
Learning Filter-Aware Distance Metrics for Nearest Neighbor Search with
Multiple Filters

Ananya Sutradhar 1 Suryansh Gupta 1 Ravishankar Krishnaswamy 1 Haiyang Xu 2 Aseem Rastogi 1

Gopal Srinivasa 1

Abstract

Filtered Approximate Nearest Neighbor (ANN)
search retrieves the closest vectors for a query
vector from a dataset. It enforces that a speci-
fied set of discrete labels S for the query must
be included in the labels of each retrieved vector.
Existing graph-based methods typically incorpo-
rate filter awareness by assigning fixed penalties
or prioritizing nodes based on filter satisfaction.
However, since these methods use fixed, data in-
dependent penalties, they often fail to generalize
across datasets with diverse label and vector dis-
tributions.

In this work, we propose a principled alternative
that learns the optimal trade-off between vector
distance and filter match directly from the data,
rather than relying on fixed penalties. We for-
mulate this as a constrained linear optimization
problem, deriving weights that better reflect the
underlying filter distribution and more effectively
address the filtered ANN search problem. These
learned weights guide both the search process and
index construction, leading to graph structures
that more effectively capture the underlying filter
distribution and filter semantics.

Our experiments demonstrate that adapting the
distance function to the data significantly im-
proves accuracy by 5-10% over fixed-penalty
methods, providing a more flexible and gener-
alizable framework for the filtered ANN search
problem.

1Microsoft Research India 2Microsoft Corporation. Corre-
spondence to: Suryansh Gupta <suryangupta@microsoft.com>,
Gopal Srinivasa <gopalsr@microsoft.com>, Ananya Sutradhar
<t-asutradhar@microsoft.com>.

Proceedings of the 1 st Workshop on Vector Databases at Interna-
tional Conference on Machine Learning, 2025. Copyright 2025 by
the author(s).

1. Introduction
Embedding based representations have become the corner-
stone of modern machine learning systems, particularly in
applications involving retrieval, search and recommenda-
tions. With the recent surge in Retrieval Augmented Gen-
eration (RAG) and other retrieval based AI systems, vector
search has emerged as one of the most critical primitives in
modern information retrieval and machine learning infras-
tructure.

At the core of vector search lies the problem of Approximate
Nearest Neighbor (ANN) search, which aims to retrieve the
top-k closest vectors to a given query vector under some
distance metric. ANN search is a well studied problem
and has seen widespread adoption due to its efficiency and
scalability in high dimensional spaces.

However, traditional ANN search overlooks the complexi-
ties of modern applications, which often involve structured
metadata or constraints. In real world scenarios such as:

• E-commerce, buyers filter products based on attributes
like brand, color, or size.

• Semantic image retrieval, users may want images
from specific locations or captured under certain con-
ditions.

• Document retrieval, users may constrain results to a
certain topic, language, or publication source.

These scenarios demand not only similarity in the embed-
ding space, but also compliance with symbolic filters. To
address this, we consider the Filtered-ANN problem, a
generalization of ANN search with additional filtering con-
straints. A prominent instantiation is the MultiFilterANN
problem: given a dataset X of N high dimensional vectors,
where each vector v ∈ X is annotated with a set of labels
Sv ⊆ [m], the goal is to retrieve the top-k (approximately)
nearest vectors to a query vector q with label set Sq ⊆ [m],
subject to the constraint that Sq ⊆ Sv for each returned
vector v. This corresponds to an AND-style filtering re-
quirement, where a candidate must match all the filters in
the query.

1

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

Existing systems typically handle filtering through strict
post-processing or hard-constraint enforcement. The former
requires significant over-provisioning to ensure that relevant
items are not discarded, while the latter often leads to bro-
ken search paths that terminate at poor local optima. To
address these limitations, the MultiFilterANN paper (Bern-
stein et al., 2025) introduced a penalty distance function,
where the distance between a query and a candidate is de-
fined as a linear combination of its vector distance and the
extent of label mismatch. However, fixed penalty scoring
heuristics fail to adapt to the varying importance of filters
across different queries or datasets.

