
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LOW-RANK QUANTIZATION-AWARE TRAINING FOR
LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quantization-aware training (QAT) methods, generally produce the best model
performance, however it comes at the cost of excessive memory usage and runtime,
making it impractical when applying for LLMs. Inspired by parameter-efficient
fine-tuning (PEFT) literature, we propose Low-Rank QAT – a lightweight and
memory-efficient QAT algorithm for LLMs. LR-QAT employs several compo-
nents to save memory without sacrificing predictive performance: (a) low-rank
quantization-aware reparameterization; (b) downcasting operation using fixed-point
or double-packing and (c) checkpointing. Unlike most related work, our method
(i) is inference-efficient, leading to no additional overhead compared to traditional
post-training quantization (PTQ); (ii) can be seen as a general extended pretraining
framework, meaning that the resulting model can still be utilized for any down-
stream task afterwards; (iii) is orthogonal to most of recent PTQ methods and thus
can be seamlessly combined with them. We apply LR-QAT to LLaMA-1/2/3 and
Mistral model families and validate its effectiveness on several downstream tasks.
Our method outperforms most of recent LLM quantization approaches and reaches
the same model performance as full-model QAT at the fraction of its memory usage.
Specifically, we can train a 7B LLM on a single consumer grade GPU with 24GB
of memory.

1 INTRODUCTION

In recent years, large language models (LLMs) have emerged as a powerful tool for a plethora of
natural language processing tasks. As these models continue to grow in size and capability, addressing
their ever increasing computational and memory demands becomes crucial for practical deployment,
especially when considering resource-constrained edge devices.

One of the most effective methods to tackle this problem is neural network quantization, which uses
low-bit precision for weight and activation tensors. While recent post-training quantization (PTQ)
methods can help with decreasing the model size and improving the computational efficiency of
LLMs, they typically lead to subpar performance, especially in the case of low-bit (≤ 4) quantiza-
tion. Quantization-aware training (QAT), conversely, yields significantly better model performance
compared to PTQ. However, due to extreme model sizes of modern LLMs, using traditional QAT
is very computationally expensive and requires a prohibitively high GPU memory usage, making it
impractical.

Inspired by parameter-efficient fine-tuning (PEFT) and low-rank adaptation (LoRA) literature, we
propose Low-Rank Quantization-Aware Training (LR-QAT) – a lightweight memory-efficient and
inference-efficient QAT algorithm for LLMs. LR-QAT reduces the memory requirements of training
a 7B LLM from >98GB of GPU memory to <21GB without degrading the predictive performance
compared to traditional full-model QAT, making it possible to train such models on a single consumer
grade GPU. Unlike most related work that combines low-rank adaptation with quantization, our
method is also inference-efficient. After the training is complete, the auxiliary matrices are naturally
absorbed into the quantized weight tensor without loss of accuracy and no extra overhead at inference
time. LR-QAT is positioned as a general extended pretraining method, as opposed to being strictly a
fine-tuning method – the resulting model is a low-bit general pretrained LLM, that can still be utilized
for any task afterwards. If needed, our resulting low-bit pretrained LLM can be fine-tuned on specific
downstream tasks or used with multiple LoRA adapters for rapid switching between various tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Left: A schematic illustration of our proposed LR-QAT. x and y denote the input and the
output of the linear layer. Right: Memory requirements for training with various QAT techniques
on LLaMA-2 7B, assuming batch size 1, sequence length 1024, rank r = 32, and BF16 compute
data type. ‘Intermediate results’ refer to the results of some intermediate computations, e.g. after
rounding/clipping in (3), which are saved in memory for the backward pass.

LR-QAT introduces and combines several innovations designed to reduce memory use without
sacrificing model performance: (1) a form of QAT with low-rank reparameterization, in which we
place the low-rank weights in the integer domain to ensure they align with the quantization grid of
the pretrained weights. This allows for seamless fusion during inference into a single low-bit integer
matrix. (2) A downcasting operator that represents the frozen pretrained weights as low-bit INT-b
(b ≤ 4) double-packed into INT8 or as fixed-point values stored in INT8. (3) Finally, we combine the
proposed quantization formulation with gradient checkpointing to avoid aggressive memory spikes
from storing some of the intermediate results in memory for the backward pass.

We apply LR-QAT to LLaMA-1/2/3 and Mistral model families and demonstrate its effectiveness
on several general language modeling datasets and zero-shot evaluation on some of the common
reasoning downstream tasks. Our method outperforms recent LLM quantization approaches and
reaches the same predictive performance as full-model QAT at the fraction of its memory usage.
Finally, our method can be applied across a wide range of quantization settings, including per-channel
or per-block weight quantization, activation quantization, and can be combined with most of other
PTQ techniques.

2 BACKGROUND AND RELATED WORK

Neural network quantization is one of the most powerful ways to reduce model footprint, data
transfer and compute requirements. By quantizing a model, high bit-width floating point weights and
activations can be represented using low-bit numbers. On top of that, by using low-bit fixed-point
representations, such as INT8, one can further reduce energy consumption since the fixed-point
operations are more efficient than their floating-point counterparts. Quantizing to 8 bits or lower,
however, typically introduces quantization noise in the model, resulting in a potential drop in
accuracy/perplexity.

In this section, we provide a brief overview of uniform affine quantization and a summary of recent
methods for LLM quantization. We will discuss some of the trade-offs of those techniques. Finally,
we touch upon the challenges of LLM quantization and some of the limitations of current approaches.

Uniform affine quantization We use the following definition of the quantization function:

x̂ := q (x; s, z, b) = s ·
(
clip

(⌊x
s

⌉
+ z;−2b−1, 2b−1 − 1

)
︸ ︷︷ ︸

=: xZ

− z
)
, (1)

where x denotes the quantizer input (i.e., network weights or activations), s the higher precision
quantization scale, z the integer zero offset, and b the bitwidth. ⌊·⌉ denotes the round-to-nearest-
integer operator. Quantization parameters s, z can be shared across the components of x (typically
per-channel or block-wise). One can see that such a quantizer approximates an original floating point
vector as x ≈ s · (xZ − z), where each element in xZ is a b-bit integer value. This quantization
scheme is called uniform affine or asymmetric quantization (Hubara et al., 2017; Krishnamoorthi,
2018; Zhou et al., 2016) and is one of the most commonly used quantization schemes because it

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

allows for efficient implementation of fixed-point arithmetic. In the case of symmetric quantization,
we restrict the quantization grid to be symmetric around z = 0.

Post-training quantization methods Post-training quantization (PTQ) algorithms take a pretrained
high precision (FP32 / FP16 / BF16) network and convert it directly into a fixed-point network without
the need for the original training pipeline (Banner et al., 2018; Cai et al., 2020; Choukroun et al.,
2019; Hubara et al., 2020; Krishnamoorthi, 2018; Li et al., 2021; Meller et al., 2019; Nagel et al.,
2019; 2020; Zhao et al., 2019). These methods are either data-free or only require a small calibration
dataset and are generally quite easy to use. Having almost no hyperparameter tuning makes them
usable via a single API call as a black-box method to quantize a pretrained neural network in a
computationally efficient manner.

Post-training quantization of LLMs is a challenging task due to presence of numerical outliers
in weights and activations (Bondarenko et al., 2021; 2024; Kovaleva et al., 2021; Dettmers et al.,
2022; Sun et al., 2024). Existing LLM PTQ methods can be broadly categorized into weights-only
quantization and weight-activation quantization.

Weights-only quantization focuses on converting weights to low-bit values. For instance, GPTQ (Fran-
tar et al., 2022) employs second-order information to iteratively round grouped weights and correct
the quantization error in the remaining groups. SpQR (Dettmers et al., 2023), AWQ (Lin et al., 2023)
and OWQ (Lee et al., 2024) emphasize the importance of so-called “salient” weights that correspond
to high-magnitude activations. Other recent W-only methods include (Jeon et al., 2023; Lee et al.,
2023b; Luo et al., 2023; Chee et al., 2024).

Weight-activation quantization compresses both weights and activations. SmoothQuant (Xiao et al.,
2023), LLM.int8() (Dettmers et al., 2022) and Outlier Suppression (Wei et al., 2022) achieve
W8A8 quantization by managing activation outliers. LLM.int8() uses mixed-precision decompo-
sition, while the other two employ channel-wise scaling. OmniQuant (Shao et al., 2023) modulates
the extreme values of weights by optimizing the clipping threshold and shifts the challenge of quanti-
zation from activations to weights by employing the learnable equivalent transformation. Some of
the other recent W&A PTQ methods are (Lee et al., 2023a; Liu et al., 2023a; Wei et al., 2023; Yuan
et al., 2023; Tang et al., 2024; Yao et al., 2022; Lin et al., 2024).

Quantization-aware training methods Quantization-aware training (QAT) methods (Bhalgat
et al., 2020; Esser et al., 2020; Gupta et al., 2015; Jacob et al., 2018; Krishnamoorthi, 2018) simulate
quantization during training, allowing the model to find more optimal solutions compared to PTQ
approaches. However, better accuracy/perplexity comes at the cost of neural network training, i.e.,
longer training times, increased memory usage, need for labeled data and hyperparameter search.

The excessive training cost and memory usage of traditional QAT methods make them unsuitable
for quantizing modern LLMs. A few works that apply QAT to LLMs include LLM-QAT (Liu
et al., 2023b) and BitDistiller (Du et al., 2024), both of which explore the application of knowledge
distillation within QAT setting. Additionally, EdgeQAT (Shen et al., 2024) investigates the application
of QAT to tiny language models (those with fewer than 100 million parameters).

Low-rank adapters for fine-tuning Low-rank adaptation (LoRA) (Hu et al., 2021) is a parameter
efficient fine-tuning (PEFT) method that reduces memory requirements. LoRA freezes the pretrained
weights W = W0, and only trains a small set of low-rank trainable parameters, often termed adapters.
Given a linear projection y = W0x with W0 ∈ Rm×k, LoRA computes

y = W0x+
α

r
ABx, (2)

where A ∈ Rm×r, B ∈ Rr×k, r < min {m, k} – rank, and α is a scalar that is constant in r. The
benefits of LoRA are that it is much cheaper and often performs on par with or better than full
fine-tuning. Additionally, the fine-tuned (floating-point) model can be deployed without extra cost, as
the low-rank matrices can be fused into the pretrained weights after fine-tuning (W := W0+

α
rAB).

Naturally, there have been several works that explored the combination of LoRA and quantization.
QLoRA (Dettmers et al., 2024) quantizes the pretrained weights to 4 bit using (a non-uniform) NF4
format and dequantizes them in the forward pass to further reduce fine-tuning memory footprint.
LoftQ (Li et al., 2023) proposed an iterative SVD-based procedure for initializing A, B that yields

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Method Accuracy Memory efficiency Inference efficiency

PTQ ✕ ✓ ✓
Full-model QAT ✓ ✕ ✓
QLoRA / LoRA-based ✓ ✓ ✕

LR-QAT (ours) ✓ ✓ ✓

Table 1: A comparison between existing approaches and the proposed method.

faster fine-tuning convergence when used together with low-bit quantization. LQ-LoRA (Guo et al.,
2023) further extends initialization technique from LoftQ to mixed precision and data aware cases.
Other recent works include (Jeon et al., 2024; Zhang et al., 2024). QA-LoRA (Xu et al., 2023) uses
INT4 quantization and is the only work we are aware of that attempts to fuse auxiliary LoRA weights
back into the frozen WZ. However, their method is designed to work with group-wise quantization
with a small group size of 32 and hence cannot be applied to bigger group sizes or per-channel
quantization, which are common settings for weights.

