or Q-function
updates) only from these pseudo-rewards together with next-state value estimates. In particular,
TD targets only ever use pseudo-rewards from rθ; the environment is queried solely for preference
feedback, not for numeric rewards.

5This mirrors the standard “reward-model + RL” pipeline used in preference-based RL and RLHF; see the
discussion in App. I.
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F.1 MDP REGRET BOUNDS

Under Assumptions 2.1-2.3 and 6.1, the O-TDLE algorithm, run for T episodes, achieves a cumu-
lative regret that satisfies, with high probability:

Regret(T ) = Õ
(
H2 · deluder · log T

)
+ lower-order approximation terms, (F.1)

where the lower-order terms have a similar structure to the bandit case, summed over all T × H
steps.

Under the same assumptions, for an infinite-horizon discounted MDP, the O-DQLE algorithm run
for T steps achieves a cumulative regret that satisfies, with high probability:

Regret(T ) = Õ
(

deluder
(1− γ)3

· log T
)
+ lower-order approximation terms. (F.2)

F.2 PROOF FOR FINITE-HORIZON MDPS (SECTION F.1)

The proof requires adapting the regret decomposition to handle temporal dependencies. A naive ap-
plication of the value-difference lemma can lead to errors compounding exponentially in the horizon
H . To avoid this, we employ a more sophisticated policy decomposition technique.

Step 1: Regret decomposition via hybrid policies. Fix an episode e and write πe = (πe,h)
H
h=1

for the policy executed by OTD–LE and π∗ = (π∗
h)

H
h=1 for an optimal policy. For h = 1, . . . ,H+1

define the hybrid policies π(h) by

π
(h)
t (s) :=

{
πe,t(s), t < h,

π∗
t (s), t ≥ h,

t = 1, . . . , H, s ∈ S.

Thus π(1) = π∗ (all steps optimal) and π(H+1) = πe (all steps follow the learned policy). By
telescoping we obtain

V π∗

1 (ρ)− V πe
1 (ρ) =

H∑
h=1

(
V π(h)

1 (ρ)− V π(h+1)

1 (ρ)
)
. (F.3)

For each h, the three policies πe, π
(h), π(h+1) agree on steps 1, . . . , h − 1, so they induce the same

state distribution dπe

h at step h. Moreover π(h) and π(h+1) both follow π∗ from step h+ 1 onward,
so their Q-functions at step h coincide with Qπ∗

h . Applying the standard finite-horizon performance-
difference lemma with these observations yields, for every h ∈ {1, . . . , H},

V π(h)

1 (ρ)− V π(h+1)

1 (ρ) = ESe,h∼dπe
h

[
Qπ∗

h

(
Se,h, π

∗
h(Se,h)

)
−Qπ∗

h

(
Se,h, πe,h(Se,h)

)]
. (F.4)

Equations equation F.3 and equation F.4 reduce the regret comparison between πe and π∗ to a sum
of H single-step advantage terms, one for each stage h.

Step 2: Bounding the single-step deviations. For a fixed episode e and stage h, define the instan-
taneous MDP regret

∆e,h := Qπ∗

h

(
Se,h, π

∗
h(Se,h)

)
−Qπ∗

h

(
Se,h, πe,h(Se,h)

)
.

By equation F.4 we have V π(h)

1 (ρ) − V π(h+1)

1 (ρ) = E[∆e,h]. Unrolling the Bellman recursion
shows that ∆e,h is a bounded linear functional of the per-step latent reward function r∗ along the
suffix of the trajectory, so it can be written as the difference of two evaluations of rθ at an (S ×A)-
valued input. Consequently, the PAC–Bayesian posterior control, variance–information lemma, and
cumulative squared-width bound developed for the contextual bandit setting apply to each pair (e, h)
with the same eluder dimension deluder.

