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ABSTRACT

Recently, there has been growing interest in leveraging large language models
(LLMs) to generate symbolic world models from textual descriptions. Although
LLMs have been extensively explored in the context of world modeling, prior stud-
ies encountered several challenges, including evaluation randomness, dependence
on indirect metrics, and a limited domain scope. To address these limitations, we
introduce a novel benchmark, TEXT2WORLD, based on planning domain defi-
nition language (PDDL), featuring hundreds of diverse domains and employing
multi-criteria, execution-based metrics for a more robust evaluation. We bench-
mark current LLMs using TEXT2WORLD and find that reasoning models trained
with large-scale reinforcement learning outperform others. However, even the
best-performing model still demonstrates limited capabilities in world modeling.
Building on these insights, we examine several promising strategies to enhance the
world modeling capabilities of LLMs, including test-time scaling, agent training,
and more. We hope that TEXT2WORLD can serve as a crucial resource, laying the
groundwork for future research in leveraging LLMs as world models.

1 INTRODUCTION

The significance of world models for intelligent behavior has been historically acknowledged in
early psychological theories, which posited that organisms employ internal representations of the
external world for prediction and planning (Craik, 1967). Furthermore, LeCun (2022) extends this
concept by highlighting world modeling as a core component of autonomous machine intelligence.
In this paper, we primarily study symbolic world models (also known as domain models), which
are formal representations of an environment’s dynamics and constraints. In recent years, Large
Language Models (LLMs) OpenAI (2022; 2023); Meta AI (2024) have showcased their understanding
of common-world knowledge, making them promising candidates for generating symbolic world
models, which requires inferring action dynamics and constraints from solely natural language
description. Some works have already explored this across numerous tasks, including planning (Hu
et al., 2024b; Guan et al., 2023), game design (Wang et al., 2023a; 2024), reinforcement learning Tang
et al. (2024) among others. Despite extensive exploration, previous work for evaluating symbolic
world model generation suffers from several key limitations: (i) Limited Domain Scope: These
studies are often confined to a narrow set of domains (typically fewer than 20), which limits the
generalizability and applicability of their findings Oswald et al. (2024); Silver et al. (2024); Wong
et al. (2023). (ii) Evaluation Randomness: Some works rely on LLM-based evaluation methods,
which may introduce additional margins of error Wang et al. (2023a). Preliminary experiments in
Section 3.6 demonstrate that the LLM-based evaluation exhibits a low inter-annotator agreement
with human annotators (Cohen’s κ = 0.10). (iii) Indirect Evaluation: Some studies evaluate world
models based on end-to-end success rates in model-based planning, making it difficult to identify
specific failure modes Guan et al. (2023); Dainese et al. (2024).

Motivated by these issues, this paper introduces a novel benchmark TEXT2WORLD based on the
Planning Domain Definition Language (PDDL) as illustrated in Figure 1. Specifically, to address the
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first issue, we initially gathered a broad set of domains, which were then filtered through an automated
pipeline and manually curated to ensure their quality, ultimately resulting in a collection of hundreds
of diverse domains. Furthermore, to tackle the second issue, we designed multi-criteria, execution-
based metrics to ensure a more robust assessment. Specifically, we not only employed structural
similarity for an overall evaluation but also designed component-wise F1 scores to assess finer-grained
aspects such as action dynamics. Moreover, to overcome the third issue, we systematically apply
these metrics to assess the generated world model directly, eliminating reliance on indirect feedback
mechanisms. We also performed data contamination analysis using n-gram matching Touvron et al.
(2023), revealing a lower contamination rate (µ = 0.04) compared to prior works (Guan et al., 2023;
Smirnov et al., 2024), indicating that TEXT2WORLD effectively evaluates LLMs’ world modeling
capabilities rather than pattern memorization.

We used TEXT2WORLD to benchmark the world modeling capabilities of 16 different LLMs from 9
model families. Experimental results in Table 1 highlight several key findings: (i) The most advanced
LLMs still struggle with TEXT2WORLD; (ii) large reasoning models trained by reinforcement
learning show stronger world modeling capabilities; and (iii) error correction significantly improves
model performance. To gain a deeper understanding, we performed a manual error analysis and found
that the majority were due to the LLMs’ inability to include essential preconditions or effects. We
also explored several strategies to enhance the world modeling capabilities of LLMs. Specifically, we
initially experimented with scaling the test-time budget and observed consistent improvements as the
test-time budget increased. Additionally, methods like fine-tuning and in-context learning contributed
positively to model effectiveness. Moreover, we found that supervised fine-tuning on agent trajectory
data yielded unexpected gains, underscoring the importance of robust world modeling for developing
high-performing agents.

To facilitate further research, benchmark and code are available at this URL.

2 PRELIMINARY

2.1 WORLD MODEL

We formally define a symbolic world model as D = ⟨F,A⟩, where F represents the set of fluents
(state variables represented as predicates) and A is the set of possible actions. Each fluent f ∈ F is a
predicate of the form p(x1, ..., xn), where p is the predicate name and x1, ..., xn are typed variables.
Each action a ∈ A is defined as a tuple a = ⟨α,P, φ, E⟩ where: i) α denotes the action signature
(identifier); ii) P represents a list of typed parameters (p1, ..., pk); iii) φ specifies the preconditions:
a logical formula over fluents that must hold for the action to be applicable; and iv) E defines the
effects: a set of fluent literals describing how the action changes the world state.

2.2 TASK DEFINITION

The task is formally defined as: M : N → D,D |= N , where M is a mapping function (imple-
mented by an LLM) that generates world model D from the natural language description N . |=
denotes semantic satisfaction. Each N contains the following components: i) A general description
describing the overall objective of the domain; ii) A set of predicates NF = {f1, ..., fn} where each
predicate is described with its signature (e.g., “(conn ?x ?y)”) and an explanation (e.g., “Indicates
a connection between two places ?x and ?y”); iii) A set of actions NA = {a1, ..., am} where each
action is described with: its signature (e.g., “move <?curpos> <?nextpos>”) and an explanation
(e.g., “Allows the robot to move from place <?curpos> to place <?nextpos>”). Note that to evaluate
LLMs’ inherent world modeling capabilities, action descriptions in NA are intentionally kept at a
high level, without explicit specifications of preconditions φ and effects E . This design choice allows
us to assess how well LLMs can infer the underlying world dynamics and constraints from purely
descriptive text. A comparative analysis of model performance conditioned on different description
styles is presented in Section 6.5.

