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ABSTRACT

Recent advancements have integrated camera pose as a user-friendly and physics-
informed condition in video diffusion models, enabling precise camera control.
In this paper, we identify one of the key challenges as effectively modeling noisy
cross-frame interactions to enhance geometry consistency and camera controlla-
bility. We innovatively associate the quality of a condition with its ability to reduce
uncertainty and interpret noisy cross-frame features as a form of noisy condition.
Recognizing that noisy conditions provide deterministic information while also in-
troducing randomness and potential misguidance due to added noise, we propose
applying epipolar attention to only aggregate features along corresponding epipo-
lar lines, thereby accessing an optimal amount of noisy conditions. Additionally,
we address scenarios where epipolar lines disappear, commonly caused by rapid
camera movements, dynamic objects, or occlusions, ensuring robust performance
in diverse environments. Furthermore, we develop a more robust and reproducible
evaluation pipeline to address the inaccuracies and instabilities of existing camera
control metrics. Our method achieves a 25.64% improvement in camera control-
lability on the RealEstate10K dataset without compromising dynamics or gen-
eration quality and demonstrates strong generalization to out-of-domain images.
Training and inference require only 24GB and 12GB of memory, respectively, for
16-frame sequences at 256×256 resolution. We will release all checkpoints, along
with training and evaluation code. Dynamic videos are available for viewing on
our supplementary anonymous web page.
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Figure 1: Rethinking condition in diffusion models. Diffusion models denoise along the gradient
of log probability density function. At large noise levels, the high density region becomes the overlap
of numerous noisy samples, resulting in visual blurriness. We point out that the effectiveness of a
condition depends on how much uncertainty it reduces. From a new perspective, we categorize
conditions into clean conditions (e.g. texts, camera extrinsics) that remain visible throughout the
denoising process, and noisy conditions (e.g. noised pixels in the current and other frames) whose
deterministic information αtx0 will be gradually dominated by the randomness of noise σtϵ.
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Figure 2: Comparison of existing attention mechanisms for tracking displaced noised features.
Temporal attention is limited to features at the same location of picture, rendering it ineffective
for significant camera movements. In contrast, 3D full attention facilitates cross-frame tracking
due to its broad receptive field. However, high noise levels can obscure deterministic information,
hindering consistent tracking. Our proposed epipolar attention aggregates features along the epipolar
line, effectively modeling cross-frame relationships even under high noise conditions.

1 INTRODUCTION

The remarkable 3D consistency demonstrated in videos generated by Sora (Brooks et al., 2024) has
highlighted the powerful capabilities of diffusion models (Ho et al., 2020; Rombach et al., 2022),
showcasing their potential as a world simulator. Many researchers have attempted to enable the
model to understand real-world knowledge (Chen et al., 2023a; Liu et al., 2023).

Condition or guidance (Ho & Salimans, 2022; Dhariwal & Nichol, 2021) is widely recognized as
a crucial factor in enhancing generation quality. This is attributed to the fundamental principles
that diffusion models denoise along the gradient of the log probability density function (score func-
tion) (Song et al., 2020), moving towards a high density region. However, this characteristic has
varying effects at different noise levels (Tang et al., 2023a). As shown in Fig. 1(a), the high density
region under high noise level becomes the overlap of numerous noisy samples, resulting in visual
blurriness. By providing the model with conditions such as cdog and ccat, it can rapidly eliminate
incorrect generations. This illustrates that adding more conditions can guide the model towards
desired outcomes while reducing uncertainty.

Consequently, incorporating physics-related or more detailed conditions into the diffusion model is
an effective way of improving its world understanding. Considering that video generation requires
providing condition for each frame, it is essential to identify a condition that is physics-related but
also user-friendly. Recently, some camera-conditioned text-to-video diffusion models such as Mo-
tionCtrl (He et al., 2024a) and CameraCtrl (Wang et al., 2024d) have proposed using camera poses
of each frame as a new type of condition. However, these methods simply inject camera condi-
tions through a side input (like T2I-Adapter (Mou et al., 2024)) and neglect the inherent physical
knowledge of camera pose, resulting in imprecise camera control, inconsistencies, and also poor
interpretability.

In this paper, we identify one of the key challenges of camera-controlled image-to-video diffusion
models as how to effectively model noisy cross-frame interactions to enhance geometry consistency
and camera controllability. As illustrated in Fig. 2, separated spatial and temporal attention serves
as an indirect form of 3D attention. The cross-frame interaction in temporal attention is confined to
features at the same location in the image, rendering it ineffective for tracking significant movements
resulting from large camera shifts. 3D full attention is widely applied in advanced video diffusion
models such as OpenSora (Zheng et al., 2024) and CogVideoX (Yang et al., 2024b), due to its
extensive receptive field. From the novel perspective of the noisy conditions mentioned in Fig. 1,
the broad receptive field of 3D full attention allows it to access more noisy conditions. However, we
argue that accessing more noisy conditions does not necessarily reduce uncertainty and thus not
necessarily lead to better performance due to the randomness inherent in the noise. As previously
highlighted in Fig. 1, the quality of a condition is determined by its ability to reduce the model’s
uncertainty, rather than its quantity.