On the high-probability optimism event from Theorem E.4, the same argument as in the bandit case
yields

∆e,h ≤ κe,h

√
Ve,h + (finite-ensemble, discretization, and stochastic-gradient terms),

37



1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

where Ve,h is the posterior predictive variance of the relevant logit difference at (Se,h, πe,h(Se,h)),
and κe,h is an exploration coefficient of order log(TH). Summing this inequality over e = 1, . . . , T
and h = 1, . . . , H and applying the variance–information and cumulative squared-width bounds
from Sections D.2 and E.2 gives a leading exploration term of order Õ(H2deluder log T ); the extra
factor H comes from the hybrid-policy decomposition equation F.3.

Step 3: Bounding Approximation Errors. The approximation errors from discretization, finite
ensembles, and stochastic gradients are summed over all T ×H steps. The martingale concentration
arguments still apply, leading to lower-order terms of the form Õ(

√
TH(·)). With appropriate

scheduling of Ne and Be, these can be controlled. □

F.3 PROOF FOR DISCOUNTED MDPS (SECTION F.1)

We now consider an infinite-horizon γ-discounted MDP with the same state and action spaces (S,A)
and latent reward model r∗ : S ×A → [0, 1]. For a policy π and initial distribution ρ we define

V π(ρ) := Eπ

[ ∞∑
t=0

γtr∗(St, At)
∣∣∣ S0 ∼ ρ

]
.

The γ-discounted state-occupancy measure of π is

dπ(s) := (1− γ)

∞∑
t=0

γt Pr
π
(St = s | S0 ∼ ρ), s ∈ S.

This is a probability distribution on S. Let Qπ(s, a) denote the usual γ-discounted action-value
function of π. The performance-difference lemma for discounted MDPs then states that for any two
policies π and π′,

V π′
(ρ)− V π(ρ) =

1

1− γ
Es∼dπ

[
Qπ′

(s, π′(s))−Qπ′
(s, π(s))

]
. (F.5)

In our setting, the algorithm produces a sequence of policies π1, π2, . . . , πT via OTD–LE using
pseudo-rewards rθt(s, a) from the learned reward model, exactly as described in the finite-horizon
case; the environment again supplies only preference feedback. Define the instantaneous regret at
round t by

∆t := Qπ∗
(St, π

∗(St))−Qπ∗
(St, πt(St)),

so that equation F.5 implies

V π∗
(ρ)− V πt(ρ) =

1

1− γ
E[∆t].

The same PAC–Bayesian, variance–information, and cumulative squared-width analysis as in the
contextual bandit setting shows that, on a high-probability event,

∆t ≤ κt

√
Vt + (finite-ensemble, discretization, and stochastic-gradient terms),

where Vt is the posterior predictive variance of the queried logit difference at round t. Summing
over t = 1, . . . , T and using the variance–information lemma together with the information–eluder
bound from Section D.2 yields

T∑
t=1

E[∆t] = Õ(deluder log T ).

Combining this with the factor 1/(1− γ) from equation F.5 and the finite-ensemble / discretization
/ stochastic-gradient bounds from Section E.2 gives the discounted MDP regret bound stated in
Section F.1, with the leading term of order Õ

(
deluder(1−γ)−2 log T

)
and lower-order approximation

terms analogous to the contextual bandit case. □
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G IMPLEMENTATION DETAILS AND ADDITIONAL PSEUDOCODE

This section provides the computation cost discussion of OLE, necessary details of pseudocode
for the proposed algorithms and a discussion of hyperparameter schedules that achieve the optimal
regret rates.

G.1 COMPUTATIONAL COST OF OLE.

At each round t, Algorithm 2 performs a single projected SGLD update for each of the Nt particles:

θ̃
(i)
t+1 = θ

(i)
t − ηt ∇̂JPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t , θ

(i)
t+1 = ΠΘ

(
θ̃
(i)
t+1

)
.

