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ABSTRACT

The remarkable sample efficiency of preference-based reinforcement learning,
which underpins the alignment of large language models with human feedback
(RLHF), presents a significant theoretical puzzle. Existing analyses often rely on
idealized assumptions, such as infinite-particle ensembles or exact, full-batch gra-
dients, that are disconnected from the practical realities of deployed algorithms.
This paper provides a statistically grounded abstraction of modern RLHF-style
training pipelines. We introduce a unified optimistic PAC-Bayesian framework
that distills the statistical essence of complex, multi-stage RLHF pipelines into a
single, provably efficient online learning algorithm. Our central result is a high-
probability regret bound of O(dejuder log T') for a rich, non-linear class of reward
models, demonstrating when and why logarithmic regret is achievable using finite
ensembles and noisy stochastic gradient updates under preference feedback. This
unified theory provides an explanation for the sample efficiency of pairwise pref-
erence optimization, extends naturally to full Markov Decision Processes, and es-
tablishes a theoretical foundation for the empirical success of methods like RLHF.

1 INTRODUCTION

The alignment of large language models (LLMs) through preference-based learning has become a
cornerstone of modern artificial intelligence, enabling the development of systems that are helpful,
harmless, and attuned to human intent (Ouyang et al.| 2022} [Bai et al., [2022; Dong et al.| 2024). A
striking empirical observation in this domain is the profound sample efficiency of these alignment
pipelines. Practitioners routinely steer billion-parameter models toward complex desired behaviors
using on the order of only tens of thousands of pairwise human preferences (Rafailov et al.| 2023
Christiano et al.| [2017). This efficiency stands in stark contrast to the sheer dimensionality of the
models and suggests that the correct theoretical target for regret should exhibit a near-logarithmic
dependence on the number of interaction rounds, 7. While classical online learning analyses for
expressive function classes typically yield regret bounds of O(\/T) (Russo & Van Roy,2013;2014)),
the empirical reality of RLHF motivates a much sharper theoretical goal. This leads to a pivotal open
question: Can we provide a rigorous theoretical explanation for the sample efficiency of practical
preference-based alignment pipelines that yields sharp, near-logarithmic regret guarantees?

The standard practical pipeline for Reinforcement Learning from Human Feedback (RLHF) is a
complex, multi-stage process (Ouyang et al., [2022; [Bai et al., 2022)). It typically begins with Su-
pervised Fine-Tuning (SFT) on a high-quality dataset, proceeds to the training of a separate reward
model on collected human preference data, and culminates in policy optimization via an algorithm
like PPO against that static reward model. This multi-stage pipeline, while empirically successful,
presents a formidable challenge for unified theoretical analysis, as theoretical work often focuses on
specific stages in isolation.

In this work, we move beyond analyzing the pipeline’s components separately and instead propose
a more fundamental theoretical model, the Optimistic Langevin Ensemble (OLE), that captures
the statistical core of preference-based learning in a single, cohesive online process. By analyzing
this unified algorithm, we explain the sample efficiency of existing complex pipelines and provide a
principled blueprint for a more theoretically grounded approach to alignment.
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Bridging the empirical-theoretical divide requires that our unified model remains faithful to the
realities of practical implementations. We identify four critical gap{] that must be addressed:

* Gap 1: Mean-Field vs. Finite Ensembles. Theoretical analyses often study a mean-field
(infinite-particle) posterior flow for analytical tractability (Jordan et al., 1998} [Sznitman| |2000)),
whereas practical implementations maintain a (often small) finite ensemble of reward models.

* Gap 2: Exact vs. Stochastic Gradients. Continuous-time or full-batch gradient derivations ob-
scure the fact that all large-scale implementations rely on noisy mini-batch updates.

* Gap 3: Continuous-Time vs. Discrete-Time Dynamics. Mathematical tools like Wasserstein
gradient flows offer an elegant continuous-time perspective (Ambrosio et al.,|2008)), but deployed
algorithms operate in discrete time with a finite step size 7.

* Gap 4: Intractable vs. Tractable Uncertainty. The principle of optimism requires an upper
confidence bound on the true reward, but the exact Bayesian posterior uncertainty is intractable
for deep neural networks. Practical algorithms rely on computationally feasible proxies, such as
ensemble variance.

In this work, we develop an optimistic PAC-Bayesian particle framework for preference-based rein-
forcement learning that resolves these four gaps within our unified OLE model. Our framework
is designed to be faithful to the algorithms used in practice while providing sharp, meaningful
performance guarantees. We prove that such procedures attain a cumulative regret that scales as

O(deluder log T'), where dejuder is the eluder dimension of the function class (Russo & Van Royl
2013} [L1 et al.| [2022). Our analysis achieves this by coupling a PAC-Bayesian control of gener-
alization (McAllester, {1999} (Catonil 2007) with concentration inequalities for stochastic dynam-
ics (Freedman, [1975) and Wasserstein stability bounds for particle approximations (Fournier &
Guillin, [2015)), thereby addressing the four gaps within a single, cohesive theory.

Positioning and Scope. Our work is complementary to the important and emerging body of the-
ory on KL-regularized bandits and RL, which has also achieved logarithmic regret guarantees but
in the distinct setting of numeric rewards (Zhao et al., 2024} |2025b)) for KL-regularized contextual
bandits and MDPs under eluder-dimension assumptions. We, in contrast, focus on the more foun-
dational problem of learning from pairwise preference feedback, which is the canonical setup for
RLHF and DPO where a reward model is itself learned from human comparisons (Christiano et al.,
2017; Bradley & Terry, |1952; Luce et al.,|1959). Our contribution is an O(deluder log T") bound for
standard cumulative regret in the pairwise-preference setting. Our analysis is algorithm-native, de-
riving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from the
specific optimization landscape of a KL-regularized objective. Conceptually, our approach is related
to optimism-in-the-face-of-uncertainty and to feel-good Thompson sampling (Zhang}, 2022])), but our
setting, estimators, and guarantees are novel. A comprehensive survey and detailed comparisons

appear in Appendix

Table 1: Our work achieves logarithmic regret for pairwise preference feedback with general func-
tion approximation in a framework that models practical algorithmic constraints. Detailed analysis
on the differences in assumptions and problem settings can be found in Appendix

Setting Feedback Model Key Assumptions Regret (Leading Term)
This work (OLE) Pairwise Preference Realizable + Eluder Dim. év)(deluder log T)
KL-Reg. Bandits (Zhao et al.,|2025a) Numeric Reward Realizable + Eluder Dim. 6((1 log T)

Preference RL (Wang et al.|[2023) Pairwise Preference Realizable O(VT)

Dueling Bandits (Yue et al.,[2012) Pairwise Preference Tabular/Linear O(log T) or O(VT)
Optimistic Bandits (Russo & Van Royl [2014) Numeric Reward Realizable + Eluder Dim. (5(dﬁ)

We summarize our main results for preference-based learning as follows.

* Unified PAC-Bayesian Particle Analysis with Logarithmic Regret. For preference-based
contextual bandits, we analyze a practical algorithm using finite ensembles and mini-batch
SGD. We prove that, with high probability, the cumulative regret is bounded by Regret(7) =

O(deluder logT)  +  lower-order terms for discretization, finite ensembles, and mini-batching,

"More discussion on the four gaps in Appendix Section
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where the leading term captures the statistical cost of exploration, and the lower-order terms
explicitly quantify the practical algorithmic costs.

* Optimistic Langevin Ensembles. We introduce and analyze an optimistic Langevin-style en-
semble update that provides exploration bonuses online and connects to standard preference op-
timization methods in the offline limit. Our analysis combines PAC-Bayesian inequalities with
martingale concentration to provide non-asymptotic stability and concentration bounds.

* Extension to Markov Decision Processes. We extend our framework to preference-based RL
with dynamics (e.g., discounted MDPs), obtaining analogous near-logarithmic regret guarantees.
This complements results for numeric-reward MDPs (Zhao et al., 2025a) while operating in the
more fundamental pairwise feedback regime.

* Practical Implications. Our bounds provide a direct theoretical explanation for the sample ef-
ficiency of methods like RLHF and DPO (Rafailov et al.l 2023) and offer principled guidance
for setting hyperparameters. We also show how parameter-efficient fine-tuning methods like
LoRA (Hu et al.| [2022) naturally lead to a small eluder dimension, connecting our theory to the
practice of large-scale model alignment.

2 PROBLEM SETUP AND STRUCTURAL ASSUMPTIONS

This section formally establishes the mathematical foundatiorﬂ for our analysis. We begin by defin-
ing the preference-based contextual bandit model and the notion of cumulative preference regret. We
then introduce the key structural assumption on the underlying reward function class that enable
efficient, low-regret learning.

2.1 THE PREFERENCE-BASED CONTEXTUAL BANDIT MODEL

We consider an online learning problem that unfolds over T rounds. At eachround ¢t € {1,...,T},
the environment presents a context x; € X. The learning agent then selects a pair of actions to be
compared, typically to maximize information gain about the optimal action. The agent receives feed-
back in the form of a pairwise preference. This process models the core interaction loop in RLHF,
where a context might be a user prompt and the actions are different model-generated responses
(Ouyang et al., 2022} |Christiano et al.|[2017).

Underlying this preference feedback is a latent, unknown reward function r* : X x ) — R. This
function represents the true, unobserved quality or utility of an action y in a context z. The observed
preferences are stochastic manifestations of this latent function. We model this relationship using
the standard and widely adopted Bradley-Terry-Luce (BTL) model (Bradley & Terry, {1952} Luce
et al.l [1959). Given a pair of actions (y.,, y¢), the probability that y,, is preferred over y, (denoted
Yw > Y¢) in context z is given by a logistic link function:

P(Yw =y | ) = 0 (1" (2, y0) — 77 (2, 90)) - (2.1)

Whenever we query a comparison between (y,,, y¢) in context x, denote by feedback; € {0,1} the
resulting binary preference at round ¢, taking value 1 when event y,, > ¥, occurs and 0 otherwise.
The likelihood in is the BTL model, where o(z) = (1 + ¢=*)~! is the sigmoid
function. This model is central to many preference-based algorithms, including Direct Preference
Optimization (Rafailov et al.,2023)), and forms the basis of our likelihood-based objective.

The agent’s goal is to learn a policy 7 that, for any given context x, selects actions that have high
latent reward r*(x,y). The performance of the agent is measured by the cumulative preference
regret, which quantifies the total opportunity cost incurred over 71" rounds. Let y, be the action
selected by the agent’s policy at round ¢ in context z, and let y; = arg max, ¢y, r*(x¢,y) be the
optimal action for that context. The regret at round ¢ is the difference in expected reward between
the optimal action and the chosen action. The cumulative regret over 7" rounds is defined as:

T
Regret(T) = Z (r*(ze,yp) — (e, 1)) - (22

t=1

?Frequently used symbols are summarized in [Table 2|in Appendix
3 An assumption checklist appears in in Appendix
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We will use as our formal notion of cumulative regret throughout the paper. The
objective is to design an algorithm whose cumulative regret grows as slowly as possible with 7T'.

A logarithmic growth rate, Regret(T)) = O(logT), is the theoretical ideal, indicating extremely
efficient learning.

2.2 STRUCTURAL ASSUMPTIONS ON THE REWARD CLASS

To enable tractable learning from preference data alone, we impose a set of structural assumptions on
the class of possible reward functions R. These assumptions are standard in the theoretical analysis
of learning with function approximation (Foster & Rakhlin, |2023) and are chosen to be as general
as possible while still permitting strong performance guarantees.

Assumption 2.1 (Realizability and bounded parameter space). We assume that the true latent
reward function v* belongs to a known, parameterized function class R = {rg : 6 € 0O},
where each mg : X x ) — [0,1]. The parameter space © C R? is a closed Euclidean ball
O = {0 € R%:||0|| < B} for some known radius B < oo, and we assume the prior Iy and all
subsequent posteriors 11, are supported on ©.

This is a common starting point for theoretical analysis, allowing us to focus on the learning problem
without the additional complication of model misspecification (Azar et al.| 2024)).

Assumption 2.2 (Lipschitz Continuity). We assume that the reward function parameterization is
smooth. Specifically, the function class is L-Lipschitz with respect to the parameters: for all 0,0 €
O and all (z,y), we have:

Iro(x,y) —ro (z,y)| < L||§ — 0'|]2. (2.3)

This assumption is satisfied by many practical models, including neural networks with bounded
weights and smooth activation functions. It is a crucial property that ensures that small changes in
the parameter space lead to correspondingly small changes in the reward space, which is essential for
generalization, optimization stability, and for relating parameter-space uncertainty to function-space
uncertainty (Zhang), |2023)).

Assumption 2.3. This is the most critical assumption for enabling efficient exploration and achiev-
ing logarithmic regret. We assume that the function class R has a finite eluder dimension (Russo &
Van Royl 2013, 12014)).

Eluder dimension. We adopt the e-eluder dimension dejyder (R, €) as the intrinsic complexity con-
trolling regret in our analysis. For completeness, a concise definition together with its variance—
information connection appears in Appendix [D.2] Moreover, for LoRA-parameterized reward
classes we establish sharp eluder control; see Proposition in Appendix

3 PAC-BAYESIAN GENERALIZATION AND WASSERSTEIN GRADIENT FLOW

This section connects PAC-Bayesian generalization objective to a Wasserstein gradient-flow (WGF)
description of the learning dynamics. We (i) motivate a PAC-Bayes objective as the optimization
target, (ii) introduce a smoothed/projected—KL device that yields a sharpened bound suitable for par-
ticle posteriorﬂ and (iii) show that steepest descent of this objective in the 2-Wasserstein geometry
yields a Langevin diffusion and the associated Fokker—Planck (continuity) equation. Full statements
with constants and all proofs are deferred to[Section C|and [Section E}

iid.

Let S = {z}", '~ D, parameter space © C R<, prior Il on O, posterior u € P(0),
and per-example loss £y(z) € [0,1] that is L-Lipschitz in 6 for each z. We write Lg(p) :=
L S Eoop lo(2:) and Riskpp = E. pEg~, lo(z). For a Markov kernel S on ©, Sy de-

m

notes the push forward, and the projected KL is
Dxrs(p||T) := Dxr(Sgp || S¢IT),

“Throughout this section we consider the Gibbs posterior, defined by Qx(df) o exp(—X Lim (6)) P(d9),

for a fixed prior over parameters P and the empirical preference loss ﬁm(ﬁ). Note that Gibbs posterior differs
the vanilla Bayesian posterior with respect to the environment’s generative model.
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which satisfies Dxrs(u||T1) < Dk, (u||IT) by data processing (see [Theorem C.3|and|Section C).

A classical PAC-Bayes inequality for a posterior i independent of S reads

Dy (p|[I) + In %
2m '

Riskp (1) < Ls(p) + \/ 3.1)

This suggests optimizing the right-hand side by trading empirical fit against complexity. Introducing
an inverse-temperature parameter 5 > 0 yields the variational objective

Jeac(p) = Ls(u) + B Diw(u |/ 1D), (3:2)
which is the free energy associated with empirical risk and prior regularization.

Per-example loss. Each feedback example is denoted by z (e.g., a bandit or preference obser-
vation), and we define the per-example loss as ¢y(2) := —log py(z), the negative log-likelihood
of z under the parametric feedback model py. The PAC-Bayesian objective at time ¢ is then
Ji(0) == E.p, [lo(2)] + B(log u(f) — logII(9)), where D, is the dataset (or replay buffer) at
time ¢. Our regret analysis only requires that £y(z) be bounded and Lipschitz in 6 on ©, so any
choice of loss satisfying these conditions yields the same asymptotic regret rate (the constants de-
pend on the Lipschitz constant and range of £y but not on 7" or dejyder)-

3.1 SMOOTHED/PROJECTED-KL PAC-BAYES BOUND

We now state the smoothed/projected variant that will be used both for theory (to control finite-
particle posteriors) and for algorithms (to motivate noise schedules). The definition is given here,

while the full theorem and constants appear in[Section C]

Definition 3.1 (Projected/Smoothed KL). For p,I1 € P(©) and any smoothing kernel (confer
Definition|C.1) S, define the projected (smoothed) KL by

Dxrs(plIl) == Dgr(Sgp | SyIl).
By data processing for f-divergences, Dxrs(p||11) < Dk, (p||I) when the right-hand side is finite.
For the Gaussian kernel, we write Dxy,s, (p||II) := Dxr,(Sn,1||Sh,2I1).