2.3 EVALUATION METRICS

We directly evaluate generated world models, addressing the ambiguity associated with indirect
evaluations Guan et al. (2023); Dainese et al. (2024). In addition, we propose using execution-based
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Figure 1: Overview of TEXT2WORLD.

metrics, overcoming the randomness of LLM-based evaluation Wang et al. (2023a). Specifically,
we established the following evaluation metrics: (i) Executability (EXEC.): Measures whether
the generated PDDL can be successfully parsed and validated by standard PDDL validators. (ii)
Structural Similarity (SIM.): Quantifies the textual similarity between the generated and ground
truth PDDL using normalized Levenshtein ratio. (iii) Component-wise F1 Scores: When generated
PDDL achieves executability (EXEC. = 1), we perform fine-grained analysis by calculating the
macro-averaged F1 score for each component type (predicates, actions, etc.). More specifically, we
compute F1 scores for predicates (F1PRED), parameters (F1PARAM), preconditions (F1PRECOND), and
effects (F1EFF) by parsing both generated and ground truth PDDL into structured representations.

3 BENCHMARK CONSTRUCTION

The overall process of benchmark construction is shown in Figure 2. In this section, we provide a
detailed explanation of each stage.

3.1 DATA ACQUISITION

Our benchmark construction process began with collecting PDDL files from various public reposi-
tories and planning competitions. Through this initial collection phase, we accumulated 1,801 raw
PDDL files. We performed several preprocessing steps to standardize the data format (e.g., convert
files with BOM encoding to standard UTF-8). The processed files served as the foundation for our
dataset construction.

3.2 DATA FILTERING AND MANUAL SELECTION

To ensure the quality and reliability of TEXT2WORLD, we implemented a comprehensive filtering
pipeline: (i) Validation: We employed a PDDL domain parser to perform syntax validation on each
file; (ii) Similarity Deduplication: We eliminated duplicate entries by computing pairwise cosine
similarity on TF-IDF vectorized PDDL content, removing files with similarity scores exceeding 0.9;
(iii) Complexity Control: We removed domains with over 40 predicates or 20 actions to balance
expressiveness with practical utility. (iv) Token Length Filtering: We removed files exceeding 5,000
tokens using GPT-2 Radford et al. (2019) tokenizer to ensure compatibility with model context
windows. Additionally, we conducted manual selection to eliminate domains that were not designed
for world modeling (such as blocksworld-mystery) and low-quality cases that were not captured by
the automated filtering methods. After this process, we obtained 264 high-quality PDDL domain
specifications.
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Figure 2: Left: Dataset construction process including: (a) Data Acquisition (§3.1); (b) Data Filtering
and Manual Selection (§3.2); (c) Data Annotation and Quality Assurance (§3.3 and §3.4). Right:
Key statistics of TEXT2WORLD. Tokens are counted by GPT-2 Radford et al. (2019) tokenizer. The
style is referenced from Chen et al. (2024b).

3.3 DATA ANNOTATION

After obtaining the high-quality PDDL domains, we manually annotated natural language descriptions
for each domain. To ensure the quality of annotations, we recruited 6 computer science graduates as
annotators. The annotated description followed the structured format described in Section 2.2, and
annotators were required to follow the annotation criteria: (i) Descriptive Completeness: Annotations
must contain all required components; (ii) Action Abstraction: Action descriptions should avoid
explicit references to formal preconditions and effects; (iii) Inference-Enabling: Descriptions should
contain sufficient contextual information to allow models to infer the underlying dynamics; (iv)
Natural Language Priority: Technical terminology should be minimized in favor of natural language
explanations. Examples of TEXT2WORLD can be found in Appendix A.1.

3.4 QUALITY ASSURANCE

Manual Recheck To maintain rigorous quality standards throughout the annotation process, we
established a review system supervised by two senior experts. These experts conducted regular
inspections of the annotations, ensuring accuracy and consistency. Inspectors must verify all data
twice to determine if the annotated examples meet the specified annotation standards. Examples
are accepted only if both inspectors approve them. The verification results showed "almost perfect
agreement" with a Fleiss Kappa Landis & Koch (1977) score of 0.82. Through this comprehensive
quality control process, we compiled a final curated dataset of 103 domains with gold-standard
descriptions.

Data Contamination As shown by Carlini et al. (2021), LLMs can memorize training data rather
than truly model the world. To assess potential contamination between LLMs’ training data and
TEXT2WORLD, we generated complete PDDL domains from the first 20 tokens using GPT-4 OpenAI
(2023) and calculated contamination rates based on tokenized 10-grams with up to 4 mismatches Tou-
vron et al. (2023), excluding PDDL-specific keywords and variables. We also compared these results
with previous studies Guan et al. (2023); Smirnov et al. (2024). Figure 3 shows that TEXT2WORLD
has a lower contamination rate (µ = 0.04 vs. µ = 0.47), suggesting its performance reflects do-
main understanding rather than memorization. However, the complete elimination of contamination
remains challenging due to PDDL’s widespread use.

3.5 DATA ANALYSIS

This section provides some detailed data analysis to better understand TEXT2WORLD.

Core Statistics We designated 2 domains as in-context exemplars (train set), with the remaining 101
samples forming our test set.
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Figure 3: n-gram contamination rate of TEXT2WORLD and prior works.

Semantic Analysis We use LLMs to extract high-level domain characteristics to better understand
the conceptual distribution of TEXT2WORLD, As shown in Figure 4 (Right), common themes such
as path planning, constraint satisfaction, and task allocation, among others, emerge.

Requirements Analysis A PDDL requirement specifies a formal capability needed to express
a domain, often reflecting its complexity. For instance, :typing stands for allowing the usage
of typing for objects. As shown in Figure 4 (Left), there are eight different requirement type in
TEXT2WORLD. We also provide an in-depth analysis of requirement type in Appendix A.3.