The stochastic gradient ∇̂JPAC(θ
(i)
t ) is computed on a mini-batch Bt of size |Bt| from the replay

buffer Dt, so its cost is O(|Bt| · dim(θ)), exactly as in a standard SGD update on the same model.
The additional Gaussian-noise and projection operations are O(dim(θ)) and therefore negligible
compared to the gradient computation. Hence the overall per-round complexity of OLE is

O
(
Nt |Bt| · dim(θ)

)
,

and the total cost up to horizon T is O(N |B|T ·dim(θ)) when N := supt Nt and |B| := supt |Bt|.
In our regret analysis, Nt and |Bt| are taken to be fixed (or at most polylogarithmic in T ); the cor-
responding approximation errors appear only in the lower-order “Finite Ensemble” and “Stochastic
Gradient” terms of Theorem 5.1 and do not affect the leading dependence on T . Thus, OLE is com-
putationally comparable to training a small ensemble of reward models with mini-batch SGD, and
all operations are polynomial-time in the problem parameters.

G.2 COMPLETE PSEUDOCODE

The following algorithms formalize the procedures analyzed in this paper. Algorithm 2 provides the
generic template, Algorithm 4 and Algorithm 3 specifies the contextual bandit variant online con-
textual bandit variant respectively, and Algorithm 5 details the extension to MDPs using temporal-
difference learning.

Algorithm 2: Optimistic Langevin Ensemble (OLE): Generic Template
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection

3 Compute ensemble mean r̂t(xt, y) and variance V̂art(xt, y) for all y ∈ Y;

4 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

5 Select action pair (y(w)
t , y

(ℓ)
t ) based on maximizing information gain using {It(xt, y)}y∈Y ;

6 Receive preference feedback, forming data batch Dt;
// Posterior Update (SGLD)

7 Compute mini-batch gradient ∇̂t of JPAC(θ) = L̂Dt
(θ) + βDKL(δθ∥Πt−1);

8 for i = 1, . . . , Nt do
9 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

10 θ
(i)
t+1 ← θ

(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t ;

11 θ
(i)
t+1 ← ProjΘ

(
θ̃
(i)
t+1

)
;
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Algorithm 3: Optimistic Thompson Sampling with Langevin Ensembles (O-TSLE)
Input: Prior Π0, step size η, particles Nt, batch size Bt, optimism schedule κt.

1 for t = 1, 2, . . . , T do
2 Draw {θ(i)t }

Nt
i=1 by 1 SGLD step from Πt−1 using Bt samples;

3 Compute predictive mean r̂t(y) and uncertainty σ̂t(y) over candidates y ∈ Y;
4 Select action yt ∈ argmaxy r̂t(y) + κtσ̂t(y);
5 Observe (pairwise) feedback at yt and update posterior to Πt (PAC-Bayes loss);

Algorithm 4: Optimistic Langevin Ensemble (OLE) — Contextual Bandit Variant (O-TSLE)
Input: Prior Π0; step sizes {ηt}; ensemble sizes {Nt}; batch sizes {Bt}; optimism schedule

{κt}
1 for t = 1, 2, . . . , T do
2 Observe context xt;

// Optimistic Selection
3 Compute ensemble mean and variance for all y ∈ Y:
4 r̂t(xt, y)← 1

Nt

∑Nt

i=1 rθ(i)
t
(xt, y);

5 V̂art(xt, y)← 1
Nt−1

∑Nt

i=1(rθ(i)
t
(xt, y)− r̂t(xt, y))

2;

6 Construct optimistic index: It(xt, y)← r̂t(xt, y) + κt

√
V̂art(xt, y);

7 Select action pair (y(w)
t , y

(ℓ)
t ) to query, based on maximizing information gain using

{It(xt, y)}y∈Y ;
8 Receive preference feedback for the selected pair, forming data batch Dt;

// Posterior Update

9 Compute mini-batch gradient ∇̂t of JPAC using Dt (batch size Bt);
10 for i = 1, . . . , Nt do
11 Draw Gaussian noise ξ

(i)
t ∼ N (0, I);

12 Langevin step: θ(i)t+1 ← θ
(i)
t − ηt ∇̂tJPAC(θ

(i)
t ) +

√
2ηtβ ξ

(i)
t ;

13 θ
(i)
t+1 ← ProjΘ

(
θ̃
(i)
t+1

)
;

Algorithm 5: Optimistic TD with Langevin Ensembles (O-TDLE) for MDPs
Input: Prior Π0 on Q-function parameters; step sizes {ηe}; ensemble sizes {Ne}; batch sizes