To address these issues, we have found that applying epipolar constraints is one of the most
suitable way to prevent the model from being misled by noise. By restricting attention to fea-
tures along the epipolar lines, the model can interact with more relevant and less noisy information,
improving cross-frame interactions in diffusion models. Specifically, we propose to apply Plücker
coordinates (Plücker, 1828) as absolute 3D ray embedding for implicit learning of 3D space and
propose a epipolar attention mechanism that introduces an explicit constraint. By doing so, our
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approach minimizes the search space and reduces potential errors, ultimately enhancing 3D consis-
tency across frames and improving overall controllability. Additionally, inspired by Timothée et al.
(2024), we incorporate register tokens into epipolar attention to address scenarios where there are
no intersections between frames, often caused by rapid camera movements, dynamic objects, or
occlusions.

For inference, we propose a multiple classifier-free guidance scale to control images, text, and cam-
era respectively. If needed, several forward passes can be combined into a single pass by absorbing
the scales of image, text, and camera into the model input, similar to timestep conditioning accord-
ing to (Meng et al., 2023). For evaluation, we identify inaccuracies and instability in the current
measurements of camera controllability due to the intrinsic limitations of SfM-based methods such
as COLMAP (Schonberger & Frahm, 2016), which rely on identifying keypoint pairs and is quite
challenging on generated videos with low resolution, high frame stride, and 3D inconsistencies.
Considering the importance of accurate evaluation in this field, we establish a more robust, pre-
cise, and reproducible evaluation pipeline by implementing several enhancements. More details are
provided in Section 5.

We conduct experiments on the RealEstate10k dataset and evaluate video generation quality using
FVD (Unterthiner et al., 2018), as well as camera controllability metrics including RotError, Tran-
Error (Wang et al., 2024d), and CamMC (He et al., 2024a). The results demonstrate that the proposed
epipolar attention mechanism across all noised frames significantly enhances geometric consistency
and improves camera controllability. To facilitate further research, we will release all models trained
on open-source frameworks such as DynamiCrafter, along with high-resolution checkpoints and
training/evaluation codes, as soon as possible. To summarize, our key contributions are as follows:

• We identify one of the key challenges of camera-controlled image-to-video diffusion mod-
els as effectively modeling noisy cross-frame interactions to enhance geometry consistency
and camera controllability.

• Well-motivated by the relationship between the quality of a condition and its ability to
reduce uncertainty, we innovatively interpret noisy cross-frame features as a form of noisy
condition and propose to apply epipolar attention to access an optimal amount of noisy
condition. We also address scenarios where epipolar lines disappear by register tokens.

• We point out and analyze the reasons for inaccurate measurement of camera controllability
caused by the inherent limitations of SfM evaluator and re-establish a more robust, accurate
and reproducible evaluation pipeline. We achieve a 32.96%, 25.64%, 20.77% improvement
over CameraCtrl on RotErr, CamMC, TransErr on the RealEstate10K dataset without com-
promising dynamics, generation quality, or generalization on out-of-domain images.

2 RELATED WORK

Diffusion-based Video Generation. With the advancement of diffusion models (Rombach et al.,
2022; Ramesh et al., 2022; Zheng et al., 2022), video generation technology has progressed sig-
nificantly. Given the scarcity of high-quality video-text datasets (Blattmann et al., 2023a;b), many
researchers have sought to adapt existing text-to-image (T2I) models for text-to-video (T2V) gen-
eration. Some efforts involve integrating temporal blocks into original T2I models, training these
additions to facilitate the conversion to T2V models. Examples include AnimateDiff (Guo et al.,
2023), Align your Latents (Blattmann et al., 2023b), PYoCo (Ge et al., 2023), and Emu video (Gird-
har et al., 2023). Additionally, methods such as LVDM (He et al., 2022), VideoCrafter (Chen et al.,
2023a; 2024b), ModelScope (Wang et al., 2023a), LAVIE (Wang et al., 2023c), and VideoFac-
tory Wang et al. (2024a) have adopted a similar structure, using T2I models as initialization weights
and fine-tuning both spatial and temporal blocks to achieve better visual effects. Building on this
foundation, Sora (Brooks et al., 2024) and CogVideoX (Yang et al., 2024b) have significantly en-
hanced video generation capabilities by introducing Transformer-based diffusion backbones (Pee-
bles & Xie, 2023; Ma et al., 2024a; Yu et al., 2024) and leveraging 3D-VAE technology, thereby
opening up the possibility of world simulators. Furthermore, works such as Dynamicrafter (Xing
et al., 2023), SVD (Blattmann et al., 2023a), Seine (Chen et al., 2023b), I2vgen-XL (Zhang et al.,
2023b), and PIA (Zhang et al., 2024) have extensively explored image-to-video generation, achiev-
ing substantial progress.
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Figure 3: Parameterizations for cameras. Left: Camera representation and trajectory visualization
in the world coordinate system. Right: The transformation from camera representations to 3D ray
representations as Plücker coordinates given pixel coordinates.

