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Abstract

The complexity of deep neural networks (DNNs) makes them powerful but also
makes them challenging to interpret, hindering their applicability in error-intolerant
domains. Existing methods attempt to reason about the internal mechanism of
DNNs by identifying feature interactions that influence prediction outcomes. How-
ever, such methods typically lack a systematic strategy to prioritize interactions
while controlling confidence levels, making them difficult to apply in practice
for scientific discovery and hypothesis validation. In this paper, we introduce a
method, Diamond, to address this limitation using knockoffs, which are dummy
variables that are designed to mimic the dependence structure of a given set of
features while being conditionally independent of the response. Together with
a novel DNN architecture involving a pairwise-coupling layer, Diamond jointly
controls the false discovery rate (FDR) and maximizes statistical power. In addition,
we identify a challenge in correctly controlling FDR using off-the-shelf feature
interaction importance measures. Diamond overcomes this challenge by proposing
a calibration procedure applicable to any existing interaction importance measures
to maintain FDR control at the target level. Finally, we validate the effectiveness of
Diamond through extensive experiments on simulated and real datasets.

1 Introduction
Deep neural networks (DNNs) have emerged as a critical tool in many application domains, largely
due to their ability to detect subtle relationships and patterns within complex data [1]. While DNNs’
complexity contributes to their power, it also makes them challenging to interpret, leaving users with
few clues about the underlying mechanisms. Consequently, this “black box” nature of DNNs has
hindered their applicability in error-intolerant domains like healthcare and finance. Stakeholders,
such as clinicians, need to understand why and how the models make predictions before making
important decisions, such as disease diagnosis [2]. Importantly, without understanding the internal
mechanisms, DNNs cannot be effectively used for making data-driven scientific discoveries, which
are crucial for gaining human-understandable insights and driving successful innovation [3].

To enhance the interpretability of DNNs for better data-driven scientific discoveries, many methods
have been developed to elucidate the internal mechanisms of these models [4]. These methods
help to elucidate how individual features influence prediction outcomes by assigning an importance
score to each feature so that higher scores indicate greater relevance to the prediction [5, 6, 7, 8, 9].
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Figure 1: Overview of Diamond. Diamond trains DNNs using both the original features and
their knockoff counterparts as inputs. Diamond quantifies feature interactions from trained DNNs
and produces a ranked list of these interactions with estimated FDR, allowing users to confidently
determine a cutoff threshold based on their desired confidence level.

However, these univariate interpretations overlook DNNs’ primary advantage: their ability to model
complex interactions between features in a data-driven way. In fact, input features usually do not
work individually within a DNN but cooperate with other features to make inferences jointly [10].
For example, it is well established in biology that genes do not operate in isolation but work together
in co-regulated pathways with additive, cooperative, or competitive interactions [11]. Additionally,
gene-gene, gene-disease, gene-drug, and gene-environment interactions are critical in explaining
genetic mechanisms, diseases, and drug effects [12].

Recognizing the limitations of univariate interpretations, efforts have been made to extend these
interpretations to discover feature interactions. Briefly, these methods attribute the prediction influence
to feature pairs and rank candidate feature pairs from a trained DNN, with highly ranked pairs
indicating higher importance [10, 13, 14, 15, 16, 17, 18, 19, 20]. However, it is important to note that
these approaches characterize feature pairs where both features are simultaneously important for a
model’s prediction rather than capturing the synergistic or interactive effects between the two features
[21]. Furthermore, the induced ranked list of feature pairs must be cut off at a certain confidence
level for use in scientific discovery and hypothesis validation [10]. However, selecting this threshold
is typically under user control, subject to arbitrary choices, and without scientific rigor. Worse
still, existing methods are sensitive to perturbations, in the sense that even unperceivable, random
perturbations of the input data may lead to dramatic changes in the importance ranking [22, 23, 24].