{Be}; optimism schedule {κh}
1 for episode e = 1, 2, . . . , T do
2 Initialize state s1;
3 for step h = 1, 2, . . . ,H do

// Optimistic Action Selection

4 Compute ensemble mean Q̂e,h(sh, a) and variance V̂are,h(sh, a) for all a ∈ A;

5 Select action ah = argmaxa∈A

(
Q̂e,h(sh, a) + κh

√
V̂are,h(sh, a)

)
;

6 Execute ah, observe next state sh+1 and collect preference data for the transition;
7 Form a pseudo-reward R̃e,h ← rθe(sh, ah) using the current reward model ensemble;

// Posterior Update (after episode)
8 Form a batch of transitions and preferences De from the episode;
9 Compute TD targets yh = r(sh, ah) + γmaxa′ Q̂e,H(sh+1, a

′) (using ensemble mean);
10 Compute mini-batch gradient ∇̂e of a TD-based loss on De regularized by DKL(·∥Πe−1);
11 Update all particles {θ(i)e } to {θ(i)e+1} using one or more SGLD steps with gradient ∇̂e;
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G.3 DISCUSSION OF HYPERPARAMETER SCHEDULES

Corollary 5.3 states that if the algorithmic parameters are scheduled appropriately, the lower-order
approximation error terms in the regret bound become asymptotically negligible, leaving a purely
logarithmic regret. Here we specify schedules that achieve this.

• Step Size (ηt): To ensure the cumulative discretization error
∑

ηt remains bounded, a
decreasing step size schedule is required. A standard choice is ηt = η0/t or ηt = η0/

√
t.

With such schedules, the sum converges or grows slower than any linear function, making
the Õ(

∑
ηt) term sub-leading.

• Ensemble Size (Nt) and Batch Size (Bt): To control the finite-ensemble and stochastic
gradient errors, whose cumulative sums scale as Õ(

√∑
1/Nt) and Õ(

√∑
1/Bt) re-

spectively (assuming bounded variances), we need the sums
∑

1/Nt and
∑

1/Bt to be
bounded. This can be achieved by increasing Nt and Bt over time. For example, setting
Nt = ⌈N0 log(t + 1)⌉ and Bt = ⌈B0 log(t + 1)⌉ would suffice. A practical alternative is
an episodic schedule where Nt and Bt are increased (e.g., doubled) at the start of geomet-
rically spaced episodes. This ensures the approximation errors are effectively “paid for” by
the logarithmic exploration term.

These schedules demonstrate that our theory provides an asymptotic guarantee, and offers concrete,
practical guidance for algorithm design, directly connecting the theoretical results to the desired
performance outcome.

H EXPERIMENT

Experiment Settings. (1) Datasets . We evaluate our methods on the grade school math dataset
GSM8K Cobbe et al. (2021), a collection of 8.5K high-quality, linguistically diverse word problems
that test basic mathematical skills requiring multi-step reasoning. In addition, we adopt zero-shot
prompts and rule-based evaluators to automatically assess the performance of LLMs. (2) Back-
bones. We use Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct Bai et al. (2023) as language model
backbones. (3) Baselines. Among widely adopted on-policy RL methods, GRPO Shao et al.
(2024), DAPO Yu et al. (2025) and GPG Chu et al. (2025) share a common framework derived
from PPO Schulman et al. (2017). Instead of using generalized advantage estimation (GAE), they
adopt a group-wise relative estimation strategy. Concretely, a policy πθ generates a group Gs of
candidate rollouts for a given input, and the model is optimized to maximize the expected group-
level reward. We combine these three baselines with OLE to test our performance. (4) Evaluation.
In the experimental data processing phase, we strictly adhere to the original training-test set splits
provided for the GSM8K dataset to ensure the reproducibility of results and comparability with
prior studies. Specifically, for the original training set of each dataset, we further employ stratified
random sampling to partition it into a training subset and a validation subset at an 80%:20% ratio.
(6) Hyper-parameters Details. The maximum input sequence length is set to 512 tokens, and
the maximum number of generated tokens is 2048. The learning rate is 1 × 10−6. The number of
rollouts Gs is set to 4. The ole threshold percent is set to 0.8. The rank of lora r is set to 16. For
DAPO specifically, we set ϵlow = 0.2 and ϵhigh = 0.28, with the number of resampling steps set to
3. (6) Implement Details. To ensure reproducibility, all experiments are implemented in PyTorch
with Python 3.11. Training and inference are conducted on 8×A800-80G GPUs. All on-policy
RL baselines are implemented using the VeRL framework Sheng et al. (2025). All baselines are
carefully re-implemented and hyperparameter-tuned to ensure fair comparisons. Code is available
at https://anonymous.4open.science/r/ICLR_OLE-B243.