Finally, we consider the work closest to ours to be PEQA (Kim et al., 2024), that attempts to combine
the benefits of inference-efficiency of QAT together with memory-efficiency of PEFT methods.
Similar to our method and unlike QA-LoRA, it does not impose any restrictions on quantization
granularity. However, just like most of LoRA-based methods, their approach focuses on a task-
specific fine-tuning as opposed to being a general extended pretraining method. In addition, PEQA
has significantly fewer degrees of freedom compared to our method, leading to subpar performance.

3 MOTIVATION

While generally fast and simple, PTQ suffers from limited performance in low-bit scenarios. Although
QAT methods still perform well in low-bit regimes, their high training costs and memory usage make
them impractical for LLMs (see Figure 1, right). Existing LoRA-based methods aim to address
memory efficiency during fine-tuning. However, in most cases they do not consider efficient inference.
Techniques such as QLoRA (Dettmers et al., 2024), which do not explicitly fuse the low-rank adapters
A and B, can incur up to 30% additional inference latency compared to the base model (Bhardwaj
et al., 2024). This is in line with our own simulation for LLaMA-7B model as shown in Table E1.

Note that, after the model is trained with QLoRA-like method, it is not straightforward to fuse the
high precision adapters A and B into the low-bit pretrained weights WZ. Naively fusing them leads
to a high quantization error, as demonstrated in Table E2. This issue persists even if the adapters A
and B are quantized, as the resulting quantization grid of the product AB differs from that of W0.
As mentioned above, QA-LoRA is the only work we are aware of that attempts to fuse auxiliary LoRA
weights back into the frozen WZ, however it achieves so by imposing constraints on quantization
granularity.

We are inspired by LoRA-based methods to make QAT more memory- and runtime-efficient. Our
goal is to design a method that is inference-efficient, i.e. where the low-rank adapters can be fused
back into a low-bit integer matrix WZ without any loss of accuracy or perplexity. This way, we will
not incur any additional inference overhead compared to PTQ, full-model QAT, or any other uniform
affine quantization approaches. We summarize different trade-offs for the discussed techniques in
Table 1.

4 METHOD

We now discuss the components of LR-QAT followed by a formal definition of LR-QAT. A schematic
overview of our method is shown in Figure 1 (left).

QAT with low-rank adapters Let’s recall how traditional QAT (Esser et al., 2020) works. Given
a linear layer with a weight matrix W ∈ Rm×k and assuming b-bit symmetric uniform affine
quantization, the quantization is simulated as follows:

Ŵ := s · clip
(⌊

W

s

⌉
;−2b−1, 2b−1 − 1

)
, (3)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where weights W are trainable parameters and the quantization scale s can be either fixed or also
learned. To be able to backpropagate through round-to-nearest operation in (3), it is common to
use straight-through estimator (STE, Bengio et al. 2013), where it is assumed that ∂⌊t⌉

∂t = 1. When
applied to LLMs, it is straightforward to see that this procedure is very expensive: we have to learn a
comparable number of parameters that was used for pretraining, leading to excessive memory usage.

To make this approach more practical we freeze the pretrained weights W (denote W0) and introduce
low-rank adapters A ∈ Rm×r, B ∈ Rr×k, r ≪ min {m, k}. We have to be careful where exactly
those adapters are placed. As discussed in Section 2, after the training is complete, we want A and B
to be seamlessly integrated into a single b-bit integer matrix WZ without loss of accuracy to facilitate
efficient inference. To accommodate that, we put the auxiliary matrices inside the rounding operator
as follows

Ŵ := s · clip
(⌊

W0

s
+

α

r
AB

⌉
;−2b−1, 2b−1 − 1

)
, (4)

where we are using STE assumption for the rounding operation to compute the gradients of the loss
w.r.t. A, B and s. We further employ a scaling factor α/r used in LoRA (Hu et al., 2021) to reduce
the need to retune hyperparameters as we vary the rank r. After training is complete, (4) can be
represented as regular fixed point tensor, Ŵ = s ·WZ, without any extra effort or loss of accuracy
and therefore enabling efficient inference without any extra overhead. Note that this is different to
most of the literature, such as QLoRA (Dettmers et al., 2024), where adapters are placed outside of
the quantization function (such as y = Ŵx +ABx) and are typically stored in higher precision
formats such as BF16.

Downcasting operator The formulation (4) is already significantly more memory efficient com-
pared to standard full-model QAT (3). We don’t need to compute neither gradients w.r.t. weights
W nor the respective first or second-order momentum terms for Adam-based optimizers, and only
need to do so for the auxiliary matrices A and B, which is noticeably more affordable provided
r ≪ min{m, k}.

Given that the weight matrix W0 is frozen, the next natural step to further reduce the memory
utilization is to store it in a lower-precision format. One could directly apply downcasting to W0

in (4). However, it’s important to note that these weights are divided by the scale s during every
forward pass. To ensure stable training, the scale generally needs to be stored in a high-precision
format. Therefore, to simplify further, we propose the following variant of low-rank QAT:

Ŵ := s · clip
(⌊

W0

s0
+

α

r
AB

⌉
;−2b−1, 2b−1 − 1

)
, (5)

where we use the initial scale1 s0 instead of learned scale s inside the rounding operator, and the rest
is the same as in (4). Now the entire fraction W0/s0 is fixed and we can store it in a lower-precision
format. Note that the scale s outside of the clipping operator can still be learned. Empirically, we
found that (5) performs consistently on par with or even slightly better compared to (4).

During training the pretrained weights are represented and stored as follows

Φ0 := φ

(
W0

s0

)
, (6)

where φ(·) is a downcasting operator that encapsulates a choice of different numeric formats or other
preprocessing computations. In the simplest form, φ(·) would cast the input to one of pre-existing
floating-point formats, such as FP16, BF16, FP8 etc.

Inspired by traditional fixed point quantization, we also explore integer representations for φ(·).
Specifically, φ(x) = clip

(
⌊x⌉ ,−2b−1, 2b−1 − 1

)
corresponds to a standard b-bit integer quantiza-

tion and can be stored as INT-b number. We denote this approach φ = INT-b for brevity. In addition
to that, in case of low-bit quantization (b ≤ 4), which is a primary focus of this work, two INT-b
numbers can be double-packed into a single INT8 number, leading to further memory savings. This is
helpful because most of the common deep learning frameworks like PyTorch, at the time of writing
this paper, don’t natively support low-bit formats such as INT4 yet.
1A frozen scale obtained after initial range estimation before the training begins.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Using φ = INT-b naturally leads to aggressive memory reduction by only keeping the integer part
of (clipped) W0/s0. In our preliminary experiments, we found that this setting, combined with
the standard initialization for A and B used in (Hu et al., 2021), did not work as well compared
to φ = BF16. This indicates the importance of keeping some information of the fractional part of
W0/s0 and potentially the need for better initialization of auxiliary matrices.

We address this problem in two distinct ways: We adapt and experiment with a variant of SVD-based
initialization for low-rank matrices A, B proposed in (Li et al., 2023) before we apply a downcasting
operator to W0/s0, to capture some of the information of it’s fractional part. With this approach we
can still employ a double-packing since we are still using φ = INT-b.

Another way is to use INT8 storage type, allocate b bits to represent the integer part as before, but
utilize the remaining 8−b bits for storing the approximate fractional part (2 ≤ b ≤ 7). In other words,
we represent Φ0 using fixed-point numbers. Assuming the rest of the computation is performed in
BF16, we define the downcasting and the corresponding upcasting operators as follows:

φ(x) = INT8
(⌊
28−b · clip

(
x;−2b−1, 2b−1 − 1

)⌉)
,

φ−1(x) = BF16(x)/28−b.
(7)

A fixed-point number where n bits are used for the integer part of the value and m bits are used for
the fractional part are commonly denoted (Oberstar, 2007) as Qn.m. For brevity, we will refer to (7)
as φ = Qb.(8− b). In this work we will be mainly focusing on b ∈ {3, 4}, which corresponds to Q3.5
and Q4.4, respectively.

Gradient checkpointing Note that both in the original LoRA paper (Hu et al., 2021) and in the
related work like QLoRA (Dettmers et al., 2024), there is no need to compute the product AB
explicitly. Instead, those matrices are multiplied with the activations x as A (Bx). However, we
have to compute a product AB in (5), and in the naïve implementation of our method, this product
together with the results of some intermediate computations (e.g., after rounding and clipping) will
be automatically kept in memory for the backward pass, leading to increased memory usage. To
prevent this, we employ gradient checkpointing (Chen et al., 2016) on (5). In other words, we
recompute the quantizer function in the backward pass, leading to a slight runtime overhead but
avoiding significantly increased memory usage.

LR-QAT Using the components described above, we define LR-QAT for a single layer with a
(pretrained) weight matrix W0 as follows

Ŵ := s · clip
(⌊

Φ0 +
α

r
AB

⌉
;−2b−1, 2b−1 − 1

)
, (8)

where s – trainable or frozen quantization scale with the initial value of s0, A, B – trainable rank r
auxiliary matrices, Φ0 := φ(W0/s0) – frozen representation of the original pretrained weights, and
φ is the downcasting operator. To avoid excessive memory allocation for the results of intermediate
computations in (8) involving the product AB, we apply checkpointing on Ŵ . After the training
is complete, low-rank adapters are naturally integrated into a single integer matrix WZ = clip (· · ·)
without loss of accuracy. Note, while we presented our method for symmetric quantization which is
commonly used for weights (Nagel et al., 2021), it can equally be applied for asymmetric quantization
by adding a zero offset z outside the rounding operation as shown in (1).

5 EXPERIMENTS

We assess the effectiveness of LR-QAT by conducting experiments on LLaMA 7B (Touvron et al.,
2023a), LLaMA-2 7B/13B (Touvron et al., 2023b), LLaMA-3 8B (AI@Meta, 2024), and Mistral-
0.1 7B (Jiang et al., 2023). We first explore the impact of the choice of rank r, a downcasting
operator φ(·), and the initialization of auxiliary matrices A, B. We then compare our method in
terms of accuracy to standard full-model QAT, other baselines, and the related work. All detailed
hyperparameters of our experiments are in Appendix A.

