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Abstract

The development of domain-specific language models has be-
come increasingly important in healthcare, where the com-
plexity and precision of medical knowledge often exceed
the capabilities of general-purpose large language models
(LLMs). This study introduces Ophtimus-LLM, a compact 8-
billion-parameter LLM tailored for ophthalmology. Key find-
ings demonstrate that scalability laws observed in larger mod-
els also hold true for smaller, domain-specific LLMs, sug-
gesting that well-designed compact models can achieve high
performance. Additionally, the study highlights the critical
role of data quality in boosting model accuracy, with signif-
icant gains observed when training on domain-relevant con-
tent. Ophtimus-LLM exemplifies the potential of specialized
LLMs to provide efficient, accessible, and high-performing
tools for advancing medical AI while addressing challenges
of scalability and equity in healthcare technology.

1 Introduction
The proliferation of large language models (LLMs) has un-
locked opportunities to transform various domains, includ-
ing healthcare (Anil et al. 2023; Jiang et al. 2024; Yang
et al. 2022). As the capabilities of state-of-the-art (SOTA)
general-purpose LLMs expand, concerns regarding accessi-
bility, equity, and practicality in their deployment continue
to grow (Pierson et al. 2025; Weidinger et al. 2022).

Access to computational resources and equitable technol-
ogy distribution significantly influence healthcare outcomes
(Nambisan and Nambisan 2017; Bajwa et al. 2021). Health-
care systems worldwide face persistent disparities in ac-
cess to quality care, driven by socioeconomic, geographic,
and systemic barriers (Mullins et al. 2005; Tzenios 2019).
AI has the potential to bridge some of these gaps by pro-
viding decision-support tools, automating repetitive tasks,
and improving diagnostic accuracy (Elhaddad and Hamam
2024; Aminizadeh et al. 2024). Yet, the computational de-
mands and high costs of deploying state-of-the-art general-
purpose models could make them inaccessible to resource-
constrained healthcare settings, particularly in underserved
and low-income regions (Wahl et al. 2018; Hu et al. 2025).
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Moreover, despite their impressive versatility, general-
purpose LLMs frequently fail to capture the specialized
knowledge required for domains like ophthalmology (Zhao
et al. 2023; Haghighi et al. 2024). The lack of domain-
specific expertise in these models can lead to suboptimal
or incorrect clinical recommendations, undermining trust in
AI. Furthermore, privacy concerns and exposing sensitive
information to third-party services must be addressed for
trustworthy deployment (Wu, Duan, and Ni 2024; Yan et al.
2024; Yao et al. 2024). The costs of running large-scale
models and the concerns about trustworthiness highlight the
need for an alternative solution.

In this situation, smaller, more efficient, and domain-
specific models emerge as a compelling solution (Sanh
2019; Jiao et al. 2019; Sun et al. 2020; Zhang et al. 2024).
The focus on the targeted application allows these models to
deliver high-performance outcomes with significantly lower
computational overhead. Additionally, the smaller size al-
lows for less data to achieve comparable performance to
their counterparts. However, several challenges remain in
determining the best approach for developing such domain-
specific solutions. First, there is a high cost for curating qual-
ity datasets. Creating high-quality datasets for healthcare AI
requires significant resources, as domain-specific data often
needs to be sourced from paid academic journals, clinical
guidelines, and textbooks (Chia et al. 2024). Beyond acqui-
sition, ensuring data accuracy and relevance demands expert
validation, meticulous annotation, and rigorous filtering. Pri-
vacy regulations, such as de-identifying patient data, further
increase the time and financial investment needed to pre-
pare datasets suitable for training reliable medical models.
Second, there may be high computational costs for train-
ing and deploying the model (Samsi et al. 2023). Training
language models involves significant computational costs,
requiring specialized hardware such as GPUs or TPUs to
process large datasets and optimize billions of parameters.
This demands substantial energy consumption and infras-
tructure, increasing both financial and environmental costs.
Deployment also carries computational overhead, especially
for real-time applications, as serving large models requires
high-performance servers with consistent uptime (Griggs
et al. 2024). These costs can be prohibitive, particularly for
smaller organizations or resource-constrained settings, lim-
iting widespread accessibility and scalability.



In this study, we develop and present Ophtimus-LLM, a set
of LLMs tailored for Ophthalmology. Ophtimus-LLM was
trained on high-quality domain-specific data and fine-tuned
to optimize its performance on ophthalmology-related tasks.
We explore various approaches for curating domain-specific
data and computationally efficient methods for fine-tuning.
We summarize the main contribution of this study:

1. We present Ophtimus-LLM, a set of lightweight LLMs
tailored for ophthalmology with empirical results demon-
strating our approach’s effectiveness that combines pre-
training and fine-tuning.