3.6 PRELIMINARY EXPERIMENT

In previous works, LLMs have been employed to evaluate the action dynamics of world models gener-
ated by LLMs themselves Wang et al. (2023a). To further assess the ability of LLMs to detect errors in
world models, we conducted a preliminary experiment where we first used claude-3.5-sonnect
for TEXT2WORLD. Subsequently, human annotators and the LLM independently evaluated the
generated action dynamics to identify potential errors. The inter-annotator agreement between human
ratings and LLM ratings, measured using Cohen’s κ, was 0.10, indicating a low level of agreement.
This suggests that predicting the correctness of PDDL domains using an LLM is particularly chal-
lenging, highlighting the need for more discriminative evaluation metrics. Prompting examples and
more results can be found in Appendix A.2.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We evaluate several state-of-the-art LLMs, including GPT-4 OpenAI (2023), GPT-3.5 OpenAI (2022),
Claude-3.5 Anthropic, and LLaMA-3.1 Meta AI, DeepSeek-v3 Liu et al. (2024), CodeLlaMA Roziere
et al. (2023), LlaMA-2 Touvron et al. (2023), etc. We also evaluated Large Reasoning Models (LRMs)
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Figure 4: Left: The frequency of requirements distribution. Right: Word cloud of concepts in
TEXT2WORLD.
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Figure 5: Left: The distribution of syntax error types during the progression of correction. Right: The
distribution of semantic error types.

trained using reinforcement learning, such as DeepSeek-R1 DeepSeek-AI et al. (2025), OpenAI-
o1 OpenAI (2024) and OpenAI-o3 OpenAI (2025). We set temperature = 0 for each model for all
experiments to maintain reproducibility. We employ tarski 1 library to check syntactic correctness and
executability. We prompt LLMs to generate symbolic world models under a zero-shot setting with
chain-of-thought reasoning Wei et al. (2022). In error-correction experiments, LLMs refine outputs
based on validator-reported syntax errors, denoted as EC3 for k attempts. Evaluation of open-sourced
models were conducted on NVIDIA A100 GPUs with 80GB memory. We access proprietary models
through their official API platform. Prompt examples can be found in Appendix B.2.

4.2 EXPERIMENTAL RESULTS

Several conclusions can be drawn from Table 1: (i) The most advanced LLMs still struggle with
TEXT2WORLD. For example, the best-performing model, DeepSeek-R1, achieves F1 scores below
60% for both preconditions (F1PRECOND) and effects (F1EFF) under the without error correction setting.
This highlights the limitations of current LLMs in world modeling tasks. (ii) Large reasoning models
trained with reinforcement learning exhibit superior world modeling capabilities. These models,
such as DeepSeek-R1 DeepSeek-AI et al. (2025), outperform others in executability, structural
similarity, and component-wise performance, indicating that RL-based training enhances the ability
of models to generate structured and valid world models. (iii) The ability of models to benefit
from error correction is evident. For instance, GPT-4 (gpt-4o-mini) demonstrates a notable
improvement in executability, increasing from 48.5% to 72.3% after three correction attempts.

5 ANALYSIS

5.1 STATISTICAL ANALYSIS

We conducted a one-way ANOVA Girden (1992) to evaluate the impact of correction attempts on
model performance, excluding anomalous zero values. The results showed a significant improvement
with three correction attempts (F = 27.48, p = 0.00012), indicating that correction attempts lead to
a notable enhancement in model performance.

5.2 ERROR ANALYSIS

The interpretable nature of generating symbolic world models can be utilized for a deeper manual
analysis of the failure modes. We select the results from claude-3.5-sonnect under the few-
shot setting for manual error analysis. Errors are categorized into syntax and semantic errors, where
syntax errors occur when the generated domain cannot be validated (EXEC. = 0), and semantic
errors arise when the generated world model does not align with action dynamics or fails to follow
the natural language description. The distribution for each error type and detailed explanations are
presented in Appendix C.

Syntax Errors Figure 5 (Left) shows the distribution of syntax errors during correction. Common
errors like UndefinedConstant and IncorrectParentheses decrease over correction

1https://github.com/aig-upf/tarski
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Table 1: Performance comparison of different LLMs on TEXT2WORLD. ECk denotes the setting
where models are allowed k correction attempts (EC0: zero-shot without correction, EC3: with 3
correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑
EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

OPENAI-O1 o1-mini 49.5 69.3 82.5 82.2 48.4 66.3 36.4 49.7 28.9 38.0 31.7 42.1

OPENAI-O3 o3-mini 54.5 84.2 83.0 81.9 53.9 81.1 43.7 63.0 36.8 50.4 39.4 53.8

GPT-4 gpt-4o 60.4 75.2 84.5 84.1 59.6 72.1 56.5 68.1 49.3 56.4 47.8 56.7
gpt-4o-mini 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7

GPT-3.5 turbo-0125 41.6 56.4 81.9 81.6 41.2 55.8 39.6 53.8 30.2 39.2 27.5 37.7

CLAUDE-3.5 sonnet 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0

LLAMA-2 7b-instruct 0.0 0.0 45.5 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1 8b-instruct 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

DEEPSEEK
deepseek-v3 56.4 79.2 84.7 84.2 55.9 75.6 53.7 74.4 45.1 58.6 46.7 61.5
deepseek-r1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3

CODELLAMA

7b-instruct 17.8 22.8 60.2 57.6 17.8 18.8 17.2 18.2 11.3 12.2 10.7 11.1
13b-instruct 7.9 8.9 57.6 55.0 7.9 8.9 7.9 8.9 4.9 5.9 5.2 6.1
34b-instruct 7.9 8.9 34.2 7.6 7.9 8.6 7.9 8.4 5.0 5.0 5.4 5.4
70b-instruct 16.8 16.8 54.0 14.0 16.4 16.4 16.8 16.8 10.7 10.7 14.1 14.1

steps, indicating improvements in syntax validation, though errors like UndefinedDomainName
and UndefinedType persist.

Semantic Error Figure 5 (Right) illustrates the distribution of semantic errors. Semantic er-
rors are categorized into four types: (i) DisobeyDescription involves direct violations of
descriptions. (ii) IncompleteModeling, where the world model lacks necessary compo-
nents. (iii) RedundantSpecifications refers to superfluous preconditions or effects; and (iv)
SurfaceDivergence involves surface-level variations that preserve semantic equivalence to gold
domain. In addition, since a domain may encompass various action dynamics, different error types can
occur simultaneously. For instance, nearly 10% of cases exhibited both IncompleteModeling
and RedundantSpecifications concurrently.

6 EXPLORATION

In addition to the zero-shot CoT evaluation in Section 4.2, we further evaluate the models on
TEXT2WORLD with five different strategies: (1) Test-time Scaling; (2) In-Context Learning; (3)
Fine-tuning; (4) Agent Training; (5) Inference with Concrete Description.

6.1 TEST-TIME SCALING

Recently, test-time scaling has demonstrated remarkable potential OpenAI (2024); DeepSeek-AI
et al. (2025). We use the error information from the syntax parser as feedback and assess whether
increasing the test-time compute budget can enhance the LLM’s performance. As shown in Figure 6,
the model exhibits consistent improvement with increased test-time computation. More advanced
test-time scaling strategies may serve as a viable approach to enhancing the model’s world modeling
ability Chen et al. (2025).