Quantization We experiment with both weight-only and weight-activation quantization. The
default settings are INT4 / INT3 / INT2 per-channel (denoted ‘pc’) and group-wise weight quantization

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

φ(·) dtype A, B init. WikiText-2 ↓ Zero-shot acc. ↑
W4 pc W3 pc W4 pc W3 pc

FP32 FP32 LoRA 5.69 6.21 69.28 66.62

FP16 FP32 LoRA +0.00 +0.01 −0.13 −0.01
BF16 FP32 LoRA −0.01 +0.01 +0.11 +0.45
Q4.4 / Q3.5 FP32 LoRA −0.01 +0.01 +0.16 +0.31
Q4.4 / Q3.5 BF16 LoRA −0.01 +0.01 +0.15 +0.31
INT-4 / INT-3 FP32 LoRA +0.02 +20.5 −0.04 −22.8
INT-4 / INT-3 FP32 LoftQ (T = 1) +0.28 +0.18 −0.67 +0.26
INT-4 / INT-3 FP32 LoftQ (T = 64) +0.40 +1.37 −1.40 −2.01

Figure 2 & Table 2: Left: The performance of LR-QAT (φ = Q4.4) depending on the rank r of
auxiliary matrices A and B on LLaMA-2 7B with W4 per-channel quantization. We report mean
and standard deviation over 5 runs with different random seeds. Right: The performance of LR-QAT
applied to LLaMA-2 7B depending on the choice of downcasting operator φ(·), compute data type,
and initialization method for low-rank auxiliary matrices. We report WikiText-2 test set perplexity,
lower is better, and average zero-shot accuracy of 6 tasks, higher is better. Numbers marked in bold
are the best results.

with a group size of 128 (denoted ‘g128’). We use symmetric quantization, except the INT2 case,
where we use asymmetric quantization (1), for a fair comparison with related work. We quantize
all linear layers, except the classification head. In weight-activation quantization, defaults are
INT4 per-channel weight and per-token activation quantization (Dettmers et al., 2022). Following
OmniQuant (Shao et al., 2023), we quantize all inputs to matmuls with exception of the softmax
output and additionally quantize the KV-cache as in LLM-QAT (Liu et al., 2023b).

Datasets and training We apply our method to all linear layers in the attention blocks, both in
self-attention and in the feed-forward network. We only train low-rank auxiliary matrices A, B and
the quantization parameters s and keep embedding layers, final classification head and RMSNorm
parameters frozen. In the case of asymmetric weight quantization, a zero offset z is set during range
estimation phase and kept frozen throughout training (z = z0).

We train on a small subset of SlimPajama (Soboleva et al., 2023), which is an open-source dataset
similar to the original one used for pretraining LLaMA models. In all experiments we train using
batch size 32 and a maximum sequence length of 1024. For all weight-only and weight-activation
quantization results, we train for 104 steps. For ablation studies in Sections 5.1 and 5.2 we use
shorter training of 103 steps. We select hyperparameters based on the perplexity of a small subset of
Wikipedia validation set (512 sequences).

Evaluation Following the previous work (Frantar et al., 2022; Xiao et al., 2023; Shao et al., 2023;
Liu et al., 2023b), we evaluate quantized models by reporting the perplexity of language generation
on WikiText-2 (Merity et al., 2016), using a sequence length of 2048. We also report zero-shot
accuracy on a set of common sense reasoning tasks including BoolQ (Clark et al., 2019), PIQA (Bisk
et al., 2020), Winogrande (Sakaguchi et al., 2021), ARC (Clark et al., 2018), and HellaSwag (Zellers
et al., 2019). For zero-shot evaluation, we use the LM Evaluation Harness framework (Gao et al.,
2021).

Baselines We compare with round-to-nearest quantization (RTN), where we set the ranges based on
minimizing the Lp-norms between quantized and unquantized weights and report the best performing
configuration. We also use that as initialization for LR-QAT. We investigate the impact of RTN
initialization in Appendix D.

For weight-only quantization, we compare with GPTQ (Frantar et al., 2022), AWQ (Lin et al.,
2023), OmniQuant (Shao et al., 2023), and BitDistiller (Du et al., 2024). To make a comparison
with OmniQuant more complete, we generated and included additional baseline results using their
public open-source code (see details in Appendix B). We also compare with our implementation of
PEQA (Kim et al., 2024) and full-model QAT (LSQ) (Esser et al., 2020), where we follow the same
experimental setup as for our method, together with the best RTN initialization, for a fair comparison.

For weight-activation quantization, we compare our method with RTN, SmoothQuant (Xiao et al.,
2023), LLM-QAT (Liu et al., 2023b), Outlier Suppression+ (Wei et al., 2023), OmniQuant (Shao
et al., 2023), and our implementation of PEQA (Kim et al., 2024). Following (Liu et al., 2023b), we

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Method GPU mem., Time/100 steps, WikiText-2 ppl. ↓ Zero-shot acc. ↑
GB sec W4 pc W3 pc W4 pc W3 pc

Full-model QAT (LSQ) 62.2 (98.5) 3248±7 5.77±0.02 6.14±0.01 68.96±0.29 67.14±0.13

LR-QAT (ours) 20.5 1522±5 5.66±0.00 6.13±0.02 69.72±0.32 67.70±0.25

Table 3: A comparison of the proposed method (φ = Q4.4) with the full-model QAT on LLaMA-2
7B with W4 and W3 per-channel quantization. We report mean and standard deviation over 5 runs
with different random seeds. We also report the maximum GPU memory with (without) gradient
checkpointing and the training runtime on a Nvidia A100 80GB GPU.

compare to them in several different settings, where the weights, activations and KV cache values are
quantized to different bitwidths (denoted as W-A-KV).

5.1 THE IMPACT OF RANK r

We investigate the effect of different values of rank r of the auxiliary matrices A and B and present
results in Figure 2. Increasing the rank from 1 to 32 leads to progressively slightly better performance,
excluding one outlier. The fact that using r > 32 doesn’t lead to further improvement in perplexity is
likely because of the limited number of training steps we used for this experiment (103), and that
more steps might be needed for the procedure to fully converge. Interestingly, a rank r as small as 1
already performs really well. We hypothesize that this is the case because of the following. Even
though rank(AB) = 1, by applying a low-rank approximation inside the rounding and clipping
operators in (8), this can overall lead to a high-rank perturbation to the original weights Φ0 (in the
integer domain). Finally, for all ranks we observe only a small standard deviation between 0.005 and
0.008 ppl., indicating the robustness of LR-QAT to a random initialization of B. Going forward, we
use r = 32 in all our experiments2.

5.2 THE CHOICE OF THE DOWNCASTING OPERATOR φ(·) AND A, B INITIALIZATION

We study the effect of several choices of the downcasting operators discussed in Section 4 and
summarize results in Table 2. We can see that by going from FP32 to BF16, and finally to an
8-bit fixed-point representation of Φ0, aside from memory savings we also maintain the same
WikiText-2 perplexity and even slightly improve zero-shot accuracy. The latter is likely due to a
slight regularization effect caused by the fact that we discard some of the information in the fractional
part in W0/s0, some of which might be noise. One step further, however, while φ = INT-b still leads
to a good model performance in the case of 4-bit weight quantization, it completely breaks for W3.

So far, we initialized matrices A and B following the procedure proposed in LoRA (Hu et al., 2021)
where B is initialized to zero, and A is initialized randomly as in (He et al., 2015). We refer to
this initialization scheme as ‘LoRA’. We hypothesize that a poor performance of φ = INT3 can
be explained by the fact that we lose all the information in the fractional part of W0/s0 and that
without that information it is difficult for low-rank approximation to learn. To address this, we adapt
and experiment with a variant of SVD-based initialization proposed in LoftQ (Li et al., 2023). We
see that using LoftQ initialization with T = 1 step recovers almost all the predictive performance
compared to a fixed-point representation. Increasing number of LoftQ steps, or applying it to a 4-bit
case, however, did not help.

Finally, when using the fixed point representation for Φ0, we still maintain the same model perfor-
mance by switching the compute data type3 from FP32 to BF16, where the latter is what is commonly
used for LLMs. Going forward, we use φ = Qb.(8− b) with ‘LoRA’ initialization and BF16 compute
data type.

5.3 COMPARISON WITH FULL-MODEL QAT

Finally, before presenting our main set of results, we compare our method with a standard full-model
QAT (LSQ) (Esser et al., 2020). For full-model QAT, we follow the same training setup as for our
method. We also tune the maximum value of the learning rate for W using the following search

2This amounts to only 1.2% of the total number of parameters for 7B LLaMA model.
3A data type used for activations, gradients, and frozen parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Bits Method WikiText-2 perplexity ↓ Avg. zero-shot accuracy ↑
L1-7B L2-7B L2-13B L3-8B M-7B L1-7B L2-7B L2-13B L3-8B M-7B

FP16 5.68 5.47 4.88 6.14 5.25 69.68 70.47 73.18 74.22 75.69

W4 pc

RTN 6.33 6.14 5.21 7.53 5.91 68.51 68.88 71.73 72.19 73.44
GPTQ§ 6.13 5.83 5.13 - - 64.95 - - - -
AWQ 6.08 6.15 5.12 - - - - - - -
OmniQuant§ 5.86 5.74 5.02 7.30 5.61 68.48 68.19 71.69 72.49 73.68
LSQ (our impl.) 5.94 5.77 ✕ 6.87 5.73 68.37 68.96 ✕ 73.28 72.88
PEQA (our impl.) 5.86 5.71 5.03 7.51 5.56 68.49 69.23 72.51 72.79 73.73
LR-QAT (ours) 5.84 5.66 5.03 6.78 5.46 68.54 69.72 73.19 73.84 74.44

W4 g128

RTN 6.05 5.78 5.04 6.96 5.49 68.93 69.75 72.94 72.30 75.07
GPTQ§ 5.85 5.61 4.98 - - - - - - -
AWQ 5.81 5.62 4.97 - - - - - - -
OmniQuant§ 5.77 5.58 4.95 6.70 5.40 69.15 69.58 72.80 73.56 75.33
LSQ (our impl.) 5.76 5.61 ✕ 6.58 5.67 69.17 69.68 ✕ 73.31 72.90
PEQA (our impl.) 5.75 5.67 5.02 6.89 5.48 69.19 69.64 72.80 72.99 73.34
LR-QAT (ours) 5.75 5.59 4.97 6.57 5.37 69.15 69.88 72.91 73.66 75.28

W3 pc

RTN 12.88 26.73 8.71 34.10 9.49 54.66 43.87 55.01 47.46 64.58
GPTQ§ 8.06 8.37 6.44 - - - - - - -
AWQ 11.88 24.00 10.45 - - - - - - -
OmniQuant§ 6.49 6.58 5.58 15.91 7.13 66.40 63.94 70.20 56.83 67.40
LSQ (our impl.) 6.29 6.14 ✕ 8.14 6.06 66.29 67.14 ✕ 69.58 71.61
PEQA (our impl.) 6.56 6.45 5.73 26.20 6.51 65.75 65.44 69.81 51.05 71.02
LR-QAT (ours) 6.27 6.13 5.54 8.12 6.03 66.60 67.70 71.22 70.46 71.87