In this paper, we propose a data driven distance function
that jointly models vector similarity and filter match through
a weighted combination of distance and filter mismatch. By
formulating the problem as a constrained optimization, we
derive scoring weights that better reflect the statistical pat-
terns and semantics of both vectors and filters in the dataset.
This allows search to dynamically adjust the relative impor-
tance of satisfying a filter versus being close in embedding
space, resulting in a more flexible and generalizable frame-
work for filtered ANN search.

Once the distance function is learned, we can seamlessly
apply existing graph-based retrieval algorithms such as
DiskANN as black-box subroutines to retrieve the topK
neighbors with respect to this modified distance. This elim-
inates the need for substantial overprovisioning typically
required by post-processing techniques. Since the learned
distance function incorporates filter awareness directly into
the search process, our method achieves high accuracy with
far fewer candidate evaluations, reducing search latency
without sacrificing quality.

Contributions

• Learned Distance Function: We introduce a method
to learn the optimal trade off between vector similarity
and filter match, enabling a more nuanced and effec-
tive ranking of candidates that smoothly favors those
satisfying the filter, rather than enforcing a strict hard
constraint.

• Integrated Index Construction: We incorporate the
learned distance function directly into the index build-
ing phase, allowing the index to prioritize connections
between vectors that share more labels while maintain-
ing vector similarity. This results in a graph structure
better aligned with filtered ANN search, improving
both accuracy and retrieval efficiency.

• Empirical Validation: We demonstrate significant per-
formance gains over traditional fixed penalty baselines
across multiple datasets, showcasing the adaptability
and effectiveness of our method.

2. Background and Related Work
ANN Search has been studied extensively over the past
few decades (Malkov & Yashunin, 2016; Datar et al., 2004;
Huang et al., 2015; Bernhardsson, 2015; Subramanya et al.,
2019), with research focusing on various dimensions such as
improving recall, scale and cost efficiency (Babenko & Lem-
pitsky, 2012; Baranchuk et al., 2018; Malkov & Yashunin,
2016), real time updates (Singh et al., 2021), distributed
indexing (Sundaram et al., 2013). Several benchmark ef-
forts (Aumüller et al., 2020; Simhadri et al., 2022) have
also helped evaluate the practical trade offs among these
methods.

More recently, there has been growing interest in filtered
ANN Search, where queries include structured filters (e.g.,
metadata conditions) in addition to a vector query. With
filtering becoming a standard requirement in ANN appli-
cations, many start-ups including Milvus (Milvus, 2022),
Pinecone (Pinecone, 2024), Vearch (Vearch, 2022), Vespa
(Vespa, 2022), and Weaviate (Weaviate, 2022) —now pro-
vide ANN-as-a-service platforms featuring various degrees
of filtering support.

Several recent works aim to address MultiFilterANN explic-
itly. CAPS (Gupta et al., 2023) combines subset query data
structures with ANN indices, but its performance degrades
as the number of labels grows. SERF (Gupta et al., 2023)
modifies the graph construction phase to support range fil-
ters (e.g., time intervals), but its applicability is limited to
single filters. ACORN (Patel et al., 2024) encodes filters
using low-rank projections and product quantization, but
struggles to scale with complex Boolean predicates. IVF2
(Landrum et al., 2024) is the current state-of-the-art open-
source solution for MultiFilterANN, but its clustering-only
architecture can degrade in scenarios where predicates have
poor alignment with clusters. Recent methods handle dif-
ferent filter types more effectively. Filtered-DiskANN (Gol-
lapudi et al., 2023) targets OR-style filters, building graph
indices using both vector and label information for efficient,
high-recall retrieval. But this does not support AND-style
filters. Another work (Bernstein et al., 2025) focuses on
AND-style filters, developing provable graph algorithms
and using penalty to flexibly handle multiple filters.

3. Problem Setup
Here we formally define the Filtered-ANN search problem
and also our approach of learning weights to solve it. To do
so, we first provide some basic definitions.

Let X = {vi}Ni=1 denote the set of N data vectors, where
each vi ∈ Rd. For each i ∈ [N], we let Si ⊆ [m] represent
the set of labels associated with the data vector vi. We use
q ∈ Rd to denote the query vector and use Sq ⊆ [m] to
denote the labels associated with it. The distance between

2

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

a query vector and a data vector is denoted by d(q, v) (e.g.,
Euclidean distance, Cosine distance). Lastly, we define
m(q, v) as a label match score, measuring the degree to
which the data vector v satisfies the filter constraint imposed
by the query:

m(q, v) =
|Sq ∩ Sv|
|Sq|

The main goal of the Filtered-ANN search problem is to
retrieve data vectors v that are close to q with respect to
d(q, v) while satisfying the filter constraint, that is, Sq ⊆
Sv .