From a practitioner’s perspective, a given set of discovered feature interactions is scientifically
valuable only if a systematic strategy exists to prioritize and select relevant interactions in a robust and
error-controlled manner, even in the presence of noise. Although many methods have been developed
for feature interaction discovery, we are unaware of any previous attempts to conduct discovery
while explicitly estimating and controlling the discovery error. Without this, accurate and reliable
findings cannot be achieved. In this study, we introduce a pioneering error-controlled interaction
discovery method named Diamond (Discovering InterActions in Machine learning mOdels with a
coNtrolleD error rate). Here, the error is quantified by the false discovery rate (FDR) [25], which
informally represents the expected proportion of falsely discovered interactions among all discovered
interactions. A false discovery is a feature interaction that is discovered but not truly relevant.

The key novelty of Diamond lies in two aspects (Fig. 4). Firstly, Diamond achieves false discovery
rate (FDR) control by leveraging the model-X knockoffs framework [26, 27]. The core idea of this
framework is to generate dummy features that perfectly mimic the empirical dependence structure
among the original features while being conditionally independent of the response given the original
features. Secondly, we discover that naively using off-the-shelf feature interaction importance
measures cannot correctly control the FDR. To address this issue, we propose a calibration procedure
to distill non-additive or interactive effects from the reported interaction importance measures from
existing methods, thereby maintaining FDR control at the target level. Additionally, we have applied
Diamond to simulated and real datasets to demonstrate its empirical utility. Practically speaking,
Diamond paves the way for the broader deployment of DNNs in scientific discovery and hypothesis
generation, potentially leading to significant breakthroughs.
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2 Background
2.1 Problem setup

Consider a supervised learning task where we have n independent and identically distributed (i.i.d.)
samples X = {xi}ni=1 ∈ Rn×p and Y = {yi}ni=1 ∈ Rn×1, denoting the p-dimensional feature
matrix and the corresponding response, respectively. The task is modeled by a black-box function
f : Rp 7→ R, parameterized by a DNN that maps from the input x ∈ Rp to the response y ∈ R.
When modeling the task, the function f learns non-additive feature interactions from the data, of
which each interaction I ⊂ {1, · · · , p} is a subset of interacting features. This work focuses on
pairwise interactions, i.e., |I| = 2. We say that I is a non-additive interaction of function f if and
only if f cannot be decomposed into an addition of |I| subfunctions fi, each of which excludes
a corresponding interaction feature [28, 10], i.e., f(x) ̸=

∑
i∈I fi

(
x{1,··· ,p}\i

)
. For example, the

multiplication between two features xi and xj is a non-additive interaction because it cannot be
decomposed into a sum of univariate functions, i.e., xixj ̸= fi(xj) + fj(xi). Assume that there
exists a set of interactions S = {I1, I2, · · · } such that conditional on interactions S, the response
Y is independent of interactions in the complement Sc = {1, · · · , p} × {1, · · · , p}\S. We aim to
discover feature interactions in S without erroneously reporting too many incorrect ones in Sc.

2.2 FDR control with knockoffs

Diamond achieves FDR control by leveraging the model-X knockoffs framework [26, 27], which
was proposed in the setting of error-controlled feature selection. The core idea is to generate dummy
features that perfectly mimic the empirical dependence structure among the original features but are
conditionally independent of the response given the original features. Briefly speaking, the knockoff
filter achieves FDR control in two steps: (1) construction of knockoff features and (2) filtering using
knockoff statistics. We review details on these two steps in Appendix A.

2.3 DNN feature interaction measurement

Diamond is compatible with any model-agnostic feature interaction interpretation methods,
which provides a ranked order of candidate interactions without assuming any specific model
architecture([14, 15, 29, 16, 17, 18, 19, 20]). In our experiments, we use Expected Hessian [16], a
state-of-the-art method, as the interaction interpretation method Diamond leverages.