W3 g128

RTN 7.96 7.61 6.20 15.11 6.77 63.50 63.20 67.60 57.74 69.35
GPTQ§ 6.55 6.29 5.42 - - - - - - -
AWQ 6.46 6.24 5.32 - - - - - - -
OmniQuant§ 6.15 6.03 5.28 8.81 5.86 66.77 67.52 70.97 66.28 73.06
BitDistiller§ - 5.97 5.20 - - - ❖ ❖ - -
LSQ (our impl.) 6.20 6.02 ✕ 8.08 5.90 66.53 68.36 ✕ 70.11 71.96
PEQA (our impl.) 6.22 6.05 5.58 9.64 5.85 66.66 68.10 70.29 67.19 72.21
LR-QAT (ours) 6.17 5.98 5.32 7.74 5.80 66.81 68.62 71.51 70.48 72.41

W2 pc

RTN§ 4.9e3 5.2e3 5.2e3 6.4e4 6.8e3 37.92 36.52 36.27 36.80 36.59
GPTQ§ 2.1e3 7.7e3 2.1e3 - - - - - - -
OmniQuant§ 15.47 37.37 17.21 5.1e3 339 49.78 43.67 49.72 36.36 36.39
PEQA (our impl.)§ 8.24 9.34 7.51 14.47 8.08 59.83 57.40 62.29 57.72 64.48
LR-QAT (ours)§ 7.99 8.51 7.16 12.52 7.98 61.77 60.03 65.28 58.49 65.11

W2 g128

RTN§ 708 2.5e3 115.6 1.4e4 369 39.74 37.94 41.12 36.97 41.30
GPTQ§ 44.01 36.77 28.14 - - - - - - -
AWQ 2.6e5 2.2e5 1.2e5 - - - - - - -
OmniQuant§ 9.72 11.06 8.26 327 16.06 54.31 52.00 57.16 37.70 50.46
BitDistiller§ - 8.08 6.78 - - - ❖ ❖ - -
PEQA (our impl.)§ 8.12 7.87 6.83 12.39 8.05 60.69 60.74 64.74 57.81 64.65
LR-QAT (ours)§ 7.86 7.62 6.57 11.09 7.92 61.60 61.70 66.75 60.46 65.27

Table 4: Weight-only quantization results for LLaMA and Mistral models. We report WikiText-2
test set perplexity (lower is better) and average zero-shot accuracy (higher is better). Models marked
‘L1’/‘L2’/‘L3’, and ‘M’ denote LLaMA-1/2/3 and Mistral, respectively. Numbers marked in bold are
SOTA or on par (within 0.05). §Uses asymmetric weight quantization. ✕ denotes out of memory.
❖ denotes that method reports results using a different set of metrics for zero-shot evaluation, see
Table D3 for a fair comparison.

space {1e-5, 5e-5, 1e-4, 5e-4, 1e-3} and select the best configuration based on Wikipedia validation
perplexity. Note that we use the same learning rate for s for both full-model QAT and our method.

As we can see in Table 3, training with our method leads to on par or better predictive performance at
a significantly lower memory usage and training runtime compared to full-model QAT. From Figure 1,
right, we can see that LR-QAT drastically reduces memory requirements for gradients and optimizer
state and halves memory requirements for weights. Finally, thanks to gradient checkpointing, it further
decreases memory usage by not storing results of intermediate computations within quantization
function. We include results for other models and bitwidths in Table 4. A more detailed runtime
comparison can also be found in Appendix F.

5.4 MAIN RESULTS

Weight-only quantization We summarize our results in Table 4. As we can see, in almost most
cases LR-QAT outperforms or is on par with prior weight-only quantization methods across various
LLM families and quantization settings, including both per-channel and group-wise quantization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Bits
(W-A-KV) Method WikiText-2 perplexity ↓ Avg. zero-shot accuracy ↑

L1-7B L2-7B L2-13B L1-7B L2-7B L2-13B

FP16 5.68 5.47 4.88 69.68 70.47 73.18

4-8-8

RTN 6.88 6.17 5.23 65.83 68.55 71.54
SmoothQuant 13.7* - - 65.17 - -
LLM-QAT 11.2* - - 68.18 - -
PEQA (our impl.) 5.89 5.72 5.08 68.53 69.11 72.49
LR-QAT (ours) 5.85 5.67 5.04 68.58 69.32 73.18

4-8-4

RTN 7.66 6.85 5.78 62.78 65.16 67.06
SmoothQuant 163.6* - - 45.35 - -
LLM-QAT 11.6* - - 64.75 - -
PEQA (our impl.) 6.15 6.03 5.27 66.54 67.56 71.35
LR-QAT (ours) 6.07 5.90 5.24 67.16 69.84 71.65

4-4-4

RTN 17.75 18.98 11.37 49.60 51.75 55.07
SmoothQuant 25.25 83.12 35.88 38.42 - -
LLM-QAT - - - 41.27 - -
LLM-QAT + SQ - - - 46.43 - -
Outlier Suppression+ - - - 48.43 - -
OmniQuant§ 11.26 14.26 12.30 52.65 - -
PEQA (our impl.) 8.60 8.72 7.23 58.39 57.93 62.26
LR-QAT (ours) 8.47 8.46 7.15 59.00 58.98 62.65

Table 5: Weight and activation quantization results for LLaMA-1/2 (denoted ‘L1’/‘L2’, respec-
tively). We report WikiText-2 test set perplexity and zero-shot accuracy of 6 tasks. Numbers marked
in bold are SOTA. §Uses asymmetric weight quantization. *Uses a maximum sequence length of
1024 for evaluation.

In the case of extremely low-bitwidth regime (W2), our method consistently and significantly
outperforms related work, across all settings.

In a few cases our method did not outpeform OmniQuant and BitDistiller. However, both methods
employ asymmetric quantization which provides extra degrees of freedom compared to symmetric
quantization, which are very helpful in the case of low-bit quantization. In practice, however,
symmetric weight quantization yields more efficient inference (Nagel et al., 2021). Additionally,
techniques like OmniQuant and related techniques are orthogonal to our method and can be used as
as initialization of LR-QAT.

Weight-activation quantization We present our results for weight-activation quantization applied
to LLaMA-1/2 models in Table 5. LR-QAT consistently outperforms all PTQ and QAT baselines,
across all model families and the bitwidth settings. In addition to that, as we decrease the activation
bitwidths, the improvement in model performance compared to prior work becomes more pronounced.

This indicates LR-QAT’s versatility, being readily applicable not only to weight-only quantization
but also weight-activation quantization, a setting that allows for a very efficient inference using fixed-
point arithmetic. Further, our method can still be combined with most of the related PTQ methods
including OmniQuant that shift the difficulty of activation quantization to weight quantization, and
will likely lead to even better results.

6 CONCLUSIONS

In this paper we propose LR-QAT, a lightweight and memory-efficient QAT algorithm for LLMs
which enables training a 7B LLM on a single consumer grade GPU with 24GB of memory. Inspired
by PEFT methods, we introduce a low-rank reparameterization that is aware of the quantization
grid. We further reduce the memory requirements by introducing a downcasting operator involving
fixed-point or double-packed integers, and applying checkpointing. In almost all cases, our method
outperforms common PTQ approaches and reaches the same model performance as full-model QAT
at the fraction of its memory usage.

REFERENCES

AI@Meta. Llama 3 model card, 2024. URL https://github.com/meta-llama/llama3/blob/
main/MODEL_CARD.md.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Post-training 4-bit quantization of convolution
networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients through stochastic
neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yash Bhalgat, Jinwon Lee, Markus Nagel, Tijmen Blankevoort, and Nojun Kwak. Lsq+: Improving low-bit
quantization through learnable offsets and better initialization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.

Kartikeya Bhardwaj, Nilesh Prasad Pandey, Sweta Priyadarshi, Viswanath Ganapathy, Rafael Esteves, Shreya
Kadambi, Shubhankar Borse, Paul Whatmough, Risheek Garrepalli, Mart Van Baalen, et al. Sparse high rank
adapters. arXiv preprint arXiv:2406.13175, 2024.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical commonsense
in natural language. In Proceedings of the AAAI conference on artificial intelligence, volume 34, pages
7432–7439, 2020.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Understanding and overcoming the challenges
of efficient transformer quantization. In Proceedings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 7947–7969, Online and Punta Cana, Dominican Republic, November
2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.627. URL https:
//aclanthology.org/2021.emnlp-main.627.

Yelysei Bondarenko, Markus Nagel, and Tijmen Blankevoort. Quantizable transformers: Removing outliers by
helping attention heads do nothing. Advances in Neural Information Processing Systems, 36, 2024.

Yaohui Cai, Zhewei Yao, Zhen Dong, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Zeroq: A novel
zero shot quantization framework. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 13169–13178, 2020.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of large
language models with guarantees. Advances in Neural Information Processing Systems, 36, 2024.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear memory cost.
arXiv preprint arXiv:1604.06174, 2016.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks for
efficient inference. In ICCV Workshops, pages 3009–3018, 2019.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina Toutanova.
Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint arXiv:1905.10044,
2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix multiplication
for transformers at scale. In Advances in Neural Information Processing Systems, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashkboos,
Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized representation for
near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning of quantized
llms. Advances in Neural Information Processing Systems, 36, 2024.

Dayou Du, Yijia Zhang, Shijie Cao, Jiaqi Guo, Ting Cao, Xiaowen Chu, and Ningyi Xu. Bitdistiller: Unleashing
the potential of sub-4-bit llms via self-distillation. arXiv preprint arXiv:2402.10631, 2024.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and Dharmendra S. Modha.
Learned step size quantization. In International Conference on Learning Representations (ICLR), 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training quantization for
generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding, Jeffrey
Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot language model evaluation.
Version v0. 0.1. Sept, page 8, 2021.

11

https://aclanthology.org/2021.emnlp-main.627
https://aclanthology.org/2021.emnlp-main.627

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sylvain Gugger, Lysandre Debu, Thomas Wolf, Philipp Schmid, Zachary Mueller, and Sourab Mangrulkar.
Accelerate: Training and inference at scale made simple, efficient and adaptable. https://github.com/
huggingface/accelerate, 2022.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix decomposition
for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning with limited
numerical precision. In International conference on machine learning, pages 1737–1746. PMLR, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing human-level
performance on imagenet classification. In Proceedings of the IEEE international conference on computer
vision, pages 1026–1034, 2015.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu
Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685, 2021.

Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua Bengio. Quantized neural
networks: Training neural networks with low precision weights and activations. The Journal of Machine
Learning Research, 18(1):6869–6898, 2017.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Improving post training neural
quantization: Layer-wise calibration and integer programming. arXiv preprint arXiv:2006.10518, 2020.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
2704–2713, 2018.

Hyesung Jeon, Yulhwa Kim, and Jae-joon Kim. L4q: Parameter efficient quantization-aware training on large
language models via lora-wise lsq. arXiv preprint arXiv:2402.04902, 2024.

Yongkweon Jeon, Chungman Lee, Kyungphil Park, and Ho-young Kim. A frustratingly easy post-training
quantization scheme for llms. In Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pages 14446–14461, 2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las
Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. arXiv
preprint arXiv:2310.06825, 2023.

Jeonghoon Kim, Jung Hyun Lee, Sungdong Kim, Joonsuk Park, Kang Min Yoo, Se Jung Kwon, and Dongsoo
Lee. Memory-efficient fine-tuning of compressed large language models via sub-4-bit integer quantization.
Advances in Neural Information Processing Systems, 36, 2024.