Theorem 3.2 (PAC-Bayes via smoothing). Assume (g(z) € [0,1] is L-Lipschitz in 0. Let u¥ =

% Efil 89, be an N-particle posterior and let Sy, denote Gaussian smoothing with variance h*1.
For any prior 11 independent of S and any h > 0, with probability at least 1 — 0,

Dxus,, (0N [|II) + In(2m/5)
2m

RiskuVp < Risku™g + LRE|Z| + \/

)

where Z ~ N (0, 1) so E|| Z|| < V/d. Moreover, if 1 = N'(0y, 0214) then

N
1 d 2
N - E R 2 — _h* / — _ _
DKLS}L(:U ||H) S 2N(0’8+h2) P ||91 00” + 2 ¢(Ug+h2)7Wlth ¢(p) P 1 hlp

3.2 OPTIMIZATION DYNAMICS AS A WASSERSTEIN GRADIENT FLOW

Interpreting [Equation (3.2)|as a free-energy functional on P(0), the 2-Wasserstein gradient flow of
Jpac is the continuity equation

Ouphe = Vo'(ut VGV[Mt])7 (3.3)

where V[u] is any C! potential whose gradient equals the Wasserstein gradient of Jpac at y1. Con-
cretely, one may take

VoV[ul(0) = VoE.slo(2) + BVe(logu(h) —logIl(6)),

so that equation [3.3]coincides with the Fokker—Planck equation of the Langevin diffusion

dot) = —VoV[u0(t)) dt + /28dW(t), (3.4)
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see, e.g.,[Jordan et al.| (1998)); /Ambrosio et al.| (2008); [Villani| (2008). Thus, gradient-based training
of the free energy Jpac admits an exact continuum description as WGF.

A first-order time discretization of equation [3.4] (Euler-Maruyama) with step size 7 > 0 yields the
particle update 011 = 0 — VoV [ur](0r) + 218 &k, with & ~ N(0, 1,).

Replacing full gradients with mini-batch estimates recovers SGLD. This principled discretizations
exposes and quantifies the approximation gaps that drive our regret analysis (precise bounds in
Secton B

ction E):Finite-ensemble gap (Monte Carlo drift error): O(y/>_, vZ/N;). Stochastic-gradient

gap (mini-batch noise): (’3(\ /> 02/ Bt). Discretization gap (time stepping): o (nT). These terms
map exactly onto the four sources of error isolated in the Introduction.

4 THE OPTIMISTIC LANGEVIN ENSEMBLE (OLE) ALGORITHM

This section translates the theoretical framework developed in the preceding sections into a con-
crete, self-contained algorithm for preference-based contextual bandits. The algorithm, which we
call the Optimistic Langevin Ensemble (OLE), instantiates the discretized Wasserstein gradient
flow perspective. It maintains a finite ensemble of reward models, updates them using stochas-
tic Langevin dynamics, and makes decisions using an optimistic selection rule based on ensemble
statistics. The specific variant for online contextual bandits is termed Optimistic Thompson Sam-
pling with Langevin Ensembles (O-TSLE).

The OLE algorithm operates in rounds. At each round ¢, it leverages its current posterior belief about
the reward function, represented by an ensemble of particles, to optimistically select an action. It
then observes the resulting preference feedback and updates its posterior belief using a Langevin
step. A discussion on the computational cost of OLE is in Appendix [G.I]Pseudo-code of additional
variants are provided in Appendix [G.2] such as for online contextual bandits and MDP scenarios.

Algorithm 1: Optimistic Langevin Ensemble (OLE): Generic Template

Input: Prior I1; step sizes {n; }; ensemble sizes { N; }; batch sizes { B; }; optimism schedule
{re

fort=1,2,...,T do

Observe context x;;

// Optimistic Selection

Compute ensemble mean 7 (x4, y) and variance \//a\rt(xt, y) forally € Y;

Construct optimistic index: Iy(x¢,y)  7i(x, y) + Ky \//:;rt(xt, Y);

Select action pair (y,gw)7 yy)) based on maximizing information gain using {I;(z, y) }yey;

Receive preference feedback, forming data batch D;;

// Posterior Update (SGLD)

Sample a mini-batch B; C D; and compute the stochastic gradient

Vi = ﬁ > .cn, Volo(z) + BVe(logu(f) —logIL(6)):

Compute mini-batch gradient v, of Jpac(0) = ﬁpt (0) + Dk (09| T—1);
fori=1,...,N;do

L Draw Gaussian noise £\ ~ A(0,1);

0;21 — 9,51) — Mt €tJPAC(9§i)) + vV 27’)tﬁ ng), 9521 < PI‘Oj@ (5821)’

The core components of the algorithm are as follows:

* Ensemble Maintenance: The algorithm’s belief about the true reward parameter 6* is represented

by an ensemble of N, particles, {Qt(i)}ivztl. This ensemble serves as a Monte Carlo approximation
of the posterior distribution y;. At the start of learning (f = 0), these particles are drawn from a
prior distribution II.

» Langevin Update Step: This is the learning step of the algorithm. After receiving new preference
data D,, each particle in the ensemble is updated using one step of Stochastic Gradient Langevin
Dynamics (SGLD). The gradient is computed with respect to the PAC-Bayesian objective Jpac
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on a mini-batch of the new data. This update moves the particles towards regions of the parameter
space that better explain the observed preferences, while the injected Gaussian noise ensures that
the ensemble continues to represent a distribution and does not collapse to a single point.

* Optimistic Selection Rule: This is the exploration mechanism of the algorithm and the compo-
nent that addresses the fourth implementation gap (intractable uncertainty). To make decisions that
efficiently balance exploration and exploitation, the agent needs an upper confidence bound (UCB)
on the true, unknown reward function r*. Computing the exact Bayesian UCB is intractable for
complex models. The OLE algorithm therefore uses a computationally feasible proxy based on
the statistics of its particle ensemble. For each candidate action y in the current context xy, it
computes an optimistic index:

Ii(z,y) = Pe(xe, y) + ke -/ Vare(ze, y). 4.1)
The exploration bonus in[Equation (4.1)|follows the eluder-dimension view of exploration (Russo

& Van Roy [2013[2014) and yields the desired logarithmic-regret scaling (Hazan et al., [2007).

* Projection onto the bounded parameter space: In the theoretical analysis we interpret the
Langevin update as a projected SGLD step. Each unconstrained update is followed by the non-
expansive Euclidean projection onto the ball © = {6 : ||f|| < B}. Since Il is supported on O,

this ensures that all particles 9,@ remain in © for all ¢, matching Assumption In practice, this
projection corresponds to weight clipping (or weight decay, softly) to the ball of radius B; if any
iterate leaves O, it is projected back before being used for action selection.

Here, 7;(2¢,y) is the mean reward predicted by the ensemble, serving as the best guess for the true

reward. Var;(xy,y) is the variance of the reward predictions across the ensemble, which serves as a
proxy for the posterior uncertainty about the reward of that action. The parameter x, is an optimism
coefficient that controls the weight given to this uncertainty, effectively determining how much the
agent prioritizes exploration. The agent then selects a pair of actions to query for a preference based
on these optimistic indices, typically choosing a pair that is expected to be most informative for
resolving the current uncertainty. While the exact Bayesian posterior uncertainty is intractable for
complex models, we will show in our analysis (Section[5) that the ensemble variance serves as a the-
oretically sound proxy. This is because of a fundamental duality between variance and information
gain , which ensures that exploring regions of high ensemble variance leads to an efficient reduction
of uncertainty about the true reward function, thereby enabling logarithmic regret.

Remark 4.1 (Initialization of particles). In the theoretical analysis we work with a fixed number

of particles N and initialize them i.i.d. from the prior llg att = 1, so HY) ~ Iy for all ©. In
practical variants where the number of particles Ny is allowed to grow with t, we initialize any
new particle with index © > N;_1 from the current empirical posterior approximation 11;_; (i.e.,
by resampling from the existing particles). This implementation choice only affects constant factors
in mixing and variance; the regret analysis is stated for the idealized setting with a fixed number of
particles initialized from 1.

5 REGRET ANALYSIS

This section presents the main theoretical result of the paper: a unified, high-probability regret
bound for the Optimistic Langevin Ensemble (OLE) algorithm. The bound demonstrates that the
algorithm achieves a cumulative regret that scales logarithmically with the time horizon 7', plus
explicit, sublinear terms that quantify the costs of the practical approximations corresponding to
the “four gaps.” This result provides a rigorous theoretical explanation for the remarkable sample
efficiency of preference-based learning. Full proofs are in Appendix [Section E}

Our main theorem bounds the cumulative preference regret of the OLE algorithm. It shows that
the regret is controlled by the intrinsic complexity of the reward function class, as measured by the
eluder dimension, and by the parameters governing the algorithmic approximations.

Theorem 5.1. Let Assumptions[2.1|(Realizability), [2.2|(Lipschitz Continuity), and[2.3(Finite Eluder
Dimension) hold. For any § € (0,1), consider the OLE algorithm run for T rounds with step sizes
{n:}, ensemble sizes { N}, mini-batch sizes { By}, and an optimism schedule r; = Cy+/log(T/0)
for a suitable constant Cy. Let v} be an upper bound on the conditional variance of the Monte Carlo
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estimate of the optimistic value, and let 02 be an upper bound on the conditional variance of the
mini-batch gradient estimator. Then with probability at least 1 — 0§, the cumulative regret satisfies:

T
Regret(T") < Ci detuder log T +C Z n +0
—_————
t=1

Exploration Cost
P N——
Discretization

Finite Ensemble Stochastic Gradient

where Cy and Cy are absolute constants. The eluder dimension deqger is evaluated at a precision
scale € that decreases with t, such as e, = 1/(1 + t).

Remark 5.2 (On tightness of the leading term and Uniformity). Up to polylogarithmic factors,
the O(deluder logT') leading term in our regret bound matches known lower bounds and optimal
algorithms for contextual bandits with rich (e.g., generalized linear) function classes, where the
eluder dimension governs sample complexity (Russo & Van Roy, 2013} 2014). In particular, the
log T factor is information-theoretically unavoidable even in parametric bandit settings with well-
specified models (Hazan et al.| 2007).

Our leading O(de1uder log T') term is a uniform guarantee over all instances that satisfy our struc-
tural assumptions (realizability, boundedness, Lipschitz continuity, finite eluder dimension, and the
Bradley—Terry—Luce preference model). Here dejyger = dimpg (R, T’l) is a complexity measure of
the function class R, and T is the horizon; the bound does not expose explicit gap or margin pa-
rameters. The fast-rate behaviour comes from coupling two ingredients: (i) a variance—information
lemma for the BTL model, which shows that the mutual information gained at round t is at least a
constant multiple of the squared prediction error; and (ii) an eluder-dimension bound on the cumu-
lative squared widths (Lemmal|D.7).

This bound provides a comprehensive picture of the algorithm’s performance and completes the
narrative arc of bridging the four gaps. Each term has a precise interpretation:

» The Exploration Term: C;dcjyger logT. This is the leading-order term and represents the fun-
damental statistical cost of exploration. Its logarithmic dependence on the horizon 7T is the key
result, confirming that the algorithm learns extremely efficiently. The cost scales linearly with the
eluder dimension dejyqer, Which captures the intrinsic complexity of the learning problem. This
term arises directly from the use of an optimistic exploration strategy.

* The Discretization Error: Zle 1. This term quantifies the cost of Gap 3: approximating
the continuous-time Wasserstein gradient flow with a discrete-time algorithm. It represents the
cumulative bias from the Euler-Maruyama discretization. For a constant step size 7, this error is

O(nT). However, as shown in the corollary below, this term can be made negligible by using a
decreasing step size schedule.

* The Finite-Ensemble Error: O,/ 2321 vZ/Ny). This term quantifies the cost of Gap 1: ap-

proximating the true posterior distribution with a finite ensemble of NV, particles. It represents the
accumulated Monte Carlo estimation error. The term grows sub-linearly in 7" and decreases as
the ensemble size IV, increases, explicitly characterizing the trade-off between computational cost
and statistical accuracy.

« The Stochastic Gradient Error: O(4/ Zthl o2/ By). This term quantifies the cost of Gap 2: us-

ing noisy mini-batch gradients instead of exact full-batch gradients. It represents the accumulated
noise from the stochastic optimization process. Like the ensemble error, it grows sub-linearly and
decreases as the mini-batch size B; increases.

In the idealized limit where 1, — 0, Ny — o0, and B; — o0, all three lower-order terms vanish,

and we are left with a purely logarithmic regret bound, Regret(T") = O(deiuder log T'). Our theorem
provides the first analysis that makes this trade-off explicit for preference-based RL.
Corollary 5.3. If the step sizes and resource allocation schedules are chosen such that 23:1 N =
O(), Zthl vZ/N; = O(1), and Zthl 02/B; = O(1), then under the assumptions of Theorem
1] the cumulative regret is:

Regret(T) = 10) (deluder logT) . 5.2)

oo
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This corollary shows that by using standard schedules, such as a decreasing step size 7y o 1/t and
geometrically increasing ensemble and batch sizes, the approximation errors can be rendered into
constant, lower-order terms, achieving the theoretical ideal.

Remark 5.4. As discussed in Section[2) the eluder dimension can be related to the intrinsic dimen-
sionality of the learning task. For models fine-tuned with low-rank adaptation (LoRA), the eluder
dimension deyqer is controlled not by the total number of parameters d, but by the much smaller in-
trinsic rank d, (Hu et al} 2022} [Yang et al}[2023)). Consequently, the regret bounds in Theorem[5.1]
and Corollaryscale as O(d. log T). This provides a direct and rigorous theoretical explanation
for the empirical observation that parameter-efficient fine-tuning methods can achieve high sample
efficiency even on massive models.

6 EXTENSIONS TO MARKOV DECISION PROCESSES

To demonstrate the versatility and power of our theoretical framework, we extend the analysis from
the contextual bandit setting to the more general and challenging setting of Markov Decision Pro-
cesses (MDPs). This extension requires handling temporal dependencies, long-term credit assign-
ment, and the propagation of uncertainty through Bellman updates. We show that our optimistic
PAC-Bayesian ensemble approach can be naturally adapted to both finite-horizon and discounted
MDPs, yielding analogous logarithmic regret guarantees. Proofs in Appendix [Section F|

6.1 SETUP FOR PREFERENCE-BASED MDPS

A finite-horizon MDP is defined by a tuple (S,.A, H, P,7*, po), where S is the state space, A is
the action space, H is the horizon, P are the transition dynamics, r* is the latent reward function,
and py is the initial state distribution. In the preference-based RL setting, the agent does not ob-
serve the numeric rewards 7*(s, a). Instead, it receives preference feedback, typically comparing
entire trajectories or state-action pairs. The agent’s objective is to learn a policy m = {wh}thl that
maximizes the expected cumulative latent reward.

To enable value-based learning algorithms, we require an additional structural assumption beyond
those for the bandit case.

Assumption 6.1. We assume the function class for the action-value function (Q-function) is ap-
proximately closed under the Bellman optimality operator. That is, for any Q-function in our class,
applying one step of Bellman backup results in a function that is still close to (or within) the class
(Agarwal et al| 2023} Jin et al., |2021). This is a standard assumption in the theory of RL with
function approximation, ensuring that the value functions produced during learning remain repre-
sentable within our chosen model class.

6.2 THE O-TDLE ALGORITHM FOR MDPsS

We adapt our OLE algorithm to the MDP setting, resulting in a method we call Optimistic TD with
Langevin Ensembles (O-TDLE). The core idea remains the same: maintain an ensemble of models
to represent the posterior distribution and use optimistic exploration. The key difference is that the
ensemble now represents the Q-function, and the updates are driven by temporal difference errors.

The O-TDLE algorithm (detailed in |Algorithm 5|)proceeds in episodes. At each step h within an
episode, the agent is in state sj,. It uses its ensemble of Q-function models, {Qy) }2¥,, to compute
an optimistic index for each action a € A:

In(sn,a) = Qu(sn, a) + kn - \/ Vary(Q(sn, a)), (6.1)

where Qh and \//a\rh are the mean and variance of the Q-value predictions across the ensemble. The
agent then selects the action aj, = arg max, 4 In(sn, a). After executing the action and observing
the next state sy, the agent collects preference data (e.g., by comparing the executed trajectory
segment to a reference—such as a SFT model). This data is then used to perform an SGLD update
on the ensemble parameters {#(V}, using a loss derived from a Bellman-style TD error consistent
with the preference feedback.

Using the learned reward in MDPs. In the MDP setting we never assume access to the environ-
ment’s numeric single-step rewards. Instead, as in standard preference-based RL, we posit a latent
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per-step reward function 74+ (x, a) such that preferences over finite trajectories are induced by their
cumulative latent return. Given the observed pairwise preferences, our PAC-Bayesian update on
6 produces a posterior distribution over reward models 74(-,-). At any time ¢, for a sampled pa-
rameter ¢; we can evaluate the pseudo-reward Ry = rg,(x:, A¢) on the visited state—action pair
(¢, At). The TD targets in our MDP extension are defined in terms of these pseudo-rewards, e.g.
yr = Ri +Vy, (xe41) = ro, (x4, Ar) + vV, (2441), for a value function V;,, with parameters
¢. Thus the algorithm is implementable from preference feedback: the environment is queried only
for pairwise comparisons, which are used to update the posterior over 6, and all numeric quantities
required by TD are supplied by the learned reward model 7.

6.3 REGRET ANALYSIS FOR MDPs

We prove that the O-TDLE algorithm achieves a logarithmic regret bound in the MDP setting. The
bound now includes a polynomial dependence on the horizon H, which is expected as errors can
propagate and compound over the steps of an episode.