Controllable Generation. With the development of image controllable generation technology
(Zhang et al., 2023a; Jiang et al., 2024; Mou et al., 2024; Zheng et al., 2023; Peng et al., 2024; Ye
et al., 2023; Wu et al., 2024b; Song et al., 2024; Wu et al., 2024d), video controllable generation
has gradually become a highly focused direction. Significant progress has been made in areas such
as pose (Ma et al., 2024b; Wang et al., 2023b; Hu, 2024; Xu et al., 2024b), trajectory (Yin et al.,
2023; Chen et al., 2024a; Li et al., 2024; Wu et al., 2024a), subject (Chefer et al., 2024; Wang et al.,
2024c; Wu et al., 2024c), and audio (Tang et al., 2023b; Tian et al., 2024; He et al., 2024b), greatly
facilitating users to generate desired videos according to their needs.

Camera-controlled Video Generation. AnimateDiff (Guo et al., 2023) utilizes LoRA (Hu et al.,
2021) fine-tuning to achieve specific camera movements. MotionMaster (Hu et al., 2024) and Peek-
aboo (Jain et al., 2024) explore a training-free method for coarse-grained camera movement gen-
eration, but they lack precise control. VideoComposer (Wang et al., 2024b) offers global motion
guidance by adjusting pixel-level motion vectors. In contrast, MotionCtrl (Wang et al., 2024d),
CameraCtrl (He et al., 2024a), and Direct-a-Video (Yang et al., 2024a) incorporate camera pose in-
formation as side input; however, these methods primarily focus on text-to-video generation and do
not effectively leverage 3D geometric priors in camera pose. CamCo (Xu et al., 2024a) also facil-
itates controllable camera generation in the image-to-video task by using epipolar attention (Kant
et al., 2024; Tseng et al., 2023) to ensure consistency between generated frames and a single refer-
ence frame only. However, it does not account for scenarios where frames lack overlapping regions
with the reference frame and can thus be regarded as a degenerate version of our approach.

3 METHOD

3.1 PRELIMINARIES

3D Ray Embedding. We follow CameraCtrl (He et al., 2024a) to apply plücker embedding as
global positional embedding. Considering camera intrinsics K ∈ R3×3 and extrinsics (rotation
R ∈ SO(3), translation T ∈ R3), it parameterizes the transform from world coordinates to pixel
coordinates by projection u = K [R | T ]x. This low-dimensional representation may hinder neural
networks from direct regression. Instead, we follow (Tseng et al., 2023) to represent cameras as ray
bundles:

R = {r1, . . . , rn}, (1)

where each ray ri ∈ R6 is associated with a known pixel coordinate ui. Each ray r can be parame-
terized by ray direction d ∈ R3 from camera center P ∈ R3 as Plücker coordinates:

r = ⟨m, d⟩ ∈ R6, (2)

where m = p × d ∈ R3 is the moment vector. When normalize d to unit length, the norm of
the moment m represents the distance from the ray to the world origin. Given a set of 2D pixel
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Figure 4: Pipeline of camera-controlled image-to-video diffusion model. We follow CameraCtrl
to add a learnable pose encoder and a linear projection to process plucker embeddings as a global
positional embedding. Epipolar attention is added between spatial and temporal attention.

coordinates {(u, v)i}n, ray directions d can be computed by the unprojection transform:

d = R−1K−1 · (u, v, 1)T, m = (−R−1T )× d (3)

Text-guided Image to Video Diffusion Model. Text-guided Image to Video Diffusion
Model (Zhang et al., 2024; 2023b; Xing et al., 2023) learn a video data distribution by the grad-
ual denoising of a variable sampled from a Gaussian distribution. For image to video generation,
first, a learnable auto-encoder (consisting of an encoder E and a decoder D) is trained to compress
the video into latent space. Then, a latent representation z = E(x) is trained instead of a video x.
Specifically, the diffusion model ϵθ aims to predict the added noise ϵ at each timestep t based on the
text condition ctxt and the reference image condition cimg, where t ∈ U(0, 1). The training objective
can be simplified as a reconstruction loss:

L = Ez,ctxt,cimg,ϵ∼N (0,I),t

[
∥ϵ− ϵθ (zt, ctxt, cimg, t)∥22

]
, (4)

where z ∈ RF×H×W×C is the latent code of video data with F,H,W,C being frame, height, width,
and channel. Besides, ctext is the text prompt for input video, and cimg is the reference frame of video.
A noise-corrupted latent code zt from the ground-truth z0 is formulated as zt = αtz0 + σtϵ, where
σt =

√
1− α2

t , αt and σt are hyperparameters to control the diffusion process.

3.2 OVERALL PIPELINE

In this section, we present our novel camera-conditioned method for geometry-consistent image-
to-video generation, as shown in Fig. 4. We first describe cross-frame epipolar line and discreter-
ized epipolar mask, grounded in the principle of camera projection. Next, we propose epipolar-
constrained attention module for the base model in a plug-and-play manner, which effectively make
use of feature correlations along epipolar lines. Further, we discuss the situation when epipolar lines
of all frames are outside the image plane and introduce register tokens as a simple yet effective fix.
Finally, we leverage multiple CFG to balance visual quality and camera pose consistency.