Olga Kovaleva, Saurabh Kulshreshtha, Anna Rogers, and Anna Rumshisky. Bert busters: Outlier dimensions
that disrupt transformers. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021,
pages 3392–3405, 2021.

Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.
arXiv preprint arXiv:1806.08342, 2018.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. Owq: Outlier-aware weight
quantization for efficient fine-tuning and inference of large language models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 38, pages 13355–13364, 2024.

Jangwhan Lee, Minsoo Kim, Seungcheol Baek, Seok Joong Hwang, Wonyong Sung, and Jungwook Choi.
Enhancing computation efficiency in large language models through weight and activation quantization. arXiv
preprint arXiv:2311.05161, 2023a.

Jung Hyun Lee, Jeonghoon Kim, Se Jung Kwon, and Dongsoo Lee. Flexround: Learnable rounding based
on element-wise division for post-training quantization. In International Conference on Machine Learning,
pages 18913–18939. PMLR, 2023b.

Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen, Suraj Patil,
Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario Sasko, Gunjan Chhablani,
Bhavitvya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen Xu, Nicolas Patry, Angelina
McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue, Théo Matussière, Lysandre Debut,
Stas Bekman, Pierric Cistac, Thibault Goehringer, Victor Mustar, François Lagunas, Alexander Rush, and
Thomas Wolf. Datasets: A community library for natural language processing. In Proceedings of the 2021

12

https://github.com/huggingface/accelerate
https://github.com/huggingface/accelerate

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Conference on Empirical Methods in Natural Language Processing: System Demonstrations, pages 175–184,
Online and Punta Cana, Dominican Republic, November 2021. Association for Computational Linguistics.
URL https://aclanthology.org/2021.emnlp-demo.21.

Yixiao Li, Yifan Yu, Chen Liang, Pengcheng He, Nikos Karampatziakis, Weizhu Chen, and Tuo Zhao. Loftq:
Lora-fine-tuning-aware quantization for large language models. arXiv preprint arXiv:2310.08659, 2023.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. Brecq:
Pushing the limit of post-training quantization by block reconstruction. arXiv preprint arXiv:2102.05426,
2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-aware weight
quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978, 2023.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song Han. Qserve:
W4a8kv4 quantization and system co-design for efficient llm serving. arXiv preprint arXiv:2405.04532,
2024.

Jing Liu, Ruihao Gong, Xiuying Wei, Zhiwei Dong, Jianfei Cai, and Bohan Zhuang. Qllm: Accurate and
efficient low-bitwidth quantization for large language models. arXiv preprint arXiv:2310.08041, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi,
Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware training for large
language models. arXiv preprint arXiv:2305.17888, 2023b.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint arXiv:1711.05101,
2017.

Yan Luo, Yangcheng Gao, Zhao Zhang, Jicong Fan, Haijun Zhang, and Mingliang Xu. Long-range zero-shot
generative deep network quantization. Neural Networks, 166:683–691, 2023.

Eldad Meller, Alexander Finkelstein, Uri Almog, and Mark Grobman. Same, same but different: Recovering
neural network quantization error through weight factorization. In International Conference on Machine
Learning, pages 4486–4495. PMLR, 2019.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture models. arXiv
preprint arXiv:1609.07843, 2016.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization through weight
equalization and bias correction. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 1325–1334, 2019.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or down?
Adaptive rounding for post-training quantization. In International Conference on Machine Learning (ICML),
2020.

Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart van Baalen, and Blankevoort
Tijmen. A white paper on neural network quantization. arXiv preprint arXiv:2106.08295, 2021.

Erick L Oberstar. Fixed-point representation & fractional math. Oberstar Consulting, 9:19, 2007.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Neural
Information Processing Systems (NeuRIPS). 2019.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang, Peng Gao,
Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large language models.
arXiv preprint arXiv:2308.13137, 2023.

Xuan Shen, Zhenglun Kong, Changdi Yang, Zhaoyang Han, Lei Lu, Peiyan Dong, Cheng Lyu, Chih-hsiang Li,
Xuehang Guo, Zhihao Shu, et al. Edgeqat: Entropy and distribution guided quantization-aware training for
the acceleration of lightweight llms on the edge. arXiv preprint arXiv:2402.10787, 2024.

13

https://aclanthology.org/2021.emnlp-demo.21

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel Hestness, and Nolan Dey. SlimPajama:
A 627B token cleaned and deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama,
June 2023. URL https://huggingface.co/datasets/cerebras/SlimPajama-627B.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language models. arXiv
preprint arXiv:2402.17762, 2024.

Hanlin Tang, Yifu Sun, Decheng Wu, Kai Liu, Jianchen Zhu, and Zhanhui Kang. Easyquant: An efficient
data-free quantization algorithm for llms. arXiv preprint arXiv:2403.02775, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat
models. arXiv preprint arXiv:2307.09288, 2023b.

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei Yu, and
Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language models. arXiv preprint
arXiv:2209.13325, 2022.

Xiuying Wei, Yunchen Zhang, Yuhang Li, Xiangguo Zhang, Ruihao Gong, Jinyang Guo, and Xianglong Liu.
Outlier suppression+: Accurate quantization of large language models by equivalent and optimal shifting and
scaling. arXiv preprint arXiv:2304.09145, 2023.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric
Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on empirical methods in natural language processing:
system demonstrations, pages 38–45, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant: Accurate
and efficient post-training quantization for large language models. In International Conference on Machine
Learning, pages 38087–38099. PMLR, 2023.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen, Xiaopeng Zhang,
and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language models. arXiv preprint
arXiv:2309.14717, 2023.

Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong
He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.
In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, editors, Advances
in Neural Information Processing Systems, volume 35, pages 27168–27183. Curran Associates,
Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf.

Zhihang Yuan, Lin Niu, Jiawei Liu, Wenyu Liu, Xinggang Wang, Yuzhang Shang, Guangyu Sun, Qiang Wu,
Jiaxiang Wu, and Bingzhe Wu. Rptq: Reorder-based post-training quantization for large language models.
arXiv preprint arXiv:2304.01089, 2023.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine really
finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Cheng Zhang, Jianyi Cheng, George A Constantinides, and Yiren Zhao. Lqer: Low-rank quantization error
reconstruction for llms. arXiv preprint arXiv:2402.02446, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher Dewan,
Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network quantization
without retraining using outlier channel splitting. In International conference on machine learning, pages
7543–7552. PMLR, 2019.

Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen, and Yuheng Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint arXiv:1606.06160, 2016.

14

https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/adf7fa39d65e2983d724ff7da57f00ac-Paper-Conference.pdf

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A EXPERIMENTAL DETAILS

In this section, we list the details related to hyperparameters and other settings used in our experiments.
If not stated otherwise, the standard hyperparameters that we use are the one shown in Table A1.

Hyperparameter Value / Search space

Optimizer AdamW
Learning rate for A, B (INT4 / INT3 / INT2) {10−5, 10−4, 10−3, 10−2}
Learning rate for s (INT4 / INT3) {0*, 10−5}
Learning rate for s (INT2) {10−5, 10−4}
Learning rate for z (INT2 only) 0*

Learning rate for W (full-model QAT only) {1, 5, 10, 50, 100} · 10−5

Learning rate schedule for A, B linear (with warmup)
Learning rate schedule for s linear (with warmup)
Learning rate schedule for W (full-model QAT only) linear (with warmup)
Weight decay for A, B 0
Weight decay for s 0
Weight decay for W (full-model QAT only) 0.1
Adam (β1, β2) (0.9, 0.95)
Training steps 104

Warmup steps 10% of Training steps
Batch size 32
Maximum sequence length (during training) 1024
L2-norm gradient clipping (maximum norm) 1.0
α in (8) 1.0

Table A1: Common hyperparameters used for experiments. *Is equivalent to freezing the quantization
scale / zero offset obtained after initial range estimation (s = s0, z = z0).

Quantization We experiment with both weight-only and weight-activation quantization. The
default settings are INT4 / INT3 / INT2 per-channel (denoted ‘pc’) and group-wise weight quantization
with a group size of 128 (denoted ‘g128’). We use symmetric quantization, except the INT2 case,
where we use asymmetric quantization (1), for a fair comparison with related work. We quantize
all linear layers, except the classification head. In weight-activation quantization, defaults are
INT4 per-channel weight and per-token activation quantization (Dettmers et al., 2022). Following
OmniQuant (Shao et al., 2023), we quantize all inputs to matmuls with exception of the softmax
output and additionally quantize the KV-cache as in LLM-QAT (Liu et al., 2023b).

Libraries We implement our method in PyTorch (Paszke et al., 2019) and use training and eval-
uation pipelines from HuggingFace libraries Gugger et al. (2022); Lhoest et al. (2021); Wolf et al.
(2020). For zero-shot evaluation, we use the LM Evaluation Harness framework (Gao et al., 2021).
Specifically, we use lm_eval v0.4.2 and report acc_norm for tasks where it’s available (PIQA,
ARC-e, ARC-c, HellaSwag) and otherwise acc (BoolQ and Winogrande).

Datasets and training To optimize the learnable parameters, we use AdamW optimizer (Loshchilov
and Hutter, 2017) with weight decay set to zero, (β1, β2) = (0.9, 0.95) and linear learning rate warm
up over the first 10% steps, following by a linear decay to zero by the end of training. We use a
separate maximum learning rate for quantization scales and for low-rank adapters, which are tuned
depending on the experiment.

We apply our methods to all linear layers in the attention blocks (both in self-attention and in the feed-
forward network). We only train low-rank auxiliary matrices A, B and the quantization parameters s.
Specifically, we freeze embedding layers, the final classification heads and RMSNorm parameters. In
the case of asymmetric weight quantization, a zero offset z is set during range estimation phase and
kept frozen throughout training.

We train on a small subset of SlimPajama (Soboleva et al., 2023), which is a close open-source
replica of the dataset used for pre-training LLaMA models. We select hyperparameters based on the

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

perplexity of a small subset of Wikipedia validation set4 (512 sequences). For all weight-only and
weight-activation quantization results, including the comparison with full-model QAT in Section 5.3,
we train for 104 steps. For ablation studies in Sections 5.1 and 5.2 we use shorter training of 103
steps. Since the full-model QAT experiment requires more than 80GB of GPU memory, we apply
checkpointing on the quantization function Ŵ to be able to run the experiment on an Nvidia A100
80GB GPU. We have also experimented with CPU optimizer state offloading, but that turned out
to be significantly slower, see details in Table F1. The rest of the hyperparameters and their search
spaces are listed in Table A1.

PTQ initialization We compare with vanilla round-to-nearest quantization (RTN), where we
explore several choices of range setting and report the best one based on Wikipedia validation
set perplexity, and also use that as initialization for our method. Specifically, we experimented
with min-max range estimator and with Lp-norm range estimator with the following values for p:
{2.0, 2.4, 3.0, 3.5, 4.0, 5.0}.