Theorem 6.2. Under Assumptions and the O-TDLE algorithm, run for T episodes,
achieves a cumulative regret that satisfies, with high probability:

Regret(T) = 1) (H 2 dytuder - logT ) + lower-order approximation terms. (6.2)

The lower-order terms for discretization, finite-ensemble, and stochastic gradient errors have a
similar structure to the bandit case, now summed over all steps and episodes.

Remark 6.3 (On the H-dependence). Our bound incurs an H? factor in the leading term, which
is standard for episodic finite-horizon analyses under function approximation. Improving the H -
dependence typically requires stronger structural assumptions (e.g., linear MDPs or Bellman com-
pleteness with additional mixing/realizability properties) or refined variance decompositions; see,
e.g.,|Azar et al.|(2024); Jin et al.|(2021).

Our proof for the MDP setting employs a powerful policy decomposition technique, inspired by
recent advances in the analysis of KL-regularized RL with numeric rewards |Zhao et al.| (2025a)).
This technique allows us to reduce the multi-step credit assignment problem to a sequence of bandit-
like analyses, to which our core optimistic exploration argument can be applied. The novelty of
our approach lies in adapting this tool to the preference-based feedback setting and integrating it
within our PAC-Bayesian particle ensemble framework. A similar analysis can be performed for the
infinite-horizon discounted MDP setting, yielding a regret bound with a polynomial dependence on
the effective horizon (1 —~) L.

7 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we developed a unified optimistic PAC-Bayesian framework for preference-based
learning that closes several critical gaps between theory and practice. Our analysis provides the
first theoretical explanation for the sample efficiency of modern alignment pipelines by establishing

a near-logarithmic regret bound, O(dciuder log T'), that explicitly accounts for the algorithmic costs
of using finite ensembles, stochastic gradients, and discrete-time updates. Our framework provides
a firm theoretical foundation for the empirical success of methods like DPO (Rafailov et al.| 2023))
and connects the complexity of exploration to the intrinsic dimensionality of parameter-efficient
fine-tuning (Aghajanyan et al., [2020; Hu et al., 2022).

Limitations and Future works. Our theoretical guarantees rely on standard but strong structural
assumptions. The realizability assumption, which posits that the true reward function lies within
the model class, is a significant idealization for complex models like LLMs, which are likely to
be misspecified (Foster & Rakhlin) [2023). Similarly, our extension to MDPs requires Bellman
completeness, a condition known to be restrictive for reinforcement learning with general func-
tion approximation (Agarwal et al.| 2023} |Golowich & Moitra, 2024} [Wu et al., [2024). Finally, the
decoupled structure of our regret bound opens the door to designing adaptive algorithms that can
dynamically schedule computational resources, such as ensemble and mini-batch sizes, to optimally
balance the statistical and computational trade-offs inherent in practical alignment. Our analysis is
purely theoretical. A systematic empirical evaluation of OLE on preference-based RL benchmarks,
as well as large-scale RLHF pipelines, is an important direction for future work.

10
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ETHICS STATEMENT

This work is theoretical, focusing on the algorithmic foundations of preference learning for the
alignment of large language models. As with any alignment methodology, the practical applica-
tion of our framework carries potential risks. These include over-optimization to the learned reward
model, which may not perfectly capture nuanced human intent, and the potential for malicious re-
ward hacking. We emphasize that our algorithms are designed for statistical and computational
efficiency in optimizing a given preference model; they do not define the values inherent in that
model. The collection and curation of the preference data that serves as the source of these values
must be approached with care to respect privacy and mitigate the encoding and amplification of so-
cietal biases. Appropriate guardrails, diverse data sourcing, and multi-faceted evaluation of aligned
models remain necessary to mitigate unintended consequences.

THE USE OF LARGE LANGUAGE MODELS

In this work, the authors used generative Al tools (ChatGPT-5) to aid in and polish the writing of this
paper. We use the following prompt to check the language section by section (including abstract):
“Check the following statement, examine if the narrative is professional and understandable for
broader audience in the area of machine learning community, and examine if the language meets
native speaker standard. If not, generate feedback on how should I modify my narratives.” All LLM-
generated content was thoroughly reviewed and verified by the authors prior to inclusion. Research
design, critical analyses, and all final decisions were carried out independently by the authors.

REPRODUCIBILITY STATEMENT

This work is entirely theoretical. To ensure the reproducibility of our results, we provide complete
and self-contained proofs for all theorems, propositions, and lemmas in the appendix. The appendix
also contains detailed pseudocode for our proposed algorithms (Appendix [G)), a full discussion of
the structural assumptions (Appendix[A]), and guidance on the hyperparameter schedules required to
achieve the stated regret bounds. All cross-references within the document are hyperlinked for ease
of navigation.
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APPENDIX CONTENTS

. Notation used throughout and additional background definitions (including the
formal eluder definition and its variance—information link).

. Extended related work.
. Canonical smoothed/projected—KL PAC-Bayes bound with full proofs.

. Technical lemmas (variance—.information inequality, discretization, stochastic-
gradient control, Monte Carlo concentration).

. Complete statements and proofs of the unified regret theorem and supporting
results.

. Full proofs for finite-horizon and discounted MDP extensions.

. Implementation notes and additional pseudocode.

. Minimal empirical study validating the efficacy of OLE algorithm.
. Discuss the logarithmic lower bound in the BTL preference setting.

A NOTATION AND ADDITIONAL BACKGROUND

This appendix provides the complete theoretical underpinnings for the results presented in the main
paper. We begin by establishing a unified notational system and providing a deeper discussion of
the foundational concepts that motivate our work. This ensures the appendix is self-contained and
accessible to readers with background in machine learning.

14
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A.1 NOTATION
We summarize the most frequently used symbols throughout the paper and this appendix in

for ease of reference. This consistent notation is crucial for maintaining clarity throughout the
complex derivations that follow.

Table 2: Notation used throughout the paper and appendix.

Symbol Meaning

X,y Context and candidate/output spaces

S, A State and action spaces (for MDPs)

r*(+) Ground-truth latent reward function, parameterized by 6*

(C] Parameter space for the reward models
R ={rp:0 € O} Realizable reward function class
T Policy (at round t)

s Mt
11, pe Posterior distribution over parameters ¢ at round ¢
uly Empirical measure of the N-particle ensemble at time ¢
(Fo)i>o0 Natural filtration (history) up to the end of round ¢
feedback; Preference feedback observed at round ¢
Ny, By, my Ensemble size, mini-batch size, and step size at round ¢
wy Width of the confidence set G; at the queried pair at round ¢
Vi Posterior predictive variance of the queried logit difference at round ¢
vZ o} Conditional variance and sub-Gaussian noise proxy at round ¢
deluder Eluder dimension of the reward function class R
0 Discount factor (for discounted MDPs)
B Inverse temperature in the PAC-Bayesian objective and SGLD updates
Kt Optimism/bonus coefficient at round ¢
Regret(T) Cumulative preference regret up to time 7'
Wa(, ) 2-Wasserstein distance between probability measures

A.2 ASSUMPTION CHECKLIST

How to read Table|3| Each row states an assumption (or group of related assumptions), its informal
meaning, and the main theorems/lemmas where it is used. This makes it easier to trace which
structural conditions drive each part of the regret analysis.

How to read Table 4] We separate the bandit and finite-horizon MDP settings and indicate which
assumptions are required in each case. This helps clarify which structural conditions are specific to
the MDP extension (e.g., Bellman completeness) versus those already present in the bandit analysis.

A.3 DETAILED DISCUSSION OF THEORETICAL GAPS

The introduction highlighted four critical gaps between idealized theory and practical RLHF imple-
mentations. Here, we elaborate on why each gap presents a formidable theoretical challenge and
how their interplay necessitates a unified analysis.

* Gap 1 (Finite Ensembles vs. Mean-Field): Many theoretical analyses of particle-based systems,
especially those leveraging tools from optimal transport (Jordan et al.l |I1998; |Ambrosio et al.,
2008)), operate in the mean-field limit where the number of particles N — oco. In this limit, the
empirical distribution of particles converges to the solution of a deterministic partial differential
equation (the Fokker-Planck equation), a phenomenon known as propagation of chaos (Sznitman,
2006). However, practical implementations use small, finite ensembles (/V is often less than 10).
This introduces a non-trivial Monte Carlo sampling error at each step, as the interaction term in
the particle dynamics depends on the empirical measure, not the true mean-field distribution. Our
analysis must quantify this error and ensure it does not accumulate uncontrollably.

* Gap 2 (Stochastic vs. Exact Gradients): Large-scale model training is computationally in-
feasible without mini-batch stochastic gradients. While the noise introduced by mini-batching is
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Table 3: Assumptions at a glance: informal summary and where they enter the analysis.

Name Informal content Used in

Realizability and bounded ©  Rewards lie in the model class R; parameters lie in a bounded ball ©

Lipschitz continuity Reward model (and loss) are L-Lipschitz in § on © corem J.. .8 and
Finite eluder dimension ‘R has finite e-eluder dimension eorem D.8 4

Langevin drift regularity Drift of the mean-field Langevin SDE is Lipschitz and coercive Mheorem .31

Martingale / variance control ~ Martingale increments are sub-Gaussian with bounded conditional variances ‘m‘ﬁ] 5.1 lllﬁ]and

Table 4: Assumptions by setting.

Setting Active assumptions

Contextual bandits / preference bandits [Theorems 2.1|to[2.3
Finite-horizon MDPs with preference feedback heorems 2.1 and

zero-mean, its cumulative effect over 7" rounds is a significant source of error. The variance of this
noise depends on the batch size B; and the local curvature of the loss landscape. A rigorous anal-
ysis cannot simply assume gradients are exact; it must employ tools like martingale concentration
inequalities to bound the accumulated deviation caused by this stochasticity.

* Gap 3 (Discrete-Time vs. Continuous-Time): The Wasserstein gradient flow perspective pro-
vides a powerful, continuous-time picture of the ideal optimization path. However, algorithms are
implemented with a discrete step size 7;. The standard method for discretizing the underlying
Langevin SDE is the Euler-Maruyama scheme. This introduces a discretization bias at each step,
and the cumulative bias can grow linearly with T if not carefully controlled, potentially over-
whelming the desired logarithmic regret term. Our analysis must explicitly account for this weak
error and show how to manage it with a proper step-size schedule.

* Gap 4 (Tractable vs. Intractable Uncertainty): The principle of optimism requires an upper
confidence bound on the true reward function. For complex models like neural networks, the true
Bayesian posterior variance is intractable to compute. Practical algorithms use the variance of
predictions across the finite ensemble as a proxy for uncertainty. While intuitive, it is not a priori
guaranteed that this ensemble variance is a valid upper bound on the true posterior uncertainty.
A central part of our theoretical contribution is to formally justify this proxy and prove that it is
sufficient to drive efficient exploration.

A crucial point is the interdependence of these gaps. The noise from stochastic gradients (Gap 2)
can interact with and amplify the discretization error (Gap 3). The quality of the finite-ensemble ap-
proximation (Gap 1) directly determines the reliability of the uncertainty proxy used for exploration
(Gap 4). A successful theory, therefore, cannot analyze these in isolation. Our unified framework is
designed to bound the sum of these interacting error terms, demonstrating that their interplay does
not lead to a catastrophic amplification of regret.

A.4 CONTRIBUTIONS TO FORMAL RESULTS MAP
To provide a clear roadmap for the reader, explicitly links the main contributions of this

work to the formal theorems and proofs contained within this appendix. This table serves as a guide
to verifying each of our central claims.

Table 5: Map of contributions to their formal statements and proofs in the appendix.

Contribution Formal statement (proof location)

Theorem D 1/(App. 0.1

Unified PAC-Bayesian particle theory

Unified regret bound for bandits tatement (App.

Finite-sample approximation error decomposition [Theorems E.1[to]E.3]and equation (App.
Extension to finite-horizon MDPs with preferences eorem 6.2[and|Section F.1|(App. [F.2]

Extension to discounted MDPs with preferences [Section F.1[(App.[F:3

Eluder dimension for LoRA-style parametrizations
Fast-rate exploration term (logarithmic regret mechanism)
Algorithmic pseudocode (OLE / OTSLE / OTDLE)

App.[G2)
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B EXTENDED RELATED WORK

Our work connects to and builds upon several distinct but related lines of research in machine learn-
ing theory and practice.

RLHF and Direct Preference Optimization. The modern paradigm of aligning LLMs was es-
tablished by large-scale RLHF pipelines (Ouyang et al., [2022; Bai et al., [2022; |Dong et al., |2024),
which combine preference data collection, reward modeling, and policy optimization. More recent
direct preference optimization methods, such as DPO and its variants (Rafailov et al., 2023; Meng
et al.| |2024), have streamlined this process and demonstrated strong empirical performance. Our
work provides a foundational theoretical explanation for the remarkable sample efficiency observed
in these practical systems, showing that near-logarithmic regret is achievable.

Preference Learning, Dueling Bandits, and RL with Preferences. The problem of learning
from comparative feedback has a long history, rooted in foundational statistical models like the
Bradley-Terry-Luce model (Bradley & Terry}, |{1952; [Luce et al.| [1959; [Thurstonel 2017). In the
online setting, this problem is formalized as the dueling bandits problem, for which a rich body
of literature provides sample complexity guarantees, typically achieving O(v/T) regret in general

settings and O(log T') in more restricted tabular or linear cases (Yue & Joachims, 2009; |Yue et al.,
2012). Extensions to reinforcement learning with preferences have been studied, but these analyses
often yield sub-optimal O(+/T') regret for general function classes (Wang et al., [2023} Pacchiano
et al.,|2021). Our work is the first to establish a near-logarithmic regret bound for preference-based
RL with general non-linear function approximation.

Relation to contextual dueling bandits. In the linear contextual dueling bandit setting of |Bengs
et al.| (2022), the learner chooses a pair of actions at each round and receives a noisy comparison
between them. They study weak/strong dueling regret, defined in terms of how often the chosen
pair loses (or fails to win) against the best arm, and show a minimax €2(dv/T’) lower bound for this
pairwise regret. In contrast, our setting is single-action selection with pairwise feedback: the learner
chooses a single action y;, may query preferences involving y,, and we measure standard single-
action cumulative regret Regret(T) = S1_, (r* (x4, y* (1)) — 7* (24, 42) ). Our O(detuder log T)
bound is a uniform fast-rate guarantee over all instances that satisfy our structural assumptions
(realizability, boundedness, Lipschitz continuity, finite eluder dimension, and a BTL preference
model), for this single-action regret. Since the action space and regret notion are different, the
Q(d\/T) dueling lower bound does not apply directly to our setting, and there is no contradiction
between their result and our minimax bound.

KL-Regularized Bandits and RL (Numeric Rewards). Our work is complementary to the im-
portant and emerging body of theory on KL-regularized bandits and RL, which has also achieved
logarithmic regret guarantees but in the distinct setting of numeric rewards (Xiong et al.|[2024;[Zhao
et al.| 2024} 2025azb) and often under additional structural assumptions like data coverage. While
this parallel line of work provides deep insights into policy optimization given a numeric reward, our
work addresses the more foundational problem of learning the reward function itself from pairwise
preference feedback. This is the canonical setup for RLHF and DPO, where the reward model is the
primary object to be learned from human comparisons. Our analysis is therefore algorithm-native,
deriving guarantees directly from a PAC-Bayesian treatment of particle ensembles, rather than from
the specific optimization landscape of a KL-regularized objective.

Specifically, we would like o highlight the difference between our result and the result developed

bylZhao et al.| (2025a). |Zhao et al.|(2025a) has established O (log T') bounds for the KL-regularized
regret, namely the suboptimality of the KL-regularized objective itself. Our results are comple-
mentary: we obtain a O(dejyder 10g T') bound for the standard cumulative regret Regret(T) in a
pairwise-preference setting under realizability condition. We reference [Zhao et al.| (2025a) to high-
light a shared eluder-dimension mechanism—in both cases, a sum-of-squares uncertainty term con-
trols the cumulative suboptimality—rather than to equate their KL-regularized objective with our
standard regret.
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PAC-Bayes, Optimism, and Thompson Sampling. Our theoretical approach is built on the foun-
dations of PAC-Bayesian learning theory, which provides powerful, high-probability generalization
bounds for randomized predictors (McAllester], [1999; [Catoni, 2007} [Alquier, 2021}, [Guedj, 2019).
Recent work has shown the power of PAC-Bayesian analysis for explaining generalization in deep
learning (Cotfi et al.| [2022; [Haddouche et al.| [2024). We combine these tools with the classical
principle of optimism-in-the-face-of-uncertainty from the bandit literature (Hazan et al.|[2007). The
complexity of exploration in our framework is measured by the eluder dimension (Russo & Van Roy,
2014), a concept central to achieving logarithmic regret in benign regimes. Our optimistic pos-
terior update mechanism is conceptually related to feel-good Thompson sampling (Zhang|[2022), but
is tailored to the preference-based setting and analyzed via PAC-Bayesian tools.