3.3 EPIPOLAR ATTENTION FOR NOISED FEATURES TRACKING

Epipolar line and mask. The proposed epipolar attention mechanism seeks to establish a connec-
tion between frames, as shown on the left-hand side of Fig. 5. Its primary concept involves utilizing
the epipolar line as a constraint, which effectively narrows down the potential matching pixels from
one target frame to any other frames. For a single pixel at coordinate (u, v) on the i-th frame, the
corresponding epipolar line lij ∈ R3 on the j-th frame can be formulated as:

lij(u, v) = Fij · (u, v, 1)
T
, (5)
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Figure 5: Epipolar line and mask. Left: Epipolar constraint of the j-th frame from one pixel at
(u, v) on the i-th frame. Middle: Epipolar mask discretized by the distance threshold δ, so that
only neighboring pixels in green are allowed to attend while those red lined are not. Right: Multi-
resolution epipolar mask adaptive to the feature size in U-Net layers.
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Figure 6: Epipolar attention mask with register tokens. We specify query pixel by red point in the
i-th frame for clarity. Epipolar attention mask is constructed by concatenating epipolar masks along
all frames. We insert register tokens to key/value sequence to deal with zero epipolar scenarios.

where Fij is the camera fundamental matrix of two frames, which can be derived as Fij = K−T
j ·

Eij ·K−1
i given the camera intrinsics Ki,Kj ∈ R3×3 and the camera essential matrix Eij ∈ R3×3.

We transform the camera pose of the j-th frame to be relative to the i-th frame for simplicity, thus
it holds that Eij = Ti→j × Ri→j , where Ri→j ∈ R3×3 and Ti→j ∈ R3 are the relative rotation
matrix and translation vector, respectively. Due to the contiguous representation of the epipolar line
lij = Ax+By+C, we convert it to attention mask by calculating per-pixel distance D at coordinate
(u′, v′) on the j-th frame to the epipolar line as

Dij(u
′, v′) =

(A,B,C) · (u′, v′, 1)√
A2 +B2

, (6)

and filtering out those values that are larger than a threshold δ. We empirically choose half of
the diagonal of the feature grid size as the threshold. This approach optimizes the correspondence
search space by significantly reducing the number of candidates from hw to l, with l≪ hw, thereby
enhancing efficiency and accuracy.

Epipolar attention. We extend current temporal attention with epipolar constraint to leverage cross-
frame relationship and inject geometry consistency for video generation.

We denote the query, key and value as q ∈ Rhw×c, k ∈ RNhw×c and v ∈ RNhw×c, respectively.
Given the epipolar attention mask m ∈ Rhw×Nhw introduced in Section 3.3, our epipolar atten-
tion that captures relevant contextual information between the i-th frame and all N frames is then
computed as

EpipolarAttn(q, k, v,m) = softmax

(
qkT√
d
⊙m

)
v, (7)
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where ⊙ denotes Hadamard product and d is the dimension of attention heads for attention score
normalization. For detailed computation procedures, please refer to Appendix A.

Register tokens for scenarios where epipolar lines disappear. For videos with significant camera
movements, dynamic objects, or occlusions, there may be cases where some pixels from the i-th
frame have no corresponding epipolar lines within the image planes of all N frames. This situation
can lead to a zero epipolar mask, affecting the computational stability of the epipolar attention
mechanism.

To address this issue, we draw inspiration from Timothée et al. (2024) and introduce additional reg-
ister tokens to the input sequence as a straightforward solution, as illustrated in Fig. 6. Additionally,
register tokens are learnable, enabling adaptive learning to address various special cases. Without
register tokens to serve as placeholders, we may encounter the zero length of key/value tokens and
fail to calculate attention

3.4 MULTIPLE CLASSIFIER-FREE GUIDANCE

Control for multiple condition. Similar to DynamicCrafter (Xing et al., 2023; Esser et al., 2023),
we introduce two guidance scales simg&txt and scamera to text-conditioned image animation, which
can be adjusted to trade off the impact of two control signals:

ϵ̂θ (zt, ccamera, cimg&txt) = ϵθ (zt, ccamera,∅)

+ simg&txt(ϵθ (zt, ccamera, cimg&txt)− ϵθ (zt, ccamera,∅)) (8)
+ scamera(ϵθ (zt, ccamera, cimg&txt)− ϵθ (zt,∅, cimg&txt)).

Multiple scale distillation for acceleration. If needed, we can distill (Xing et al., 2023) the two
guidance scales simg&txt and scamera into the model to further avoid the extra inference time brought
by three times of forward:

ϵθ (zt, ccamera, cimg&txt, scamera, simg&txt) = ϵ̂θ (zt, ccamera, cimg&txt) (9)

4 METRICS AND EVALUATION

In this section, we present our reproducible evaluation pipeline. Previous studies have employed var-
ious evaluation protocols, resulting in inconsistent metrics due to the lack of a common benchmark.
The structure-from-motion (SfM) method such as COLMAP (Schonberger & Frahm, 2016), strug-
gles to produce stable and accurate predictions when applied to generated videos. This challenge
arises because SfM relies on SIFT operators for keypoint identification, which can lead to erroneous
matches when assessing generated content. Such inaccuracies may result in unsolvable equations or
significantly flawed estimates of camera extrinsics. Contributing factors include the low resolution
of these videos (256x256), the presence of dynamic scenes, the absence of true 3D consistency, and
issues related to lighting variations and object distortion.