2. We present an approach for collecting a high-quality
dataset for fine-tuning and demonstrating the effective-
ness of model performance.

3. Results from ablation studies demonstrating the impor-
tance of data quality and model parameter size for im-
proved performance.

This work highlights the need for specialized AI models
to improve inclusivity, efficiency, and equity in healthcare.

2 Related Work
General-purpose LLMs and Medical LLMs. Many
general-purpose large language models (LLMs) have been
introduced in recent years (Achiam et al. 2023; Anil et al.
2023; Team et al. 2024; Dubey et al. 2024). These mod-
els have demonstrated success across a wide range of tasks,
such as question answering (Anil et al. 2023) and code gen-
eration (Jiang et al. 2024). Their applications are now ex-
tending into the medical domains (Lehman et al. 2023).
Many medical LLMs have been developed, demonstrat-
ing promising results in tasks such as medical question
answering, generating chest X-ray reports, and perform-
ing on the United States Medical Licensing Exam (Yang
et al. 2022; Singhal et al. 2023a,b; Kung et al. 2023; Ay-
ers et al. 2023; Tu et al. 2024; Han et al. 2023; Saab et al.
2024). A systematic review of medical LLMs is available in
(Thirunavukarasu et al. 2023).

LLMs for Ophtahlmology. There is a growing demand
for smaller, domain-specific LLMs tailored to particular
fields within medicine, for example, in ophthalmology. In
experiments on the Ophthalmic Knowledge Assessment
Program (OKAP), the United States Medical Licensing
Examination (USMLE), and the Board of Ophthalmology
Written Qualifying Examination, general-purpose models
lack in ophthalmology-specific performance (Antaki et al.
2023; Haddad, Saade et al. 2024; Shemer et al. 2024).
To address this need, various ophthalmology-specialized
LLMs have been proposed (Tan et al. 2024; Zhao et al.
2023; Haghighi et al. 2024; Singer et al. 2024; Chen et al.
2024b; Gilson et al. 2024; Chen et al. 2024a). These mod-
els are generally obtained by fine-tuning general LLMs and
are designed for different tasks, such as disease diagnosis,
knowledge-based question answering (QA), and long-form
QA. Further reviews on ophthalmology LLMs can be found
in (Betzler et al. 2023; Sevgi et al. 2024; Wong et al. 2024).

Approaches and need for small-scale LLMs. Despite
the capabilities of LLMs, several small language models
(SLMs) have been developed due to their lower computa-
tional costs both during training and inference. Examples in-
clude DistilBERT (Sanh 2019), TinyBERT (Jiao et al. 2019),
MobileBERT (Sun et al. 2020), and TinyLlama (Zhang et al.
2024). SLMs are typically created using techniques such as
pruning, knowledge distillation, and quantization. For fur-
ther details on the training methodologies, applications, and
trustworthiness of SLMs, refer to comprehensive surveys on
this topic (Wang et al. 2024).

3 Methods
3.1 Dataset Curation
In developing domain-specific language models, curating
high-quality datasets is a crucial step that greatly influences
the model’s performance and usefulness. Unlike general-
purpose language models that are trained on large and var-
ied datasets, domain-specific models require datasets that
are both comprehensive and precise to maintain relevance
to their specialized fields. This is particularly crucial in
medicine, where accuracy and contextual understanding are
essential for clinical applications.

For Ophthimus-LLM, we aim to construct a dataset that
encompasses the expertise of ophthalmology while ensuring
accuracy and diversity, enabling the model to demonstrate
reliability and utility in real-world clinical settings.

3.2 Base Model
The base models for the proposed Ophtimus-LLM were
Meta LLaMA 3, LLaMA 3.1, and LLaMA 3.2. These were
selected for their proven performance and efficient archi-
tecture. All versions provide strong foundational language
capabilities while being computationally efficient, which is
crucial for creating a highly accurate specialized model with
manageable resource requirements. In this work, we explore
combining a self-supervised pre-training phase along with a
fine-tuning stage with an instruction question-answer (QA)
dataset. We detail our method for both datasets in Sec. 3.3
(pre-training) and Sec. 3.4 (fine-tuning).