3 Approach
3.1 Knockoff-tailored DNN

Diamond integrates the idea of knockoff filter with DNNs to enable interaction detection while
maintaining controlled FDR. Our method builds prior work, DeepPINK [30], by leveraging a knockoff-
tailored DNN architecture that combines any off-the-shelf DNN with a plugin pairwise-coupling
input layer. A detailed description of the DeepPINK architecture can be found in Appendix B.

3.2 Measuring non-additive interactive effect

As a key precursor to FDR estimation, Diamond quantifies feature interactions from trained DNNs
and produces a ranked list of these interactions, with higher-ranked interactions indicating greater
importance. For notational simplicity, we use indices for both original features and knockoffs as
{1, 2, · · · , 2p}, with {1, · · · , p} and {p+ 1, · · · , 2p} corresponding to the original features and
their respective knockoff counterparts. Here, we define E2D = [eij ]

2p
i,j=1 ∈ R2p×2p as a reported

interaction importance measure from existing methods. There are many feature interaction importance
measures available for E2D, each attributing the prediction influence to feature pairs in different ways.
However, it is important to note that such measures favor pairs where both features are simultaneously
important for a model’s prediction, rather than capturing the true non-additive or interactive effects
between the two features [21]. Further supported by simulation studies (Fig. 2b), we observed
off-the-shelf feature interaction importance measure tend to assign higher interaction scores to two
marginally important but non-interacting features compared to two random ones, even though neither
pair has a real interaction, leading to the failure of FDR control.

The direct reason the interaction importance measure failed to control FDR is that it violated the
knockoff filter’s assumption. Specifically, the knockoff filter requires that the importance scores of
knockoff-involving interactions and false interactions have a similar distribution. To resolve this
issue, we introduce a calibration procedure to be applied on top of existing interaction importance
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measures. Specifically, we consider that a reported interaction importance measure from existing
methods comprises a mixture of several factors: prediction-dependent marginal effects for individual
features, prediction-independent feature biases, independent random noise, and potential non-additive
interactive effects between feature pairs. Thus, the reported interaction between features i and j is
represented as:

eij = sij + gi(ei) + gj(ej) + b(Iij) + εij (1)
Where εij ∈ R is random noise independent of both features and predictions, eij ∈ R and ei, ej ∈ R
are reported pairwise and univariate feature importance measures that are dependent on the model’s
predictions, respectively. The functions gi, gj : R 7→ R adapt univariate feature importance to be
compatible with feature interaction importance. The function b : R2p 7→ R models the feature-
specific biases that are independent of the model’s predictions, where Iij ∈ {0, 1}2p indicates the
presence of feature i and j. We aim to identify sij , the potential non-additive interactive effects
between features i and j.

We formulate the identification of interactive effects sij as the residuals of a regression task:

min
b,g1,g2,···

∑
i<j

wij · ∥eij − gi(ei)− gj(ej)− b(Iij)∥2 (2)

where wij > 0 is the conditional probability of being either original-only (i.e., i, j ≤ p) or knockoff-
involving (i.e., i > p or j > p) feature pairs given two univariate feature importance measures ei and
ej , estimated by a logistic regression model [31]. The rationale is based on the important observation
that most feature pairs do not exhibit non-additive interactions, especially those involving knockoff
features. Therefore, we want to focus more on potential non-additive interactions that have large
univariate feature importance, as important interactions naturally consist of significant marginal
features. In this study, we parameterize the functions b : R2p 7→ R and gi, gj : R 7→ R using
generalized additive models and optimize Eq. 2 using the pyGAM library [32].

3.3 FDR control for interactions

After calculating the non-additive interactive effects using Eq. 2, we denote the resultant set of
interactive effects as Γ = {sij |i < j, i ̸= j − p}. We arrange Γ in decreasing order and select
interactions for which the interactive effect, Γj , exceeds some threshold, T . This selection ensures
that the chosen interactions adhere to a desired FDR level q ∈ (0, 1).