To solve this Filtered-ANN search problem, as discussed in
the Introduction, we propose a weighted distance function
that aims to capture the optimal trade-off between the dis-
tance function and filter satisfiability. This distance function
is formally defined as follows.

D(q, v) = d(q, v) + wm · (1−m(q, v)),

where:

• wm ≥ 0 controls the penalty applied to vectors that
violate the filter constraint.

we use (1 − m(q, v)) to penalize candidates that fail to
satisfy the predicate, converting the match score into a mis-
match penalty. We seek to learn the weight wm such that,
among all ground truth neighbors of a query:

D(q, v1) < D(q, v2)

where m(q, v1) = 1 and m(q, v2) < 1

By solving for such weights, we aim to construct a distance
function that balances distance and filter match in a data-
driven way, improving retrieval quality.

4. Learning the Distance function
Given a set of queries Q = 1, . . . , q, each associated with
candidate vectors v characterized by distances d(q, v) and
filter match indicators m(q, v), our goal is to learn weight
wm that combine these features into a distance function:

D(q, v) = d(q, v) + wm · (1−m(q, v)),

which ranks vectors such that those satisfying the filter
(m(q, v) = 1) score better than those that do not.

4.1. Ground-Truth Preference Pairs

To learn the weight wm, we start by constructing ground
truth preference pairs for each query q as follows:

• For each query q, we perform an exact full scan re-
trieval over the dataset to obtain some top-k ground
truth nearest neighbors Nq ⊆ X . During this process,
we calculate both the vector distance d(q, v) and the fil-
ter match indicator m(q, v) for every candidate vector
v.

• We define the set of positive examples as Posq = {i |
vi ∈ Nq and m(q, vi) = 1}, i.e., vectors satisfying the
filter constraint.

• For each i ∈ Posq, the set of negative examples is de-
fined as Negq(i) = {j | m(q, vj) < 1 and d(q, vj) <
d(q, vi)}.

4.2. Linear Programming Formulation

We formulate the learning problem as a Linear Program
with the following components:

Variables:

• wm ≥ 0, weight for filter mismatch penalty.

• sq,i,j ≥ 0, slack variables to allow for soft violations
of ranking constraints.

Objective: We minimize a combination of the filter mis-
match weight wm and the total slack violations over all
ranking constraints:

min

wm + α · 1

|S|
∑

(q,i,j)∈S

sq,i,j

where S = {(q, i, j) | i ∈ Posq, j ∈ Negq(i)} is the set of
all triplets defining the ranking constraints.

The parameter α controls the trade off between minimizing
the filter mismatch penalty wm and minimizing the average
slack violation. This helps the model find a good trade off
between following the vector distances and allowing some
flexibility in filter matching. We can use a grid search to
choose the best value of α.

Constraints: For all q, and all pairs (i, j) with i ∈ Posq
and j ∈ Negq(i), enforce:

d(q, vi) + wm · (1−m(q, vi)) + ε (1)
≤ d(q, vj) + wm · (1−m(q, vj)) + sq,i,j ,

where ε > 0 is a margin parameter to ensure robustness. In
our experimental setting, we use ε = 0.01.

3

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

Goal: This LP formulation seeks weights that maximize
the margin by which positive, filter satisfying vectors out-
rank negative vectors. We aim to minimize wm because a
smaller value encourages the search process to treat filter
constraints more flexibly. In the extreme case, wm = ∞
enforces filters as hard constraints, disallowing any viola-
tions and potentially hurting recall. Slack variables prevent
infeasibility in cases where perfect ranking is impossible.
By solving this program, we learn a data driven trade off
between vector similarity and filter matching.

5. Penalty Aware Index Construction
We leverage the learned distance function to guide the
construction and search within the nearest neighbor graph.
Specifically, the weight wm influence how edges are added
and prioritized, balancing vector proximity and filter match
penalties.

