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ABSTRACT

Multi-source hyperspectral images(HSIs) which captured from diverse sensors
commonly possess varying bands. When employing deep learning techniques
for their processing, individual models are necessitated for each source due to the
disparate dimensions. To tackle this problem, we propose a shared encoder to
project all HSIs into a unified feature space. It establishes a general framework
for the representation of multi-source HSIs, providing foundational conditions for
the development of a universal HSI analysis model.

1 INTRODUCTION

Hyperspectral imaging technology is a method that utilizes spectral sensors to capture spectral infor-
mation across hundreds or thousands of contiguous bands. It offers rich spectral features, facilitat-
ing object identification, environmental monitoring, and geoscientific research (Kong et al. (2023)).
Nowadays, an increasing number of HSI capture missions are being deployed, such as MODIS,
HypSEO, DESIS, Gaofen-5, EnMap, HyspIRI, and so on (Hong et al. (2021)). Owing to the distinct
characteristics of data collected by various sensors, current methodologies for HSI feature extrac-
tion often necessitate individual models and training from scratch when dealing with multi-source
HSIs[e.g., PCA (Jiang et al. (2018)), 3D-CAE (Nalepa et al. (2020)), CENet (Guo et al. (2022)) and
so on]. In the very recent period, researchers proposed a 1D-CNN based autoencoder (Kuester et al.
(2023)), which can adaptively process multi-source HSIs and has strong transferability. However,
this method cannot construct a unified feature space because the dimensions of output features are
not uniform. Hence, this method still falls short of addressing the stringent requirements of deep
learning networks regarding data dimensions. In this work, we design a shared encoder to learn
the general features of multi-source HSIs, it can project multi-source HSIs into the same feature
space and ensure that they have the same feature dimension. Additionally, we further validated the
generality of our method on multi-source HSIs through a series of experiments.
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Figure 1: The architecture of shared encoder.
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2 METHODOLOGY

Notation: The shared encoder aims to provide a unified representation of multi-source HSIs, which
only accepts one-dimensional spectral input. Consider 3D hyperspectral data as H ∈ Rh×w×b,
where h, w and b represent the height, weigth and bands of HSI. Since spatial information is not
considered in our method, we flatten the spatial dimensions H → X ∈ Rn×b, where n = h × w.
The input to the model is a spectral signature x ∈ R1×b.

Methodology: The overall architecture of shared encoder is illustrated in figure 1, where ’Store
shape’ is used to save the two parameters ∆b and b̂ mentioned below. To enable the model to
adaptively process the spectral signatures with different dimensions, we incorporated an adaptive
padding layer and a cropping layer at the input and output end. The padding band numbers ∆b =
⌈b/r⌉× r− b, where r represents the downsampling rate. In encoder section, we employ a 1D CNN
based downsampling moudel fD : R1×(b+∆b) → Rc×b̂ and a maxpooling layer fmax : Rc×b̂ → Rc

to extract the most significant factors and eliminate the dimension differences across multi-source
HSIs, where b̂ = (b+∆b)/r and c is the output channel of fD which can be preset. It is worth noting
that both ∆b and b̂ are computed by parameter-free operations, thus they will be preserved during
the model inference process for reconstruction by the decoder. To extract higher-level features, we
construct a bottleneck-structured MLP, the bottleneck feature is selected as the feature vector, which
is utilized for subsequent tasks. On the decoder side, a repetitive padding layer, a 1D transposed
CNN based upsampling moudel and a cropping layer are used to perform the reverse operations
corresponding to the encoder. The shared encoder is trained as equation 1, where θ∗ represents the
parameters of shared encoder, ||θ||22 represents the L2 regularization of θ and α is its coefficient.

θ∗ = argmin
θ

1

n

n∑
i=0

|f(xi, θ)− xi|2 + α||θ||22 (1)

3 EXPERIMENTS

In our experiments, PSNR and SSIM are employed to quantify the similarity between reconstructed
and original images, thereby assessing the correctness of the features. Ablation experiments are con-
ducted using a classification task as the downstream task to assess the performance improvement of
our method on it. Given the absence of a universal model applicable to multi-source HSIs at present,
there are no analogous methods available for comparative analysis. The details of the datasets and
experimental results are provided in Appendix A.1 and A.2, respectively.

Table 4 presents our reconstruction results on muti-source HSIs from different and unknown sen-
sors. These results indicate that our model has achieved excellent reconstruction performance. On
the three testsets, when r = 32, the PSNR are 26.84dB, 28.81dB, 29.40dB, and the SSIM are
0.78, 0.83, 0.85, respectively. This demonstrates that our model can extract highly reliable univer-
sal features from hyperspectral images of different sources. Besides, we fine-tuned the pre-trained
model on a dense classification task, and the results are presented in table 5. Clearly, our approach
demonstrates a significant performance improvement in classifying hyperspectral images from dif-
ferent sensors. With a 5% training sample, the OA increased by 1.95% and 6.2% on PU and IN,
respectively. When utilizing only 1% of the training samples, the OA on PU and IP saw a more
substantial improvement, with increases of 2.71% and 8.75%, respectively.