From the experimental results, we observe a consistent pattern across different model sizes
(Qwen2.5-Instruct-1.5B and 3B) and optimization paradigms (GRPO, DAPO, GPG): after introduc-
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Table 7: GSM8K results on Qwen2.5-Instruct models with OLE performance gain.
Model Method Base (↑) Drops (↑) Base+OLE (↑) Drops (↑) Performance Gain (↑)

1.5B
GRPO 0.596 0 0.612 3944 2.69%
DAPO 0.497 0 0.596 4344 19.9%
GPG 0.596 0 0.613 4032 2.85%

3B
GRPO 0.667 0 0.704 5964 5.55%
DAPO 0.707 0 0.712 5080 0.71%
GPG 0.635 0 0.680 6408 7.09%

Table 8: GSM8K results of different training schedules for Qwen2.5-3B under GRPO.
Method Acc (↑) Drops (↑) Performance Gain (↑)

GRPO Only 0.667 0 –
GRPO + OLE (full steps) 0.704 5964 +5.55%

20-step GRPO→ OLE-enabled GRPO 0.722 5820 +8.25%

ing OLE, all method–model combinations achieve positive performance gains on GSM8K, while
simultaneously discarding a substantial number of training samples.

OLE works by estimating the marginal contribution of each sample to the overall optimization ob-
jective and selectively dropping those that provide limited benefit or introduce training noise. This
allows the training process to concentrate gradient updates on higher-value samples under the same
compute budget. On the efficiency side, the number of samples participating in backpropagation is
significantly reduced (e.g., thousands of samples are dropped for each configuration), which effec-
tively increases the number of informative updates per unit time. On the effectiveness side, we see
consistent improvements across both small and large models. The 1.5B+DAPO setting achieves the
largest relative gain of 19.9%, indicating that removing low-value samples is particularly benefi-
cial when the base optimizer is weaker or the model capacity is more constrained. Notably, even
the strong 3B+GRPO configuration now benefits from OLE, with a 5.55% relative improvement,
showing that sample filtering can still enhance performance in already competitive regimes.

Overall, these results support our theoretical hypothesis: by estimating sample value online and
dynamically discarding low-gain examples, OLE increases the ”purity” of the training signal,
leading to both higher training efficiency and better final model performance, without increas-
ing computational cost.

Remark H.1 (Empirical validation and connection to rejection sampling in RL). The GSM8K exper-
iments with Qwen2.5–Instruct backbones and three on-policy RL baselines (GRPO, DAPO, GPG)
exhibit exactly the qualitative behavior predicted by our theory. Across all configurations in the
table, plugging OLE on top of the base RL optimizer yields consistent performance gains in the
Base+OLE column, while the Drops column shows that thousands of training updates are skipped
by the OLE filtering rule. This is consistent with the regret decomposition in Theorem 5.1: the lead-
ing Õ(deluder log T ) exploration term depends on how quickly the optimistic posterior concentrates,
not on using every on-policy sample. Discarding low-gain updates primarily shrinks the lower-order
stochastic gradient and approximation terms without changing the asymptotic rate, so we expect to
see better empirical performance at a comparable computational budget, which is exactly what the
table reports.