5.1. Distance Function

The combined distance between two vectors v1 and v2 is
defined as:

D(v1, v2) = d(v1, v2) + wm · (1−m(Sv1 , Sv2
)),

where d(v1, v2) is the standard vector distance (e.g., cosine
distance), and (1−m(Sv1 , Sv2

)) measures the dissimilarity
between the label sets of v1 and v2.

The asymmetric Jaccard distance between the label sets Sv1

and Sv2 is defined as:

m(Sv1 , Sv2) =
|Sv1 ∩ Sv2 |
|Sv1 |

.

We use D(v1, v2) as the distance metric during the construc-
tion of the graph-based index over the dataset.

5.2. Comparison with Prior Methods

Most existing graph-based filtered search methods incorpo-
rate filter constraints using heuristic rules during search but
not during index construction. A common strategy is to ig-
nore filter labels entirely while building the index, and then
apply hard constraints, such as discarding neighbors with
insufficient label overlap, at query time (Bernstein et al.,
2025).

In contrast, our approach integrates filter awareness directly
into the index construction phase. We learn a soft dis-
tance function that linearly combines vector distance with a
penalty for filter mismatch, weighted by a learned parameter
wm. This enables the index to preserve edges to candidates
with mild filter mismatches if their vector proximity is suffi-
ciently high, producing a more flexible and effective graph

structure. By avoiding fixed heuristics and instead adapting
to data characteristics, our method constructs filter aware
indices that support higher quality retrieval.

6. Implementation Overview
In this section, we describe the learning of a data-driven
filter-aware distance function, its integration into the con-
struction of a graph index, and the corresponding search and
planning strategies. We also outline our approach to query
planning, which selects an appropriate search strategy for
each query.

Learning Filter-Aware Distance Function: Prior to in-
dex construction, we split the query set into two disjoint
subsets: a training set used for learning, and a test set for
evaluation. For each training query, we retrieve its ground
truth neighbors via exhaustive unfiltered search and com-
pute the filter match score for each result. We formulate a
linear program based on these statistics that models pairwise
ranking constraints between satisfying and non satisfying
vectors, as described in Section 4. We solve this LP using
the PuLP solver to obtain optimal weights for combining
vector distance and filter mismatch in the distance function.

Building the Graph Index: We construct our graph based
index using FilteredDiskANN (Gollapudi et al., 2023), ap-
plying a modified greedy search procedure we refer to as
WeightedGreedySearch. This search integrates our learned
distance function during edge selection, encouraging con-
nections between vectors that are not only spatially close but
also exhibit high filter similarity. The complete construction
algorithm is provided in Algorithm 1.

Searching the Graph Index: At query time, we utilize a
penalized search approach guided by our learned distance
function. This strategy favors candidates that minimize the
joint objective over vector distance and filter mismatch. Full
algorithm is provided in Algorithm 2.

Query Planning: Inspired by prior work (Bernstein et al.,
2025), we employ a simple planning mechanism that routes
queries to either the graph based search or an exact search
based on filter selectivity. For queries with highly selec-
tive label sets (e.g., only one matching database point), we
bypass the graph search to reduce latency. This planning
mechanism is detailed in Appendix A. For our experiments,
we choose this threshold to be 100000.

7. Empirical Results
We conduct extensive experiments to evaluate our learned
scoring approach for filtered approximate nearest neighbor
(ANN) search.

4

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

7.1. Datasets

We evaluate on two diverse real world datasets, further de-
tails for each dataset are provided in Appendix B.

• YFCC1M: A subset of the Yahoo Flickr Creative Com-
mons dataset with image embeddings and metadata
based labels.

• Wikipedia: Sentence embeddings with topic/category
labels derived from article and Wikipedia categories
(Cohere, 2023a).

For each dataset, we partition the query set into training
and evaluation subsets, which are randomly sampled and
used for learning the weights and assessing performance,
respectively. Specifically, we use 11,865 training and 5,718
evaluation queries for YFCC1M, and 308 training and 464
evaluation queries for Wikipedia.

7.2. Evaluation Metrics

We measure Recall@k under different distance functions
and indexing strategies. Recall@k is defined as the fraction
of ground truth neighbors, computed by retrieving the k
nearest vectors that satisfy the predicate constraint, that are
present in the top-k retrieved results. In all our evaluations
we use Recall@10.