However, the heterogeneous interactions, which include original-only and knockoff-involving inter-
actions, introduce a point of complexity. The latter further comprises original-knockoff, knockoff-
original, and knockoff-knockoff interactions. Following the strategy outlined by [33], the threshold T
is determined by:

T = min

{
t ∈ T ,

| {j : Γj ≥ t, j ∈ D} | − 2 · | {j : Γj ≥ t, j ∈ DD} |
| {j : Γj ≥ t, j /∈ D and j /∈ DD} |

≤ q

}
(3)

where D and DD respectively denote the sets of interactions that include at least one knockoff feature
and both knockoff features, while T refers to the set of unique nonzero values present in Γ.

4 Results
4.1 Simulated Data Analysis

We started by evaluating the performance of Diamond on simulated datasets, assessing its ability to
identify important non-additive interactions while controlling the FDR. We benchmarked Diamond
on a test suite of 10 simulated datasets generated by different simulation functions proposed by [10].
These datasets contain a mixture of univariate functions and multivariate interactions, exhibiting varied
order, strength, and nonlinearity (Appendix C). Since our goal is to detect pairwise interactions, high-
order interaction functions (e.g., F (x1, x2, x3) = x1x2x3) are decomposed into pairwise interactions
(e.g., (x1, x2), (x1, x3), and (x2, x3)) to serve as the ground truth.

4.1.1 Experimetnal Setup

Following the settings used in [10], we employed a sample size of n = 20, 000, equally divided into
training and test sets. In addition, the number of features is set at p = 30, and all features are sampled
randomly from a continuous uniform distribution, U(0, 1). Only the first 10 out of 30 features
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Figure 2: Evaluating Diamond and baseline methods on a test suite of 10 simulated datasets, in
terms of AUROC, FDR, and power. Error bars correspond to the 95% confidence interval estimated
across 20 repetitions. The figure comprises five columns, each presenting the evaluation results for
one interaction selection method. (A) Diamond identified important non-additive interactions with
controlled FDR across all 10 simulation functions. The calibration procedure is critical; without it, the
FDR cannot be controlled. Baseline methods fail to control the FDR correctly, rendering the reported
high power and AUROC invalid. (B) The reported importance of interaction from existing methods
in simulation function F1 reveals a clear distribution disparity between original-only interactions and
those involving knockoffs.

contribute to the corresponding response, while the remaining features serve as noise, increasing the
task’s complexity. For robustness, we repeated the experiment 20 times for each simulated dataset
using different random seeds. Each repetition involved data generation, knockoff generation using
KnockoffsDiagnostics [34], DNN training, and interaction-wise FDR estimation. We reported the
mean performance with 95% confidence intervals for all simulation settings, fixing the target FDR
level at q = 0.2.

4.1.2 Simulation Data Results

Our analysis shows that Diamond consistently identifies important non-additive interactions with
controlled FDR across all simulation functions (Fig. 2a). We discovered that the proposed calibration
procedure (Sec 3.2) is critical; without it, the FDR cannot be controlled by naively using reported
interaction importance values from existing methods.

Additionally, we verified whether alternative baseline methods can accurately identify important non-
additive interactions with controlled FDR. We compared two baseline methods for FDR estimation:
one based on permutation-based interaction-wise p-values coupled with the Benjamini-Hochberg
procedure, and the other representing interaction-wise FDR as the aggregation of feature-wise FDR
(See details in Appendix D). Our analysis shows that neither method correctly controls the FDR (Fig.
2a). This greatly reduces the utility of these methods, despite their reported high power and AUROC.

To gain insight into the FDR control failure in the absence of calibration, we conducted a qualitative
comparison assessing interaction importance before and after calibration using the simulation function
F1 (Fig. 2b). The primary cause of the FDR control failure appears to lie in the distributional disparity
between interactions only involving original features (original-only) and interactions involving
knockoffs (knockoff-involving). This observation suggests violating the knockoff filter’s assumption
in controlling the FDR (See discussion in Sec 3.2). The proposed calibration procedure mitigates
the disparity by extracting non-additive interactive effects from the reported interaction importance
measures, thereby enhancing the utility of knockoff-involving interactions as a negative control for
FDR estimation.