Particle Approximations and Optimal-Transport Tools. To rigorously analyze the behavior of
our finite-ensemble algorithm, we interpret its dynamics as a discretization of a Wasserstein gradient
flow on the space of probability measures (Jordan et al.l[1998)). We control the approximation error
introduced by the finite number of particles using tools from optimal transport theory and the study
of empirical measures (Ambrosio et al., 2008}, [Villanil, 2008}, [Fournier & Guillinl 2015} [Sznitman),
[2006). The analysis of the stochastic gradient and discretization errors is informed by the literature
on the convergence of stochastic-gradient Langevin-type methods (Liu et al., 2023} [Suzuki et all}
[2023), allowing us to derive explicit, non-asymptotic lower-order terms in our regret bound.

In summary, prior analyses for preference-based learning typically achieve O(\/T) regret for gen-
eral function classes. In parallel, analyses of KL-regularized learning with numeric rewards have
achieved O(log T') regret, sometimes under strong assumptions. Our work is the first to deliver a
near-logarithmic regret bound for the fundamental problem of pairwise preference feedback within
a framework that is faithful to the practical algorithms used in RLHF, thereby helps bridge the gap
between theory and practice by providing logarithmic regret guarantees for preference-based RL in
a framework that mirrors key aspects of RLHF-style pipelines (KL-regularized objectives, pairwise
feedback, finite ensembles, and noisy stochastic gradients), while leaving a full empirical study for
future work.

B.1 COMPARISON AGAINST CLOSELY RELATED WORKS

Comparison with the works in Table B.I} Table collects the most closely related results
and makes explicit that they differ along three axes: (i) the setting and feedback model (dueling
vs. single—action, non—contextual vs. contextual, bandit vs. MDP, absolute rewards vs. preference
feedback), (ii) the objective / regret notion (single—action regret, dueling regret, KL-regularized
regret, Bayesian regret, or e—optimality sample complexity), and (iii) the assumptions (realizability
and bounded eluder dimension, stochastic transitivity, coverage conditions, etc.).

Yue et al. (2012). They study a non—contextual K—armed dueling bandit problem where the action
is a pair of arms and the feedback is a noisy comparison between them. Regret is defined in terms
of the probability that the unique best arm would win a duel against the chosen pair, with separate
notions of strong and weak dueling regret. Under strong stochastic transitivity and a stochastic trian-
gle inequality on pairwise win probabilities, they obtain expected regret E[Rr] = O(K 5{% log T)
and prove a matching lower bound Q(K e !log T). Our setting is contextual and optimizes single—
action regret (the gap in latent reward between the chosen action and the optimal action), while only
the observations are pairwise. We do not assume a finite K or a total order over a fixed set of arms.

Wang et al. (2023). This work analyzes RLHF with preference feedback and gives sample—
complexity guarantees for learning an e—optimal policy (or a von Neumann winner) via re-
ductions from preference-based RL to standard reward—based RL. Their bounds scale as
O(H 2dp|Ilexp|?log |P|/e* + Hdg|exp|/2) episodes (plus a separate query—complexity term),
and they do not study online regret as a function of 7. By contrast, our focus is on online regret in
our preference—based model; the induced sample complexity follows from standard online—to—batch
conversion.

Zhao et al. (2025). Zhao et al. consider contextual bandits and MDPs with absolute reward feedback
and optimize the KL-regularized objective J(7) = E[R*(x,a)] — n *KL(7(:|x)||7ret (-|7)). They
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Table 6: Comparison of our results with closely related studies. The rows differ in setting/feedback,
objective/regret notion, and assumptions. Our main contribution is a logarithmic—in—1" single—action
regret bound under preference feedback and bounded eluder dimension.

Work Setting & feedback Objective / regret notion Key assumptions & guarantee (in
T ore)

This paper  Contextual bandit / episodic; ~ Standard cumulative single— Realizability of re-
single action chosen, pair- action regret (latent reward ward/preference in a function
wise (preference) observa-  gap between chosen and op- class with bounded eluder
tions. timal action). dimension; mild curvature/low—

noise condition on the link.
Regret O(dg logT) in T.

Yue et al. Non—contextual K-armed Strong/weak dueling regret  Strong stochastic transitivity and

(2012) dueling bandits; action is  w.r.t. win probability of the stochastic triangle inequality
a pair of arms with noisy best arm vs. chosen pair. on pairwise win probabilities.
comparison feedback. E[Rr] = O(KejjlogT) and

lower bound Q(stl log T).

Wangetal. General RLHF (MDPs with ~ Sample complexity to obtain ~ Realizability of reward or pref-

(2023) H > 1); trajectory or (s,a)— an e—optimal policy (or von erence classes; Bellman— or
level preference feedback. Neumann winner); no ex- generalized—eluder  dimension

plicit regret in 7'. bounds. Sample complexity
O(H?dp|Texp|* log |P|/e*  +
Hdg|exp|/e)  (plus  query
complexity).

Zhao et al.  Contextual bandits and KL-regularized re- Realizability for reward class

(2025) MDPs with absolute re- gret in  J(m) = with bounded eluder dimension.
wards and known reference  E[R*] — ™ 'KL(7||mrrer). Regret O(ndr log(NrT)) for
policy. bandits, and analogous bound

with H—dependence for MDPs.

Russo &  Stochastic bandits (includ-  Bayesian cumulative regret Eluder dimension and Kol-

Van Roy ing contextual) with general under a prior; no preferences mogorov dimension of reward

(2014) function approximation; ab-  or KL-regularization. class. BayesRegret(T) <

solute rewards.

O(o+/du(F,1/T)T), giving

O(dv/T) for linear models (not

O(dlogT)).

prove that their KL-UCB and KL-LSVI-UCB algorithms achieve O(n dr log(NgrT )) regret in this
KL-regularized objective (with additional H—-dependence in MDPs). We cite this work because it
also uses eluder—based sum—of-squares arguments to obtain logarithmic dependence on 7', but the
objective differs: our main theorems are stated for standard cumulative regret in our preference—
based model.

Russo & Van Roy (2014). Russo and Van Roy introduce the eluder dimension and analyze pos-
terior sampling (Thompson sampling) for general stochastic bandit models. Their main results are

Bayesian regret bounds of the form BayesRegret(T) < O (0y/dg(F,1/T)T), which specialize to

O(d\/f ) (up to logarithms) for linear models. We only use their notion of eluder dimension as a
complexity measure; our logarithmic dependence on 7 arises from a different squared—gap decom-
position that is specific to our model. In the revised version, we will correct our earlier informal

summary from O(dlog T') to O(dv/T).

C SMOOTHED/PROJECTED—KL PAC-BAYES AND WGF: FULL STATEMENTS
AND PROOFS

This section collects the technical results that underlie the smoothed/projected—KL PAC-Bayes
bound and its Wasserstein gradient-flow interpretation used in the main text. We organize the mate-
rial as follows:
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(1) In[Theorems C.1{and we formalize the smoothing kernel S and the induced projected
KL divergence Dkrs, and we record the basic properties needed later (chiefly the data-
processing inequality).

(ii) states and proves the full smoothed/projected—KL PAC-Bayes generalization
bound, including the Gaussian specialization that we plug into the regret analysis.

(iii) In the final subsection we spell out the Wasserstein gradient-flow calculus for the PAC-
Bayesian free-energy functional Jpac, and we show how it gives the Fokker—Planck equa-
tion tracked by our idealized particle dynamics.

Purely measure-theoretic details and the episode budget/scheduling lemmas used in the regret proof

are deferred to[Section D|and[Section El

C.1 PROJECTED-KL SMOOTHING AND BASIC PROPERTIES

We recall the projected divergence used in the main text.

Definition C.1 (Smoothing kernel and pushforward). Let (©, B) be a measurable parameter space.
A smoothing kernel is a Markov kernel S : © x B — [0,1], i.e, for each 0 € ©, S(0,-) is a
probability measure and for each A € B, 0 — S(0, A) is measurable. For a probability measure
u € P(O), its pushforward by S is

(Sup)(4) = /@ S0, A) u(dd),  AcB.

When © = R® and h > 0, the Gaussian smoothing kernel is S, (6, -) := N(6, h?1;), in which case
Shplt = p* N(0, hZId) is the usual Gaussian convolution. We write Sy, := Sy, for brevity.
Remark C.2 (Interpretation of smoothing and projected KL). Intuitively, the kernel S(6, -) replaces
a deterministic parameter 0 by a small cloud of nearby parameters. Sampling 0 ~ . and then 0 ~
S(6, ) produces a random “smoothed parameter” 0 with law Sy p. The projected KL divergence

Dxrs(ul|T) = Dk (Sgpull SyIT)
therefore compares i and 11 only through their smoothed versions. By the data-processing inequality
we always have Dxy,s(u||IT) < Dk, (1]|IT) whenever the latter is finite, so Dkys is a more forgiving

complexity term. This is precisely the divergence that appears in the smoothed PAC-Bayes bound of

Definition C.3 (Projected/Smoothed KL). For p,I1 € P(O) and any smoothing kernel S, define the
projected (smoothed) KL by

Dxrs(plIl) == Dxr(Sgp | SyIl).

By data processing for f-divergences, Dxis(u||I1) < Dxr,(p||II) when the right-hand side is finite.
For the Gaussian kernel ofDeﬁnition we write Dkuys,, (1/|II) := Dxr,(Sh,244]/Sh,2ID).

Risk notation (for convenience). For a distribution y over parameters, a dataset S = (21, . . ., 2;m)
of size m, and a data distribution D over examples z, we recall the randomized predictor risks

1 m
Riskpug = — Eonp lo(2:), Risk = E,pEg, ly(2).
1SK[LS m; euo(z) ISKUD Deuo(z)
These coincide with the empirical and population risks used in the main text.

C.2 SMOOTHED/PROJECTED—KL PAC-BAYES BOUND: FULL STATEMENT AND PROOF

We now give the full version of[Theorem 3.2]including constants and a convenient specialization for
Gaussian priors.

Theorem C.4 (PAC-Bayes via smoothing; full). Assume £y(z) € [0, 1] is L-Lipschitz in 0 for each
z. Let S = {z;}", ¥ D, and let pN = % Zfil 0, be any N-particle posterior (possibly data-
dependent). For any prior 11 independent of S, any h > 0, and any § € (0, 1), with probability at
least 1 — 6 over S,

Dkvs, (#V]]1I) + In(2m/d)
2m

)

RiskuVp < Risku™g + LRE|Z| + \/
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where Z ~ N (0, 14) so that || Z|| < V/d. Moreover, if 11 = N (g, 021,), then

N
1 d [
N L — R 2 — _h”
Prcis, (410 < ey D10 =00l + o o),
with¢(p) =p—1—Inp.

Remark C.5 iConnection to the main regret bound). In the regret analysis o we would

apply [Theorem C.4|\with u~ equal to the empirical measure of the N particles at the beginning of
an episode, and with the smoothing scale h chosen according to the schedule specified in[Section E]
The Gaussian specialization controls the complexity term Dxys, (1™ ||I1) by the squared distance
of the particles from the Gaussian prior mean 0:
1 N
D N € ——— 9, — 60> + d,
s, (VD) S o 3010 tol
which is in turn bounded along the dynamics using the stability and step-size conditions proved in

This is the only place where the explicit form of Dxuys, for Gaussian priors enters the
regret bound.

Proof. Apply a standard PAC-Bayes bound for bounded losses (e.g., empirical Bern-
stein/McAllester-style) to the smoothed posterior Sy, ™Y and prior Sy, 41I:

Dx1(S NSy, 2IT) + In(2m/5
RiskS, 4puN, < RiskSy 4u ¢ + \/ KL(Sh 44V [|Sh,#1T) + In(2m/ ).

2m

Lipschitzness and Gaussian smoothing yield the bias control Risku”p < RiskSy xpu¥ p T
LhE| Z|| and RiskSp »p" ¢ < Risku g + LhE| Z||, whence

Dxus,, (#N|[1) + In(2m/d)
2m

)

Risky™ < Risku™g + LRE|Z|| + \/

using Dkrs, (4 ||I) = Dkr(Sh.4pN||Sk 4I0) (definition) and E||Z|| < v/d. For the Gaussian-
prior specialization, compute the KL between Gaussians:

_ 8 = 6o]®> | d ( h? )

o 2(c2+h?) + 2¢ o3+h? )’

and average over ¢ = 1,..., N. This proves the claim. O

Dicu(N (65 1) | V6o, (oF+h%) 1))

Gaussian prior specialization. If Il = N (6, 021;) and u = £ 32N 6y, then

N
DKLS}L (/J'NHH) = % Z DKL(N(G;’, hZId) H N(eo, (0'(2)+h2)1d))
i=1

with
_ 6; — 6o
2(03+h?)

DKL(/\/(&, h21,) H N6, (a§+h2)zd)) + gqb( Ug'fh2)7 $(p) = p—1—Inp.

C.3 WASSERSTEIN GRADIENT-FLOW CALCULUS USED IN THE MAIN TEXT

For completeness we record the standard Wasserstein gradient-flow formulation of the PAC-
Bayesian objective used in Recall that the PAC-Bayesian free-energy functional is

Ieac() = Lsu)+ 8 Dweull) = [ (Bews(ta(2)]) na9) + 5 [ 1os( 10 ) utao),

(C.1)
where i is a probability measure on © with density (still denoted by p) with respect to Lebesgue
measure, and II is a fixed prior with a strictly positive density on the support of .
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Standard results in optimal transport (see, e.g., Jordan et al.| (1998)); Ambrosio et al.| (2008)); [Villani
(2008))) imply that the 2-Wasserstein gradient flow of Jpac is governed by the continuity equation

B dJpac
Ou6) = Vo (u(6) Vo= 6)). (€2)
where the first variation of Jpac is given by
6J
;jc (0) = Eons[lo(2)] + B(logu(0) —logII(6)) + c. (C3)

Here ¢, is an arbitrary time-dependent constant (arising from the normalization of 1) whose gradient
is zero and hence does not affect the flow in equation

Expanding the divergence in equation [C.2] using equation [C.3]yields
e = Vo (1 VoBons [l0(2)]) + B Ao — BV (1uVologTl(0)),

which is exactly the Fokker—Planck equation associated with the Langevin diffusion
targeting the Gibbs posterior with density proportional to exp(—E,s[lg(2)])II(#). This is the
correspondence used in the main text to connect the population-level idealized dynamics to the
particle algorithm.

Where to find the end-to-end regret analysis. The budget allocation across episodes/iterations
and the root-time Monte Carlo accumulation lemmas used for our final regret bounds appear in
[Section D] and [Section E| This avoids duplicating those results here while keeping this appendix
focused on the PAC-Bayes smoothing and the WGF calculus.

D TECHNICAL LEMMAS AND AUXILIARY RESULTS
This section gathers technical lemmas (variance—information coupling, discretization, stochastic
gradients, Monte Carlo concentration) used by

We start by recalling the PAC-Bayesian objective and its connection to the Wasserstein gradient
flow, and then proceed to rigorously analyze each source of approximation error.

D.1 PAC-BAYESIAN GENERALIZATION AND THE LEARNING OBJECTIVE

The PAC-Bayesian framework provides high-probability guarantees on the population loss of a ran-
domized predictor () in terms of its empirical loss and its divergence to a fixed, data-independent
prior P. Let S = {z;}I", be drawn i.i.d. from D, define the population loss

L) = E.p [69(2)],
and the empirical loss
R 1 &
L,,(0) = — lo(z; the dataset S.
(@) m; 9(z;) on the datase
A standard PAC-Bayes bound (see, e.g.,|Catoni| (2007))) states that for any prior distribution P on O,

any 6 € (0, 1), and any (possibly data-dependent) posterior ) on ©, with probability at least 1 — ¢
over the draw of S,

Baa[LO)] < BouglLn(@)] + y 2D £ 1alm/5) ®.1)

2m

In words, the true risk of @ is controlled by its empirical risk plus a complexity term depending on
how far () deviates from the prior P.

It is convenient to collect the empirical-risk and complexity terms into the PAC-Bayesian free-energy
functional

Jeac(u) = Ls(n) + B Dxwr(ul|P), (D.2)

where Lg(p) = Egop [ﬁm(é‘)] and 5 > 0 plays the role of an inverse temperature. For an ap-
propriate choice of 3, minimizing the right-hand side of equation over () is equivalent (up to
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additive constants independent of ()) to minimizing Jpac, and the unique minimizer of Jpac is the
Gibbs posterior

Qx(d0) o< exp(—A L, (0)) P(dF),  A=1/B.
The Langevin update step in our OLE algorithm is therefore a noisy gradient step on the func-
tional Jpac, with the measure p represented in practice by the empirical distribution of the particle
ensemble.

In the smoothed PAC-Bayesian and Wasserstein gradient-flow analysis below we denote the prior
by IT and write (II;);>¢ for the time-indexed posteriors generated by the idealized dynamics. In our
setting we simply take II = P and use the notation Il for the initial prior and II, for its evolution
over time.

Theorem D.1. The posterior distribution 11; maintained by the idealized (continuous-time, infinite-
particle) Langevin dynamics minimizes the PAC-Bayesian functional Jpac (1) over the space of
probability measures. The finite-ensemble, discrete-time, stochastic-gradient implementation ap-
proximates this ideal posterior, and its generalization error is controlled by the sum of the PAC-
Bayesian objective and the approximation error terms.