7.3. Comparative Evaluation

We compare our proposed method against two commonly
used baselines to evaluate the effectiveness of incorporating
filter aware scoring in ANN search.

• Integrated Learning (Ours): Both index construction
and search use the learned distance function that jointly
models vector similarity and filter mismatch.

• Fixed Penalty Search: The index is constructed using
standard vector distances. At query time, a manually
tuned fixed penalty scoring function is used to combine
distance and filter mismatch (Bernstein et al., 2025).

• Post Filtering: The index is built and searched us-
ing pure vector distances, completely ignoring filter
constraints during traversal. After the search has con-
verged, the retrieved candidates are filtered to retain
only those that satisfy the filter constraints.

These results demonstrate the effectiveness of our integrated
learning approach, showing that the consistent use of the
learned scoring function in both indexing and search im-
proves recall and latency. We report the average number of
vector distance comparisons during search as a proxy for

search latency, since it is independent of hardware and of
code level optimizations.

Figure 1. Recall vs. Average Distance Comparison on the
Wikipedia-35M dataset. The learned weight wm = 0.204148,
and 464 queries proceeded to the graph search.

Figure 2. Recall vs. Average Distance Comparison on the YFCC
dataset. The learned weight is wm = 0.017787, and 1,727 queries
proceeded to the graph search.

Figure 3. Unfiltered Search on different builds, this shows our in-
dex construction method preserves the quality of unfiltered search.

5

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

We also show that our index construction method preserves
the quality of unfiltered search. Although the index is opti-
mized for filtered queries, it still delivers strong performance
on unfiltered queries. This shows that incorporating filter-
awareness during index construction does not degrade the
quality of unfiltered nearest neighbor retrieval.

8. Discussion
Sensitivity to dataset statistics: The learned weight adapt
to dataset-specific properties, including the distribution of
vector distances and the sparsity of filter matches. For in-
stance, when relevant filtered neighbors are rare, the penalty
weight wm increases to prioritize filter match. Conversely,
when filter constraints are less selective, the distance plays
a larger role.

Impact of weighted distance function in index construc-
tion: Incorporating the learned weighted distance function
directly into index construction improves the quality of the
underlying graph. By guiding edge creation to account
for both vector proximity and filter similarity, the resulting
graph structure clusters relevant candidates more effectively
according to filter constraints. This enables more efficient
searches with higher recall, as the graph encodes the trade-
off directly rather than relying on heuristic edge pruning.

9. Conclusion
We proposed a principled, data-driven method to learn the
trade-off between vector distance and filter match in filtered
approximate nearest neighbor search. By formulating this
as a constrained optimization problem, we derived distance
function that adapt to the dataset and improve retrieval qual-
ity. Integrating these learned distance function into both
index construction and search leads to substantial accuracy
gains over traditional fixed-penalty heuristics.

Future work. Promising directions for future work include
exploring nonlinear distance functions to better model com-
plex interactions between vector similarity and filter compli-
ance; investigating more expressive filter similarity metrics
beyond binary matches or Jaccard distance to capture richer
label relationships; and extending the framework to support
more general constraints, such as continuous or hierarchi-
cal ones. Additionally, future approaches could eliminate
the dependency on queries and ground-truth neighbors by
learning the distance function directly from dataset-level
statistics. This shift would simplify the training process
and enhance generalization, as the learned function would
reflect the inherent structure of the data rather than being
tailored to a specific query set or labeled ground truth.

10. Acknowledgments
We sincerely thank Kiran Shiragur for his valuable insights
and guidance in formulating the Linear Programming prob-
lem.

References
Aumüller, M., Bernhardsson, E., and Faithfull, A. Ann-

benchmarks: A benchmarking tool for approximate
nearest neighbor algorithms. Information Systems, 87,
2020. URL http://www.sciencedirect.com/
science/article/pii/S0306437918303685.

Babenko, A. and Lempitsky, V. The inverted multi-index. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 3069–3076, 2012.

Baranchuk, D., Babenko, A., and Malkov, Y. Revisiting
the inverted indices for billion-scale approximate nearest
neighbors. arXiv preprint arXiv:1802.02422, 2018. URL
http://arxiv.org/abs/1802.02422.