B RESULTS SOURCES

In this study, we present a thorough comparison of our method against existing PTQ and QAT
techniques. The results we discuss from their respective official publications, other scholarly articles,
or are obtained from our reproduction. We carefully document the source of the results for each
method as follows:

• RTN (round-to-nearest): our evaluation.
• GPTQ : as reported by OmniQuant (Shao et al., 2023).
• AWQ : as reported by OmniQuant (Shao et al., 2023).
• OmniQuant : as reported by OmniQuant (Shao et al., 2023) and additional results obtained by

using their public open-sourced code base (see details below).
• SmoothQuant : as reported by LLM-QAT (Liu et al., 2023b) and OmniQuant (Shao et al., 2023).
• LLM-QAT : as reported by LLM-QAT (Liu et al., 2023b) and OmniQuant (Shao et al., 2023).
• LLM-QAT + SQ (LLM-QAT w/ SmoothQuant initialization): as reported by OmniQuant (Shao

et al., 2023).
• OS+ (Outlier Suppression+): as reported by OmniQuant (Shao et al., 2023).
• BitDistiller: as reported by BitDistiller (Du et al., 2024).
• PEQA : our implementation
• LSQ (Full-model QAT): our implementation

Extra OmniQuant baseline results OmniQuant, being the strongest PTQ baseline that consistently
outperforms other PTQ techniques (GPTQ, AWQ, RTN), only reports WikiText-2 perplexity results
for LLaMA-1/2 models. To make the comparison more complete, we used their public open-sourced
code base5, to generate the missing results for LLaMA-3, Mistral, and zero-shot accuracy numbers
for LLaMA-1/2.

We used the provided checkpoints by the authors for LLaMA-1/2 model families, which we exported
and evaluated using our pipeline to make sure the consistent use of libraries and their versions,
specifically lm_eval v0.4.2. We managed to closely match the WikiText-2 perplexity numbers
reported by OmniQuant.

For LLaMA-3 and Mistral, we obtained the results using the provided run commands in the repo.
Specifically, we followed the same experimental setup as OmniQuant: 20 epochs (40 epochs for W2)
over 128 WikiText-2 sequences of length 2048. The rest of hyperparameters (including learning rate)
were not changed. As a sanity check, we managed to closely match numbers for LLaMA-1 in Table
A9 of (Shao et al., 2023).
4Specifically, we use the English subset of Wiki40b, https://huggingface.co/datasets/wiki40b,
that contains cleaned-up text of English Wikipedia and training/validation splits.

5https://github.com/OpenGVLab/OmniQuant

16

https://huggingface.co/datasets/wiki40b
https://github.com/OpenGVLab/OmniQuant

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

C DETAILED ZERO-SHOT RESULTS

In this section, we provide a detailed breakdown of the task-specific accuracy numbers for the main
set of results.

For weight-only quantization:

• LLaMA-1 7B in Table C1,
• LLaMA-2 7B in Table C2,
• LLaMA-2 13B in Table C3,
• LLaMA-3 8B in Table C4,
• Mistral 7B in Table C5,

and for weight-activation quantization in Table C6.

Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 75.05 79.16 70.01 72.85 44.80 76.21 69.68

W4 pc

RTN 73.18 78.78 69.14 71.38 44.37 74.22 68.51
GPTQ§ 67.70 76.00 66.70 66.90 43.00 69.40 64.95
OmniQuant§ 74.68 79.00 68.59 71.34 42.58 74.73 68.48
LSQ (our impl.) 73.91 78.24 69.22 70.84 43.26 74.74 68.37
PEQA (our impl.) 74.71 78.29 70.09 70.33 42.24 75.27 68.49
LR-QAT (ours) 74.13 78.29 70.01 71.21 42.41 75.16 68.54

W4 g128

RTN 74.77 78.51 70.64 71.30 43.60 74.74 68.93
OmniQuant§ 75.29 78.40 69.38 72.69 43.94 75.23 69.15
LSQ (our impl.) 75.90 79.22 70.01 71.42 43.34 75.15 69.17
PEQA (our impl.) 75.75 79.17 70.17 70.75 43.60 75.71 69.19
LR-QAT (ours) 75.29 78.62 69.61 71.59 44.11 75.67 69.15

W3 pc

RTN 58.93 70.40 55.72 55.01 32.17 55.75 54.66
OmniQuant§ 73.18 77.09 67.17 70.12 39.76 71.06 66.40
LSQ (our impl.) 71.35 77.97 68.82 66.33 40.10 73.14 66.29
PEQA (our impl.) 72.69 77.15 65.90 68.27 38.91 71.60 65.75
LR-QAT (ours) 73.24 78.18 67.40 67.47 40.53 72.77 66.60

W3 g128

RTN 69.48 76.33 64.40 64.44 38.65 67.67 63.50
OmniQuant§ 72.45 78.73 66.93 68.77 41.21 72.53 66.77
LSQ (our impl.) 71.04 77.97 68.11 68.27 40.44 73.37 66.53
PEQA (our impl.) 71.65 78.24 68.51 68.18 40.10 73.30 66.66
LR-QAT (ours) 72.84 78.02 67.40 68.52 41.04 73.04 66.81

W2 pc

RTN§ 43.24 52.61 51.62 27.48 26.28 26.26 37.92
OmniQuant§ 61.41 64.53 54.30 46.80 27.82 43.82 49.78
PEQA (our impl.)§ 67.19 74.32 61.80 59.97 32.42 63.28 59.83
LR-QAT (ours)§ 68.07 74.27 64.80 61.03 36.95 65.48 61.77

W2 g128

RTN§ 41.16 58.05 50.20 34.97 23.12 30.93 39.74
OmniQuant§ 62.94 68.17 56.75 53.24 30.55 54.20 54.31
PEQA (our impl.)§ 67.40 74.21 62.04 60.98 35.32 64.16 60.69
LR-QAT (ours)§ 67.65 74.86 61.80 62.37 37.03 65.90 61.60

Table C1: LM-eval weight-only quantization results for LLaMA-1 7B. We report zero-shot
accuracy of 6 tasks (higher is better). §Uses asymmetric weight quantization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 77.74 79.11 69.14 74.58 46.25 75.98 70.47

W4 pc

RTN 76.36 78.07 68.19 71.21 44.80 74.65 68.88
OmniQuant§ 74.37 78.45 68.90 71.04 42.49 73.85 68.19
LSQ (our impl.) 76.69 78.15 68.12 71.84 44.18 74.76 68.96
PEQA (our impl.) 77.49 78.24 69.61 70.96 43.52 75.54 69.23
LR-QAT (ours) 77.41 78.56 69.42 72.80 44.66 75.45 69.72

W4 g128

RTN 76.76 78.18 69.77 72.60 45.73 75.43 69.75
OmniQuant§ 77.19 79.05 68.11 73.70 44.54 74.90 69.58
LSQ (our impl.) 77.28 78.45 69.61 72.18 44.97 75.61 69.68
PEQA (our impl.) 76.88 78.89 69.85 72.18 44.11 75.95 69.64
LR-QAT (ours) 76.73 78.62 70.48 72.85 44.97 75.62 69.88

W3 pc

RTN 46.27 60.28 54.85 38.05 23.29 40.47 43.87
OmniQuant§ 68.72 74.43 66.30 65.57 38.74 69.91 63.94
LSQ (our impl.) 74.39 77.91 66.85 69.15 41.53 73.04 67.14
PEQA (our impl.) 71.62 76.82 66.14 65.66 39.76 72.63 65.44
LR-QAT (ours) 75.08 77.73 67.50 69.97 42.70 73.24 67.70

W3 g128

RTN 66.42 75.57 65.19 64.90 38.14 68.96 63.20
OmniQuant§ 72.26 78.18 68.11 71.30 42.24 73.00 67.52
LSQ (our impl.) 74.68 77.80 68.35 71.76 44.11 73.46 68.36
PEQA (our impl.) 75.38 77.97 68.59 70.62 42.32 73.74 68.10
LR-QAT (ours) 76.61 77.31 68.98 72.05 42.58 74.20 68.62

W2 pc

RTN§ 39.57 50.71 50.20 26.73 26.28 25.63 36.52
OmniQuant§ 58.62 58.05 51.78 36.11 24.83 32.65 43.67
PEQA (our impl.)§ 64.98 71.33 58.09 55.22 33.11 61.66 57.40
LR-QAT (ours)§ 69.88 73.07 62.90 56.57 34.04 63.71 60.03

W2 g128

RTN§ 39.08 55.93 50.99 29.84 24.06 27.71 37.94
OmniQuant§ 61.90 67.03 56.43 46.76 28.84 51.07 52.00
PEQA (our impl.)§ 69.51 73.83 63.46 58.21 34.90 64.53 60.74
LR-QAT (ours)§ 70.18 73.83 63.69 60.27 34.98 67.24 61.70

Table C2: LM-eval weight-only quantization results for LLaMA-2 7B. We report zero-shot
accuracy of 6 tasks (higher is better). §Uses asymmetric weight quantization.

Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 80.55 80.52 72.22 77.44 48.98 79.38 73.18

W4 pc

RTN 79.30 79.71 70.01 75.51 48.89 76.96 71.73
OmniQuant§ 77.89 80.36 70.40 75.46 48.29 77.75 71.69
PEQA (our impl.) 78.99 80.14 71.27 76.43 48.98 79.24 72.51
LR-QAT (ours) 80.15 80.09 72.06 77.65 49.91 79.28 73.19

W4 g128

RTN 81.10 79.82 72.38 76.73 49.06 78.52 72.94
OmniQuant§ 80.37 79.82 72.45 76.68 49.15 78.32 72.80
PEQA (our impl.) 80.28 80.63 71.74 76.14 48.38 79.62 72.80
LR-QAT (ours) 80.73 80.30 71.74 76.14 49.06 79.51 72.91

W3 pc

RTN 55.05 71.06 54.22 56.19 32.25 61.27 55.01
OmniQuant§ 77.74 79.22 69.06 74.12 45.65 75.39 70.20
PEQA (our impl.) 74.28 78.67 69.06 74.87 45.99 76.00 69.81
LR-QAT (ours) 78.62 79.49 72.61 73.99 45.56 77.05 71.22

W3 g128

RTN 74.65 76.93 69.14 70.16 42.66 72.06 67.60
OmniQuant§ 78.17 79.49 70.09 74.49 47.01 76.60 70.97
PEQA (our impl.) 78.56 78.73 69.85 73.61 44.28 76.69 70.29
LR-QAT (ours) 79.79 79.60 70.64 74.24 46.76 78.00 71.51

W2 pc

RTN§ 38.35 48.97 48.54 27.78 27.99 25.97 36.27
OmniQuant§ 57.03 63.33 52.25 46.04 28.50 51.18 49.72
PEQA (our impl.)§ 71.19 74.48 59.67 62.96 37.29 68.14 62.29
LR-QAT (ours)§ 72.60 76.61 66.22 66.67 39.76 69.79 65.28

W2 g128

RTN§ 50.12 57.29 50.36 34.43 22.18 32.35 41.12
OmniQuant§ 64.83 70.51 57.85 57.07 33.53 59.17 57.16
PEQA (our impl.)§ 70.34 76.88 66.85 64.94 38.74 70.66 64.74
LR-QAT (ours)§ 75.47 77.86 65.98 67.63 41.04 72.50 66.75