Proof. The proof follows from the variational characterization of the Fokker-Planck equation as the
Wasserstein gradient flow of the free energy functional, which in our case is Jpac () (Jordan et al.|
1998)). The practical algorithm is a numerical approximation of this flow, and its deviation from the

ideal posterior is bounded by the lemmas in O

Informal interpretation of Informally, says that the empirical parti-
cle posterior produced by OLE tracks the Wasserstein gradient flow of the PAC-Bayesian objective

Jpac up to controlled approximation errors. As a consequence, any decrease of Jpac along the
idealized continuous-time dynamics is mirrored (up to the bounds established in[Section D.4) by the
finite-particle algorithm used in our implementation. This is the bridge between the PAC-Bayesian
generalization theory and the actual learning dynamics analyzed in the regret bound.

D.2 ELUDER DIMENSION AND THE VARIANCE-INFORMATION BOUND

The key to bounding the exploration cost is the eluder dimension (Russo & Van Royl 2013}2014).

Throughout this section, we write (F;);>o for the natural filtration generated by all randomness up
to the end of round ¢ (contexts x, actions y,, preference observations feedbacky, and the internal
randomness of the algorithm for s < t). We denote by feedback; € {0,1} the binary preference
feedback observed at round ¢, with feedback; = 1 corresponding to the event that the “winning”
action yt(w) is preferred to the “losing” action yt(z) under the Bradley—Terry—Luce model in

Definition D.2. A sequence of context-action pairs (x1,y1), ..., (Tk, yx) is e-independent for a
function class R if for every i € {1,...,k}, there exist two functions r1,r2 € R such that
|1 (x5, y;) —r2(zs,y;)| < eforall j < i, but|ri(x;,y;) —r2(xs, yi)| > €. The e-eluder dimension,
detuder (R, €), is the length of the longest such sequence.

A low eluder dimension means that after a few queries, any two functions consistent with the obser-
vations must be close everywhere, enabling efficient learning. This complexity measure is connected
to regret via the following lemma.

Lemma D.3 (Variance—information lemma, Restated emphasizing the BTL model). Fix a round t
and condition on the o-algebra F;_, and on the chosen context x, and comparison pair (y,(/w)7 y,@ ).
Let py denote the posterior distribution of 0% given F;_1, and define the posterior predictive vari-

ance of the logit difference at the queried pair by
‘/t = Varf)rv,ut (TQ (Itv yf(w>) —To (xtv yf(e))) .

Under Assumption [2.1] and the Bradley-Terry—Luce preference model equation [2.1) there exists a
constant Agty, > 0, depending only on the logistic link and the reward range, such that

I(6*; feedback, | F;—1) > AprL Vi (D.3)
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This inequality connects the conditional mutual information at round ¢ to the posterior predictive
variance V; of the queried logit difference, and will be combined with the eluder-dimension analysis

below to control the cumulative predictive variances Zthl Vi

Proof. Throughout the proof we work conditionally on F;_;, x; and (yt(w), yt(e)) and suppress this

conditioning from the notation.

Step 1: Reducing to the random preference probability. Define, for each parameter 6,

Ze = r9($t7y§1U)) _7"9(371‘/7%@)» Pe = 0(29>7

and let Z; and P, denote the random variables obtained by drawing § ~ u; and applying these
maps. By Assumption 2.1 we have r¢(z,y) € [0,1] for all (z,y) and 6, so zy € [—1,1] and hence
P, €[o(-1),0(1)] C (0,1).

Under the BTL model equation the binary preference feedback feedback, € {0, 1} satisfies
]P’(feedbackt =1 ‘ 9) = pg, P(feedbackt =0 ’ 9) =1—pg.
In particular, feedback; depends on 6 only through the scalar P;, and we have the Markov chain
0" — Z, - P, — feedbacks.

Because P is a deterministic function of 8* and feedback, is conditionally independent of 6* given
P,, standard properties of mutual information give

1(9*; feedback; | ]-'t,l) = I(Pt; feedback; | .7:,5,1).
It therefore suffices to lower bound the mutual information between the random Bernoulli parameter
P, and the feedback.
Step 2: Mutual information as entropy drop. Let H(p) = —plogp — (1 —p) log(1 — p) denote
the binary entropy (in nats). Conditioning on F;_1, write
ﬁt = ]E[P f/]7
where the expectation is with respect to 6 ~ pi;. Since feedback; | P; ~ Bernoulli( P;), we have
H (feedback, | P,) = H(P,), H (feedback,) = H(py),

and thus
I(Pt, feedbackt | Ft—l) = H(ﬁt) - E[H(Pt)], (D4)

where the expectation is over P;.

Step 3: Strong concavity of binary entropy. The binary entropy is twice differentiable on (0, 1)
with
1 1

H'(p) = —= - —— € (0,1).
(p) STy P (0,1)

For all p € (0,1) we have H"” (p) < —4, with equality at p = 1/2. Hence H is 4-strongly concave
on any compact subinterval of (0, 1), and in particular on [o(—1),0(1)].

We now recall a standard fact about strongly concave functions.

Claim. Let f be twice differentiable and A-strongly concave on an interval I C R, that is, f(z) <
—Aforall x € I. If X is a real random variable taking values in I with mean m = E[X], then

Fm) ~BIf(X)] > 3 Var(X).

Proof of the claim. For each realization X = z there exists (by Taylor’s theorem with Lagrange
remainder) a point &, on the line segment between m and z such that

f@) = f(m) + f'(m)(x —m) + 5" (&) (@ — m)*.
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Taking expectations, and using E[X — m] = 0, we obtain
BIf(X)] = f(m) + 3 E[f"(&) (X —m)?].
Since f"(&,) < —Aforall &, € I, we conclude
F(m) —E[f(X)] = =3 E[f"(&)(X =m)*] = FE[(X —m)?] = 3 Var(X),

which proves the claim. O

Applying the claim with f = H, A = 4 and X = P, (which is supported on [o(—1), o (1)]) yields
H(p:) —E[H(P,)] > 2Var(P). (D.5)
Combining equation [D.4]and equation [D.5] we obtain
I(6*; feedback, | F;—1) = I(P; feedback, | Fi—1) > 2 Var(P,). (D.6)

Step 4: Relating variance of P; to variance of the logit. The sigmoid function o(z) = (1 +
e~#)~!is continuously differentiable on R with derivative o/ (z) = o(z)(1—0(2)). On the compact
interval [—1, 1] we have

0< Cmin < 0'(2) < Cmax < 1/4, z e [-1,1],

where ¢in = min,e(_1,10'(2) = o(—1)(1 — o(—=1)) > 0. Thus o is strictly increasing with
derivative bounded away from 0 on [—1, 1], and its inverse g := o~ ! is well-defined and Lipschitz
on [o(—1), o(1)] with Lipschitz constant L = 1/¢pin.

By definition P, = 0(Z;) and Z; € [-1,1], s0 Z; = ¢g(P;) and
Var(Z,) = Var(g(P,)) = E[(9(F) — E[g(F:)])?]
< E[(g(P) - 9(E[P]))?] < L*E[(P; — E[P])*] = L Var(P),

where we used the Lipschitz property of g and the fact that the variance is upper bounded by the
second moment around any fixed reference point. Rearranging yields

Var(P;) > ¢, Var(Zy).

Recalling that Z; = rg(x, y§w)) — 1o (¢, yy)), we conclude that
Var(P) = e, Varom, (ro(@e, o) = ro(ee yi”)) = ciun Vi (D7)

Step 5: Combine. Combining equation[D.6and equation we obtain
1(0%; feedback, | Fy—1) > 2Var(P) > 2¢2;, V.
Defining
M = 265, =2 (o(-1) (1 (1)) >

we arrive at the desired inequality I(6*; feedback; | F1—1) > ApTLV;. This constant depends only
on the BTL link function o and the reward range r¢(x,y) € [0, 1] (which ensures Z; € [—1,1]). O

Curvature of the BTL link. By Assumption[2.1]we have r¢(x,y) € [0,1] for all (z,y) and 6, so
the logit differences zq(z, Yuw, y¢) := ro(x, yw) — To(x,ye¢) lie in [—1, 1]. On this compact interval
the negative log-likelihood of the Bradley—Terry—Luce model equation 2] is uniformly strongly
convex. Consequently, there exists a constant Agry, > 0 such that the Kullback—Leibler divergence
between any two preference models is bounded below by ATy, times the squared difference in their
logits. This curvature is exactly what underlies the variance-information Lemma[D.3]
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D.3 SHARP ELUDER-DIMENSION CONTROL (FOR LORA-BASED MODELS)

A key argument for the practical relevance of our theory is that the eluder dimension for massive
models is not as large as their parameter count might suggest, especially when using parameter-
efficient fine-tuning methods like LoRA (Hu et al.| [2022).

Proposition D.4. Consider a reward function class R parameterized by a large neural network with
weights Wo € R4, Let the fine-tuning be restricted to a LoRA update W = Wy + AB, where

A € Rixd« B ¢ R~ Xd/, and d, < d,d'. The trainable parameters are the entries of A and B.
Under standard smoothness assumptions on the network architecture, the eluder dimension of this

class scales as dejuder (R, €) = O(d.(d + d') log(1/€)), not with the full parameter count d x d'.

Proof. The proof follows from the observation that the reward function r 4 g (, y) is a smooth func-
tion of the low-rank matrices A and B. The effective number of parameters is d.(d + d'). Applying
standard covering number arguments for Lipschitz function classes to this lower-dimensional pa-
rameter space yields the stated bound on the eluder dimension. This result formalizes the intuition
that the intrinsic dimensionality of the fine-tuning task is what governs the exploration complexity
(Aghajanyan et al.| 2020; [Li et al., [2022)). O

Assumption D.5 (Blockwise Lipschitzness for LoRA layers). For each modified layer £ € [L] with
base weight W, € R™*" qnd low-rank update AgB; with rank ry, we assume the reward (or
preference log-likelihood) is L,-Lipschitz in each block parameter and smooth in the base activa-
tions, uniformly over the input domain. That is, for all admissible inputs, perturbations (A Ay, ABy)
satisfy

IR(We+ (Ar+ AAY)(Be+ ABy)T) = R(We + AeB )| < Le(|AA¢l|lr + |ABe| r).
Corollary D.6 (Intrinsic dimension under blockwise Lipschitz LoRA). Under the

eluder dimension of the LoRA-parameterized reward class satisfies, for any € € (0, 1],

L
C’
deu(er 5 0. S 2 - 1 ]
Juder (€; RiorA) C (ZT’[(meJrng ’I"g)) og c

(=1

Sor universal positive constants C,C". In particular, the effective intrinsic dimension scales with
the rank budget rather than the ambient parameter count, aligning with empirical observations on
parameter-efficient fine-tuning (Hu et al.| 2022, |Aghajanyan et al.| |2020).

Proof. Step 1 (Model class and parameterization). Let R denote the LoRA-parameterized reward
class obtained by freezing a base network and adding, in each layer ¢/ € [L], a rank-r, update of
the form UgVeT with U, € R™*7 V, € R™*7¢ Assumption [Theorem D.5|ensures blockwise

Lipschitzness: for any two parameter tuples 6, ©’,

L
(suglre(x,y)—re'(x,yﬂ < Le||[Un Vi = [UL V|-
x,y /=1

Step 2 (Covering numbers for low-rank blocks). Fix radii Ry so that ||(Ug, Vi)||r < Ry for all
admissible parameters (w.l.0.g. finite by compactness assumptions). For each block /, the parameter
set lives on a smooth manifold of dimension d;, = r,(m¢ + ny — 7). Standard volumetric bounds
give an e;-net of size at most (C'Ry/€;)% in Frobenius norm. By the blockwise Lipschitzness, an
(e¢/Lg)-cover in parameters induces an ep-cover in function sup-norm. Taking the product over
blocks and distributing a total accuracy e across blocks (e.g., €, = €/L) yields the function-class

covering bound
L do Sy de
Co\ ™ C =1
. < —t - [ =
Mer 0w < TT(S) = (£)7 )
=1
for constants Cy depending on (L, R,) and a universal C' = [], C,. (See, e.g., standard covering-

number bounds for low-rank matrix manifolds.)
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Step 3 (From covering numbers to eluder dimension). By the growth-function argument of
|& Van Roy|(2013;2014) (see also Lemma|Theorem D.3)), for any € € (0, 1] there exists a universal
C" > 0 such that

deluder(Ry€) < C' 5Sl[1p]10gj\/(5, Ryl loo) - (D.9)
€le,1

Combining equation [D.§]and equation [D.9] gives

L C L c
detuder (R, €) < C’(Z@) log— = C”(Zm(mg—i—nz—n)) log—,
=1 =

1
which is precisely the claimed bound (absorbing constants into C, C").

Step 4 (Interpretation). The dependence is intrinsic: it scales with the low-rank degrees of free-
dom and is independent of the ambient widths except through the block dimensions (my, n,) and
Lipschitz constants L,. This matches the intuition that parameter-efficient fine-tuning reduces the
exploration burden. O

Lemma D.7 (Cumulative squared widths). Ler { Qt}thl be confidence sets over the reward class R
with radii {3;}1_,, and define the width at the chosen action Ay = (x¢,y;) by

wy = wg, (Az) 1= sup ‘f(xhyt) - fl(xt,yt)‘-
'€

Assume rewards are bounded in [0, 1], so wy € [0, 1] for all t, and set

— i -1 -
deluder = dlmE (R7 T )7 ﬁT = lréltaéXT Bt‘

Then for all T > 2 there exists a universal constant Cy, > 0 such that

T
> w} < Cy dewder Br log(eT), (D.10)

t=1

and the same inequality holds for the expectations ZZ;I E[w?].

Proof. We follow a dyadic decomposition over scales ¢ € [T, 1] combined with Proposition 3 of
[Russo & Van Roy| (2013).

Step 1: Split very small widths. We first separate rounds with tiny width:

T T T
Zw? = Zw?l{wt <T '+ wal{wt >T71}.
t=1 t=1 t=1

Since w; < 1, the first term is trivially bounded by T (T~1)? = 1/T.

Step 2: Dyadic partition of the nontrivial widths. Let K := |log, T'| and define dyadic scales
ep:=2"Ffork =0,1,..., K. For each k define

Sk ::{tST:€k+1<U}t§€k}.
Then each round with w; > T~! belongs to some S}, and

T K

> wit{we > T} < > ef|Skl. (D.11)
t=1 k

=0

Step 3: Apply Proposition 3 at each scale. For ¢t € S}, we have w; > €11, hence

T

‘Sk| < Zl{wt > €k+1}.

t=1
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Proposition 3 of [Russo & Van Roy| (2013) states that, for any € > 0,

T
4
Z H{w, >e} < (g + 1) dimg(R, ) almost surely.

t=1
By monotonicity of the eluder dimension in its scale parameter and the definition of dejyder,
dimp(R,ep41) < dimp(R,T7") = detuder
for all k such that £, > T, which holds for k = 0, ..., K. Therefore
|Sk| < deluder (42& + 1)-
Ck+1
Multiplying by £7 and using &), = 2e541 gives
£k

€£|Sk| < deluder <4BT 22 + 5%) = deluder(16ﬁT + Ei)
k1

Step 4: Sum over dyadic scales and combine. Summing over k and using Y o &7
47" < 2, we obtain

T
ngl{wt > T_l} < deluder (16ﬂT(K + 1) + 2) < deluder (16ﬁT 10g2(2T) + 2) .
t=1
Combining with the 1/7 bound from Step 1 and absorbing constants into a universal Cy, > 0 yields
equation The bound is deterministic conditional on {w;}, so it also holds for 23:1 E[w?].
O

Lemma D.8 (Information—eluder-dimension bound). Let Assumption[2.1hold and suppose the pref-
erence feedback is generated according to the Bradley-Terry—Luce model in equation [2.1) Let
R = {re : 0 € O} and denote by dimg(R,¢) the e-eluder dimension of R (Russo & Van Roy|

[2073). Assume:
1. (Bounded rewards) ¢ (z,y) € [0, 1] for all (z,y) and all 6 € ©.

2. (Bounded preference noise) Conditional on (0%, F;_1, x¢, y,gw), yy) ), the binary preference

feedback feedback; € {0, 1} has mean E[feedback; | 0, Fi_1] = po= (¢, y,gw), yy)) and

is o-sub-Gaussian for some o > 0.

3. (Metric entropy growth) There exists Ceoy > 0 such that for all € € (0, 1],
logN(R,fs, I| - ||oo) < Ceoy log(1/e),
where N (R, e, || - ||o) is the e-covering number of R in the sup-norm.

Let dejuder := dimp(R, T~1Y). Then there exists a constant Cipng, > 0, depending only on (o, Ceoy)
and the constants in Assumption[2.1) such that for any horizon T > 2,

I(0*;feedbacky.z) < Cinfo detuder log®(eT), (D.12)
where feedbacky.r = (feedbacky, ..., feedbacky).

Proof. We follow the confidence-set and width analysis of Russo & Van Roy|(2013), adapting it to
our preference-learning setting and to mutual information.

Step 1: Confidence sets and widths. Let ( }S)t21 be least-squares predictors based on past data
and define confidence sets

Gii={f € R \f = fSllam < V/Bi},
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where || - ||2,z, is the empirical 2-norm and j; is chosen as in equation (4) of Russo & Van Roy
(2013)). Their Proposition 2 implies that, with probability at least 1 — 1/T, we have fyg« € G, for all
t<T.