6.2 IN-CONTEXT LEARNING

We also perform a few-shot evaluation in Section 6.2, where we carefully select demonstration
“gripper” and “blocks” that are structurally similar but semantically distinct from the test cases to
prevent data leakage. As shown in Table 2, we observe that different models exhibit varying degrees
of improvement from in-context learning. For instance, claude-3.5-sonnect demonstrates a
substantial enhancement, achieving over a 20% increase in the component-wise F1 score. However,
for gpt-4o-mini, incorporating few-shot examples resulted in a decrease in model performance.
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Figure 6: The performance of gpt-4o-mini (left) and deepseek-v3 (right) under different
test-time compute budgets, showing consistent improvement with increased compute.

6.3 FINE-TUNING

We leverage the AgentGen Hu et al. (2024b) framework to synthesize 601 PDDL domains and their
corresponding descriptions for fine-tuning LLaMA-3.1 Meta AI to investigate potential improvements
in their world modeling capabilities. As shown in Table 2, fine-tuning can lead to significant improve-
ments in model performance. For instance, the fine-tuned Llama-3.1-70B demonstrated performance
comparable to GPT-4o-mini, highlighting that supervised fine-tuning is an effective method for
bridging the gap between open-source and proprietary models. Moreover, larger models tend to
benefit more from supervised fine-tuning, with the 70B LLaMA-3.1 showing greater improvement
than the 8B model.

6.4 AGENT TRAINING

Many studies have demonstrated that supervised fine-tuning on agent trajectories can enhance a
model’s performance on agentic tasks Hu et al. (2024b); Zeng et al. (2023) (i.e., agent training).
Some previous works also discussed that a good agent model requires a sufficiently strong internal
world representation LeCun (2022). Therefore, in this section, we explore whether agent training can
improve the model’s world modeling capabilities. More specifically, we trained LLaMA-2-70B model
on AgentInstruct Zeng et al. (2023). As shown in Table 2, the model’s world modeling capabilities
are enhanced post-agent training, indicating a positive correlation between performance on agentic
tasks and the model’s world modeling abilities.

Table 2: The experimental results of models under different settings: (1) In-context learning (§6.2);
(2) Fine-tuning, and fine-tuning with LoRA Hu et al. (2021) (§6.3); (3) Agent training (§6.4).

Model Family EXEC. SIM. F1PRED F1PARAM F1PRECOND F1EFF

EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

In-Context Learning

CLAUDE-3.5-SONNET 45.5 64.4 73.2 66.8 45.5 62.5 41.5 48.8 37.4 44.0 38.4 45.0
w. 2-SHOT 78.2+32.7 88.1+23.7 83.9+10.7 82.3+15.5 77.0+31.5 86.1+23.6 75.2+33.7 82.1+33.3 65.6+28.2 71.3+27.3 67.2+28.8 73.4+28.4

DEEPSEEK-R1 72.3 89.1 84.3 84.0 71.7 86.7 64.0 76.3 57.6 65.0 58.8 67.3
w. 2-SHOT 69.3-3.0 90.1+1.0 83.8-0.5 83.5-0.5 68.4-3.3 87.7+1.0 64.6+0.6 79.1+2.8 56.0-1.6 66.9+1.9 57.6-1.2 68.9+1.6

GPT-4O-MINI 48.5 72.3 82.6 82.2 48.1 70.1 47.1 67.3 34.9 47.5 38.2 52.7
w. 2-SHOT 40.6-7.9 69.3-3 82.9+0.3 82.4+0.2 40.3-7.8 67.2-2.9 40.1-7 67.0-0.3 31.6-3.3 49.3+1.8 32.5-5.7 54.8+2.1

Fine-tuning (FT)

LLAMA-3.1-8B 0.0 0.0 74.3 74.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. FT 52.5+52.5 68.3+68.3 80.8+6.5 80.6+5.7 51.4+51.4 65.4+65.4 48.5+48.5 60.6+60.6 31.5+31.5 38.1+38.1 32.4+32.4 40.2+40.2

LLAMA-3.1-70B 0.0 0.0 83.6 79.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. LORA 48.5+48.5 70.3+70.3 83.8+0.2 82.3+3.1 47.9+47.9 68.5+68.5 48.5+48.5 66.4+66.4 39.9+39.9 52.8+52.8 40.6+40.6 52.1+52.1

Agent Training (AT)

LLAMA-2-70B 0.0 0.0 48.7 48.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
w. AT 7.9+7.9 9.9+9.9 65.6+16.9 47.9-0.7 7.3+7.3 8.8+8.8 7.3+7.3 9.1+9.1 6.1+6.1 6.5+6.5 5.7+5.7 6.1+6.1
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Figure 7: Comparison of model performance on abstract versus concrete domain descriptions,
showing the base score for abstract descriptions (blue) and the improvement gained from concrete
descriptions (green).

6.5 INFERENCE WITH CONCRETE DESCRIPTION

As is discussed in Section 2.2, we intentionally make the natural language description of a world
model at a high level. We refer to these high-level descriptions as "abstract descriptions," in contrast
to more detailed "concrete descriptions" that explicitly specify preconditions and effects. Examples of
both description types can be found in the Appendix A.1.2. Using concrete descriptions simplifies the
task by requiring the model to directly map the provided text to a world specification, bypassing the
need to infer symbolic action dynamics. The observed consistent improvement (as shown in Figure 7)
supports the claim that the model’s ability to deduce action dynamics from abstract descriptions is
still lacking. We also provide more detailed experimental results in Appendix D.1.

7 RELATED WORK

Neural world modeling is a long-standing research topic with widespread applications across various
fields, including reinforcement learning (Ha & Schmidhuber, 2018b;a), robotics (Wu et al., 2023),
and autonomous driving (Guan et al., 2024), among others. In recent years, LLMs trained on massive
datasets have demonstrated zero-shot capabilities across a variety of tasks, including planning Zhao
et al. (2023); Qin et al. (2024); Huang et al. (2022); Hu et al. (2024a), robotics Mu et al. (2024);
Chen et al. (2024a), analog design Lai et al. (2024), and more. Preliminary studies propose directly
using LLMs as world models (Hao et al., 2023; Wang et al., 2024; 2023b; Li et al., 2022), by
taking the state and action as input and predicting the next state, but the unreliability and limited
interpretability of LLM outputs can lead to accumulating errors. Moreover, some studies have shown
that autoregressive models perform poorly in predicting action effects Banerjee et al. (2020); Luo et al.
(2023). Tree-planner Hu et al. (2023) instead proposes to constructing the possible action space using
LLMs before executing. Another line of work focuses on leveraging LLMs to construct symbolic
world models (Oswald et al., 2024; Silver et al., 2024; Smirnov et al., 2024; Zhu et al., 2024; Wang
et al., 2023a; Wong et al., 2023; Vafa et al., 2024). For example, Guan et al. (2023) uses LLMs
to generate a PDDL domain model and relies on human feedback to correct errors. AgentGen (Hu
et al., 2024b) synthesizes diverse PDDL domains, aiming to create high-quality planning data. Xie
et al. (2024) propose to finetune LLMs for predicting precondition and effect of actions. Despite the
growing interest in this research direction, there is currently a lack of a comprehensive benchmark in
this area.
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8 CONCLUSION