3.3 Pre-training Dataset
The pre-training dataset for the development of Ophtimus-
LLM is curated through a systematic and rigorous process
to ensure high-quality and domain-specific content, as illus-
trated in Fig. 2. The key steps involved in constructing the
pre-training dataset are as follows:

1. Source Data Collection. A list of 25 ophthalmology-
specific keywords was selected to capture a broad spec-
trum of topics within the field. These keywords included
“glaucoma,” “cataracts,” “retinal detachment,” and other
crucial terms relevant to ophthalmic practice and re-
search. Based on these keywords, a pre-training dataset
is constructed using PubMed. This database was selected
for its extensive collection of expert-reviewed biomedi-
cal literature, resulting in the collection of 11,487 open-
access articles related to 25 specific keywords.



Figure 1: Overview of training process of Ophtimus-LLM

2. Data Filtering. Source data was filtered according to
a language and relevance criterion. For language, only
English-language papers were retained. For relevance,
GPT-4o was used to remove papers unrelated to ophthal-
mology, despite containing relevant keywords. This pro-
cess reduced the dataset to approximately 9,200 papers.

3. Content Summarization. The filtered papers are prepro-
cessed using GPT-4o and the Map-Reduce method to ex-
tract key information on diseases, symptoms, treatments,
and clinical cases, resulting in high-quality, domain-
focused summaries.

4. Additional Data Preprocessing. Deduplication of the
text was used to remove redundancy, retaining only
unique content. In addition, Personally identifiable infor-
mation (PII) was redacted. Ultimately, a corpus of ap-
proximately 12.2 million tokens was derived from around
9,200 carefully curated papers. This dataset provides
a comprehensive foundation for pre-training, enhanc-
ing the model’s performance in ophthalmology-specific
tasks.

3.4 Fine-tuning Dataset
The fine-tuning dataset enhances domain expertise by
adding specialized knowledge to the pre-trained model. It
is also designed to ensure that the model provides answers
in the correct format according to given instructions. A high-
quality QA dataset was constructed as follows (See Fig. 4):

1. Source Data Collection. Using publicly accessible re-
sources, we curated a collection of several ophthalmol-
ogy textbooks totaling over 9,000 pages of source mate-
rial. The manuscripts were selected to ensure high con-
tent accuracy and diversity. We extracted the textual in-
formation from each page of the manuscripts.

2. Content Summarization. Similar to the pretraining, the
textbook manuscripts undergo preprocessing with GPT-
4o to extract essential information while omitting un-
necessary content such as publisher details, figure de-
scriptions, and other irrelevant elements. This process
produces high-quality, domain-specific summaries. This
helps avoid creating data that may hinder training, such

Figure 2: Pre-Training Dataset Building Process Pipeline

as domain-irrelevant or non-generalizable questions, dur-
ing the Ophthalmology QA generation.

3. Ophthalmology QA Generation. Two types of QA
pairs are generated using GPT-4o:

• Descriptive/Essay QA (EQA): QAs that need descrip-
tions of symptoms, treatments, and disease diagnoses.

• Multi-Choice QA (MCQA): QAs in yes/no or multi-
ple choice (with 4 or 5 options) formats. In addition,
explanations were generated to enhance the model’s
accuracy and clarity.

A total of 28,000 MCQA pairs and 47,000 EQAs were
generated. The MCQAs and EQAs covered a wide range



# of Ophthal QA
Dataset Year Original Ophth-related
Multi-Choice QA (MCQA)
(a) Ophtimus-Eval - - 2,156
(b) MedMCQA 2022 182k 6,932
(c) PubMedQA 2019 11k 298

Total - - 9,386
Essay QA (EQA)
(a) MedQuAD 2019 47k 667
(b) Medical Flashcards 2023 34k 543
(c) Medical Wikwdoc 2023 10k 179

Total - - 1,389

Table 1: Evaluation Dataset

of topics for a comprehensive evaluation of the model’s
knowledge.

3.5 Fine-tuning Methodology
Fig. 1 illustrates the various configurations of pretraining
and fine-tuning that were applied to develop our model.
Four approaches were explored, differing primarily in the
choice of the foundation model used for fine-tuning. In
the first approach, we pre-train the Llama-3-8B base model
with our ophthalmology-specific pretraining dataset (Sec.
3.3) (Ophtimus-8B-PT-FT). Second, to evaluate the effect of
pretraining, we only fine-tune Llama-3.1-8B (Ophtimus-8B-
FT). For the third and fourth models, in order to investigate
model size, we fine-tune the 3B and 1B variants of Llama-
3.2 (Ophtimus-3B-FT, Ophtimus-1B-FT, respectively).