5



a Maximum 
feature-wise FDR

Permutation p-value + 
Benjamini-HochbergMulti-layer perceptron

FD
R

 th
re

sh
ol

d

Latitude -- Longitude
House age -- Average 
bedrooms per household

House age -- Longitude

Median income -- Longitude

Latitude -- Longitude

Other interactionsLiterature-supported interactions

b

Feature values 

High

Low

 Average bedrooms
per household

Average household
members

 Average rooms
per household

House age

Latitude

Longitude

Median income

Population

Marginal effects
Feature values of Latitude

Feature values of LongitudeM
ar

gi
na

l e
ffe

ct
s 

of
 L

at
itu

de

Feature values of Latitude

Feature values of Longitude

In
te

ra
ct

iv
e 

ef
fe

ct
s

Marginal effects of Latitude

M
arginal effects of Longitude

In
te

ra
ct

iv
e 

ef
fe

ct
s

Latitude -- Longitude

Feature values of Latitude

Fe
at

ur
e 

va
lu

es
 o

f L
on

gi
tu

de

c
Median 
house value

100k
200k
300k
400k
500k

Figure 3: Evaluating Diamond on the California housing dataset. (a) Diamondis compared against
two baseline methods. Each possible interaction is measured by the minimum FDR threshold cutoff
at which it is selected, with the top interaction annotated. (b) Each feature contributes differently
to predicting housing prices as measured by the Expected Gradient scores in the MLP model. It is
worth mentioning that the most marginally important features do not necessarily result in important
feature interactions, as anticipated in Diamond’s design. (c) The top interaction between latitude
and longitude is qualitatively evaluated from four aspects: the contribution of feature values to
response prediction, the marginal importance measure, the interaction importance measure, and the
contribution of the marginal important measures to the interaction importance measure.

4.2 Real data Analysis

We then evaluated the performance of Diamond on the California housing dataset [35], assessing
its ability to identify important interactions in influencing California housing prices in 1990. This
dataset contains n = 20640 samples, each characterized by eight standardized features, including
average bedrooms per household, average household members, average rooms per household, house
age, latitude, longitude, median income, and population (Fig. 3(b)). The task is constructing a DNN
to predict the housing price given these eight features. We applied Diamond and the two baseline
methods to predict housing prices and discover important interactions influencing housing prices.
For robustness, we repeated each experiment 20 times using different random seeds. Each repetition
involved knockoff generation, DNN training, and interaction-wise FDR estimation.

4.2.1 Real Data Results

Our analysis shows that Diamond identifies the important interaction between latitude and longitude
(Fig. 3(b)). This interaction is supported by the well-known fact that housing prices are strongly
dependent on geographical location, which is jointly determined by latitude and longitude.

Our qualitative evaluation further supports this interaction (Fig. 3(c)). Specifically, we examined
the interaction between latitude and longitude in four ways: the contribution of feature values to
response prediction, the marginal importance measure, the interaction importance measure, and
the contribution of the marginal importance measures to the interaction importance measure. This
analysis showed that latitudes and longitudes corresponding to the coastal area of California tend to
have higher housing prices than those corresponding to the inland area. Meanwhile, higher interactive
effects can be found in areas with lower latitude and higher longitude, which corresponds to the
increase in housing prices around the Bay Area in northern California. Higher interactive effects
can also be seen when latitude and longitude are lower, corresponding to the LA area in southern
California, another region with higher housing prices than the surrounding area.

Finally, we find that Diamond does not report a lower FDR for interactions comprising two marginally
important features. Specifically, latitude and longitude are both individually not important for
predicting housing prices compared to other features; however, jointly, they have a strong interactive
effect as estimated by Diamond.