Bernhardsson, E. Annoy: Approximate nearest neighbors
in c++/python. https://github.com/spotify/
annoy, 2015. Accessed: 2025-05-26.

Bernstein, P. A., Gollapudi, S., Gupta, S., Krishnaswamy,
R., Mahabadi, S., Silwal, S., Simhadri, H. V., Srinivasa,
G. R., Suriyanarayana, V., Tarnawski, J., and Xu, H. Mul-
tifilterann: Approximate nearest neighbor search with
multiple filters. In Under review, 2025. URL https:
//openreview.net/forum?id=a2eBgp4sjH.

Cohere. Cohere wikipedia dataset (mul-
tilingual v3 embeddings). https://
huggingface.co/datasets/Cohere/
wikipedia-2023-11-embed-multilingual-v3,
2023a. Accessed: 2025-05-24.

Cohere. wikipedia-22-12-simple-
embeddings, 2023b. URL https://
huggingface.co/datasets/Cohere/
wikipedia-22-12-simple-embeddings.

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V. S.
Locality-sensitive hashing scheme based on p-stable dis-
tributions. In Proceedings of the twentieth annual sympo-
sium on Computational geometry (SoCG), pp. 253–262.
ACM, 2004.

Gollapudi, S., Karia, N., Sivashankar, V., Krishnaswamy,
R., Begwani, N., Raz, S., Lin, Y., Zhang, Y., Mahapa-
tro, N., Srinivasan, P., Singh, A., and Simhadri, H. V.
Filtered-diskann: Graph algorithms for approximate near-
est neighbor search with filters. In Proceedings of the
ACM Web Conference (WWW), 2023. URL https:
//doi.org/10.1145/3543507.3583552.

6

http://www.sciencedirect.com/science/article/pii/S0306437918303685
http://www.sciencedirect.com/science/article/pii/S0306437918303685
http://arxiv.org/abs/1802.02422
https://github.com/spotify/annoy
https://github.com/spotify/annoy
https://openreview.net/forum?id=a2eBgp4sjH
https://openreview.net/forum?id=a2eBgp4sjH
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3
https://huggingface.co/datasets/Cohere/wikipedia-2023-11-embed-multilingual-v3
https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings
https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings
https://huggingface.co/datasets/Cohere/wikipedia-22-12-simple-embeddings
https://doi.org/10.1145/3543507.3583552
https://doi.org/10.1145/3543507.3583552

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

Gupta, G., Yi, J., Coleman, B., Luo, C., Lakshman, V., and
Shrivastava, A. Caps: A practical partition index for fil-
tered similarity search. arXiv preprint arXiv:2308.15014,
2023.

Huang, Q., Feng, J., Zhang, Y., Fang, Q., and Ng, W. Query-
aware locality-sensitive hashing for approximate nearest
neighbor search. Proceedings of the VLDB Endowment,
9(1):1–12, 2015.

Landrum, B., Dobson Manohar, M., Karjikar, M.,
and Dhulipala, L. Parlayann ivf2: Fusing clas-
sic and spatial inverted indices for fast filtered
ANNS. https://big-ann-benchmarks.com/
neurips23.html, 2024. Accessed: 2025-05-26.

Malkov, Y. A. and Yashunin, D. A. Efficient and robust ap-
proximate nearest neighbor search using hierarchical nav-
igable small world graphs. CoRR, abs/1603.09320, 2016.
URL http://arxiv.org/abs/1603.09320.

Milvus. Milvus-docs: Conduct a hybrid search. https:
//github.com/milvus-io/milvus-docs/
blob/v2.1.x/site/en/userGuide/search/
hybridsearch.md, 2022. Accessed: 2025-05-26.

Patel, L., Kraft, P., Guestrin, C., and Zaharia, M. Acorn:
Performant and predicate agnostic search over vec-
tor embeddings and structured data. arXiv preprint
arXiv:2403.04871, 2024.

Pinecone. Understanding hybrid search. https:
//docs.pinecone.io/guides/data/
understanding-hybrid-search, 2024. Ac-
cessed: 2025-05-26.

Simhadri, H. V., Williams, G., Aumüller, M., Douze, M.,
Babenko, A., Baranchuk, D., Chen, Q., Hosseini, L.,
Krishnaswamy, R., Srinivasa, G., Subramanya, S. J., and
Wang, J. Results of the neurips’21 challenge on billion-
scale approximate nearest neighbor search. https://
doi.org/10.48550/ARXIV.2205.03763, 2022.