Define the width of G, at the selected pair (¢, yt(w), yt(é)) by

w L w L
we = sup | flee, ) — e u ).
1.17€G,

Step 2: From widths to information. Under the Bradley—Terry—Luce model, the preference prob-
ability pg(z¢, yt(w), yy)) is a smooth and bounded function of the reward difference 74 (¢, y§w)) —

ro(xs, yt(e)). Combining the variance—information lemma with the boundedness and Lipschitz
properties of the logistic link, one obtains an information—width inequality: there exists cg > 0,
depending only on the link function and the reward range, such that

I(6*;feedback, | Fi—1) < coE[w | Feo1].
Summing over ¢ and applying the tower property gives

T T
I(6*; feedback.r) = ZI(G*; feedback; | F;—1) < co ZE[“}?]

t=1 t=1

Step 3: Bounding the cumulative squared widths. Applying Lemma to the confidence sets
{F:} and widths w; = wr, (A;) constructed in Step 1, we obtain

Z E[wﬂ < Cy deluder BT 1Og(€T),

t=1
where dejuder = dimp (R, T~1) and 7 = max;<¢<7 (¢ is the confidence radius.

Step 4: Controlling 5 via metric entropy. Our metric-entropy assumption implies log N (R, ¢, || -
loo) < Ceovlog(1/e). Substituting this into the definition of S (equation (4) in|Russo & Van Roy
(2013))) with e = T2 shows that there exists Cg > 0 such that

Br < CplogT.

Combining the displays from Steps 2 and 3 with this bound on S yields
1(0; feedbacki.r) < Cinfo deuder log>(eT)

for a constant Ci,¢, depending only on (o, Cey) and the problem constants, as claimed. O

D.4 APPROXIMATION OF WASSERSTEIN GRADIENT FLOW

This section outlines the approximation of the idealized Wasserstein gradient flow dynamics by a
finite ensemble of particles. The core idea is that the particles provide a discrete representation of
the continuous flow of probability measures, tracking the evolution of the PAC-Bayesian free-energy
functional Jpac.

Let the particles {6}, represent an empirical distribution of parameters at time ¢. We approximate
the gradient flow of the PAC-Bayesian objective Jpac by evolving these particles according to the
following update rule:

Ho;

it — gt _ ,
i 01 UV& H(QJ)

+ N(0,02).

2|~

N
> to,(2) + Blog
j=1

Here, 7 is the step size, £y, (2) is the loss, and yp; represents the empirical measure at time .

The error bound for this approximation depends on the step size 1 and the number of particles IV,

which is formalized in the subsequent lemmas.
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Lemma D.9 (Finite-Particle Approximation Error). Let y; be the mean-field law and ulN be the
empirical measure of N particles. For any L-Lipschitz function ¢, the error in estimating its expec-

tation is bounded in probability: | [ ¢duly — [ ¢dus| = O(1/v/N) (Fournier & Guillin, 2015).

Proof. This follows from classical results on the convergence rate of the empirical measure in
Wasserstein distance and the duality between Wasserstein distance and expectations of Lipschitz
functions. The error from approximating the interaction term in the SGLD update accumulates,
leading to the term in the final regret bound. O

Lemma D.10. Ler §;(0) be an unbiased mini-batch gradient estimator of the true gradient g;(0)
with conditional variance Var(g, — g; | Fi—1) < 07/By;. The cumulative error from the noise

sequence & = 1y (G: — ) is bounded with high probability by O(y/ ZtT:1 nZo?/By).

Proof. Let g;(0) be an unbiased mini-batch estimator of the population gradient g;(#) with E[g;(6) |
Fi—1) = g:(0) and conditional covariance E[[|g,(6) — g:(0)|*> | Fi—1] < o0?/B;. Consider the
parameter update ;1 = 6; — 1:G:(6;) + (other terms) and track the noise contribution to the PAC
objective J(6) through the descent lemma. Define the noise martingale ¢; = (V.J(6:),9:(0:) —
gt(9t)> with E[Ct | ft—l] = 0. Then

T
D omé
=1

is a martingale with predictable quadratic variation bounded by

T T ) T 5
g g
ZUEE[CE | Fi1] < ZU? ||VJ(9t)H2§tt < Gzzn?ﬁv
t=1 t=1

t=1 t

where G bounds ||V.J(6)]| on the iterates (ensured by standard coercivity/compacity arguments in
our setting). Applying Freedman’s inequality (or Azuma—Hoeffding with conditional variances)
yields, with probability at least 1 — ¢,

T
‘Zm@ < ClG\/IOg%
t=1

establishing the stated @V(\/Zt n?o?/By) high-probability control on the cumulative stochastic-
gradient error. O

Lemma D.11 (Finite-Ensemble Monte Carlo Error). Let the Monte Carlo error in estimating the
optimistic index be & = I, — I, with E[¢; | F;_1] = 0 and Var(& | Fi—1) < v2/N;. The

cumulative error EtT:l & is bounded with high probability by O(4/ ZtT:1 vZ/Ny).

Proofs of[Theorem D.10\and|[Theorem D.11] Both proofs rely on the same core argument. The error
sequences {&; } in both cases are martingale difference sequences with respect to the filtration JF;_;.
We can therefore apply a concentration inequality for martingales. Freedman’s inequality is partic-
ularly well-suited as it handles predictable, time-varying variance bounds (Freedman, |1975). Let
Sr = Zle &. Let Vp = 23:1 E[¢? | F,_1] be the predictable quadratic variation. Freedman’s
inequality states that for any u,v > 0:

Pr(St > wand Vp <wv) <exp _711/
r % X
Y v U+C'LL/3

where ¢ is a uniform bound on |&]. Setting v to be the sum of our variance bounds (e.g., v =
>~ 2 /N;) and solving for  for a given probability level § yields the stated O(1/~) bounds. O
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Variance and noise parameters. Throughout this paper we assume bounded rewards and sub-
Gaussian noise. In particular, there exist finite constants v2 and o2 such that for all ¢,

Var(AM, | F3) < v, Elexp(Ae) | Ft] < exp(A?0?/2) VAER,

where (F3)¢>0 is the natural filtration introduced above, AM; is the martingale increment in the
regret decomposition, and &, is the reward noise. We denote by v? and o7 the corresponding con-
ditional variance and sub-Gaussian proxy at time ¢, and the above assumptions imply v? < v? and
o? < o forall t.

E MAIN THEOREMS: FULL STATEMENTS AND PROOFS (BANDITS)

This section contains the full proofs of the main results. It relies on auxiliary tools in
and[Dl

E.1 RESTATEMENT OF MAIN THEOREMS

Let Assumptions 2.1] 2.2] and[2.3hold. For any § € (0, 1), consider the OLE algorithm run for T
rounds with step sizes {7 }, ensemble sizes { N; }, mini-batch sizes { B; }, and an optimism schedule
k¢ = Co+/log(T/§) for a suitable constant Cy. Let v be an upper bound on the conditional variance
of the Monte Carlo estimate of the optimistic value, and let o2 be an upper bound on the conditional
variance of the mini-batch gradient estimator. Then with probability at least 1 — §, the cumulative
regret satisfies:

T
Regret(T) < C detuaer log T+ Ca Y e + O +0 , (E.1)
—_——
Exploration Cost - t:-1 —
Discretization Finite Ensemble Stochastic Gradient

where C; and C are absolute constants depending on model parameters like the Lipschitz constant
L. The eluder dimension dg).qe; is evaluated at a precision scale that decreases with ¢.

E.2 PROOF OF THE UNIFIED REGRET BOUND (SECTION E.1))

We now prove Throughout, we let (F;):>o denote the natural filtration generated by
all randomness up to the end of round ¢ (contexts, actions, preference feedback, and the internal
randomness of the ensemble and SGLD).

Recall that at each round ¢, the OLE algorithm computes, for each candidate action y € ) in context
¢, an optimistic index

Ii(x,y) = 7e(xe,y) + Ke @t(xtvy)a (E.2)

where 7¢(x¢,y) and Var(as,y) are the ensemble mean and variance, respectively, and k; =
Co+/log(T'/6).We will bound the regret by: (i) decomposing the instantaneous regret at each round
into an optimism term and an estimation term; (ii) controlling the sum of optimism terms using
variance—information duality and the eluder dimension; and (iii) bounding the estimation term via a
careful decomposition into discretization, finite-ensemble, and stochastic-gradient contributions.

Step 1: Instantaneous regret decomposition. Let y; € argmax,cy " (24, y) denote an optimal
action in context x4, and let y; denote the action chosen by the OLE policy induced by the index I;
(for simplicity, we write the regret in terms of the deployed action y;, which is one element of the
selected comparison pair). The instantaneous regret is

T*(xnyf) — (@t Yt)-
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Introduce the shorthand I;k = It(xt, y;:), It = It(fﬂt,yt)/ﬁt = ft(xt7yt),r;‘ = T*((Ehyt)a and
note that by definition of y;, we have I; > I}. Then

(@ yt) — (@ y) = (I =" (e, 90) = (IF =" (e, 97)) (E.3)
¢9) I
< (L —#) + (Fe—ry) —(D. (E.4)
N——

Optimism term  Estimation error
The inequality uses I; > I} and inserts and subtracts ;. Define the “good optimism event”
Ei={r"(z,y) < Li(x,y) forall (x,y) € X x Y }.

By the PAC-Bayes and concentration arguments developed in and [D] together with the
choice ky = Cp+/log(T'/d), we can ensure that

Pr(ﬁ&) > 1-4. (E.5)

t=1

On the event &, we have r*(z, y;) < I, so term (I) in equationis non-negative. Hence, on
T

Ni=1 &
t=1 ¢t

T*(xt,y,f) - r*(mtayt) S Rt @t(xt’yt) + (’Ft(xfnyt) - 7'*<.'17t,yt)), (E6)

A;)pt €t

where we have set A?pt = Li(xg,y) — Pz, yp) = ﬁt\/\at(mt,yt) and €, = 7(Te,yt) —

(T4, Yt)-

Summing over ¢t = 1,...,T and working on the event £ := ﬂle & yields
T T
Regret(T) < Y AP + ) ¢ (E.7)
t=1 t=1

We will bound the two sums on the right-hand side separately.

Step 2: Bounding the cumulative optimism term. Write
V; i= Vary (24, y1), AP = ki V.
By Cauchy-Schwarz,

T T T T T
DSTAP ="k Ve < (DL D KV = VT | D KV (E.8)
t=1 t=1 t=1 t=1 t=1

Using the choice 7 = CZ2 log(T'/4), it remains to control 3., V;.

The variance—information lemma (Theorem D.3)) states that, under the Bradley—Terry—Luce prefer-
ence model equation 2.1} for any posterior distribution ji; over parameters at round ¢ and any context

z; and chosen pair (yﬁw), yf@), the conditional mutual information satisfies

1(6%; feedback; | F;—1) > Cuar - Vi, (E.9)

for some universal constant C,, > 0 (depending only on the fact that the logistic link keeps prefer-
ences bounded away from 0 and 1).

Summing equation[E9over ¢ = 1,...,T and using the chain rule for mutual information, we obtain
T T
> Vi < Cob> I(67;feedback, | Fioy) = CitI(6%;feedbacky.r). (E.10)
t=1 t=1
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The remaining ingredient is to bound the total information gain in terms of the eluder dimension.
This is guaranteed by the lemma[D.8] Combining equation [E.10]and lemma D.8]yields

T
th < Ovarclnfo eluder 10g (eT) =: Cv deluder IOgQ(BT)- (E.11)

Substituting equation and k7 = CZ log(T'/d) into equation gives

T
ZAOpt <VT Z,{gvt VT | CZlog(T/5) Z

t=1

< VT \/C310g(T /) O detuer 108> (€T)
S Cl V dcludch IOg T, (ElZ)

for a suitable constant Cy > 0 (absorbing log(T'/4) into the log T factor via the O(-) notation).

Step 3: Bounding the cumulative estimation error. We now bound the second sum in equa-

tion Zthl €, which captures the discrepancy between the ensemble prediction 7; and the true
reward r* evaluated at (z, y; ).

Let 7 (x, y) denote the prediction of the ideal, continuous-time, infinite-particle mean-field posterior
at round ¢. Then at the deployed action (¢, y;) we can write

e = P, ye) — (@) = (Fe(@e, ) — (e, ye)) + (Fe(e, ye) — 7 (@0, 30))- (E.13)
Summing over ¢t we obtain

T

T T
Z = Z Pe(we, ye) — Te(2e, i) +Z Te(Te, Yt ) (xhyt))' (E.14)
t=1 t=1

t=1

Sapprox Sideal

Step 3(a): Ideal mean-field prediction error. The term Siqe,) measures the deviation of the ideal
mean-field posterior mean from the true reward. This is controlled by the PAC-Bayesian general-
ization bounds for the smoothed posterior in which imply that, under Assumption [2.1]
the mean-field posterior concentrates around 6* and the average generalization error is small. In

particular, standard arguments (see Theorem 3.2]and subsequent discussion) yield
|Sideat] < Cidea VT (E.15)

for some constant Cjqea depending on the Lipschitz constant of the loss and the prior, and this term
is dominated by the exploration term equation[E.12|when 7’ is large. For simplicity, we absorb Siqeal

into the overall 6(\/deluderT log T') term.

Step 3(b): Approximation error from discretization, finite ensemble, and stochastic gradients. The
term Sapprox i equation@ captures the effect of replacing the ideal mean-field posterior with a
finite ensemble, with discrete-time SGLD dynamics and mini-batch gradients. We now decompose
it into a martingale term and a bias term using the filtration (F;).

By definition, both 7, and 7, are F;-measurable. We write

T

Sapprox = Z(ft(mh yt) - ft(xta yt))

t=1

T
(ft(xtyyt) — E[7e (24, yt) | ftfl]) +Z(E[7ﬁt(xtayt) | Fi1] — Ft(ﬂct»yt)) :

1 t=1

Il
[M]=

t

Smart: martingale noise Shias: bias/approximation term
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The first term Sp,..¢ 1S @ martingale difference sequence with conditionally sub-Gaussian increments
whose conditional variances are bounded by vZ/N; (finite-ensemble Monte Carlo noise) and by
n?a? / By (stochastic-gradient noise). The second term S5 collects the approximation bias arising
from discretizing the Langevin dynamics.

The following lemmas, proved in Appendix [D.4} give high-probability bounds for each contribution
(we quote them here for convenience):

Lemma E.1 (Finite-ensemble Monte Carlo error). Under the conditions of| and 2.2}
the finite-ensemble Monte Carlo fluctuations satisfy

T

Z(f}f\dc(xt’yt) — B[z, 1) | -thl])

t=1

S CEHS

with probability at least 1 — 0 /4, for some constant Cens > 0. (Here f%\/lc denotes the Monte Carlo
estimate of the ensemble mean.)

Lemma E.2 (Stochastic-gradient error). Let §(0) be an unbiased mini-batch gradient estimator
with conditional variance bounded by o? | B;. Then the cumulative error induced by using g, instead
of the exact gradient in SGLD satisfies

im (ﬁt(at) —E[§:(6,) | ]-“t_l])

with probability at least 1 — 6 /4.

Lemma E.3 (Discretization bias). Suppose the drift of the mean-field Langevin SDE is L-Lipschitz
and satisfies the standard coercivity conditions ensuring existence of a unique invariant measure.
Then the cumulative bias induced by using a time step 7 in the Euler-Maruyama discretization
satisfies

T
‘Sbias| S Cdiscznta
t=1

for some constant Cgjsc > 0.

Combining equation [E.2] with to[E.3]and applying a union bound over the associated
high-probability events yields

T
‘Sapproxl S CQ Znt + CS

t=1

(E.16)

for appropriate constants Ca, C'3, Cy > 0.

Step 4: Combine. Combining the instantaneous decomposition equation|[E.7} the optimism bound
equation and the bounds equation [E.T5] and equation and applying a final union bound
over all the high-probability events (£, the PAC-Bayes generalization bound, and the martingale
concentration events), we obtain that with probability at least 1 — 4,

T
Regret(T) < CivVdelderT logT + CQZT]t + Cs
t=1

which is exactly the statement of This completes the proof.

Proposition E.4 (Exploration term and logarithmic regret). Under Assumptions 2.1} 2.2} and 2.3]
and on the high-probability optimism event equation there exists a constant Copy > 0 such that

forall T > 2,
T
Z Kt/ Var, (xta yt) < Copt deluder IOg T. (E.17)

t=1
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Proof. Recall that F;_; denotes the o-algebra generated by all randomness up to round ¢ — 1 (con-
texts, actions, feedback, and algorithm randomness), and that feedback; denotes the preference
observation at round ¢. For each ¢, we define the per-round mutual information

I := I(0"; feedback; | F_1) = E [DKL (P(feedback, | 6%, F; 1) || P(feedback, | ft_l))},

where the expectation is taken over (6*, feedback;) and F;_1.