We present TEXT2WORLD, a novel benchmark consisting of hundreds of domains designed to
evaluate the world modeling capabilities of large language models (LLMs). Developed through a
meticulous and thorough process, TEXT2WORLD provides a robust foundation for analysis. Addi-
tionally, we conducted an extensive evaluation involving 16 different LLMs from 9 model families
based on TEXT2WORLD. We hope that TEXT2WORLD will inspire future research in leveraging
LLMs as world models.

9 ETHICAL CONSIDERATIONS

Data Access. We collected the TEXT2WORLD data from open-source repositories and ensured that
these repositories are available for academic research in accordance with our commitment to ethical
data use.

Participant Recruitment. We recruited graduate students as annotators and required all participants
to achieve an IELTS score of 6 or above. To mitigate potential biases stemming from participants’
geographical backgrounds, we minimized national differences in the dataset by focusing on human
commonsense. All annotators provided informed consent and were compensated above the local
minimum wage—$10 per hour for standard annotators and $20 per hour for senior annotators.

Potential Risk. After careful examination, we confirmed that our dataset does not contain any
personal data (e.g., names, contacting information), and our data collection procedures adhere to
ethical guidelines.

10 LIMITATION

Due to the limited number of available domains online, we did not construct a large-scale training set.
Future work should focus on expanding the dataset by incorporating additional data sources, such
as synthesized data Hu et al. (2024b), to cover a broader range of domains. Furthermore, although
we conducted regular inspections to minimize the introduction of subjectivity into the dataset, the
unavoidable influence of human subjectivity during manual annotation may introduce potential biases.
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A BENCHMARK CONSTRUCTION

A.1 EXAMPLE

A.1.1 DOMAIN EXAMPLE

(define (domain grid)
(:requirements :strips)
(:predicates (conn ?x ?y) (key-shape ?k ?s) (lock-shape ?x ?s)

(at ?r ?x ) (at-robot ?x) (place ?p) (key ?k) (shape ?s)
(locked ?x) (holding ?k) (open ?x) (arm-empty ))

(:action unlock
:parameters (?curpos ?lockpos ?key ?shape)
:precondition (and (place ?curpos) (place ?lockpos) (key ?key)

(shape ?shape) (conn ?curpos ?lockpos)
(key-shape ?key ?shape) (lock-shape ?lockpos ?shape)
(at-robot ?curpos) (locked ?lockpos) (holding ?key))

:effect (and (open ?lockpos) (not (locked ?lockpos))))

(:action move
:parameters (?curpos ?nextpos)
:precondition (and (place ?curpos) (place ?nextpos) (at-robot ?curpos
)

(conn ?curpos ?nextpos) (open ?nextpos))
:effect (and (at-robot ?nextpos) (not (at-robot ?curpos))))

(:action pickup
:parameters (?curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos)

(at ?key ?curpos) (arm-empty ))
:effect (and (holding ?key) (not (at ?key ?curpos)) (not (arm-empty )
)))

(:action pickup-and-loose
:parameters (?curpos ?newkey ?oldkey)
:precondition (and (place ?curpos) (key ?newkey) (key ?oldkey)

(at-robot ?curpos) (holding ?oldkey)
(at ?newkey ?curpos))

:effect (and (holding ?newkey) (at ?oldkey ?curpos)
(not (holding ?oldkey)) (not (at ?newkey ?curpos))))

(:action putdown
:parameters (?curpos ?key)
:precondition (and (place ?curpos) (key ?key) (at-robot ?curpos)

(holding ?key))
:effect (and (arm-empty ) (at ?key ?curpos) (not (holding ?key))))

)

Listing 1: Grid PDDL

A.1.2 ABSTRACT DESCRIPTION

General. This domain models a robot navigating a grid environment with the objective of unlocking
doors and moving through the grid. The robot can carry keys that match the shape of locks to
unlock doors. The environment includes places, keys with specific shapes, and doors (locks) with
corresponding shapes that need to be unlocked.

Predicates. The following predicates are used in the domain:

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing move-
ment between them.

• (key-shape ?k ?s): Indicates that key ?k has shape ?s.
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• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s.
• (at ?r ?x): Indicates that key ?r is at place ?x.
• (at-robot ?x): Indicates that the robot is at place ?x.
• (place ?p): Indicates that ?p is a place in the grid.
• (key ?k): Indicates that ?k is a key.
• (shape ?s): Indicates that ?s is a shape.
• (locked ?x): Indicates that the place ?x is locked.
• (holding ?k): Indicates that the robot is holding key ?k.
• (open ?x): Indicates that the place ?x is open.
• (arm-empty): Indicates that the robot’s arm is empty.

Actions. The following actions are available in the domain:

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to un-
lock a door at place <?lockpos> using a key of a specific shape.

• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos>
to place <?nextpos>.

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location.
• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to

pick up a new key while dropping the one it was holding.
• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding.

A.1.3 CONCRETE DESCRIPTION

General. This domain models a robot navigating a grid environment with the objective of unlocking
doors and moving through the grid. The robot can carry keys that match the shape of locks to
unlock doors. The environment includes places, keys with specific shapes, and doors (locks) with
corresponding shapes that need to be unlocked.

Predicates. The following predicates are used in the domain:

• (conn ?x ?y): Indicates a connection between two places ?x and ?y, allowing move-
ment between them.

• (key-shape ?k ?s): Indicates that key ?k has shape ?s.
• (lock-shape ?x ?s): Indicates that lock (or door) at place ?x has shape ?s.
• (at ?r ?x): Indicates that key ?r is at place ?x.
• (at-robot ?x): Indicates that the robot is at place ?x.
• (place ?p): Indicates that ?p is a place in the grid.
• (key ?k): Indicates that ?k is a key.
• (shape ?s): Indicates that ?s is a shape.
• (locked ?x): Indicates that the place ?x is locked.
• (holding ?k): Indicates that the robot is holding key ?k.
• (open ?x): Indicates that the place ?x is open.
• (arm-empty): Indicates that the robot’s arm is empty.