Singh, A., Subramanya, S. J., Krishnaswamy, R., and
Simhadri, H. V. Freshdiskann: A fast and accurate graph
based ann index for streaming similarity search. CoRR,
abs/2105.09613, 2021. URL https://arxiv.org/
abs/2105.09613.

Subramanya, S. J., Devvrit, F., Kadekodi, R., Krish-
naswamy, R., and Simhadri, H. V. Diskann: Fast ac-
curate billion-point nearest neighbor search on a sin-
gle node. In Wallach, H. M., Larochelle, H., Beygelz-
imer, A., d’Alché Buc, F., Fox, E. B., and Garnett, R.
(eds.), Advances in Neural Information Processing Sys-
tems 32 (NeurIPS 2019), pp. 13748–13758, Vancouver,
BC, Canada, 2019. URL https://dl.acm.org/
doi/10.5555/3454287.3455520.

Sundaram, N., Turmukhametova, A., Satish, N., Mostak, T.,
Indyk, P., Madden, S., and Dubey, P. Streaming similar-
ity search over one billion tweets using parallel locality-
sensitive hashing. Proceedings of the VLDB Endow-
ment, 6(14):1930–1941, 2013. doi: 10.14778/2556549.
2556574. URL https://doi.org/10.14778/
2556549.2556574.

Vearch. Vearch doc operation: Search. https:
//vearch.readthedocs.io/en/latest/
use_op/op_doc.html?highlight=filter#
search, 2022. Accessed: 2025-05-26.

Vespa. Vespa use cases: Semi-structured navigation.
https://docs.vespa.ai/en/attributes.
html, 2022. Accessed: 2025-05-26.

Weaviate. Weaviate: Filtered vector search, 2022.
https://weaviate.io/developers/
weaviate/current/architecture/
prefiltering.html.

7

https://big-ann-benchmarks.com/neurips23.html
https://big-ann-benchmarks.com/neurips23.html
http://arxiv.org/abs/1603.09320
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://github.com/milvus-io/milvus-docs/blob/v2.1.x/site/en/userGuide/search/hybridsearch.md
https://docs.pinecone.io/guides/data/understanding-hybrid-search
https://docs.pinecone.io/guides/data/understanding-hybrid-search
https://docs.pinecone.io/guides/data/understanding-hybrid-search
https://doi.org/10.48550/ARXIV.2205.03763
https://doi.org/10.48550/ARXIV.2205.03763
https://arxiv.org/abs/2105.09613
https://arxiv.org/abs/2105.09613
https://dl.acm.org/doi/10.5555/3454287.3455520
https://dl.acm.org/doi/10.5555/3454287.3455520
https://doi.org/10.14778/2556549.2556574
https://doi.org/10.14778/2556549.2556574
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://vearch.readthedocs.io/en/latest/use_op/op_doc.html?highlight=filter#search
https://docs.vespa.ai/en/attributes.html
https://docs.vespa.ai/en/attributes.html
https://weaviate.io/developers/weaviate/current/architecture/prefiltering.html
https://weaviate.io/developers/weaviate/current/architecture/prefiltering.html
https://weaviate.io/developers/weaviate/current/architecture/prefiltering.html

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

Algorithm 1 FilteredDiskANN Indexing Algorithm
Data: Database P with n points where the i-th point has coordinates xi; parameters α, L, R.
Result: Directed graph G over P with out-degree ≤ R

1: Initialize G to an empty graph
2: Let s denote the medoid of P
3: Let st(f) denote the start node for filter label f for every f ∈ F
4: Let σ be a random permutation of [n]
5: Let Fx be the label-set for every x ∈ P
6: for each i ∈ [n] do
7: Let SFxσ(i)

= {st(f) : f ∈ Fxσ(i)
}

8: Let [∅;VFxσ(i)
]←

FilteredGreedySearch(SFxσ(i)
, xσ(i), 0, L, Fxσ(i)

) {Uses weighted distance function}
9: V ← V ∪ VFxσ(i)