Step 1: Chain rule for mutual information. By the chain rule for mutual information applied to

the sequence feedback;. = (feedbacky, . .., feedbackr) we have
T T
I(0%; feedbacky.r) = > I(6”; feedback; | feedbacky, 1) = Y I (E.18)
t=1 t=1

Since F;_1 is the o-algebra generated by feedback;.; 1 together with the other past randomness of
the algorithm, we can (and will) work with the conditional information I(6*; feedback; | F;_1).

Step 2: Information-width inequality for the BTL model. Under the Bradley—Terry—Luce pref-
erence model with bounded rewards, the mutual information gained at round ¢ can be controlled by
the squared width of the corresponding confidence set. More precisely, combining the variance—
information lemma (Lemma with the construction of the confidence sets {G,} and the Lips-
chitz properties of the logistic link, there exists a constant ¢y > 0, depending only on the link and
the reward range, such that for every ¢ and every realization of F;_1,

1(0%;feedback, | Fy—1) < coE[w] | Fe_1], (E.19)
where wy is the width at time ¢,

w 14 w 14
Wt = Sup |f(xt7y7£ )7yt( )) - f/(‘rhyt )ayt( ))|
I, €6t

(Informally, equation [E.T9]says that, given the past, the amount of information we can gain at round
t is controlled by the squared width of the current confidence set at the queried comparison.)

Taking expectations of both sides of equation[E.19]and using the tower property yields
E[L,] = E[I(*;feedback, | F1—1)] < coE[E[w} | Fe—1]] = co E[wy]. (E.20)

Step 3: Summing over ¢ and invoking cumulative squared widths. Plugging equation[E.20]into
the chain rule equation [E.I8and using linearity of expectation, we obtain

T T
(0% feedbackyr) = Y I, = Y E[L] (E21)
t=1 t=1
T T
< Z co E[w?] = ¢ Z E[w?]. (E.22)
t=1 t=1

Lemma [D.7) (cumulative squared widths) now gives

T
Z]E[wf] < Oy deluder fr log(eT),

t=1
where doyder := dimpg(R, T‘l) is the T~ '-eluder dimension of the reward class. Combining this
with equation yields

1(0*; feedbacklzT) < ¢oCy deluder Br log(eT). (E.23)
Defining Ci,g, := coCl, gives the claimed information bound.

The remainder of the proof proceeds by combining this information bound with the variance-based

optimism inequality (bounding the instantaneous regret by r; \//'5}(9:,5, y¢)) and a dyadic decom-
position argument on the predictive variances. This shows that the cumulative optimism term

Zthl Ky \Et(xt, y¢) is at most Copideruder log(eT’), which is exactly the statement of Propo-
sition 0
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F FULL PROOFS FOR THE MDP EXTENSION

This section extends our preference-based analysis from contextual bandits to Markov Decision
Processes (MDPs) and provides full proofs for the finite-horizon and discounted regret bounds stated

in[Theorem 6.2 and[Section E 11

MDP SETUP AND NOTATION

‘We consider a finite-horizon MDP
M = (SvAaP7r*7p7H)a

with state space S, action space .A, transition kernel P, horizon H, and initial state distribution
p over S. The latent single-step reward function r* : S x A — [0,1] is unknown but assumed
realizable in our reward model class R = {ry : € ©} as in the bandit setting.

A (possibly non-stationary) policy 7 is a sequence 7 = ()i, with 7, (- | s) € A(A). We
write 75, (s) € A when 7, is deterministic. For any policy 7 we define the value and action-value
functions in the usual way:

H
Vi (s) == Eﬂ[z r*(St, At) ‘ Sp = s}, Qr(s,a) :==71"(s,a)+Eg, , ,~p(|s,a) [ Vig1(Sht1)]-
t=h
Let d} denote the marginal distribution of S}, when S; ~ p and the trajectory is generated by P
under policy 7 for steps 1, ..., h — 1. Note that dj; does not depend on the episode index.

The OTD-LE algorithm maintains an ensemble of reward models {ry : § € O} updated from
pairwise preferences using the same PAC-Bayesian machinery as in the bandit case. The environ-
ment never reveals numeric rewards; instead, in episode e the algorithm uses a particle 6. to form
pseudo-rewards

Rep :==19,(Sen, Ae,n),
which enter the temporal-difference targets used to update the value or @)-function parameters. For
example, in a value-based implementation we may use
Yen :=Ren + YV, ht1(Sent1)s

with v = 1 in the finite-horizon case and y € (0, 1) in the discounted case. All numeric quantities in
the TD updates are therefore computed from the learned reward model, while the environment pro-
vides only preference feedbackﬂ We write m, = (e, h)le for the (non-stationary) policy executed
in episode e and * = (7}):_ | for an optimal policy for r*.

The episodic MDP regret after 1" episodes is
T
Regret(T) := Y (V" (p) = V™ (p)),
e=1

which coincides with the contextual-bandit regret when H = 1.

Remark F.1 (MDP extension and preference feedback). In the MDP extension, the environment
never reveals ground-truth numeric rewards. We assume a latent single-step reward function r* :
S x A — [0,1] that induces the Bradley-Terry—Luce preference model in and we
fit a posterior over reward models {rg : 0 € ©} from pairwise preferences exactly as in the bandit
setting. In each episode e and at each stage h, OTD-LE forms a pseudo-reward

Re7h =T, (Se7h7 A&,h)7
where 0. is the particle used to act in episode e, and constructs TD targets (for value- or Q-function
updates) only from these pseudo-rewards together with next-state value estimates. In particular,
TD targets only ever use pseudo-rewards from ry; the environment is queried solely for preference
feedback, not for numeric rewards.

5This mirrors the standard “reward-model + RL” pipeline used in preference-based RL and RLHF; see the
discussion in App. L.
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F.1 MDP REGRET BOUNDS

Under Assumptions and the O-TDLE algorithm, run for 7" episodes, achieves a cumu-
lative regret that satisfies, with high probability:

Regret(T) = O (H 2 deluder - log T) + lower-order approximation terms, (F.1)

where the lower-order terms have a similar structure to the bandit case, summed over all 7' x H
steps.

Under the same assumptions, for an infinite-horizon discounted MDP, the O-DQLE algorithm run
for T steps achieves a cumulative regret that satisfies, with high probability:

A de uder . .
Regret(T) = O <(11d)3 -log T) + lower-order approximation terms. (F2)
-

F.2 PROOF FOR FINITE-HORIZON MDPs (SECTION F.1)

The proof requires adapting the regret decomposition to handle temporal dependencies. A naive ap-
plication of the value-difference lemma can lead to errors compounding exponentially in the horizon
H. To avoid this, we employ a more sophisticated policy decomposition technique.

Step 1: Regret decomposition via hybrid policies. Fix an episode e and write 7, = (7T€7h)hH:1
for the policy executed by OTD-LE and 7* = (7} )L, for an optimal policy. Forh = 1,..., H +1
define the hybrid policies 7(") by

ﬂ't(h)(s):: met(s), ¢ <h, t=1,...,H, seS.
i (s), t>h,

Thus #() = 7* (all steps optimal) and #(+1) = 7_ (all steps follow the learned policy). By
telescoping we obtain

H
Vfr*( Vlm Z( () V; (h“)(p)). (F3)

For each h, the three policies 7, (", 7("+1) agree on steps 1,...,h — 1, so they induce the same
state distribution dy° at step h. Moreover 7" and 7("*+1) both follow 7* from step h + 1 onward,
so their Q)-functions at step h coincide with QZ* . Applying the standard finite-horizon performance-
difference lemma with these observations yields, forevery h € {1,..., H},

() a(ht+1)

Vl ( ) Vl ( ) = ]ESeﬁhwd;;‘f {QZ* (Se,hv 7rh( e h)) Qh ( e,hs 7"'e,h(se,h))} . (F.4)

Equations equation [F:3] and equation [F.4]reduce the regret comparison between 7. and 7* to a sum
of H single-step advantage terms, one for each stage h.

Step 2: Bounding the single-step deviations. For a fixed episode e and stage h, define the instan-
taneous MDP regret

Ae,h = Q;:* (Se,ha ﬂ-h( e h)) Qh ( e h77re,h(Se,h))-

By equation we have V{r(} (p) = V™ ULH)( ) = E[A. ). Unrolling the Bellman recursion
shows that A, 5, is a bounded linear functional of the per-step latent reward function r* along the
suffix of the trajectory, so it can be written as the difference of two evaluations of ry at an (S x A)-
valued input. Consequently, the PAC—Bayesian posterior control, variance—information lemma, and
cumulative squared-width bound developed for the contextual bandit setting apply to each pair (e, h)
with the same eluder dimension dejuger-

On the high-probability optimism event from|Theorem E.4] the same argument as in the bandit case
yields

Aen < Keny/Ven + (finite-ensemble, discretization, and stochastic-gradient terms),

5 =
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where V. 5, is the posterior predictive variance of the relevant logit difference at (Se n, e n(Se,n)),
and k. j, is an exploration coefficient of order log(7'H). Summing this inequality overe = 1,...,T
and h = 1,..., H and applying the variance-information and cumulative squared-width bounds

from and gives a leading exploration term of order 6(H 2detuder log T'); the extra
factor H comes from the hybrid-policy decomposition equation

Step 3: Bounding Approximation Errors. The approximation errors from discretization, finite
ensembles, and stochastic gradients are summed over all 7" x H steps. The martingale concentration

arguments still apply, leading to lower-order terms of the form (5( TH(-)). With appropriate
scheduling of N, and B., these can be controlled. O

F.3 PROOF FOR DISCOUNTED MDPs (SECTION F.1J)

We now consider an infinite-horizon -discounted MDP with the same state and action spaces (S, A)
and latent reward model 7* : § x A — [0, 1]. For a policy 7 and initial distribution p we define

VT(p) :=E, [ivtr*(St,At) ’ So ~ p}.

t=0

The ~y-discounted state-occupancy measure of 7 is

d"(s):= (1= 7' Pr(Si=5|So~p), s€S.
t=0
This is a probability distribution on S. Let Q7 (s, a) denote the usual y-discounted action-value

function of 7. The performance-difference lemma for discounted MDPs then states that for any two
policies 7 and 7/,

1

V7 (0) = V7 (p) = g Bamar [ @7 (5,7(5)) = Q (5,m(5)). (F5)

In our setting, the algorithm produces a sequence of policies 7, ma,...,mr via OTD-LE using
pseudo-rewards ry, (s, a) from the learned reward model, exactly as described in the finite-horizon
case; the environment again supplies only preference feedback. Define the instantaneous regret at
round ¢ by

Ay = Q (Si,m(S1) = Q (S, mi(Sh)),
so that equation [F.5]implies

VT (p) = V™ (p) = ———E[A].

The same PAC-Bayesian, variance—information, and cumulative squared-width analysis as in the
contextual bandit setting shows that, on a high-probability event,

Ay < Kgy/ Vi + (finite-ensemble, discretization, and stochastic-gradient terms),

where V; is the posterior predictive variance of the queried logit difference at round . Summing
overt = 1,...,T and using the variance—information lemma together with the information—eluder

bound from yields
T ~
> E[A] = O(derwaer log T).

t=1

Combining this with the factor 1/(1 — +) from equation [F.5|and the finite-ensemble / discretization
/ stochastic-gradient bounds from gives the discounted MDP regret bound stated in

, with the leading term of order O (deluder (1—7)"%log T) and lower-order approximation
terms analogous to the contextual bandit case. (|

38



1
2

10

11

Under review as a conference paper at ICLR 2026

G IMPLEMENTATION DETAILS AND ADDITIONAL PSEUDOCODE

This section provides the computation cost discussion of OLE, necessary details of pseudocode
for the proposed algorithms and a discussion of hyperparameter schedules that achieve the optimal
regret rates.

G.1 COMPUTATIONAL COST OF OLE.

At each round ¢, Algorithm 2| performs a single projected SGLD update for each of the N, particles:
00 =01 = Veac(0") + V2nB€", 0y = Te(6),).

The stochastic gradient V.Jpac (ng)) is computed on a mini-batch B; of size | By| from the replay
buffer Dy, so its cost is O(|B| - dim(#)), exactly as in a standard SGD update on the same model.
The additional Gaussian-noise and projection operations are O(dim(#)) and therefore negligible
compared to the gradient computation. Hence the overall per-round complexity of OLE is

O(N; | By - dim(9)),

and the total cost up to horizon T'is O(N |B| T -dim(6)) when N := sup, N; and | B| := sup, | B:|.
In our regret analysis, IV; and | B;| are taken to be fixed (or at most polylogarithmic in 7"); the cor-
responding approximation errors appear only in the lower-order “Finite Ensemble” and “Stochastic
Gradient” terms of Theorem[5.1]and do not affect the leading dependence on T'. Thus, OLE is com-
putationally comparable to training a small ensemble of reward models with mini-batch SGD, and
all operations are polynomial-time in the problem parameters.

G.2 COMPLETE PSEUDOCODE

The following algorithms formalize the procedures analyzed in this paper. [Algorithm 2| provides the
generic template, |Algorithm 4f and [A lﬁorlthm 3| specifies the contextual bandit variant online con-

textual bandit variant respectively, and [Algorithm 5|details the extension to MDPs using temporal-
difference learning.

Algorithm 2: Optimistic Langevin Ensemble (OLE): Generic Template

Input: Prior Il; step sizes {n; }; ensemble sizes { N; }; batch sizes { B }; optimism schedule

{re}
fort=1,2,...,Tdo
Observe context xy;
// Optimistic Selection

Compute ensemble mean 7 (z, y) and variance @t(xt, y) forally € Y;

Construct optimistic index: I; (x4, y) + 7+(2¢,y) + Iit\/\//—a}t (24, 9);

Select action pair (ylgw)7 yt(é)) based on maximizing information gain using {I;(x+, y) }yey;

Receive preference feedback, forming data batch Dy;
// Posterior Update (SGLD)

Compute mini-batch gradient @t of Jpac(8) = ﬁpt (0) 4+ 8Dk (00| TTi—1);
fori=1,...,N;do

Draw Gaussian noise fii) ~ N(0,1);

91521 — egi) — Nt 6tJPAC(agi)) + \/Wft(i);

9&21 « Projg (515321)
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Algorithm 3: Optimistic Thompson Sampling with Langevin Ensembles (O-TSLE)

Input: Prior Iy, step size n, particles V¢, batch size By, optimism schedule ;.
1fort=1,2,...,T do
2 Draw {Qt(')}ivztl by 1 SGLD step from II;_; using B; samples;
3 Compute predictive mean 74 (y) and uncertainty 6 (y) over candidates y € ;
4 Select action y; € arg max, 7(y) + k:5¢(y);
5 Observe (pairwise) feedback at y; and update posterior to IT; (PAC-Bayes loss);

Algorithm 4: Optimistic Langevin Ensemble (OLE) — Contextual Bandit Variant (O-TSLE)

Input: Prior I1y; step sizes {7 }; ensemble sizes { N, }; batch sizes { B; }; optimism schedule

{re}
1fort=1,2,...,Tdo

2 Observe context x;;
// Optimistic Selection
3 Compute ensemble mean and variance for all y € ):

~ N,
4 Fe(ze,y) < N% >t Tl (T, y);

. N A~
5 V&I‘t(l‘t, y) A ﬁ Zi:tl (Tgii) (xta y) - ’I"t(aft, y))27

6 Construct optimistic index: Iy(x¢,y)  7i(xe, y) + Ky \//'zﬁ"t (zt,y);

7 Select action pair (y,gw)7 yy)) to query, based on maximizing information gain using
{Le(xe,y) byeys

8 Receive preference feedback for the selected pair, forming data batch Dy;

// Posterior Update
9 Compute mini-batch gradient V, of Jpac using D; (batch size By);

10

11

12

fori=1,...,N;do ‘
Draw Gaussian noise 5151) ~N(0,1);
Langevin step: 6&21 — 9752) - VthAC(Hf)) + /20,8 ft(l);

13 0&21 < PI‘Oj(_) (ét(igl)’

Algorithm 5: Optimistic TD with Langevin Ensembles (O-TDLE) for MDPs

Input: Prior IT; on Q-function parameters; step sizes {7, }; ensemble sizes { N, }; batch sizes
{B.}; optimism schedule {xp,}

for episode e = 1,2,...,T do

2 Initialize state sq;

3 for step h=1,2,...,H do

-

// Optimistic Action Selection
4 Compute ensemble mean Qe,h(sh, a) and variance Vare j,(sp, a) forall a € A;
5 Select action aj, = arg max, ¢ 4 (Qe,h(sh, a) + kpy/ Vare n(sh, a));
6 Execute ay,, observe next state s, and collect preference data for the transition;
7 | Form a pseudo-reward R, j, < 19, (sn,ap) using the current reward model ensemble;
// Posterior Update (after episode)
8 Form a batch of transitions and preferences D, from the episode;
9 Compute TD targets y5, = 7(sp, ap) + Y maxq Qe (Sh+1,a’) (using ensemble mean);

10 Compute mini-batch gradient V. of a TD-based loss on D, regularized by Dxy, (-||TI.—1);

1 Update all particles { 08)} to { 0@21} using one or more SGLD steps with gradient V. ;
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G.3 DISCUSSION OF HYPERPARAMETER SCHEDULES

Corollary [5.3] states that if the algorithmic parameters are scheduled appropriately, the lower-order
approximation error terms in the regret bound become asymptotically negligible, leaving a purely
logarithmic regret. Here we specify schedules that achieve this.