5 Conclusion

In conclusion, Diamond enables error-controlled detection of feature interactions in any DNNs. The
flexibility of Diamond makes it widely applicable in high-stakes and error-intolerant domains where
interpretability and statistical rigor are needed. We believe that this powerful tool will facilitate the
broader deployment of DNNs in scientific discovery and hypothesis validation.
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Appendices

A Review on error-controlled feature selection with the knockoff filter
Knockoff filter achieves FDR control in two steps: (1) constructing knockoff features and (2) filtering
using knockoff statistics.

For the first step, the knockoff features are defined as follows:

Definition 1 (Model-X knockoff [27]). The model-X knockoff features for the family of random
features X = (X1, . . . , Xp) are a new family of random features X̃ = (X̃1, . . . , X̃p) that satisfy two
properties:

1. (X, X̃)swap(S)
d= (X, X̃) for any subset S ⊂ {1, . . . , p}, where swap(S) means swapping

Xj and X̃j for each j ∈ S and d= denotes equal in distribution, and

2. X̃ |= Y|X, i.e., X̃ is independent of response Y given feature X.

According to Definition 1, the construction of the knockoffs must be independent of the response
Y. Thus, if we can construct a set X̃ of model-X knockoff features properly, then by comparing the
original features with these control features, FDR can be controlled at target level q. In the Gaussian
setting, i.e., X ∼ N (0,Σ) with covariance matrix Σ ∈ Rp×p, the model-X knockoff features can be
constructed easily:

X̃|X ∼ N
(
X−diag{s}Σ−1X, 2diag{s} − diag{s}Σ−1diag{s}

)
(4)

where diag{s} is a diagonal matrix with all components of s being positive such that the conditional
covariance matrix in Equation 4 is positive definite. As a result, the original features and the model-X
knockoff features constructed by Equation 4 have the following joint distribution:

(X, X̃) ∼ N
((

0
0

)
,

(
Σ Σ− diag{s}

Σ− diag{s} Σ

))
(5)

With the constructed knockoff X̃, feature importances are quantified by computing the knockoff
statistics Wj = gj(Zj , Z̃j) for 1 ≤ j ≤ p, where Zj and Z̃j represent feature importance measures
for the j-th feature Xj and its knockoff counterpart X̃j , respectively, and gj(·, ·) is an antisymmetric
function satisfying gj(Zj , Z̃j) = −gj(Z̃j , Zj). The knockoff statistics Wj should satisfy a coin-flip
property such that swapping an arbitrary pair Xj and its knockoff counterpart X̃j only changes
the sign of Wj but keeps the signs of other Wk (k ̸= j) unchanged [27]. A desirable property for
knockoff statistics Wj’s is that important features are expected to have large absolute values, whereas
unimportant ones should have small symmetric values around 0.

Finally, the absolute values of the knockoff statistics |Wj |’s are sorted in decreasing order, and FDR-
controlled features are selected whose Wj’s exceed some threshold T . In particular, the choice of

threshold T follows T = min
{
t ∈ W,

1+|{j:Wj≤−t}|
|{j:Wj≥t}| ≤ q

}
where W = {|Wj | : 1 ≤ j ≤ p} \ {0}

is the set of unique nonzero values from |Wj |’s and q ∈ (0, 1) is the desired FDR level specified by
the user.

B Review on Knockoff-tailored DNN architecture
DeepPINK is a prior work that integrates the idea of knockoff filter with DNNs to enable feature
selection while maintaining controlled FDR, as outlined in Fig. 4. DeepPINK begins by generating
knockoffs X̃ ∈ Rn×p from input data X ∈ Rn×p. This is achieved by following the procedure
described in Section A. After generating knockoffs, an augmented data matrix (X, X̃) ∈ Rn×2p is
constructed and supplied to an off-the-shelf DNN through a plugin pairwise-coupling layer composed
of p filters, encapsulated by F = (F1, · · · , Fp) ∈ Rp, where each j-th filter connects feature Xj and
its knockoff counterpart X̃j .
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Figure 4: Overview of DeepPINK. DeepPINK is built upon an off-the-shelf DNN with a plugin
pairwise-coupling layer containing p filters, one per input feature, where each filter connects the
original feature and its knockoff counterpart. The filter weights Zj and Z̃j for the j-th feature and its
knockoff counterpart are initialized identically for fair competition. The outputs of the filters are fed
into an off-the-shelf DNN model.