10: Run FilteredRobustPrune(σ(i),VFxσ(i)
, α,R) to update out-neighbors

11: for each j ∈ Nout(σ(i)) do
12: Update Nout(j)← Nout(j) ∪ {σ(i)}
13: if |Nout(j)| > R then
14: Run FilteredRobustPrune(j,Nout(j), α,R)
15: end if
16: end for
17: end for

Algorithm 2 Graph Search with Weighted Distance Function
Require: Query vector q, label set sq , graph index G, weight wm, number of results k
Ensure: Top-k retrieved neighbors

1: Initialize priority queue Q ← empty min-heap of size ∥
2: Seed Q with entry point(s) in G
3: while Q not empty do
4: Pop v from Q with minimal distance D(q, v)
5: if v not visited then
6: Mark v as visited
7: for each neighbor u of v in G do
8: Compute vector distance: dq ← d(q, u)
9: Compute filter match: mq

10: Compute distance: D(q, u)← dq + wm · (1−mq)
11: Insert u into Q with priority D(q, u)
12: end for
13: end if
14: end while
15: return Top-k elements of Q

A. Query Planning
While the main contribution of this work is in improving graph-based indices for handling filter predicates, it is important to
note that nearly all such algorithms can struggle when the query predicate is highly selective. In extreme cases where only a
very small number of database points satisfy the predicate, it is often more effective to identify these points directly—such
as by intersecting inverted indices for each of the query labels—and then perform a brute-force distance computation to
retrieve the top-k nearest neighbors. In our current implementation, we also observe certain query predicates with low, but
not extremely low, selectivity for which this brute-force approach continues to be effective.

Bringing all these considerations together, our final empirical strategy is as follows: For a given query q with label set Sq,
we first estimate the number of database points likely to satisfy Sq using a sample dataset and precomputed label-wise

8

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

inverted indices. Based on this estimate:

1. If the estimated number is very small (e.g., fewer than 100,000 points), we perform a brute-force search over the
satisfying subset.

2. If the estimated number is large, we run our greedy search with weighted distance function over the graph index.

B. Datasets
B.1. YFCC

We use a 1M subset of the YFCC dataset released as part of the BigANN Filter competition. The base vectors are 192-
dimensional CLIP embeddings of images, while the queries are embeddings of text descriptions. Metadata such as camera
model, year, location are used to generate label-based filter predicates. Queries are constructed with either a single-label
predicate or a conjunction (AND) of two labels.

B.2. Wikipedia

We present a dataset tailored for AND-query search, derived from the dataset (Cohere, 2023a). It consists of approximately
35 million passages extracted from Wikipedia articles. Each passage is accompanied by a dense 768-dimension embedding.
To construct a comprehensive label pool for each document, we combine unsupervised keyword extraction, semantic
similarity, and structured metadata from Wikipedia.

1. Keyword Extraction We employ YAKE to extract the top-k keywords from each document, based on statistical
properties such as term frequency and co-occurrence. Parameters: language=en, n-grams=1--2, top=100.

2. Semantic Label Matching We use the Universal Sentence Encoder (USE) to embed both the document and candidate
labels into a shared vector space. Cosine similarity is used to select labels that are semantically close to the document,
subject to a similarity threshold (0.5) and min/max label bounds(10 and 20 respectively).

Figure 4. Percentile refers to the ranking of queries based on their expected selectivity, with percentile 0 being the most selective (i.e.,
queries that pass for very few items) and percentile 99 being the least selective (i.e., queries that pass for the most items). Pass rate is
defined as the total number of data points that satisfy the query conditions.

9

Learned Weight Distance Function for Nearest Neighbor Search with Multiple Filters

3. Wikipedia Category Extraction From a preprocessed Wikipedia dump (dated 2025-01-23), we extract up to 10
categories for each document title, prioritizing shorter category names (assuming they are more general).

This hybrid approach ensures that the labels are not only diverse and context-rich but also semantically meaningful, resulting
in a dataset that reflects real-world language and knowledge.

The query set is sourced from the Cohere Wikipedia Simple Embedding dataset (Cohere, 2023b), and labels for the query
vectors are generated using the same procedure described earlier. When constructing AND-query labels for search, we
preferentially select the most frequent labels to ensure that a larger number of vectors satisfy each query, enabling meaningful
evaluation across varying levels of selectivity.

10