Table C3: LM-eval weight-only quantization results for LLaMA-2 13B. We report zero-shot
accuracy of 6 tasks (higher is better). §Uses asymmetric weight quantization.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 81.44 80.79 72.85 77.74 53.33 79.16 74.22

W4 pc

RTN 79.02 78.56 72.85 75.97 49.32 77.44 72.19
OmniQuant§ 79.17 78.89 72.77 76.56 50.34 77.20 72.49
LSQ (our impl.) 80.58 80.03 72.69 78.24 50.17 77.94 73.28
PEQA (our impl.) 79.57 78.67 72.93 77.19 51.11 77.25 72.79
LR-QAT (ours) 81.62 79.98 72.85 78.32 52.05 78.19 73.84

W4 g128

RTN 79.48 79.27 73.56 75.08 48.81 77.61 72.30
OmniQuant§ 79.79 80.36 73.24 78.37 51.45 78.16 73.56
LSQ (our impl.) 80.24 80.36 73.01 77.23 50.43 78.60 73.31
PEQA (our impl.) 80.98 80.14 72.61 76.18 49.57 78.45 72.99
LR-QAT (ours) 80.40 80.90 73.48 77.44 51.11 78.60 73.66

W3 pc

RTN 58.65 61.75 56.04 39.60 23.81 44.91 47.46
OmniQuant§ 66.27 70.35 59.19 52.90 31.48 60.75 56.83
LSQ (our impl.) 76.42 78.24 70.01 72.31 45.22 75.26 69.58
PEQA (our impl.) 63.18 64.74 57.62 43.39 26.88 50.48 51.05
LR-QAT (ours) 77.46 78.51 69.85 74.83 47.35 74.73 70.46

W3 g128

RTN 65.47 68.39 65.19 54.00 33.45 59.96 57.74
OmniQuant§ 70.21 77.48 69.46 65.57 41.98 72.98 66.28
LSQ (our impl.) 75.50 78.78 69.69 73.57 48.55 74.55 70.11
PEQA (our impl.) 72.26 76.06 67.80 69.02 46.08 71.89 67.19
LR-QAT (ours) 72.97 79.38 71.67 74.37 49.06 75.44 70.48

W2 pc

RTN§ 44.89 48.97 47.51 25.29 27.73 26.41 36.80
OmniQuant§ 37.83 51.03 49.49 28.37 24.40 27.03 36.36
PEQA (our impl.)§ 62.54 72.96 59.51 56.82 33.70 60.77 57.72
LR-QAT (ours)§ 65.81 72.31 64.72 53.54 33.45 61.11 58.49

W2 g128

RTN§ 38.47 53.32 51.78 28.75 22.70 26.81 36.97
OmniQuant§ 45.14 51.74 49.96 28.24 22.61 28.51 37.70
PEQA (our impl.)§ 58.53 72.52 61.96 57.41 35.32 61.14 57.81
LR-QAT (ours)§ 67.98 73.83 62.83 56.94 36.43 64.77 60.46

Table C4: LM-eval weight-only quantization results for LLaMA-3 8B. We report zero-shot
accuracy of 6 tasks (higher is better). §Uses asymmetric weight quantization.

Bits Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

FP16 83.58 82.10 73.88 79.59 53.92 81.07 75.69

W4 pc

RTN 81.22 80.63 72.53 76.77 50.09 79.41 73.44
OmniQuant§ 81.35 81.50 72.45 76.26 50.17 80.35 73.68
LSQ (our impl.) 81.96 80.41 73.09 75.08 48.55 78.19 72.88
PEQA (our impl.) 81.80 81.12 72.61 77.23 50.17 79.43 73.73
LR-QAT (ours) 81.99 81.28 73.56 78.20 51.02 80.57 74.44

W4 g128

RTN 84.16 81.77 74.43 77.95 51.71 80.42 75.07
OmniQuant§ 83.33 81.83 73.72 79.25 52.90 80.96 75.33
LSQ (our impl.) 80.40 80.63 73.16 76.26 48.72 78.24 72.90
PEQA (our impl.) 80.89 81.72 73.80 75.42 48.46 79.76 73.34
LR-QAT (ours) 83.55 81.61 74.51 78.28 52.90 80.84 75.28

W3 pc

RTN 68.13 77.64 63.93 63.93 41.13 72.73 64.58
OmniQuant§ 74.04 78.56 65.59 70.12 42.32 73.75 67.40
LSQ (our impl.) 79.97 80.74 70.24 74.37 47.18 77.14 71.61
PEQA (our impl.) 80.03 80.09 69.93 72.90 45.82 77.32 71.02
LR-QAT (ours) 81.62 80.09 70.96 74.75 46.08 77.71 71.87

W3 g128

RTN 78.44 79.60 69.14 71.17 43.00 74.75 69.35
OmniQuant§ 80.31 81.39 70.48 76.85 50.51 78.82 73.06
LSQ (our impl.) 81.01 80.36 71.03 74.41 47.27 77.68 71.96
PEQA (our impl.) 81.99 81.18 69.61 74.92 47.18 78.37 72.21
LR-QAT (ours) 81.71 80.90 70.48 75.08 47.78 78.50 72.41

W2 pc

RTN§ 39.42 51.03 49.49 26.22 26.71 26.67 36.59
OmniQuant§ 37.80 51.63 48.30 27.78 27.22 25.59 36.39
PEQA (our impl.)§ 74.34 75.95 66.22 62.21 38.48 69.68 64.48
LR-QAT (ours)§ 75.08 76.39 65.98 64.48 39.59 69.14 65.11

W2 g128

RTN§ 54.98 56.91 51.70 31.27 23.21 29.70 41.30
OmniQuant§ 57.58 67.68 55.72 42.17 27.65 51.94 50.46
PEQA (our impl.)§ 75.41 75.84 64.96 65.45 38.23 68.00 64.65
LR-QAT (ours)§ 75.81 77.15 64.64 63.59 39.51 70.89 65.27

Table C5: LM-eval weight-only quantization results for Mistral 7B. We report zero-shot accuracy
of 6 tasks (higher is better). §Uses asymmetric weight quantization.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Model # Bits
(W-A-KV) Method BoolQ PIQA Winogrande ARC-e ARC-c HellaSwag Avg.

LLaMA-1 7B

FP16 75.05 79.16 70.01 72.85 44.80 76.21 69.68

4-8-8

RTN 71.35 76.66 66.46 66.84 41.55 72.10 65.83
SmoothQuant 71.00 76.00 66.00 67.40 42.80 67.80 65.17
LLM-QAT 74.60 77.50 67.70 70.20 45.60 73.50 68.18
PEQA (our impl.) 74.86 78.24 70.01 70.12 42.83 75.14 68.53
LR-QAT (ours) 73.76 78.51 71.19 71.09 41.81 75.10 68.58

4-8-4

RTN 68.81 75.46 62.12 62.46 39.51 68.33 62.78
SmoothQuant 54.70 55.40 51.50 43.90 27.70 38.90 45.35
LLM-QAT 69.50 75.40 64.60 66.00 43.80 69.20 64.75
PEQA (our impl.) 72.97 77.80 67.72 67.13 40.27 73.35 66.54
LR-QAT (ours) 73.64 77.91 67.56 69.28 41.30 73.25 67.16

4-4-4

RTN 50.49 64.25 52.41 48.27 30.12 52.04 49.60
SmoothQuant 49.10 49.80 48.00 30.40 25.80 27.40 38.42
LLM-QAT 61.30 51.50 51.90 27.90 23.90 31.10 41.27
LLM-QAT + SQ 62.40 55.90 50.60 35.50 26.40 47.80 46.43
Outlier Suppression+ 60.21 62.73 52.96 39.98 30.29 44.39 48.43
OmniQuant§ 63.51 66.15 53.43 45.20 31.14 56.44 52.65
PEQA (our impl.) 65.69 72.31 59.83 56.52 34.22 61.79 58.39
LR-QAT (ours) 67.16 71.76 59.59 58.42 34.73 62.34 59.00

LLaMA-2 7B

FP16 77.74 79.11 69.14 74.58 46.25 75.98 70.47

4-8-8
RTN 75.87 77.91 67.88 71.09 44.03 74.51 68.55
PEQA (our impl.) 77.37 77.97 69.77 70.54 43.52 75.50 69.11
LR-QAT (ours) 77.00 78.13 69.14 72.10 44.11 75.44 69.32

4-8-4
RTN 70.37 76.01 63.38 68.94 41.47 70.76 65.16
PEQA (our impl.) 74.71 77.48 67.40 69.28 42.75 73.75 67.56
LR-QAT (ours) 74.46 77.69 68.51 69.78 42.75 73.82 67.84

4-4-4
RTN 57.86 64.91 54.46 49.62 31.83 51.83 51.75
PEQA (our impl.) 67.09 70.67 60.06 54.80 32.17 62.76 57.93
LR-QAT (ours) 66.94 71.98 60.77 57.20 33.87 63.10 58.98

LLaMA-2 13B

FP16 80.55 80.52 72.22 77.44 48.98 79.38 73.18

4-8-8
RTN 79.24 79.27 70.01 75.51 48.29 76.92 71.54
PEQA (our impl.) 79.02 80.20 71.19 76.60 48.72 79.22 72.49
LR-QAT (ours) 81.10 79.76 71.35 77.36 50.60 78.91 73.18

4-8-4
RTN 77.25 76.61 66.69 67.72 41.13 72.98 67.06
PEQA (our impl.) 78.01 79.22 69.30 75.59 48.21 77.78 71.35
LR-QAT (ours) 78.59 79.54 70.80 75.29 48.04 77.64 71.65

4-4-4
RTN 62.60 67.90 53.20 57.32 34.13 55.25 55.07
PEQA (our impl.) 68.72 74.21 62.35 63.85 36.01 68.44 62.26
LR-QAT (ours) 70.64 73.88 63.14 61.78 38.14 68.31 62.65

Table C6: LM-eval weight and activation quantization results for LLaMA models. We report
zero-shot accuracy of 6 tasks (higher is better). §Uses asymmetric weight quantization.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D ADDITIONAL RESULTS

In this section, we provide extended results and present some additional ablation studies:

• In Table D1, we show a comparison between min-max and the best range setting used for
round-to-nearest (RTN) initialization.

• In Table D2, we perform an ablation study comparing different range initializations with RTN
(best, as used in the main set of results vs. min-max) for LR-QAT and PEQA applied to
LLaMA-2 7B.

• In Table D3, we provide a detailed comparison of weight-only quantization results with BitDis-
tiller (Du et al., 2024).