Actions. The following actions are available in the domain:

• unlock <?curpos> <?lockpos> <?key> <?shape>: Allows the robot to un-
lock a door at place <?lockpos> using a key of a specific shape if the robot is at place
<?curpos>, the key matches the lock’s shape, the robot is holding the key, there is a
connection between <?curpos> and <?lockpos>, and the destination is locked. After
the action, the lock is no longer locked.
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• move <?curpos> <?nextpos>: Allows the robot to move from place <?curpos>
to place <?nextpos> if there is a connection between them and the destination is open.
After the move, the robot is no longer at the original place.

• pickup <?curpos> <?key>: Allows the robot to pick up a key at its current location
if the robot’s arm is empty and it is at the same place as the new key. After the action, the
robot is holding the key, and the key is no longer at that location.

• pickup-and-loose <?curpos> <?newkey> <?oldkey>: Allows the robot to
pick up a new key while dropping the one it was holding if it is at the same place as the
new key. After the action, the robot is holding the new key, and the old key is at the robot’s
current location.

• putdown <?curpos> <?key>: Allows the robot to put down a key it is holding if it is
at a specific place. After the action, the robot’s arm is empty, and the key is at that location.

A.2 PRELIMINARY EXPERIMENT

The experimental results show that LLM’s effectiveness in detecting PDDL semantic errors is limited,
with an accuracy of 55.0%, a precision of 56.2%, a recall rate of 45.0%, an F1 score of 50.0%, and a
ROC AUC of 55.0. ROC AUC indicates that the model is close to random performance, making it
difficult to reliably distinguish between correct and incorrect PDDL domains. Below is the prompt
used for LLMs to detect semantic errors in generated PDDL domains:

You are an expert in automated planning systems and PDDL semantics. Your
task is to evaluate whether the LLM are physically accurate models of
the world or whether they don't make sense by detecting semantic

errors in generated PDDL domain.
You need carefully analyze the following PDDL domain by comparing it to

the pddl domain description, evaluate whether the generated pddl
domain contains SEMANTIC ERRORS in these key aspects:

1. Predicates consistency.
2. Action parameters validity.
3. Action preconditions completeness.
4. Action effects logical consistency.
5. Consistency with the description.

An example of semantic error would be:
1. Missing precondition constraints (e.g. executing "unlock-door" without

holding a key).
2. Contradictory effects (e.g. both adding and deleting the same

predicate).
3. Incorrect predicate arguments (e.g. reversed parameter order).

Output Format:
{
"evaluation": "yes/no",
"error_type": "[MissingPrecond|IncorrectEffect|MissingPredicate|...]",
"confidence": "high/medium/low",
"evidence": "<specific code segment>",
"justification": "<short justification>"
}

PDDL Description:
{PDDL_DESCRIPTION}

Generated PDDL:
{PDDL_DOMAIN}

A.3 MORE DETAILS ON DATA ANALYSIS

Figure 8 shows the co-occurrence of PDDL requirements across domains, highlighting that :typing
and :strips are the most prevalent features.
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B MORE DETAILS ON EXPERIMENTS

B.1 EVALUATION METRICS

Levenshtein Ratio. The Levenshtein Ratio is a value between 0 and 1 that quantifies the similarity
between two strings, such as a predicted PDDL domain and a golden PDDL domain. It is derived
from the Levenshtein distance, which calculates the minimum number of character-level opera-
tions—insertions, deletions, or substitutions—needed to convert one string into the other. The ratio is
then computed by dividing the Levenshtein distance by the length of the longer string, providing a
measure of how closely the two strings match, where a value closer to 1 indicates high similarity and
a value closer to 0 indicates significant differences.

Component-wise F1 Scores. The F1 score is mainly used to measure the similarity between the
predicted PDDL domain and the golden PDDL domain, specifically including predicate F1 and action
F1. The range of this score is from 0 to 1, which is the harmonic mean of precision and recall.

B.2 PROMPT EXAMPLES
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Figure 8: The co-occurrence matrix of requirements of TEXT2WORLD.

B.2.1 ERROR CORRECTION

I would like you to serve as an expert in PDDL, assisting me in
correcting erroneous PDDL code. I will provide you with the incorrect
PDDL along with the error messages returned by the system. You

should output your thought process firstly. You MUST enclose the
COMPLETE corrected PDDL within ```pddl```.

Here are some hints to help you debug the pddl domain file:
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1. You should start by checking if all the essential domain constructs or
domain definition constructs are present. Commonly included domains

comprise:
a. :domain declaration to name the domain.
b. :requirements to specify the PDDL features used in the domain.
c. :types to define any object types for categorizing entities in the

planning problem.
d. :constants (if necessary) to declare any objects that remain

static throughout the planning problems.
e. :predicates to define the properties and relations between objects

that can change over time.
f. :functions (if necessary) to define numeric functions for more

complex domains.
g. :action definitions for each action that agents can perform,

including parameters, preconditions, and effects.
2. You need to check the number of parameters of each actions.
3. Having :typing in the domain indicates that it uses a hierarchy to

organize objects. Therefore, it's crucial to clearly list all object
types related to the planning task in a :types section.

4. '-' should not appear in :types.

Round 0
Incorrect PDDL:
(:action clean-up

:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile
)

:precondition (and
(robot-at ?robot ?robotTile)
(up ?tileToBeCleaned ?robotTile)
(clear ?tileToBeCleaned)
(not (cleaned ?tileToBeCleaned))

)
:effect (and

(cleaned ?tileToBeCleaned)
)

)

(:action clean-down
:parameters (?robot - robot ?robotTile - tile ?tileToBeCleaned - tile

)
:precondition (and

(robot-at ?robot ?robotTile)
(down ?tileToBeCleaned ?robotTile)
(clear ?tileToBeCleaned)
(not (cleaned ?tileToBeCleaned))

)
:effect (and

(cleaned ?tileToBeCleaned)
)

)

(:action up
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot-at ?robot ?robotTile)
(up ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot-at ?robot ?robotTile))
(robot-at ?robot ?moveToNextTile)

)
)
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(:action down
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot-at ?robot ?robotTile)
(down ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot-at ?robot ?robotTile))
(robot-at ?robot ?moveToNextTile)

)
)

(:action right
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot-at ?robot ?robotTile)
(right ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot-at ?robot ?robotTile))
(robot-at ?robot ?moveToNextTile)

)
)

(:action left
:parameters (?robot - robot ?robotTile - tile ?moveToNextTile - tile)
:precondition (and

(robot-at ?robot ?robotTile)
(left ?moveToNextTile ?robotTile)
(clear ?moveToNextTile)

)
:effect (and

(not (robot-at ?robot ?robotTile))
(robot-at ?robot ?moveToNextTile)

)
)
Error Information:
ParsingError: line 1:1 mismatched input ':action' expecting 'define'
Corrected PDDL:

B.2.2 ZERO-SHOT PROMPT

You are tasked with converting a given Planning Domain Definition
Language (PDDL) domain description into its corresponding formal PDDL
domain. The description will outline the essential components of the
domains.