Quantization and LoRA. Reducing computational costs
is a key aim of the study. For this quantization and Low-
Rank Adaptation (LoRA) techniques were applied to opti-
mize efficiency during fine-tuning. Quantization from 16-bit
to 4-bit precision reduced GPU memory by approximately
4X. LoRA was applied to all layers, with lora alpha =
16 and rank = 32.

4 Evaluation and Results
4.1 Evaluation Dataset
For the evaluation, MCQAs were curated from publicly
available resources, independent of training material. A total
of 2156 MCQA from 19 subfields of ophthalmology, which
we call Ophtimus-Eval. Questions were reviewed for va-
lidity and overall quality. Note that although curated from
publicly accessible sources, we will limit access until fur-
ther validation and provide access with proper permissions.
In addition, we selected ophthalmology-specific QAs from
available medical benchmark datasets for evaluation, includ-
ing MedMCQA, PubMedQA, MedQuAD, and other verified
medical QA sources. Details on the datasets and number of
data entries can be found in Table 1 and Sec. D.

4.2 Evaluation Metrics
For MCQA, answer accuracy was computed. For EQA,
Rouge-L (Lin 2004), BLEU (Papineni et al. 2002), ME-
TEOR (Lavie and Agarwal 2007), and SemScore (Aynet-

dinov and Akbik 2024) was used. In particular, SemScore
is an evaluation metric for assessing LLM outputs by mea-
suring semantic similarity to reference responses, offering
a closer alignment with human judgment compared to tradi-
tional metrics like BLEU or ROUGE. Additional description
can be found in Sec. E.

4.3 Benchmark Comparison Models

Eye-Llama (Haghighi et al. 2024) is a specialized 7B-
parameter LLM for ophthalmology, built on LLaMA 2 and
pre-trained on domain-specific texts like PubMed abstracts,
textbooks, and EyeWiki articles to capture ophthalmic
knowledge. It was fine-tuned using diverse ophthalmology-
focused QA datasets, including MedMCQA, PubMedQA,
and patient-doctor discussions from the American Academy
of Ophthalmology (AAO) forum.
PMC-Llama (Wu et al. 2024) is a 13B-parameter open-

source LLM based on Meta’s LLaMA, designed for medical
applications through two training stages: knowledge injec-
tion with medical corpora pre-training and medical-specific
instruction tuning using QA and conversational datasets.
This enables it to outperform general-purpose models on
medical QA benchmarks, making it a robust and scalable
solution for clinical and research applications.

4.4 Results

Overall Results. Table 2 describes the overall results of
the evaluation. In general, GPT-4o outperformed all mod-
els evaluated in this study. This is unsurprising, consider-
ing the scale of GPT-4o. Even so, on our specialized dataset
(Ophtimus-Eval), GPT-4o had lower performance. This in-
dicates the relative uniqueness of the questions curated.

Outside of GPT-4o, our model, Ophtimus-8B-PT-FT,
showed the best performance on the Ophtimus-Eval dataset
and comparable performances to other models on the other
benchmark datasets. Eye-LLama and PMC-Llama were
trained on the PubMedQA dataset, which is expected to lead
to better performance. Nonetheless, the comparable perfor-
mance of our models on ophthalmology-specific questions
is noteworthy. The effect of pre-training appears minimal
when comparing the 8B-FT and 8B-PT-FT. We suspect it
is due to the limited diversity of the source data and insuffi-
cient data volume. Further exploration is needed.

Evidence of Scaling Laws. An interesting observation of
our results is that the model performance seems to increase
as the model size increases. Fig. 3 depicts an example of
questions and the subsequent answers by the models of var-
ious sizes. It can be observed that the length and accuracy
of the answer seem to improve as the model size increases.
This scaling phenomenon has been observed in many in-
stances throughout the literature. However, the performance
of PMC-Llama-13B on our evaluation dataset was signifi-
cantly lower, indicating that model size is not the only factor
that can improve performance in specialized domains. These
factors are explored in Section 4.5.



Figure 3: Comparison of Ophtimus-LLM models’ answers to MCQA/EQA sample.

4.5 Ablation Studies
To better understand the factors influencing model perfor-
mance, we present the results of several ablation studies.