Bits Range WikiText-2 perplexity ↓ Avg. zero-shot accuracy ↑
estimator L1-7B L2-7B L2-13B L3-8B M-7B L1-7B L2-7B L2-13B L3-8B M-7B

FP16 5.68 5.47 4.88 6.14 5.25 69.68 70.47 73.18 74.22 75.69

W4 pc
best est. L4 L3.5 L3.5 L3.5 L4 L4 L3.5 L3.5 L3.5 L4

best 6.33 6.14 5.21 7.53 5.91 68.51 68.88 71.73 72.19 73.44
min-max 6.85 7.14 5.40 10.53 6.33 66.23 66.41 72.19 67.44 71.84

W4 g128
best est. L5 min-max min-max L4 L5 L5 min-max min-max L4 L5

best 6.05 5.78 5.04 6.96 5.49 68.93 69.75 72.94 72.30 75.07
min-max 6.08 5.78 5.04 6.99 5.51 68.96 69.75 72.94 72.95 74.98

W3 pc
best est. L3.5 L3.5 L5 L3.5 L4 L3.5 L3.5 L5 L3.5 L4

best 12.88 26.73 8.71 34.10 9.49 54.66 43.87 55.01 47.46 64.58
min-max 2.4e4 1.9e4 2.3e3 1.6e5 3.2e3 36.02 35.71 37.85 35.78 36.78

W3 g128
best est. L5 L4 L5 L5 L5 L5 L4 L5 L5 L5

best 7.95 7.61 6.20 15.11 6.77 63.50 63.20 67.60 57.74 69.35
min-max 8.10 8.22 6.14 29.38 7.22 62.69 64.07 66.81 54.54 68.35

W2 pc§
best est. L2.4 L3 L3 L3.5 L3.5 L2.4 L3 L3 L3.5 L3.5

best 4.9e3 5.2e3 5.2e3 6.4e4 6.8e3 37.92 36.52 36.27 36.80 36.59
min-max 1.1e5 2.5e4 4.9e4 1.4e6 7.5e4 39.07 36.53 39.01 37.69 38.13

W2 g128§
best est. L4 L3.5 L5 L4 L5 L4 L3.5 L5 L4 L5

best 708 2.5e3 115.6 1.4e4 369 39.74 37.94 41.12 36.97 41.30
min-max 3.6e3 5.9e3 341 2.8e5 3.4e3 37.06 36.78 40.30 37.18 37.16

Table D1: A comparison between min-max and the best range setting used for round-to-
nearest (RTN) initialization for LLaMA and Mistral models. We report WikiText-2 test set
perplexity (lower is better) and average zero-shot accuracy (higher is better). §Uses asymmetric
weight quantization.

Bits Method WikiText-2 perplexity ↓ Average zero-shot accuracy ↑
best min-max best min-max

W4 pc
RTN 6.14 7.14 68.88 66.41
PEQA (our impl.) 5.71 5.93 69.23 68.52
LR-QAT (ours) 5.66 5.85 69.72 68.75

W4 g128
RTN 5.78 5.78 69.75 69.75
PEQA (our impl.) 5.67 5.67 69.64 69.64
LR-QAT (ours) 5.59 5.59 69.88 69.88

W3 pc
RTN 26.7 1.9e3 43.87 35.71
PEQA (our impl.) 6.45 11.3 65.44 55.88
LR-QAT (ours) 6.13 7.99 67.66 61.69

W3 g128
RTN 7.61 8.22 63.20 64.07
PEQA (our impl.) 6.05 6.41 68.10 65.88
LR-QAT (ours) 5.99 6.37 67.98 65.86

Table D2: Ablation study comparing different RTN initialization (best vs. min-max) for LR-
QAT and PEQA on LLaMA-2 7B. We report WikiText-2 test set perplexity (lower is better) and
average zero-shot accuracy (higher is better).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Model # Bits Method PIQA Winogrande ARC-c HellaSwag Average

LLaMA-2 7B

FP16 79.11 69.14 46.25 57.13 62.91

W3 g128 BitDistiller§ 76.99 68.35 41.21 55.38 60.48
LR-QAT (ours) 77.31 68.98 42.58 55.05 60.98

W2 g128 BitDistiller§ 73.61 61.09 33.27 48.70 54.17
LR-QAT (ours)§ 73.83 63.69 34.98 49.72 55.56

LLaMA-2 13B

FP16 80.52 72.22 49.23 60.05 65.51

W3 g128 BitDistiller§ 78.67 71.59 46.67 58.66 63.90
LR-QAT (ours) 79.60 70.64 46.76 58.84 63.96

W2 g128 BitDistiller§ 75.84 65.90 37.46 51.30 57.63
LR-QAT (ours)§ 77.86 65.98 41.04 53.86 59.69

Table D3: LM-eval weight-only quantization comparison with BitDistiller for LLaMA-2 7B
and 13B. We report zero-shot accuracy of 4 tasks (higher is better). Specifically, we report acc
for Winogrande, HellaSwag and acc_norm for PIQA and ARC-c. §Uses asymmetric weight
quantization.

E INFERENCE SIMULATION RESULTS

In this section, we present results of our inference runtime simulation to measure the overhead
incurred when low-rank auxiliary matrices A and B are not fused into the pretrained weight matrix
WZ. Additionally, we conduct a preliminary experiment showing that, after the model is trained with
QLoRA-style approach, naively fusing high precision A and B into the low-bit pretrained weights
WZ will lead to a significant accuracy drop.

Inference runtime overhead We follow the experimental settings of QLoRA, except using integer
quantization as opposed to NF non-uniform quantization format. Starting from a BF16 baseline
LLaMA 7B model, we apply bits-and-bytes6 INT8 weight quantization to all linear layers.
Note that we don’t apply activation quantization and so, even if weights are stored in INT8, we must
dequantize them to BF16 before applying matrix multiplication. Finally, similarly to QLoRA, we
applied LoRA using the PEFT library7, with rank r ranging from 0 (i.e., LoRA weights fused) up
to rank 32. The results reported in Table E1 show a consistent non-negligible runtime overhead
when employing unfused inference, compared to the case when A and B are fused to the original
pretrained weights, even with rank r = 1.

Sequence length LoRA rank, r Inference runtime, ms Relative overhead

1024 0 (fused) 154.4±3.2 +0%
1024 1 179.3±1.8 +16.1%
1024 4 183.2±3.3 +18.7%
1024 32 183.0±2.1 +18.5%

2048 0 (fused) 229.4±0.3 +0%
2048 1 258.8±1.0 +12.3%
2048 4 260.2±1.5 +13.8%
2048 32 258.1±1.2 +12.5%

Table E1: Inference runtime simulation for LLaMA 7B with weight-only integer quantization,
using fused and unfused adapters of different ranks. We report the wall time of a single forward
pass for a single sequence of specified length on NVidia A100 GPU, averaged over 50 runs. Rank 0
represents the runtime for techniques fusing A and B into the original weights (like LR-QAT).

Note that reported results are targeting a specific hardware (Nvidia A100) and will look different
when the model is deployed elsewhere. In case of an actual integer inference hardware, the runtime
overhead will likely be even higher, because the speed of WZ · x can be greatly decreased by using
integer-only multiplications while the overhead of high precision multiplication ABx will remain

6https://github.com/bitsandbytes-foundation/bitsandbytes
7https://github.com/huggingface/peft

22

https://github.com/bitsandbytes-foundation/bitsandbytes
https://github.com/huggingface/peft

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

roughly the same. Conversely, our method, which incorporates fused low-rank auxiliary matrices,
does not introduce any additional inference latency compared to PTQ, full-model QAT or any other
uniform affine quantization methods.

Naive fusion of QLoRA adapters We conducted a preliminary experiment to investigate the
effect of naively fusing high precision adapters A and B into a low-bit integer weights WZ, after
the model has been trained with QLoRA-like technique. For this experiment, we trained a smaller
OPT-1.3B (Zhang et al., 2022) model on Wikipedia training set for 1000 steps with effective batch
size 32, and report the WikiText-2 validation set perplexity using sequence length 1024. The rest of
the hyperparameters are the same as for our main set of experiment. We demonstrate the results of
the aforementioned approach and compare it against several baselines, RTN, full-model QAT, and
our method in Table E2.

#Bits Method Wikitext-2 Perplexity ↓
FP16 29.63

W4 pc RTN 37.22
W4 pc Full-model QAT (LSQ) 21.66
W4 pc QLoRA + Naive A, B fusion 26.94
W4 pc LR-QAT (ours) 19.87

Table E2: A comparison between naively fusing A and B in QLoRA, our method, RNT, and full-
model QAT.

It is easy to see fusing A and B naively after training with QLoRA leads to big increase in perplexity.
In contrast, LR-QAT allows for A and B to be fused in the original low-bit pretrained weights
seamlessly and without any predictive performance degradation, achieving both an accuracy com-
parable with full-model QAT and without sacrificing inference performances, as shown in previous
paragraph.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

F TRAINING RUNTIME

Bits Method Per-device batch size × Time/100 steps, secgrad. accumulation steps

FP16 Full-model training 1×32 974±3

FP16 LoRA, r = 32 1×32 950±3

W4 pc Full-model QAT 1×32 ✕
W4 pc Full-model QAT + CPU opt. offloading 1×32 7426±216

W4 pc Full-model QAT + CPU opt. offloading 2×16 ✕
W4 pc Full-model QAT + checkpointing 1×32 3248±7

W4 pc Full-model QAT + checkpointing 2×16 ✕

W4 pc LR-QAT, φ = Q4.4, r = 32 1×32 2938±6

W4 pc LR-QAT, φ = Q4.4, r = 32 4×8 1522±5

W4 pc LR-QAT, φ = Q4.4, r = 1 4×8 1519±6

W4 pc LR-QAT, φ = Q4.4, r = 4 4×8 1528±3

W4 pc LR-QAT, φ = Q4.4, r = 256 4×8 1546±4

W4 pc LR-QAT, φ = INT4, r = 32 4×8 1518±8

W4 g128 LR-QAT, φ = Q4.4, r = 32 4×8 1528±5

Table F1: Training runtime comparison between LR-QAT, full-model QAT (LSQ), full-precision
training and full-precision LoRA for LLaMA 7B on Nvidia A100 80GB GPU, assuming effective
batch size 32 and sequence length 1024. We repeat each experiment 5 times and report mean ±
standard deviation. ✕ denotes out of memory.

Method GPU mem., Runtime, WikiText-2 ppl. ↓ Zero-shot acc. ↑
GB hours W4 pc W3 pc W4 pc W3 pc

Full-model QAT (LSQ), 104 iters 62.2 (98.5) 90.2±0.2 5.77±0.02 6.14±0.01 68.96±0.29 67.14±0.13

PEQA, 104 iters 19.9 35.6±0.22 5.71 6.45 69.23 65.44
OmniQuant§ 11.6 1.21 5.74 6.58 68.19 63.94
LR-QAT (ours), 104 iters 20.5 42.3±0.13 5.66±0.00 6.13±0.02 69.72±0.32 67.70±0.25

LR-QAT (ours), 103 iters 20.5 4.23 5.68 6.22 69.43 66.93

Table F2: A comparison of the proposed method (φ = Q4.4) with the full-model QAT, PEQA and
OmniQuant on LLaMA-2 7B with W4 and W3 per-channel quantization. §Uses asymmetric weight
quantization. We report mean and standard deviation over 5 runs with different random seeds. We also
report the maximum GPU memory with (without) gradient checkpointing and the training runtime on
a Nvidia A100 80GB GPU.

24