Your output should be a well-structured PDDL domain that accurately
represents the given description, adhering to the syntax and
semantics of PDDL.

Your output pddl domain must be enclosed in ```pddl```.

You need to generate the corresponding domain pddl for the following
description.

PDDL Domain Description:
### General
This domain is designed for a robot tasked with cleaning floor tiles. The

robot can move in four directions (up, down, right, left) relative
to its current position on a grid of tiles. The goal is to clean all
the specified tiles by moving to them and performing a cleaning
action.
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### Types
- **robot**: Represents the robot that performs the cleaning.
- **tile**: Represents the individual tiles on the floor that may need to

be cleaned.

### Predicates
- **(robot-at ?robot - robot ?robotTile - tile)**: Indicates that the

robot is currently at a specific tile.
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile

is directly above another.
- **(down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile

is directly below another.
- **(right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one

tile is directly to the right of another.
- **(left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one

tile is directly to the left of another.
- **(clear ?clearedTile - tile)**: Indicates that a tile is clear and

robot can move there.
- **(cleaned ?cleanedTile - tile)**: Indicates that a tile has been

cleaned.

### Actions
- **clean-up <?robot> <?robotTile> <?tileToBeCleaned>**: Allows the robot

(?robot) to clean a tile (?tileToBeCleaned) that is directly above
its current position (?robotTile).

- **clean-down <?robot> <?robotTile> <?tileToBeCleaned>**: Allows the
robot (?robot) to clean a tile (?tileToBeCleaned) that is directly
below its current position (?robotTile).

- **up <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?robot
) to a tile (?moveToNextTile) directly above its current position (?
robotTile).

- **down <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly below its current
position (?robotTile).

- **right <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly to the right of its
current position (?robotTile).

- **left <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly to the left of its
current position (?robotTile).

PDDL Domain:
Let's think step by step.

B.2.3 FEW-SHOT PROMPT

You are tasked with converting a given Planning Domain Definition
Language (PDDL) domain description into its corresponding formal PDDL
domain. The description will outline the essential components of the
domains. Your output should be a well-structured PDDL domain that

accurately represents the given description, adhering to the syntax
and semantics of PDDL.

Your output must strictly adhere to the format exemplified below.
Here are some examples:

Example 0:
## PDDL Domain Description
### General
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You are a robot equipped with a gripper mechanism, designed to move and
manipulate balls between different rooms. The domain focuses on the
robot's ability to navigate rooms, pick up balls, and drop them in
designated locations.

### Types
- **room**: Represents the different rooms within the environment.
- **ball**: Represents the objects that the robot can pick up and move.
- **gripper**: Represents the robot's mechanism for holding balls.
### Predicates
- **(at-robby ?r - room)**: Indicates that Robby, the robot, is currently

in room ?r.
- **(at ?b - ball ?r - room)**: Indicates that ball ?b is located in room

?r.
- **(free ?g - gripper)**: Indicates that the gripper ?g is not currently

holding any ball.
- **(carry ?o - ball ?g - gripper)**: Indicates that the gripper ?g is

carrying ball ?o.
### Actions
- **move <?from> <?to>**: Allows Robby to move from one room to another.
- **pick <?obj> <?room> <?gripper>**: Enables Robby to pick up a ball in

a room using its gripper.
- **drop <?obj> <?room> <?gripper>**: Allows Robby to drop a ball it is

carrying into a room.

## PDDL Domain
```pddl
(define (domain gripper-strips)

(:types
room - object
ball - object
gripper - object
)

(:predicates
(at-robby ?r - room)
(at ?b - ball ?r - room)
(free ?g - gripper)
(carry ?o - ball ?g - gripper))

(:action move
:parameters (?from - room ?to - room)
:precondition (and (at-robby ?from))
:effect (and (at-robby ?to)

(not (at-robby ?from))))
(:action pick

:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and

(at ?obj ?room) (at-robby ?room) (free ?
gripper))

:effect (and (carry ?obj ?gripper)
(not (at ?obj ?room))
(not (free ?gripper))))

(:action drop
:parameters (?obj - ball ?room - room ?gripper - gripper)
:precondition (and

(carry ?obj ?gripper) (at-robby ?room))
:effect (and (at ?obj ?room)

(free ?gripper)
(not (carry ?obj ?gripper)))))

```

Example 1:
## PDDL Domain Description
### General
This domain represents a simplified version of the classic "blocks world"

problem, where a robot arm can stack and unstack blocks. The domain
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includes actions for picking up blocks from the table, putting down
blocks onto the table, stacking blocks on top of each other, and
unstacking them. The goal is to manipulate the blocks to achieve a
specified configuration.

### Predicates
(clear ?x): Indicates that there is no block on top of block ?x, making

it accessible for stacking or picking up.
(on-table ?x): Indicates that block ?x is directly on the table.
(arm-empty): Indicates that the robot's arm is not holding any block.
(holding ?x): Indicates that the robot's arm is currently holding block ?

x.
(on ?x ?y): Indicates that block ?x is directly on top of block ?y.
### Actions
- **pickup <?ob>**: Picks up an object (?ob) from the table.
- **putdown <?ob>**: Puts down an object (?ob) onto the table.
- **stack <?ob> <?underob>**: Stacks an object (?ob) on top of another

object (?underob), making the robot arm empty.
- **unstack <?ob> <?underob>**: Unstacks an object (?ob) from another

object (?underob), making the robot arm no longer empty.