Fine-tuning data quality. In order to illustrate the qual-
ity of our curated dataset, using the same methodology de-
scribed in Sec. 3.4, 12,600 questions were derived from the
PubMed pre-training dataset described in Sec. 3.3. In total,
6,300 MCQA pairs and 6,300 EQA pairs were created. The
same number of questions were uniformly randomly cho-
sen from the textbook-based fine-tuning QA dataset. The
overall results can be seen in Table 3. The model trained on
the textbook-based QA dataset demonstrated slightly better
performance on our Ophtimus-Eval dataset and the ophthal-
mology questions from the MedMCQA dataset. Conversely,
for the ophthalmology questions in the PubMedQA dataset,
the opposite was true. This phenomenon is expected as the
terminology and concepts in PubMed are likely have simi-
lar characteristics. Future studies could potentially quantify
these effects. The smaller difference in the Ophtimus-Eval
dataset can be attributed to the disproportionate number of
questions on specific topics, such as general ophthalmology.

When analyzing the performance across the 19 topics in
our Ophtimus-Eval dataset, as shown in Table 4, fine-tuning
on the textbook dataset demonstrated equal or superior per-
formance compared to the base Llama-3.1 model for 13 out
of the 19 topics. In contrast, the model fine-tuned on the
PubMed-based dataset only showed improved performance
for 6 out of the 19 topics. Overall, either fine-tuned model
outperformed the base model for most of the topics. These
results demonstrate the quality of the dataset curated with
the proposed approach in Sec. 3.1.

Improving Performance on Individual Topics. The per-
formance comparison of the models across various topics is
detailed in Appendix B.1. Among all the topics, the models
performed the worst in the optics category. This lower per-
formance may be attributed to a lack of QA samples in the
fine-tuning dataset for that category compared to the others.

To explore this, we derived an additional 1090 MCQA
samples from an text source not included in the initial fine-
tuning dataset. The Ophtimus-8B-PT-FT model was trained
for an additional five epochs on the additional samples. As
can be seen in Fig. 5 in Appendix B.2 and Table 5, the per-
formance on the topic increases to 40.3% after 4 epochs.

The additional training on the optics topic affected perfor-
mance in other areas. A detailed breakdown of the changes
by topic is available in Table 7 in Appendix B.2. Accord-
ing to Table 5, there was an overall performance decline, re-
sulting in a score of 56.61%. This decline may be attributed
to the limited capacity of smaller models. Further research
is necessary to improve performance without compromising
the knowledge that has already been learned.

Evaluation of early stopping. Training for multiple
epochs is less common with large-scale datasets and LLMs.
However, in our experiments, we found that when using a
validation set that comprised 1% of the training data, per-
formance improved after several epochs. To determine the
optimal number of epochs, we trained each model for a
maximum of 5 epochs and evaluated its performance on the
evaluation dataset. Detailed results can be found in Table
8 in Appendix C. The findings suggest that while multiple
epochs can be beneficial, implementing an early stopping
criterion may be necessary to prevent overfitting.



Multi-Choice Question Essay Question

Model Ophtimus MedMCQA PubmedQA
Eval (Ophth) (Ophth) RougeL BLEU METEOR SemScore

OpenAI GPT-4o 71.95% 81.95% 89.90% 0.193 0.082 0.341 0.761
Llama-3-8B-Instrct 48.60% 74.02% 63.97% 0.193 0.064 0.244 0.684
Llama-3.1-8B-Instrct 39.78% 57.96% 83.84% 0.177 0.054 0.215 0.641
Eye-Llama 32.56% 59.43% 66.11% 0.183 0.062 0.211 0.686
PMC-Llama-13B 48.28% 63.45% 72.48% 0.223 0.082 0.288 0.714
Ophtimus-1B-FT 34.77% 38.44% 68.46% 0.219 0.076 0.217 0.711
Ophtimus-3B-FT 46.01% 51.01% 69.80% 0.224 0.077 0.225 0.726
Ophtimus-8B-FT 57.78% 59.49% 72.48% 0.226 0.083 0.230 0.733
Ophtimus-8B-PT-FT 59.13% 58.82% 71.14% 0.222 0.079 0.224 0.735

Table 2: Overall results of evaluation for various models.

Multi-Choice Question

Dataset Our Eval Dataset MedMCQA PubMedQA
Ophtimus Eval (Ophth.) (Ophth.)

PubMed 48.09% 58.71% 78.11%
Textbook 50.18% 64.05% 54.54%

Table 3: Comparison of training data quality.