From an RL perspective, the OLE filter can be interpreted as a principled form of rejection sampling
over on-policy rollouts. For each input, the base policy and RL optimizer (GRPO, DAPO, or GPG)
generate a small group of candidate responses. OLE then evaluates the marginal contribution of
each candidate to the PAC-Bayesian objective and keeps only those above the OLE threshold, while
rejecting the rest. This accept/reject step plays the same structural role as the heuristic rejection
sampling used in many practical RLHF pipelines (e.g., discarding low-reward or low-score trajec-
tories), but here the acceptance rule is derived directly from the PAC-Bayes/Wasserstein gradient-
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flow analysis rather than chosen ad hoc. The fact that Base+OLE dominates the base RL methods
in all settings, despite the substantial number of rejected samples reported in the Drops column,
empirically corroborates our theoretical claim that optimally accepting only the most informative
preference updates can improve both generalization and sample efficiency in preference-based RL.

Optimism-Schedule Experiment. To further test whether OLE serves as an implicit optimism
mechanism, we run an additional experiment on Qwen2.5-3B + GRPO. Instead of enabling OLE
from the start, we first train with standard GRPO for 20 steps, allowing the model to exploit the data
uniformly and stabilize its initial representations. We then activate GRPO+OLE for the remaining
steps. In this phase, OLE prioritizes higher-uncertainty samples that provide larger information gain,
effectively shifting the training dynamics toward exploration.

This staged strategy achieves the best accuracy of 0.722, outperforming both pure GRPO and full-
length GRPO+OLE. The result indicates that activating OLE later in training allows the model
to explore informative, high-uncertainty samples more effectively once a stable baseline has been
formed. Empirically, this supports the design in Algorithm 2, where both the number of particles N
and the optimism coefficient κt are gradually increased to achieve a practical and effective balance
between early exploitation and later exploration.

I LOWER BOUND AND OPTIMALITY

Remark I.1 (On lower bounds and optimality in T ). We demonstrate with a Proposition I.2 showing
that even in the non-contextual, finite-action special case of our model, with the same Bradley–
Terry–Luce (BTL) preference structure and bounded rewards as in Theorem 5.1, any uniformly good
algorithm must incur expected regret at least of order log T . More precisely, for each fixed instance
with positive gaps ∆y = r∗(y⋆) − r∗(y) > 0 one has E[Regret(T )] ≥ clow(r

∗) log T for all
sufficiently large T , and on a gap-separated subclass with minimum gap ∆min > 0 there exists a
constant clow(∆min) > 0 such that

sup
instances with gaps ≥∆min

E[Regret(T )] ≥ clow(∆min) log T for all sufficiently large T .

Within this structural class, the dependence on the horizon T in Theorem 5.1 can therefore not
be improved below logarithmic order: up to absolute constants, polylogarithmic factors, and the
eluder-dimension factor deluder, our upper bound is optimal in its T -dependence.

At the same time, our result is fully compatible with the well-known Ω(d
√
T ) minimax lower

bounds for contextual dueling bandits, such as the linear setting studied by Bengs et al. (2022).
In that literature the learner selects a pair of actions (a

(1)
t , a

(2)
t ) at each round, observes a single

noisy comparison between them, and performance is measured by a dueling-regret notion (weak
or strong) over such pairs—roughly, how often the chosen pair loses or fails to beat the best arm.
The Ω(d

√
T ) lower bound is minimax for this pair-action, dueling-regret problem. By contrast,

in our setting the algorithm selects a single action yt at each round (or per state in the MDP),
may query preferences involving yt, and regret is the standard single-action cumulative regret
Regret(T ) =

∑T
t=1

(
r∗(xt, y

∗(xt)) − r∗(xt, yt)
)
. The contextual dueling lower bound does not

provide a lower bound for Regret(T ) in this single-action setting, just as Proposition I.2 does not
make any claim about dueling regret over pairs of actions. The two results address different minimax
problems and can hold simultaneously without contradiction.