4 CONCLUSION

In this paper, we design a shared encoder which constructs a unified feature space for muti-source
HSIs. The model is highly compatible with HSIs from various sources, requiring no structural ad-
justments after pretraining to accommodate different data structures. The uniform representation of
muti-source HSIs provides the possibility to design a general model for HSI analysis. Experimental
results indicate a significant improvement in the performance of our method on classification tasks
across different datasets. In future work, we will emphasize the development of a general hyper-
spectral pre-training model to enhance the practical applicability of hyperspectral data in production
environments.
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A APPENDIX

A.1 DATASETS

We utilized a total of 12 hyperspectral images from distinct sensors as experimental materials.
Among them, Botswana, Houston, Indian Pines(IN)(Biehl & Landgrebe (2015)), KSC, NewXion-
gAn, Salinas, Xuzhou(Tan et al. (2018)), WHU-Hi-HanChuan, and WHU-Hi-LongKou(Zhong et al.
(2020)) were employed as the training set for training the shared encoder, while Chikuse, Washing-
tonDC and the Pavia University(PU) served as the test set to evaluate the generality of model and the
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accuracy of the extracted features. The detailed information for these datasets is provided in table 1.
For the classification task, we selected via University and Indian Pines as benchmark datasets. The
detailed category information is provided in table 2 and table 3. Note that when the training samples
for each class are less than 1, they are automatically supplemented to reach 1.

Dataset Sensor Band Spectral Range/nm Spatial Resolution/m
Botswana Hyperion 145 400-2500 30
Houston ITRES CASI-1500 144 380-1050 2.5

Indian Pines AVIRIS 220 400-2500 20
KSC AVIRIS 176 400-2500 18

NewXiongAn PHI 250 400—1000 0.5
Salinas AVIRIS 224 400-2500 3.7
Xuzhou HYSPEX 436 415-2508 0.73

WHU-Hi-HanChuan Nano-Hyperspec 274 400-1000 0.109
WHU-Hi-LongKou Nano-Hyperspec 270 400-1000 0.463

Chikusei Hyperspec-VNIR-C 128 343 – 1018 2.5
WashingtonDC Hydice 191 400-2400 -
Pavia University ROSIS 103 430-860 1.3

Table 1: The detailed information of the datasets used.

No. Class 1% Training 5% Training Total
1 Alfalfa 1 2 46
2 Corn-notill 14 71 1428
3 Corn-mintill 8 41 830
4 Corn 2 11 237
5 Grass-pasture 4 24 483
6 Grass-trees 7 36 730
7 Grass-pasture-mowed 1 1 28
8 Hay-windrowed 4 23 478
9 Oats 1 1 20

10 Soybean-notill 9 48 972
11 Soybean-mintill 24 122 2455
12 Soybean-clean 5 29 593
13 Wheat 2 10 205
14 Woods 12 63 1265
15 Buildings-Grass-Trees 3 19 386
16 Stone-Steel-Towers 1 4 93

Total 98 505 10249

Table 2: Land cover classes illustration and numbers of training and testing samples for India Pines.

No. Class 1% Training 5% Training Total
1 Asphalt 66 331 6631
2 Meadows 186 932 18649
3 Gravel 20 104 2099
4 Trees 30 153 3064
5 Mental sheets 13 67 1345
6 Bare soil 50 251 5029
7 Bitumen 13 66 1330
8 Bricks 36 184 3682
9 Shadow 9 47 947

Total 423 2135 42776

Table 3: Land cover classes illustration and numbers of training and testing samples for Pavia Uni-
versity.

A.2 EXPERIMENTAL RESULTS

Table 5 documents the performance of our method on the classification task. Given the limited
samples, we conducted ablation experiments on our approach, testing the accuracy with randomly
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Shared Encoder
Chikuse WashingtonDC PaviaU

PSNR SSIM PSNR SSIM PSNR SSIM
[dB] [] [dB] [] [dB] []

r = 8 24.57 0.66 26.98 0.69 27.89 0.73
r = 16 25.82 0.71 27.64 0.77 28.63 0.79
r = 32 26.84 0.78 28.81 0.83 29.40 0.85

Table 4: Evaluation of the reconstruction accuracy of shared encoder for the downsampling rates
r = 8, r = 16, and r = 32 on different datasets from different hyperspectral sensors based on the
metric PSNR, and SSIM. The best results are highlighted in bold.

initialized model parameters and the accuracy with parameters initialized using pretraining. We
employed overall accuracy (OA), average accuracy (AA), and the Kappa coefficient as performance
metrics.

1% IN 1% PU 5% IN 5% PU
OA AA KAPPA OA AA KAPPA OA AA KAPPA OA AA KAPPA
[%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%] [%]

W/O Pertrain 43.44 39.42 35.40 87.48 81.71 83.51 71.32 59.98 67.14 91.77 87.02 89.06
Pertrain 52.19 41.82 45.75 90.19 84.32 86.52 77.52 73.21 74.34 93.72 90.86 91.67
Differ 8.75 2.4 10.35 2.71 2.61 3.01 6.2 13.23 7.2 1.95 3.84 2.61

Table 5: The results of classification. W/O: Without.
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