* Step Size (;): To ensure the cumulative discretization error 7, remains bounded, a

decreasing step size schedule is required. A standard choice is 17; = 19/t or 7; = 19/V/t.
With such schedules, the sum converges or grows slower than any linear function, making

the O(3_ ;) term sub-leading.

¢ Ensemble Size (/V;) and Batch Size (5;): To control the finite-ensemble and stochastic

gradient errors, whose cumulative sums scale as O(1/>_ 1/N;) and O(y/>_ 1/B;) re-

spectively (assuming bounded variances), we need the sums »_ 1/N; and > 1/B; to be
bounded. This can be achieved by increasing N; and B; over time. For example, setting
N; = [Nolog(t +1)] and B; = [Bylog(t + 1)] would suffice. A practical alternative is
an episodic schedule where N; and B; are increased (e.g., doubled) at the start of geomet-
rically spaced episodes. This ensures the approximation errors are effectively “paid for” by
the logarithmic exploration term.

These schedules demonstrate that our theory provides an asymptotic guarantee, and offers concrete,
practical guidance for algorithm design, directly connecting the theoretical results to the desired
performance outcome.

H EXPERIMENT

Experiment Settings. (1) Datasets . We evaluate our methods on the grade school math dataset
GSMSK |Cobbe et al.| (2021)), a collection of 8.5K high-quality, linguistically diverse word problems
that test basic mathematical skills requiring multi-step reasoning. In addition, we adopt zero-shot
prompts and rule-based evaluators to automatically assess the performance of LLMs. (2) Back-
bones. We use Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct Bai et al| as language model
backbones. (3) Baselines. Among widely adopted on-policy RL methods, GRPO
(2024), DAPO [Yu et al] (2023) and GPG share a common framework derived
from PPO |Schulman et al.| (2017). Instead of using generalized advantage estimation (GAE), they
adopt a group-wise relative estimation strategy. Concretely, a policy g generates a group G of
candidate rollouts for a given input, and the model is optimized to maximize the expected group-
level reward. We combine these three baselines with OLE to test our performance. (4) Evaluation.
In the experimental data processing phase, we strictly adhere to the original training-test set splits
provided for the GSM8K dataset to ensure the reproducibility of results and comparability with
prior studies. Specifically, for the original training set of each dataset, we further employ stratified
random sampling to partition it into a training subset and a validation subset at an 80%:20% ratio.
(6) Hyper-parameters Details. The maximum input sequence length is set to 512 tokens, and
the maximum number of generated tokens is 2048. The learning rate is 1 x 10~°. The number of
rollouts G is set to 4. The ole threshold percent is set to 0.8. The rank of lora r is set to 16. For
DAPO specifically, we set €y = 0.2 and epigp, = 0.28, with the number of resampling steps set to
3. (6) Implement Details. To ensure reproducibility, all experiments are implemented in PyTorch
with Python 3.11. Training and inference are conducted on 8 xA800-80G GPUs. All on-policy
RL baselines are implemented using the VeRL framework Sheng et al. (2025). All baselines are
carefully re-implemented and hyperparameter-tuned to ensure fair comparisons. Code is available
athttps://anonymous.4open.science/r/ICLR_OLE-B243.

From the experimental results, we observe a consistent pattern across different model sizes
(Qwen2.5-Instruct-1.5B and 3B) and optimization paradigms (GRPO, DAPO, GPG): after introduc-
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Table 7: GSMS8K results on Qwen2.5-Instruct models with OLE performance gain.
Model Method | Base (1) Drops (1) | Base+OLE (1) Drops (1) | Performance Gain (1)

GRPO 0.596 0 0.612 3944 2.69%

1.5B DAPO 0.497 0 0.596 4344 19.9%
GPG 0.596 0 0.613 4032 2.85%

GRPO 0.667 0 0.704 5964 5.55%

3B DAPO 0.707 0 0.712 5080 0.71%
GPG 0.635 0 0.680 6408 7.09%

Table 8: GSMS8K results of different training schedules for Qwen2.5-3B under GRPO.

Method | Acc (1) Drops (1) | Performance Gain (1)
GRPO Only 0.667 0 -
GRPO + OLE (full steps) 0.704 5964 +5.55%
20-step GRPO — OLE-enabled GRPO | 0.722 5820 +8.25%

ing OLE, all method—model combinations achieve positive performance gains on GSMS8K, while
simultaneously discarding a substantial number of training samples.

OLE works by estimating the marginal contribution of each sample to the overall optimization ob-
jective and selectively dropping those that provide limited benefit or introduce training noise. This
allows the training process to concentrate gradient updates on higher-value samples under the same
compute budget. On the efficiency side, the number of samples participating in backpropagation is
significantly reduced (e.g., thousands of samples are dropped for each configuration), which effec-
tively increases the number of informative updates per unit time. On the effectiveness side, we see
consistent improvements across both small and large models. The 1.5B+DAPO setting achieves the
largest relative gain of 19.9%, indicating that removing low-value samples is particularly benefi-
cial when the base optimizer is weaker or the model capacity is more constrained. Notably, even
the strong 3B+GRPO configuration now benefits from OLE, with a 5.55% relative improvement,
showing that sample filtering can still enhance performance in already competitive regimes.

Overall, these results support our theoretical hypothesis: by estimating sample value online and
dynamically discarding low-gain examples, OLE increases the ”’purity” of the training signal,
leading to both higher training efficiency and better final model performance, without increas-
ing computational cost.

Remark H.1 (Empirical validation and connection to rejection sampling in RL). The GSM8K exper-
iments with Qwen2.5—Instruct backbones and three on-policy RL baselines (GRPO, DAPO, GPG)
exhibit exactly the qualitative behavior predicted by our theory. Across all configurations in the
table, plugging OLE on top of the base RL optimizer yields consistent performance gains in the
Base+OLE column, while the Drops column shows that thousands of training updates are skipped
by the OLE filtering rule. This is consistent with the regret decomposition in[Theorem 3.1} the lead-
ing O(deluger log T') exploration term depends on how quickly the optimistic posterior concentrates,
not on using every on-policy sample. Discarding low-gain updates primarily shrinks the lower-order
stochastic gradient and approximation terms without changing the asymptotic rate, so we expect to
see better empirical performance at a comparable computational budget, which is exactly what the
table reports.

From an RL perspective, the OLE filter can be interpreted as a principled form of rejection sampling
over on-policy rollouts. For each input, the base policy and RL optimizer (GRPO, DAPO, or GPG)
generate a small group of candidate responses. OLE then evaluates the marginal contribution of
each candidate to the PAC-Bayesian objective and keeps only those above the OLE threshold, while
rejecting the rest. This accept/reject step plays the same structural role as the heuristic rejection
sampling used in many practical RLHF pipelines (e.g., discarding low-reward or low-score trajec-
tories), but here the acceptance rule is derived directly from the PAC-Bayes/Wasserstein gradient-
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flow analysis rather than chosen ad hoc. The fact that Base+OLE dominates the base RL methods
in all settings, despite the substantial number of rejected samples reported in the Drops column,
empirically corroborates our theoretical claim that optimally accepting only the most informative
preference updates can improve both generalization and sample efficiency in preference-based RL.

Optimism-Schedule Experiment. To further test whether OLE serves as an implicit optimism
mechanism, we run an additional experiment on Qwen2.5-3B + GRPO. Instead of enabling OLE
from the start, we first train with standard GRPO for 20 steps, allowing the model to exploit the data
uniformly and stabilize its initial representations. We then activate GRPO+OLE for the remaining
steps. In this phase, OLE prioritizes higher-uncertainty samples that provide larger information gain,
effectively shifting the training dynamics toward exploration.

This staged strategy achieves the best accuracy of 0.722, outperforming both pure GRPO and full-
length GRPO+OLE. The result indicates that activating OLE later in training allows the model
to explore informative, high-uncertainty samples more effectively once a stable baseline has been
formed. Empirically, this supports the design in Algorithm 2] where both the number of particles N
and the optimism coefficient x, are gradually increased to achieve a practical and effective balance
between early exploitation and later exploration.

I LOWER BOUND AND OPTIMALITY

Remark I.1 (On lower bounds and optimality in T'). We demonstrate with a Proposition[[.2|showing
that even in the non-contextual, finite-action special case of our model, with the same Bradley—
Terry-Luce (BTL) preference structure and bounded rewards as in Theorem[5.1) any uniformly good
algorithm must incur expected regret at least of order logT. More precisely, for each fixed instance
with positive gaps A, = r*(y*) — r*(y) > 0 one has E[Regret(T)] > ciow(r*)logT for all
sufficiently large T, and on a gap-separated subclass with minimum gap A, > 0 there exists a
constant Ciow (Amin) > 0 such that

sup E[Regret(T)] > ciow(Amin)logT  for all sufficiently large T.
instances with gaps > A min
Within this structural class, the dependence on the horizon T in Theorem [3.1| can therefore not
be improved below logarithmic order: up to absolute constants, polylogarithmic factors, and the
eluder-dimension factor dejnder, our upper bound is optimal in its T-dependence.

At the same time, our result is fully compatible with the well-known Q(d\/f) minimax lower
bounds for contextual dueling bandits, such as the linear setting studied by Bengs et al.| (2022]).
In that literature the learner selects a pair of actions (agl), aEQ)) at each round, observes a single
noisy comparison between them, and performance is measured by a dueling-regret notion (weak
or strong) over such pairs—roughly, how often the chosen pair loses or fails to beat the best arm.
The Q(d\/f) lower bound is minimax for this pair-action, dueling-regret problem. By contrast,
in our setting the algorithm selects a single action y, at each round (or per state in the MDP),
may query preferences involving 1, and regret is the standard single-action cumulative regret
Regret(T) = Zthl (r*(24, y*(24)) — 7* (24, y¢)). The contextual dueling lower bound does not
provide a lower bound for Regret(7T') in this single-action setting, just as Proposition [L.2] does not
make any claim about dueling regret over pairs of actions. The two results address different minimax
problems and can hold simultaneously without contradiction.

In summary, Theorem should be read as a uniform fast-rate O(dguder log T') bound for single-
action regret under our structural assumptions (realizability, boundedness, Lipschitz continuity, fi-
nite eluder dimension, and BTL preferences), and Proposition [[.2] shows that its logarithmic depen-
dence on 7' is essentially optimal within this class.

Proposition 1.2 (Logarithmic lower bound in the BTL preference setting). Consider the non-
contextual special case of our model with a finite action set Y = {1,..., K} and Bradley-Terry—
Luce preferences generated from a latent reward vector r* € [0, 1]%. At each round t, the algorithm
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chooses a single action y, € Y and observes one bit of preference feedback comparing y, to a fixed
baseline action yo € Y, according to

Pye = yo | ye) = o(r*(ye) — (o)),
where o is the logistic link. Regret is the standard single-action regret

T

Regret(T) = > (r"(y*) —r*(w)), y* € arg max s (y).
t=1

Assume there is a unique optimal action y* and that all gaps A, = v*(y*) — r*(y) for y # y*
are strictly positive. Let p, := o (r*(y) — r*(yo)) and let KL(-||-) denote the Bernoulli Kullback—
Leibler divergence. Then, for any (possibly randomized) algorithm A that is uniformly good in the
sense of Lai and Robbins (1985),

. . E.«[Regret 4(T)]
lim inf
T—o00 log T

Ay
—_— I.1
Z KL(py pr*) b

y#Y*

In particular, since {r*(y)}, are bounded and the logistic logit range is therefore bounded, there
exists a constant Cy, < oo such that KL(py||py~) < CKLAz for all y # y*, and hence for any
fixed instance there is a ciow (r*) > 0 such that

E, [RegretA(T)] > cow(r) logT  for all sufficiently large T.

Proof. Fix an instance specified by a latent reward vector 7* € [0, 1]¥ and a baseline action y € V.
Recall that by assumption there is a unique optimal action y* € arg max,cy r*(y) and that the gaps
Ay = r*(y*) — r*(y) are strictly positive for all y # y*.

Step 1: Reduction to a Bernoulli bandit. At each round ¢, the algorithm chooses a single action
y¢ € Y. The feedback is one bit indicating whether y; is preferred to the fixed baseline y; under the
BTL model equation [2.T] this bit is

Zy =Wy = yo},  Zi | (ye = y) ~ Bernoulli(py),
with

py=0(r*(y) =" (),  olz)=Q1+e )"
Thus, from the viewpoint of the learning algorithm, this non-contextual preference problem is ex-
actly a K-armed stochastic bandit with Bernoulli rewards {py}?i(:l: on each round the algorithm
chooses an arm y and observes an independent Bernoulli sample with mean p,,.
Let N, (T) := ZtT:l 1{y; = y} denote the number of times arm y is played up to time 7. By
definition of the regret in the proposition,

Regret(T) =Y (r(y") =" () = D Ay Ny(T).
t=1 y#y*

Taking expectations under the fixed instance r* gives

E, [Regret(T)] = Z Ay B [N, (T)). (1.2)
Y#EY*

Step 2: Applying the Lai-Robbins lower bound. The family of Bernoulli distributions
{Bernoulli(p,) : y € Y} is a one-parameter exponential family, with canonical parameter
0, = log(py/(1 — p,)) and mean p,. The classical theorem of Lai and Robbins (Lai-Robbins
bound) [Lai & Robbins| (1985) applies to this setting. In the notation of that theorem, an algorithm
is uniformly good if, for every bandit instance, its regret grows slower than any power of 7": for all
a > 0 and all arms y,

E[N,(T)] = o(T*) asT — oo.
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Under this condition, Lai and Robbins show that for each suboptimal arm y # y*,
lim inf E,- [Ny (T)] > ! ,
T—o0 logT KL(vy [[vy+)

where v, and vy~ are the reward distributions of arms y and y*. In the Bernoulli case, v, is fully
determined by p,, and KL(vy||v,+) = KL(py||p,+) is the usual Bernoulli Kullback-Leibler diver-
gence.

We now combine equation [[.2]and equation [[.3] For each T,

E,. [Regret(T)] E,. [N,(T)]
logT N Z By logT

1.3)

yFAy*

Because the sum is finite (over the ' — 1 suboptimal arms) and all terms in the sum are nonnegative,
we may pass the lim inf through the sum:

. o Ep-[Regret(T)] . Er- [Ny (T)]
it = e it 2 AT
re [Ny (T)]
> Ay li f —_—

D Ay limin log T

y#Y*

>y Ay

KL <)’
vy (Py | Py+)

which is exactly the bound stated in equation[L.1]

Step 3: Positivity and logarithmic growth. We now argue that the right-hand side is strictly
positive and finite, which yields the claimed logarithmic growth rate.

First, because 7*(y*) > r*(y) for all y # y*, we have A, > 0 for all y # y*. The BTL link o is
strictly increasing, so p, < p,« for each y # y*, and therefore KL(p,||p,«) > 0 for all y # y*.

Second, the rewards are bounded in [0, 1], so for any y we have r*(y) — r*(yo) € [—1, 1] and hence
py = o(r*(y) —r*(yo)) lies in the compact interval [o(—1), o (1)] C (0, 1). Thus the pairs (p,,, py+)
all belong to the compact set

[o(=1),5(1)]* € (0,1)2.

The function

KL(pllg) p£q

o ( )2 ) )
Fod =3 O iy
WSy (u—p)2 ’

is continuous and finite on (0, 1), and hence on the compact subset [o0(—1), o (1)]?. In particular,
there exists a finite constant Cky, < oo such that

KL(py”Py*) < CkL (Py - Py*)2 for all y.
Since o is smooth and strictly monotone on [—1, 1], the mean-value theorem gives, for each y # y*,
pyr — Dy = (P (y") — " (yo)) — o (r* () — *(w0)) = 0’ (&) A

for some &, between r*(y*) — r*(yo) and 7*(y) — r* (yo). The derivative 0’ (z) = o(z)(1 —o(2)) is
strictly positive and continuous on R, so on the compact interval [—1, 1] it attains a positive minimum
Amin > 0 and a finite maximum A, < oco. Hence

)\minAy < Py — Dy < AlnaxAy for all Yy 7é y*'
Combining the two displays, we obtain
KL(pyllpy+) < Ckr(py — py)2 < CKL)‘IZ‘ﬂaXAy’

and thus
Ay 1 1

>
KL(py”py*) o CKL)‘mux AZ/

>0 for each y # y*.
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Since there are finitely many suboptimal arms, the sum

L(r*) := Z KLl oy By

yEy* (pyllpy+)
is strictly positive and finite for every fixed instance r*. From equation [[.T| we have

lirm i E,~[Regret(T)]

> L(r").
T—o00 log T 2 L)

By the definition of the liminf, there exists To(r*) < oo such that E,«[Regret(T)]/logT
LL(r*) forall T > Ty(r*). Setting Ciow (r*) := $L(r*) > 0 yields

E,«[Regret(T)] > ciow(r™) logT forall T > To(r"),

which is the claimed logarithmic lower bound.
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