## PDDL Domain:
```pddl
(define (domain blocksworld)

(:requirements :strips)
(:predicates (clear ?x)

(on-table ?x)
(arm-empty)
(holding ?x)
(on ?x ?y))

(:action pickup
:parameters (?ob)
:precondition (and (clear ?ob) (on-table ?ob) (arm-empty))
:effect (and (holding ?ob) (not (clear ?ob)) (not (on-table ?ob))

(not (arm-empty))))

(:action putdown
:parameters (?ob)
:precondition (holding ?ob)
:effect (and (clear ?ob) (arm-empty) (on-table ?ob)

(not (holding ?ob))))

(:action stack
:parameters (?ob ?underob)
:precondition (and (clear ?underob) (holding ?ob))
:effect (and (arm-empty) (clear ?ob) (on ?ob ?underob)

(not (clear ?underob)) (not (holding ?ob))))

(:action unstack
:parameters (?ob ?underob)
:precondition (and (on ?ob ?underob) (clear ?ob) (arm-empty))
:effect (and (holding ?ob) (clear ?underob)

(not (on ?ob ?underob)) (not (clear ?ob)) (not (arm-empty)
))))

```

You need to generate the corresponding domain pddl for the following
description.

## PDDL Domain Description
### General
This domain is designed for a robot tasked with cleaning floor tiles. The

robot can move in four directions (up, down, right, left) relative
to its current position on a grid of tiles. The goal is to clean all
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the specified tiles by moving to them and performing a cleaning
action.

### Types
- **robot**: Represents the robot that performs the cleaning.
- **tile**: Represents the individual tiles on the floor that may need to

be cleaned.

### Predicates
- **(robot-at ?robot - robot ?robotTile - tile)**: Indicates that the

robot is currently at a specific tile.
- **(up ?tileAbove - tile ?tileBelow - tile)**: Indicates that one tile

is directly above another.
- **(down ?tileBelow - tile ?tileAbove - tile)**: Indicates that one tile

is directly below another.
- **(right ?tileOnRight - tile ?tileOnLeft - tile)**: Indicates that one

tile is directly to the right of another.
- **(left ?tileOnLeft - tile ?tileOnRight - tile)**: Indicates that one

tile is directly to the left of another.
- **(clear ?clearedTile - tile)**: Indicates that a tile is clear and

robot can move there.
- **(cleaned ?cleanedTile - tile)**: Indicates that a tile has been

cleaned.

### Actions
- **clean-up <?robot> <?robotTile> <?tileToBeCleaned>**: Allows the robot

(?robot) to clean a tile (?tileToBeCleaned) that is directly above
its current position (?robotTile).

- **clean-down <?robot> <?robotTile> <?tileToBeCleaned>**: Allows the
robot (?robot) to clean a tile (?tileToBeCleaned) that is directly
below its current position (?robotTile).

- **up <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?robot
) to a tile (?moveToNextTile) directly above its current position (?
robotTile).

- **down <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly below its current
position (?robotTile).

- **right <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly to the right of its
current position (?robotTile).

- **left <?robot> <?robotTile> <?moveToNextTile>**: Moves the robot (?
robot) to a tile (?moveToNextTile) directly to the left of its
current position (?robotTile).

## PDDL Domain

C MORE DETAILS ON ANALYSIS

C.1 OVERALL

The overall distribution for syntax errors and semantic errors is presented in Table 3.

C.2 SYNTAX ERROR

The distribution and detailed explanation of each syntax error type are presented in Table 4.
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Table 3: Distribution of error types of claude-3.5-sonnect on TEXT2WORLD under few-shot
setting.

Proportion (%) Number
Correct 23.76 24
Syntax Error 11.88 12
Semantic Error 64.36 65

All 100.00 101

Table 4: Distribution of Syntax Errors in PDDL Generation (Total Samples: 66, a task may have 1 to
4 samples.)

Syntax Error Explanation Proportion (%)
UndefinedDomainName Missing mandatory (define (domain ...)) declaration in PDDL header 33.33
IncorrectParentheses Invalid empty/mismatched parentheses 3.03
UndefinedConstant Reference to undeclared constants in predicates or actions 13.64
MissingRequirements Absence of required PDDL extension declarations (e.g., :action-costs) 22.73
UndefinedType Undeclared parent type in hierarchical type definitions 18.18
UnsupportedFeature Use of parser-incompatible language features (e.g., either types) 3.03
TypeMismatch Parameter type conflict with declared type constraints 1.52
UndefinedVariable Undeclared variables in action preconditions/effects 1.52
DuplicateDefinition Multiple declarations of identical domain elements 3.03

Table 5: Distribution of Semantic Errors in PDDL Generation (Total Samples: 91, a task may have
multiple semantic errors.)

Semantic Error Explanation Proportion (%)
DisobeyDescription Direct violation of semantic requirements explicitly stated in the task description. 14.29

IncorrectPredicate Incorrect or missing the declaration of predicates. 6.59
IncorrectAction Incorrect or missing the declaration of actions. 7.69

IncompleteModeling Incomplete world modeling compared to basic requirements. 58.24
IncorrectPrecondition The precondition of the action is deficient or incorrect. 29.67
IncorrectEffect The effect of the action is deficient or incorrect. 28.57

RedundantSpecifications Predicted domain includes superfluous preconditions or effects. 17.58
RedundantPrecondition Predicted domain includes superfluous preconditions. 10.99
RedundantEffect Predicted domain includes superfluous effects. 6.59

SurfaceDivergence Surface variations preserving semantic equivalence with ground truth. 9.89
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C.3 SEMANTIC ERROR

The distribution and detailed explanation of each semantic error type are presented in Table 5.

D MORE EXPERIMENTAL RESULTS

D.1 EXPERIMENTAL RESULTS WITH CONCRETE DESCRIPTION

Table 6: Performance comparison of different LLMs on TEXT2WORLD using concrete domain
description. ECk denotes the setting where models are allowed k correction attempts (EC0: zero-shot
without correction, EC3: with 3 correction attempts).

Model Family Version EXEC. ↑ SIM. ↑ F1PRED ↑ F1PARAM ↑ F1PRECOND ↑ F1EFF ↑
EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3 EC0 EC3

GPT-4 gpt-4o 60.4 75.2 90.7 90.3 59.4 71.8 57.1 69.1 55.3 65.1 54.1 65.2

GPT-3.5 turbo-0125 53.5 68.3 89.0 88.7 52.9 66.7 50.3 64.6 45.1 58.0 46.5 59.9

CLAUDE-3.5 sonnet 64.4 84.2 84.7 77.6 64.4 80.7 55.0 67.5 53.3 65.0 53.3 64.8

LLAMA-2 7b-instruct 0.0 0.0 48.4 32.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 0.0 0.0 53.5 52.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

LLAMA-3.1 8b-instruct 0.0 1.0 84.1 83.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
70b-instruct 1.0 1.0 89.7 85.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

DEEPSEEK deepseek-v3 58.4 80.2 90.1 89.3 58.1 76.4 56.2 73.5 53.4 66.0 53.5 67.6
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