To address these limitations, we adapt the global structure-from-motion method GLOMAP (Pan
et al., 2024) to validate camera pose consistency. Our evaluation pipeline comprises three steps:
feature extraction, exhaustive matching, and global mapping. To enhance robustness, we share GT
priors for camera intrinsics (fx, fy , cx, cy) and allow the structure-from-motion process to focus
primarily on optimizing camera extrinsics. Detailed CLI parameters can be found in Appendix B.

Before calculating metrics, we canonicalize the estimated camera-to-world matrices by converting
each frame relative to the first frame and normalizing the scene scale using the L2 distance from
the first camera to the furthest cameras. To account for randomness introduced by GLOMAP, we
conduct five individual trials for each of the 1,000 sampled videos, averaging only those trials that
are successful per sample. The final metrics, including RotError, TransError, and CamMC, are
averaged on a sample-wise basis.

RotError (He et al., 2024a). We evaluate per-frame camera-to-world rotation accuracy by the
relative angles between ground truth rotations Ri and estimated rotations R̃i of generated frames.
We report accumulated rotation error along 16 frames in radians.

RotErr =

n∑
i=1

cos−1 tr(R̃iR
T
i )− 1

2
(10)

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantitative comparison with state-of-the-art methods. * denotes the results we
reproduced using DynamiCrafter as base I2V model. We achieve a 32.96%, 25.64%, 20.77%
improvement over previous Sota CameraCtrl on RotErr, CamMC, TransErr on the RealEstate10K
dataset without compromising dynamics, generation quality, and generalization on out-of-domain
images. These results were obtained using Text and Image CFG set to 7.5, 25 steps, and camera
CFG set to 1.0 (no camera cfg).

Method Publication TransErr ↓ RotErr ↓ CamMC ↓ FVD ↓
VideoGPT StyleGAN

DynamiCrafter (Xing et al., 2023) ECCV 2024 9.8024 3.3415 11.625 106.02 92.196
+ MotionCtrl (Wang et al., 2024d)* SIGGRAPH 2024 2.5068 0.8636 2.9536 70.820 60.363
+ CameraCtrl (He et al., 2024a)* arXiv 2024 1.9379 0.7064 2.3070 66.713 57.644
+ CamI2V (Ours) 1.4955 0.4758 1.7153 66.090 55.701

TransError (He et al., 2024a). We evaluate per-frame camera trajectory accuracy by the camera
location in the world coordinate system, i.e. the translation component of camera-to-world matrices.
We report the sum of L2 distance between ground truth translations Ti and generated translations T̃i

for all 16 frames.

TransErr =

n∑
i=1

∥∥∥T̃i − Ti

∥∥∥
2

(11)

CamMC (Wang et al., 2024d). We also evaluate camera pose accuracy by directly calculating L2

similarity of per-frame rotations and translations as a whole. We sum up the results of 16 frames.

CamMC =

n∑
i=1

∥∥[R̃i|T̃i

]
− [Ri|Ti]

∥∥
2

(12)

FVD (Unterthiner et al., 2018). Additionally, to ensure that proposed method coherently improve
generative capability and visual quality of base I2V model, we evaluate the distance of generated
frames from training distribution by Fréchet Video Distance (FVD).

5 EXPERIMENTS

5.1 SETUP

Dataset. We train our model on RealEstate10K (Zhou et al., 2018) dataset, which contains approx-
imately 70K video clips at the resolution of around 720P with camera poses annotated by SLAM-
based methods. We resize video clips from dataset to 256 while keeping the original aspect ratio
and perform center cropping to fit in our training scheme. We sample 16 frames from single video
clip when training with a random frame stride ranging from 1 to 10. We set fixed frame stride of 8
for inference. We take random condition frame for generation as data augmentation.

Implementation Details. We choose DynamiCrafter (Xing et al., 2023) as our base image-to-video
(I2V) model and implement proposed method on the top of it. For fair comparision, we also make
reproduction work of MotionCtrl (Wang et al., 2024d) and CameraCtrl (He et al., 2024a), since their
public accessible versions are either T2V or SVD-based. We project Plücker embedding into base
model by a pose encoder similar to the architecture in CameraCtrl. We freeze all parameters from
base model and train proposed method at the resolution of 256×256. We set 2 register tokens for
the epipolar module to attend when no relevant pixels are on the epipolar line. We apply the Adam
optimizer with a constant learning rate of 1× 10−4. We follow DynamiCrafter to choose Lightning
as our training framework with mixed-precision fp16 and DeepSpeed ZeRO-1. We train proposed
method and variants on 8 NVIDIA 3090 GPUs with effective batch size of 64 for 50K steps.

5.2 QUANTITATIVE COMPARISON

We compare our CamI2V with the latest methods in camera controlled image-to-video generation,
including DynamiCrafter (Xing et al., 2023), MotionCtrl (Wang et al., 2024d) and CameraCtrl (He
et al., 2024a). As reported in Table 1, our CamI2V significantly improves the camera controllability
and visual quality, with substantial reductions in RotErr, TransErr, CamMC and FVD. Compared
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Table 2: Ablation study on model variants. ⃝ denotes our implementation of epipolar attention
only on reference frame, similar to CamCo. Our proposed method (Plücker embedding along with
epipolar attention on all frames) achieves SOTA performance among all variants.