In summary, Theorem 5.1 should be read as a uniform fast-rate Õ(deluder log T ) bound for single-
action regret under our structural assumptions (realizability, boundedness, Lipschitz continuity, fi-
nite eluder dimension, and BTL preferences), and Proposition I.2 shows that its logarithmic depen-
dence on T is essentially optimal within this class.
Proposition I.2 (Logarithmic lower bound in the BTL preference setting). Consider the non-
contextual special case of our model with a finite action set Y = {1, . . . ,K} and Bradley–Terry–
Luce preferences generated from a latent reward vector r∗ ∈ [0, 1]K . At each round t, the algorithm
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chooses a single action yt ∈ Y and observes one bit of preference feedback comparing yt to a fixed
baseline action y0 ∈ Y , according to

P(yt ≻ y0 | yt) = σ
(
r∗(yt)− r∗(y0)

)
,

where σ is the logistic link. Regret is the standard single-action regret

Regret(T ) =

T∑
t=1

(
r∗(y⋆)− r∗(yt)

)
, y⋆ ∈ argmax

y∈Y
r∗(y).

Assume there is a unique optimal action y⋆ and that all gaps ∆y := r∗(y⋆) − r∗(y) for y ̸= y⋆

are strictly positive. Let py := σ
(
r∗(y) − r∗(y0)

)
and let KL(·∥·) denote the Bernoulli Kullback–

Leibler divergence. Then, for any (possibly randomized) algorithm A that is uniformly good in the
sense of Lai and Robbins (1985),

lim inf
T→∞

Er∗
[
RegretA(T )

]
log T

≥
∑
y ̸=y⋆

∆y

KL(py ∥ py⋆)
. (I.1)

In particular, since {r∗(y)}y are bounded and the logistic logit range is therefore bounded, there
exists a constant CKL < ∞ such that KL(py∥py⋆) ≤ CKL∆

2
y for all y ̸= y⋆, and hence for any

fixed instance there is a clow(r
∗) > 0 such that

Er∗
[
RegretA(T )

]
≥ clow(r

∗) log T for all sufficiently large T .

Proof. Fix an instance specified by a latent reward vector r∗ ∈ [0, 1]K and a baseline action y0 ∈ Y .
Recall that by assumption there is a unique optimal action y⋆ ∈ argmaxy∈Y r∗(y) and that the gaps
∆y := r∗(y⋆)− r∗(y) are strictly positive for all y ̸= y⋆.

Step 1: Reduction to a Bernoulli bandit. At each round t, the algorithm chooses a single action
yt ∈ Y . The feedback is one bit indicating whether yt is preferred to the fixed baseline y0; under the
BTL model equation 2.1 this bit is

Zt = 1{yt ≻ y0}, Zt | (yt = y) ∼ Bernoulli(py),

with
py := σ

(
r∗(y)− r∗(y0)

)
, σ(z) = (1 + e−z)−1.

Thus, from the viewpoint of the learning algorithm, this non-contextual preference problem is ex-
actly a K-armed stochastic bandit with Bernoulli rewards {py}Ky=1: on each round the algorithm
chooses an arm y and observes an independent Bernoulli sample with mean py .

Let Ny(T ) :=
∑T

t=1 1{yt = y} denote the number of times arm y is played up to time T . By
definition of the regret in the proposition,

Regret(T ) =

T∑
t=1

(
r∗(y⋆)− r∗(yt)

)
=
∑
y ̸=y⋆

∆y Ny(T ).

Taking expectations under the fixed instance r∗ gives

Er∗
[
Regret(T )

]
=
∑
y ̸=y⋆

∆y Er∗ [Ny(T )]. (I.2)

Step 2: Applying the Lai–Robbins lower bound. The family of Bernoulli distributions
{Bernoulli(py) : y ∈ Y} is a one-parameter exponential family, with canonical parameter
θy = log

(
py/(1 − py)

)
and mean py . The classical theorem of Lai and Robbins (Lai-Robbins

bound) Lai & Robbins (1985) applies to this setting. In the notation of that theorem, an algorithm
is uniformly good if, for every bandit instance, its regret grows slower than any power of T : for all
α > 0 and all arms y,

E[Ny(T )] = o(Tα) as T →∞.
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Under this condition, Lai and Robbins show that for each suboptimal arm y ̸= y⋆,

lim inf
T→∞

Er∗ [Ny(T )]

log T
≥ 1

KL(νy ∥ νy⋆)
, (I.3)

where νy and νy⋆ are the reward distributions of arms y and y⋆. In the Bernoulli case, νy is fully
determined by py , and KL(νy∥νy⋆) = KL(py∥py⋆) is the usual Bernoulli Kullback–Leibler diver-
gence.