Model

Topic Llama-3.1 Ophtimus-8B Ophtimus-8B
8B-Instruct (PubMed) (Textbook)

ANTERIOR SEGMENT 26.7% 26.7% 36.7%
Cataract 37.5% 37.5% 37.5%
Conjunctiva 33.3% 66.7% 71.4%
Cornea 33.0% 36.4% 42.0%
Error of Refraction 36.8% 47.4% 52.6%
General Ophthalmology 42.4% 52.5% 55.8%
Glaucoma 40.5% 50.3% 50.3%
Neuro Ophthalmology 32.1% 46.7% 47.3%
Ocular Trauma 53.6% 67.9% 60.7%
Oculoplastic 36.4% 27.3% 36.4%
Optics 34.7% 32.2% 31.8%
ORBIT LIDS ADNEXA 47.9% 47.0% 49.6%
Pathology 47.8% 64.2% 67.2%
PEDIATRICS STRABISMUS 34.5% 45.5% 45.5%
PHARMACOLOGY 55.0% 55.0% 57.5%
POSTERIOR SEGMENT 33.3% 40.0% 40.0%
Retina & vitreous 30.8% 30.8% 23.1%
Systemic diseases 62.5% 37.5% 50.0%
UVEITIS 17.5% 50.0% 45.0%

Table 4: Comparison of performance on various topics. Bold
indicates the top score in a topic and underlines indicate the
next best.

5 Discussion

Quantitative metrics for data quality. In this study,
we demonstrated the importance of high-quality, diverse
datasets for training models in specialized domains like oph-
thalmology, where dataset richness directly impacts perfor-
mance. However, reliable methods for evaluating data qual-
ity remain underdeveloped. Developing quantitative metrics
to evaluate dataset diversity and alignment with clinical re-
quirements may result in curating datasets that more accu-
rately reflect the complexities of target domains.

Model
Topic Ophtimus-PT-FT w/ Optics FT
Optics 37.0% 40.3% (+3.3%)
Overall Performance 59.13% 56.61%

Table 5: Comparison of performance after fine-tuning on ad-
ditional Optics dataset.

Limitations in evaluation for clinical utility. While this
study showcases the potential of domain-specific models
like Ophtimus-LLM in ophthalmology, evaluating their clin-
ical utility remains challenging. Standardized datasets and
metrics often fail to capture the nuances of real-world clin-
ical scenarios. Traditional benchmarks do not fully address
critical factors such as interpretability, robustness, and work-
flow integration. To overcome these limitations, new evalua-
tion frameworks must incorporate clinician feedback, simu-
late real-world conditions, and assess the broader impact on
healthcare delivery.

6 Conclusion

In this work, we developed Ophtimus-LLM, a compact yet
high-performing language model tailored to ophthalmology.
By leveraging carefully curated datasets and efficient train-
ing techniques, we demonstrated robust performance with-
out depending on resource-intensive, large-scale models.
This highlights the importance of high-quality, diverse data,
particularly in resource-limited settings.

Future work includes expanding the framework to other
medical domains to address diverse healthcare challenges.
This involves incorporating multimodal inputs like text and
imaging to enhance prediction accuracy and conducting
real-world clinical testing to validate utility and integration.
By pursuing these directions and addressing challenges like
computational costs and clinical evaluation metrics, models
such as Ophtimus-LLM can advance accessible, equitable,
and effective AI-driven healthcare.
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A Fine-tuning Dataset Curation Pipeline

Figure 4: Fine-tuning Dataset Building Process Pipeline

B Additional Results
B.1 Comparison of Results by Topic
Table 6 reports the performance of each model on the vari-
ous topics. See Sec. 4.5 for a detailed discussion of the re-
sults.

B.2 Comparison of performance after fine-tuning
on additional Optics dataset

Table 7 shows the performance after fine-tuning on addi-
tional questions generated specifically for optics. The im-
provement in the optics category can be observed. Interest-
ingly, 10 out of the 19 topics also demonstrated an improve-
ment from this additional fine-tuning. However, as shown
in Table 5, overall performance decreases. This can be at-
tributed to the large number of general ophthalmology QA
pairs in the evaluation dataset.

Figure 5: Evaluation results when additional trained on
optics-specific QA samples.

Fig. 5 depicts the accuracy on the optics topic with addi-
tional epochs of training. It can be observed that the maxi-
mum of 40.4% is achieved after 4 epochs. This demonstrates
the need for an early-stopping criterion.

C Detailed evaluation by training epoch
Table 8 presents the results of training for additional epochs.
The optimal model was selected using a validation set of
1% of the training data. Generally, the best performance was
achieved after 4 epochs of training. Future work will need
to determine a better early stopping criterion, or if multiple
iterations of training are needed.