Method Plücker Epipolar 3D Full TransErr ↓ RotErr ↓ CamMC ↓ FVD ↓
VideoGPT StyleGAN

DynamiCrafter
+CamI2V (Ours)

✓ ✓ 1.4955 0.4758 1.7153 66.090 55.701
✓ ⃝ 1.6014 0.5738 1.8851 66.439 56.778
✓ ✓ 1.8215 0.6299 2.1315 71.026 60.000
✓ 1.8877 0.7098 2.2557 66.077 55.889

✓ 5.5119 1.3988 6.2855 92.605 81.447

DynamiCrafter 9.8024 3.3415 11.625 106.02 92.196

to CameraCtrl, our method reduces RotErr by 0.2306, translating to a 13.21◦ decrease in rotational
error, which marks a significant improvement. And our method surpasses the state-of-the-art method
CameraCtrl in other camera controllability and FVD metrics.

5.3 ABLATION STUDY

Adding more conditions to generative models typically reduces uncertainty and improves genera-
tion quality (e.g. providing detailed text conditions through recaption). In this paper, we argue that
it is also crucial to consider noisy conditions like latent features zt, which contain valuable infor-
mation along with random noise. For instance, in SDEdit (Meng et al., 2021) for image-to-image
translation, random noise is added to the input z0 to produce a noisy zt. The clean component z0
preserves overall similarity, while the introduced noise leads to uncertainty, enabling diverse and
varied generations.

In this paper, we argue that providing the model with more noisy conditions, especially at high
noise levels, does not necessarily reduce more uncertainty, as the noise also introduces ran-
domness and misleadingness. This is the key insight we aim to convey.

To validate this point, we designed experiment with the following setups:

1. Plücker Embedding (Baseline): This setup, akin to CameraCtrl, has minimal noisy condi-
tions on cross frames due to the inefficiency of the indirect cross-frame interaction (spatial
and temporal attention).

2. Plücker Embedding + Epipolar Attention only on reference frame: Similar to CamCo,
this setup treats the reference frame as the source view, enabling the target frame to refer
to it. It accesses a small amount of noisy conditions on the reference frame. However,
some pixels of the current frame may have no epipolar line interacted with reference frame,
causing it to degenerate to a CameraCtrl-like model without epipolar attention.

3. Plücker Embedding + Epipolar Attention (Our CamI2V): This setup can impose epipo-
lar constraints with all frames, including adjacent frames that have interactions in most
cases to ensure an sufficient amount of noisy conditions.

4. Plücker Embedding + 3D Full Attention: This configuration allows the model to directly
interact with features of all other frames, accessing the most noisy conditions.

The amount of accessible noisy conditions of the above four setups increase progressively. One
might expect that 3D full attention, which accesses the most noisy conditions, would achieve the
best performance. However, as shown in Tab. 2, 3D full attention performs only slightly better than
CameraCtrl and is inferior to CamCo-like setup who only applies epipolar attention on reference
frame. Notably, our method achieves best result by interacting with more noisy conditions along
the epipolar lines. It can be clearly seen in the comparison part in supplementary that CamCo-like
setup reference much on the first frame and cannot generate new objects. The 3D full attention
generates objects within large movement due to its access to all frames pixels while it is affected by
incorrect position of pixels. These findings confirm our insight that an optimal amount of noisy
conditions leads to better uncertainty reduction, rather than merely increasing the quantity of
noisy conditions.
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Figure 7: Qualitative Comparison on RealEstate10K.

Figure 8: Out-of-Domain Visualization.

5.4 QUALITATIVE COMPARISON

Visualization on RealEstate10K. As shown in Fig. 7, we present the visualization results of Dy-
namiCrafter, MotionCtrl, CameraCtrl and our CamI2V. It can be observed that the camera trajectory
of our method aligns more closely with GT compared with other methods, and the rendering of
certain details appears more realistic in the video generated by our CamI2V.

Out-of-domain visualization. Our CamI2V demonstrates strong generalization capabilities, en-
abling direct application to camera controlled video generation across out-of-domain content, such
as oil paintings, photography, and animation, as shown in Fig. 8.

6 CONCLUSION

In this paper, we address the integration of camera poses into diffusion models to enhance their
understanding of the physical world in text-guided image-to-video generation. We propose a novel
framework utilizing Plücker coordinates as 3D ray embeddings and introduce an epipolar attention
mechanism that aggregates features along epipolar lines, ensuring robust tracking even under high
noise conditions. Additionally, we incorporate register tokens to manage scenarios where frames
lack intersections due to rapid camera movements or occlusions. Our methods significantly improve
controllability and stability, achieving state-of-the-art performance on RealEstate10K and out-of-
domain datasets. However, challenges remain in high-resolution generation, handling complex cam-
era trajectories, and maintaining generation quality in long videos. Future work will focus on these
aspects, alongside releasing checkpoints and training/evaluation codes to support further research.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion mod-
els. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22563–22575, 2023b.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
generation models as world simulators. 2024. URL https://openai.com/research/
video-generation-models-as-world-simulators.