Table 1: A test suite of data-generating simulation functions by [10].

F1 πx1x2
√
2x3 − sin−1(x4) + log(x3 + x5)− x9

x10

√
x7
x8

− x2x7

F2 πx1x2
√

2|x3| − sin−1(0.5x4) + log(|x3 + x5|+ 1)− x9
1+|x10|

√
x7

1+|x8|
− x2x7

F3 exp |x1 − x2|+ |x2x3| − x
2|x4|
3 + log(x2

4 + x2
5 + x2

7 + x2
8) + x9 +

1
1+x2

10

F4 exp |x1 − x2|+ |x2x3| − x
2|x4|
3 + (x1x4)

2 + log(x2
4 + x2

5 + x2
7 + x2

8) + x9 +
1

1+x2
10

F5
1

1+x2
1+x2

2+x2
3
+

√
exp(x4 + x5) + |x6 + x7|+ x8x9x10

F6 exp(|x1x2|+ 1)− exp(|x3 + x4|+ 1) + cos(x5 + x6 − x8) +
√

x2
8 + x2

9 + x2
10

F7 (arctan(x1) + arctan(x2))
2 +max(x3x4 + x6, 0)− 1

1+(x4x5x6x7x8)2
+ ( |x7|

1+|x9|
)5 +

∑10
i=1 xi

F8 x1x2 + 2x3+x5+x6 + 2x3+x4+x5+x7 + sin(x7 sin(x8 + x9)) + arccos(0.9x10)

F9 tanh(x1x2 + x3x4)
√

|x5|+ exp(x5 + x6) + log((x6x7x8)
2 + 1) + x9x10 +

1
1+|x10|

F10 sinh(x1 + x2) + arccos(tanh(x3 + x5 + x7)) + cos(x4 + x5) + sec(x7x9)

The filter weights, Z ∈ Rp and Z̃ ∈ Rp are initialized identically and engage in a competitive
dynamic via pairwise connections during the DNN training. Additionally, we employ a linear
activation function in the pairwise-coupling layer to stimulate competition between different features.

The outputs of the filters are subsequently channeled into a DNN model that learns to map to the
response Y. In this study, we choose an MLP with the exponential linear unit (ELU) activation and
four hidden layers as our DNN model. While we use this specific model, DeepPINK’s overall process
is versatile and fully applicable to any off-the-shelf DNN architecture beyond the MLP.

C Simulation Dataset
Following [10], we use a simulation dataset to evaluate Diamond. 10 synthetic functions (described
in Talble 1) are used to generate the simulation dataset.

D Alternative FDR estimation methods
We evaluate the performance of Diamond compared to other baseline methods. We employ a
permutation-based approach for the first baseline method to calculate the interaction-wise FDR.
Specifically, this involves using a previously described permutation procedure tailored for neural
networks to assess the significance of interactions and calculate permutation p-values [36], followed
by the Benjamini–Hochberg procedure [25] to estimate the FDR.

For the second baseline method, we consider an ensemble-based approach that represents interaction-
wise FDR as the aggregation of feature-wise FDR. This approach follows the intuition that an
important feature interaction comprises important univariate features. Specifically, we use a previously
described knockoff-based procedure tailored for neural networks to estimate the feature-wise FDR of
each univariate feature [30]. We then approximate the interaction-wise FDR as the maximum of the
two comprising univariate feature-wise FDRs.
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