D Description of Evaluation Datasets
MedMCQA (Pal, Umapathi, and Sankarasubbu 2022).
MedMCQA is a four-choice MCQ dataset developed for
evaluating question-answering capabilities in the medi-
cal domain. The questions span various areas—including
pathology, pharmacology, and clinical scenarios—and are
designed to mirror standardized exam formats. Conse-
quently, the dataset allows for an extensive assessment of
medical knowledge, as well as foundational reasoning skills
essential for medical practice.
PubMedQA (Jin et al. 2019). PubMedQA is composed
of questions derived from biomedical paper abstracts on
PubMed. Each question is answered with a “yes” or “no,”
testing the model’s ability to read, understand, and analyze
scientific abstracts. Covering a broad range of biomedical
and medical research topics, PubMedQA serves as an effec-
tive benchmark for evaluating both reading comprehension
and specialized domain knowledge.



Model
Topic ChatGPT-4o Ophtimus-1B-FT Ophtimus-3B-FT Ophtimus-8B-FT Ophtimus-8B-PT-FT
ANTERIOR SEGMENT 63.33% 43.33% 53.33% 53.33% 50.00%
Cataract 75.00% 37.50% 56.25% 62.50% 62.50%
Conjunctiva 85.48% 23.81% 42.86% 57.14% 52.38%
Cornea 72.73% 31.82% 45.45% 58.82% 53.41%
Error of Refraction 78.95% 36.84% 47.37% 57.89% 63.16%
General Ophthalmology 74.37% 36.92% 48.88% 60.95% 67.19%
Glaucoma 76.46% 38.65% 53.37% 61.35% 55.00%
Neuro Ophthalmology 78.18% 29.70% 40.61% 57.58% 52.12%
Ocular Trauma 75.00% 46.43% 53.57% 64.29% 53.57%
Oculoplastic 63.64% 36.36% 27.27% 45.45% 45.45%
Optics 50.83% 23.14% 31.82% 35.54% 36.99%
ORBIT LIDS ADNEXA 76.07% 37.61% 41.03% 57.26% 55.56%
Pathology 73.13% 44.78% 58.21% 68.66% 67.32%
PEDIATRICS STRABISMUS 65.45% 23.64% 40.00% 61.82% 61.82%
PHARMACOLOGY 87.50% 42.50% 62.50% 67.50% 75.00%
POSTERIOR SEGMENT 71.11% 44.44% 42.22% 62.22% 57.78%
Retina & vitreous 61.54% 23.08% 30.77% 61.54% 30.77%
Systemic diseases 87.50% 50.00% 50.00% 62.50% 62.50%
UVEITIS 70.00% 27.50% 50.00% 70.00% 60.00%

Table 6: Comparison of Results by Topic (Highest in bold, 2nd highest underlined)

Model
Topic Ophtimus-PT-FT w/ Optics FT
ANTERIOR SEGMENT 50.0% 63.3% (+13.3%)
Cataract 50.0% 62.5% (+12.5%)
Conjunctiva 52.4% 57.1% (+4.7%)
Cornea 53.4% 58.0% (+4.6%)
Error of Refraction 63.2% 57.9% (-5.3%)
General Ophthalmology 67.2% 61.0% (-6.2%)
Glaucoma 55.0% 47.2% (-7.8%)
Neuro Ophthalmology 52.1% 58.8% (+6.7%)
Ocular Trauma 53.6% 67.9% (+14.3%)
Oculoplastic 45.5% 36.4% (-9.1%)
Optics 37.0% 40.3% (+3.3%)
ORBIT LIDS ADNEXA 55.6% 60.7% (+5.1%)
Pathology 67.3% 67.2% (-0.1%)
PEDIATRICS STRABISMUS 61.8% 47.3% (-14.5%)
PHARMACOLOGY 75.0% 67.5% (-7.5%)
POSTERIOR SEGMENT 57.8% 44.4% (-13.4%)
Retina & vitreous 30.8% 38.5% (+8.5%)
Systemic diseases 62.5% 50.0% (-12.5%)
UVEITIS 60.0% 57.5% (-2.5%)

Table 7: Comparison of performance after fine-tuning on ad-
ditional Optics dataset.