We now combine equation I.2 and equation I.3. For each T ,

Er∗ [Regret(T )]

log T
=
∑
y ̸=y⋆

∆y
Er∗ [Ny(T )]

log T
.

Because the sum is finite (over the K−1 suboptimal arms) and all terms in the sum are nonnegative,
we may pass the lim inf through the sum:

lim inf
T→∞

Er∗ [Regret(T )]

log T
= lim inf

T→∞

∑
y ̸=y⋆

∆y
Er∗ [Ny(T )]

log T

≥
∑
y ̸=y⋆

∆y lim inf
T→∞

Er∗ [Ny(T )]

log T

≥
∑
y ̸=y⋆

∆y

KL(py ∥ py⋆)
,

which is exactly the bound stated in equation I.1.

Step 3: Positivity and logarithmic growth. We now argue that the right-hand side is strictly
positive and finite, which yields the claimed logarithmic growth rate.

First, because r∗(y⋆) > r∗(y) for all y ̸= y⋆, we have ∆y > 0 for all y ̸= y⋆. The BTL link σ is
strictly increasing, so py < py⋆ for each y ̸= y⋆, and therefore KL(py∥py⋆) > 0 for all y ̸= y⋆.

Second, the rewards are bounded in [0, 1], so for any y we have r∗(y)− r∗(y0) ∈ [−1, 1] and hence
py = σ(r∗(y)−r∗(y0)) lies in the compact interval [σ(−1), σ(1)] ⊂ (0, 1). Thus the pairs (py, py⋆)
all belong to the compact set [

σ(−1), σ(1)
]2 ⊂ (0, 1)2.

The function

F (p, q) :=


KL(p∥q)
(p− q)2

, p ̸= q,

lim
u→p

KL(u∥p)
(u− p)2

, p = q,

is continuous and finite on (0, 1)2, and hence on the compact subset [σ(−1), σ(1)]2. In particular,
there exists a finite constant CKL <∞ such that

KL(py∥py⋆) ≤ CKL (py − py⋆)2 for all y.

Since σ is smooth and strictly monotone on [−1, 1], the mean-value theorem gives, for each y ̸= y⋆,

py⋆ − py = σ
(
r∗(y⋆)− r∗(y0)

)
− σ

(
r∗(y)− r∗(y0)

)
= σ′(ξy)∆y

for some ξy between r∗(y⋆)− r∗(y0) and r∗(y)− r∗(y0). The derivative σ′(z) = σ(z)(1−σ(z)) is
strictly positive and continuous on R, so on the compact interval [−1, 1] it attains a positive minimum
λmin > 0 and a finite maximum λmax <∞. Hence

λmin∆y ≤ py⋆ − py ≤ λmax∆y for all y ̸= y⋆.

Combining the two displays, we obtain

KL(py∥py⋆) ≤ CKL(py⋆ − py)
2 ≤ CKLλ

2
max∆

2
y,

and thus
∆y

KL(py∥py⋆)
≥ 1

CKLλ2
max

· 1

∆y
> 0 for each y ̸= y⋆.
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Since there are finitely many suboptimal arms, the sum

L(r∗) :=
∑
y ̸=y⋆

∆y

KL(py∥py⋆)

is strictly positive and finite for every fixed instance r∗. From equation I.1 we have

lim inf
T→∞

Er∗ [Regret(T )]

log T
≥ L(r∗).

By the definition of the lim inf , there exists T0(r
∗) < ∞ such that Er∗ [Regret(T )]/ log T ≥

1
2L(r

∗) for all T ≥ T0(r
∗). Setting clow(r

∗) := 1
2L(r

∗) > 0 yields

Er∗ [Regret(T )] ≥ clow(r
∗) log T for all T ≥ T0(r

∗),

which is the claimed logarithmic lower bound.
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