Hila Chefer, Shiran Zada, Roni Paiss, Ariel Ephrat, Omer Tov, Michael Rubinstein, Lior Wolf, Tali
Dekel, Tomer Michaeli, and Inbar Mosseri. Still-moving: Customized video generation without
customized video data. arXiv preprint arXiv:2407.08674, 2024.

Changgu Chen, Junwei Shu, Lianggangxu Chen, Gaoqi He, Changbo Wang, and Yang Li. Motion-
zero: Zero-shot moving object control framework for diffusion-based video generation. arXiv
preprint arXiv:2401.10150, 2024a.

Haoxin Chen, Menghan Xia, Yingqing He, Yong Zhang, Xiaodong Cun, Shaoshu Yang, Jinbo Xing,
Yaofang Liu, Qifeng Chen, Xintao Wang, et al. Videocrafter1: Open diffusion models for high-
quality video generation. arXiv preprint arXiv:2310.19512, 2023a.

Haoxin Chen, Yong Zhang, Xiaodong Cun, Menghan Xia, Xintao Wang, Chao Weng, and Ying
Shan. Videocrafter2: Overcoming data limitations for high-quality video diffusion models. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7310–7320, 2024b.

Xinyuan Chen, Yaohui Wang, Lingjun Zhang, Shaobin Zhuang, Xin Ma, Jiashuo Yu, Yali Wang,
Dahua Lin, Yu Qiao, and Ziwei Liu. Seine: Short-to-long video diffusion model for generative
transition and prediction. In The Twelfth International Conference on Learning Representations,
2023b.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Patrick Esser, Johnathan Chiu, Parmida Atighehchian, Jonathan Granskog, and Anastasis Germani-
dis. Structure and content-guided video synthesis with diffusion models. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 7346–7356, 2023.

Songwei Ge, Seungjun Nah, Guilin Liu, Tyler Poon, Andrew Tao, Bryan Catanzaro, David Jacobs,
Jia-Bin Huang, Ming-Yu Liu, and Yogesh Balaji. Preserve your own correlation: A noise prior for
video diffusion models. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 22930–22941, 2023.

Rohit Girdhar, Mannat Singh, Andrew Brown, Quentin Duval, Samaneh Azadi, Sai Saketh Ramb-
hatla, Akbar Shah, Xi Yin, Devi Parikh, and Ishan Misra. Emu video: Factorizing text-to-video
generation by explicit image conditioning. arXiv preprint arXiv:2311.10709, 2023.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

Hao He, Yinghao Xu, Yuwei Guo, Gordon Wetzstein, Bo Dai, Hongsheng Li, and Ceyuan
Yang. Cameractrl: Enabling camera control for text-to-video generation. arXiv preprint
arXiv:2404.02101, 2024a.

11

https://openai.com/research/video-generation-models-as-world-simulators
https://openai.com/research/video-generation-models-as-world-simulators


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Xu He, Qiaochu Huang, Zhensong Zhang, Zhiwei Lin, Zhiyong Wu, Sicheng Yang, Minglei Li,
Zhiyi Chen, Songcen Xu, and Xiaofei Wu. Co-speech gesture video generation via motion-
decoupled diffusion model. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2263–2273, 2024b.

Yingqing He, Tianyu Yang, Yong Zhang, Ying Shan, and Qifeng Chen. Latent video diffusion
models for high-fidelity long video generation. arXiv preprint arXiv:2211.13221, 2022.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character anima-
tion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 8153–8163, 2024.

Teng Hu, Jiangning Zhang, Ran Yi, Yating Wang, Hongrui Huang, Jieyu Weng, Yabiao Wang, and
Lizhuang Ma. Motionmaster: Training-free camera motion transfer for video generation. arXiv
preprint arXiv:2404.15789, 2024.

Yash Jain, Anshul Nasery, Vibhav Vineet, and Harkirat Behl. Peekaboo: Interactive video generation
via masked-diffusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 8079–8088, 2024.

Rui Jiang, Guang-Cong Zheng, Teng Li, Tian-Rui Yang, Jing-Dong Wang, and Xi Li. A survey of
multimodal controllable diffusion models. Journal of Computer Science and Technology, 39(3):
509–541, 2024.

Yash Kant, Aliaksandr Siarohin, Ziyi Wu, Michael Vasilkovsky, Guocheng Qian, Jian Ren, Riza Alp
Guler, Bernard Ghanem, Sergey Tulyakov, and Igor Gilitschenski. Spad: Spatially aware multi-
view diffusers. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10026–10038, 2024.

Zhengqi Li, Richard Tucker, Noah Snavely, and Aleksander Holynski. Generative image dynamics.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
24142–24153, 2024.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 9298–9309, 2023.

Xin Ma, Yaohui Wang, Gengyun Jia, Xinyuan Chen, Ziwei Liu, Yuan-Fang Li, Cunjian Chen,
and Yu Qiao. Latte: Latent diffusion transformer for video generation. arXiv preprint
arXiv:2401.03048, 2024a.

Yue Ma, Yingqing He, Xiaodong Cun, Xintao Wang, Siran Chen, Xiu Li, and Qifeng Chen. Follow
your pose: Pose-guided text-to-video generation using pose-free videos. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 38, pp. 4117–4125, 2024b.

Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu, and Stefano Ermon.
Sdedit: Guided image synthesis and editing with stochastic differential equations. arXiv preprint
arXiv:2108.01073, 2021.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Chong Mou, Xintao Wang, Liangbin Xie, Yanze Wu, Jian Zhang, Zhongang Qi, and Ying Shan.
T2i-adapter: Learning adapters to dig out more controllable ability for text-to-image diffusion
models. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp. 4296–
4304, 2024.

Linfei Pan, Daniel Barath, Marc Pollefeys, and Johannes Lutz Schönberger. Global Structure-from-
Motion Revisited. In European Conference on Computer Vision (ECCV), 2024.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Bohao Peng, Jian Wang, Yuechen Zhang, Wenbo Li, Ming-Chang Yang, and Jiaya Jia. Controlnext:
Powerful and efficient control for image and video generation. arXiv preprint arXiv:2408.06070,
2024.
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A CORE CODES

Algorithm 1 Spatial Attention Block
Require: U-Net feature x, condition c

1: x← x+ SelfAttn1(PreNorm(x))
2: x← x+CrossAttn2(PreNorm(x), c)
3: x← x+ FFN(PreNorm(x))
4: return x

Algorithm 2 Temporal Attention Block with Camera Control
Require: U-Net feature x, condition c, plücker embedding p, epipolar attention mask m

1: x← x+ Linear(PreNorm(x) + PreNorm(p)) ▷ Pücker Ray Embeddings
2: x← x+ EpipolarAttn(PreNorm(x),m)
3: x← x+ SelfAttn1(PreNorm(x))
4: x← x+ SelfAttn2(PreNorm(x))
5: x← x+ FFN(PreNorm(x))
6: return x

Algorithm 3 Epipolar Attention Mask

Require: Intrinsic matrices K, extrinsic matrices [R|T ], feature size H ×W , threshold δ
1: E ← T ×R ▷ Essential matrices E
2: F ← K−T · E ·K−1 ▷ Fundamental matrices F
3: g ← mesh grid(H,W ) ▷ Homogeneous feature coordinates g
4: l← normalize

(
F · gT

)
▷ Epipolar line l = Ax+By + C, normalized by

√
A2 +B2

5: d← lT · gT ▷ Distance d from feature coordinates to epipolar lines
6: m←[reg]⊕ flatten(d < δ) ▷ Epipolar attention mask m
7: return m

B COLMAP & GLOMAP CONFIGURATION

We assume SIMPLE PINHOLE as the common camera model for all video clips and all 16 frames
from the same video clip share the same camera intrinsics. For the feature extractor, we enable
estimate affine shape and domain size pooling in SiftExtraction, while fix
camera intrinsics by passing (fx, fy , cx, cy) into ImageReader.camera params. For the
exhaustive matcher, we enable guided matching and set max num matches to 65536 in
SiftMatching to make possible more underlying matches. For the global mapper, we disable
BundleAdjustment.optimize intrinsics and relax the geometric constraint by extend-
ing RelPoseEstimation.max epipolar error to 4.

C GPU MEMORY AND SPEED

Table 3: Comparison on GPU memory usage and speed under DeepSpeed ZeRO-1. * denotes
our reproduction on DynamiCrafter. We report full parameter fine-tuning results of DynamiCrafter.
Our model can be trained on 24GB consumer-level GPUs despite the additional epipolar attention.

Method # Params Trainable GPU Memory (GiB) ↓ Time (s) ↓
Inference Training Forward Backward Optimizer

DynamiCrafter 1.4 B 11.14 23.72 0.413 0.856 1.959
DynamiCrafter+MotionCtrl* 63.4 M 11.18 16.75 0.387 0.198 0.636
DynamiCrafter+CameraCtrl* 211 M 11.56 18.44 0.398 0.247 0.723
DynamiCrafter+CamI2V (Ours) 261 M 11.67 21.71 0.403 0.458 0.974
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D EXTRA OUT-OF-DOMAIN VISUALIZATIONS

Dynamic videos are best viewed at our local anonymous web page. It’s strongly recommended to
view the visualizations in the supplementary for a more comprehensive evaluation.

Orbit Left Orbit Right

Zoom In Zoom Out

CamI2V (Ours) CamI2V - 3D full attention CamI2V - epipolar attention
only on reference frame

(similar to CamCo)

CameraCtrl MotionCtrl

Figure 9: Visualization of our 256×256 model.

Orbit Left Orbit Right

Zoom In Zoom Out

CamI2V (Ours) CamI2V - 3D full attention CamI2V - epipolar attention
only on reference frame

(similar to CamCo)

CameraCtrl MotionCtrl

Figure 10: Visualization of original outputs from our 512×320 model, with no padding removed.

*Under Review

*Generated by 512x320 model (50k training steps), compatible with input images of arbitary aspect ratio.

Pan Left Pan Right Pan Up Pan Down

Look Left Look Right Orbit Left Orbit Right

Zoom In & Rotate Pan Left & Zoom Forward  Backward Walking

*Original outputs from 512x320 model, no padding removed.

Figure 11: Generated by our 512×320 model, compatible with input images of arbitary aspect ratio.
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