MedQuaAD (Ben Abacha and Demner-Fushman 2019).
MedQuAD (Medical Question Answering Dataset) consists
of question–answer pairs extracted from credible medical
websites, including those associated with the U.S. National
Institutes of Health (NIH). Each question is paired with a
concise, evidence-based answer that underscores the impor-
tance of factual verification. The diverse clinical coverage in
MedQuAD makes it an excellent resource for assessing how
accurately a model can retrieve, interpret, and convey med-
ically relevant information. Medical Flashcards/Wikidoc
(Han et al. 2023). Medical Flashcards/Wikidoc is a dataset
used at Stanford University for training the Alpaca model. In

contrast to the multiple-choice format of the other datasets,
these questions are open-ended (essay-style), sourced from
medical flashcards and wiki-based materials. The questions
range from basic medical knowledge to more complex clin-
ical scenarios, requiring succinct yet precise responses. This
dataset thus provides a robust environment for testing the
model’s ability to produce accurate, fact-based answers in
an unstructured format.

E Description of Descriptive/Essay Question
(EQA) Metrics

Rouge-L (Lin 2004). Rouge-L is a recall-oriented metric
that looks for the longest common subsequence between the
reference and the candidate.
BLEU (Papineni et al. 2002). The BLEU (BiLingual Eval-
uation Understudy) is a metric that was originally developed
for the automatic quality evaluation of machine-translated
texts. The BLEU metric is a corpus-level metric based on
the modified n-gram precision measure with a length penal-
ization for the candidate sentences that are shorter than the
reference ones.
METEOR (Lavie and Agarwal 2007). The METEOR
score evaluates text generation by comparing it to refer-
ences, considering synonyms, stemming, and word order. It
combines precision, recall (with more weight on recall), and
penalizes word order errors for better alignment with human
judgment.
SemScore (Aynetdinov and Akbik 2024). SemScore is an
evaluation metric for assessing LLM outputs by measur-
ing semantic similarity to reference responses, offering a
closer alignment with human judgment compared to tradi-
tional metrics like BLEU or ROUGE.



Multi-Choice Question Essay Question
Model Ophtimus-Eval MedMCQA(Ophthal) PubmedQA(Ophthal) RougeL BLEU METEOR SemScore
ChatGPT-4o 71.95% 81.95% 89.90% 0.193 0.082 0.341 0.761
Llama-3-8B-Instrct 48.60% 74.02% 63.97% 0.193 0.064 0.244 0.684
Llama-3.1-8B-Instrct 39.78% 57.96% 83.84% 0.177 0.054 0.215 0.641
Eye-Llama 32.56% 59.43% 66.11% 0.183 0.062 0.211 0.686
PMC-Llama-13B 48.28% 63.45% 72.48% 0.223 0.082 0.288 0.714
Ophtimus-1B-FT (Llama-3.2-1B+FT)

Iteration 1 28.46% 37.00% 68.79% 0.228 0.080 0.232 0.723
Iteration 2 31.10% 38.47% 68.46% 0.225 0.078 0.223 0.720
Iteration 3 32.87% 39.28% 69.13% 0.221 0.078 0.220 0.716
Iteration 4 34.77% 38.44% 68.46% 0.219 0.076 0.217 0.711
Iteration 5 34.12% 38.14% 68.13% 0.219 0.076 0.220 0.713

Ophtimus-3B-FT (Llama-3.2-3B+FT)
Iteration 1 42.90% 51.77% 69.46% 0.233 0.085 0.239 0.732
Iteration 2 44.99% 51.86% 68.79% 0.228 0.082 0.229 0.724
Iteration 3 46.56% 51.44% 68.46% 0.226 0.081 0.225 0.724
Iteration 4 46.01% 51.01% 69.80% 0.224 0.077 0.225 0.726
Iteration 5 45.26% 51.21% 69.13% 0.224 0.081 0.225 0.724

Ophtimus-8B-FT (Llama-3.1-8B+FT)
Iteration 1 52.74% 61.64% 73.49% 0.238 0.087 0.243 0.741
Iteration 2 56.04% 60.27% 72.48% 0.233 0.088 0.233 0.733
Iteration 3 55.48% 60.05% 72.15% 0.233 0.089 0.236 0.737
Iteration 4 57.78% 59.49% 72.48% 0.226 0.083 0.230 0.733
Iteration 5 56.71% 58.81% 73.15% 0.220 0.078 0.226 0.730

Ophtimus-8B-PT-FT (Optimus-8B-PT+FT)
Iteration 1 54.28% 60.80% 71.14% 0.237 0.089 0.243 0.740
Iteration 2 56.78% 61.21% 72.15% 0.227 0.081 0.235 0.734
Iteration 3 56.35% 60.16% 71.81% 0.227 0.084 0.233 0.734
Iteration 4 59.13% 58.82% 71.14% 0.222 0.079 0.224 0.735
Iteration 5 58.52% 59.46% 71.48% 0.222 0.080 0.230 0.730

Table 8: Detailed performance results by training epoch.


