
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ARE SYNTHETIC TIME-SERIES DATA
REALLY NOT AS GOOD AS REAL DATA?

Anonymous authors
Paper under double-blind review

ABSTRACT

To alleviate the commonly encountered inadequate time-series data problem in
DL (DL), we develop a non-DL generic data synthesis method. When current
methods require real data or data statistics to train generators or synthesize data,
our method InfoBoost enables zero-shot training of models without the need for
real data or data statistics. Additionally, as an application of our synthetic data,
we train an unconditional feature (rhythm, noise, trend) decomposer based on our
synthetic data, which is applicable to real time-series data. Through experiments,
our non-DL synthetic data enables models to achieve superior performance on
unsupervised tasks and self-supervised prediction & imputation compared models
using real data. Visualized case studies further demonstrate the effectiveness of
our novel unconditional feature decomposer trained with our synthetic data.

1 INTRODUCTION

DL (DL) practitioners across various time-series domains commonly encounter the obstacle of in-
adequate data, domains including finance Tang et al. (2022), energy P et al. (2022), traffic Shaygan
et al. (2022), weather Zhu et al. (2023), and healthcare Saeidi et al. (2021); Wang et al. (2022);
Zhang et al. (2023). Procuring sufficient time-series data is often financially costly, which requires
substantial human effort for data preprocessing, and entails privacy concerns involving commercial
or personal information.

In response to this concern, we introduce InfoBoost, a framework designed to produce general-
purpose synthetic time-series data. By harnessing the capabilities of non-DL synthetic data genera-
tion, InfoBoost offers a universally applicable solution that bypasses the expenses and privacy risks
associated with obtaining and handling real-world time-series data for model training.

Rhyth

Noise

Trend

noise dist

sample

inverse smooth

freqs
amps

phases

rhyth or noise
low freq

strong smooth

sync

ratios
R,N,T

train

Feature
decomp

R
N
T

Trade
EEG

Pandemic
Weather

Energy...
trend type

Predict &
Imputation

Figure 1: Schematic of the InfoBoost model illustrating the data synthesis, feature decomposing
learning, and feature extraction processes. In the diagram, the label ‘Rhyth’ corresponds to the multi-
source rhythmic data (MRD), ‘Noise’ corresponds to different types of noise and their noise ratios
(TN & NR), and ‘Trend’ corresponds to trend information (TI). The visual features elucidate the
individual roles of each component within the InfoBoost framework. ‘Sync’ stands for ‘synthesized
data’, representing data that are artificially generated, integrating MRD, TN & NR, and TI.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Inspired by the potential benefits of synthetic data Savage (2023); Luo et al. (2023); Yin et al.
(2023b); Zhang et al. (2024), we explored synthetic time-series data generation methods. However,
we observed that almost all time-series data generation approaches require sampling training data
from real datasets or fine-tuning DL-based generators Luo et al. (2023); Yang et al. (2022); Yang &
Hong (2022). While existing methods can somewhat alleviate data quality, bias, and vulnerability
issues, they still require ample amounts of high-quality real data from the specific domain to ensure
the generator’s output encompasses unseen data, thereby unable to fully overcome the challenge
of inadequate if certain time-series domain real data. Therefore, we believe that to address the
limitations of DL-based data synthesis, a more generic time-series data synthesis method that does
not rely on real data is essential.

Our first challenge is to deal with the significant variations presented in time-series data across dif-
ferent datasets or domains. These variations encompass differences in data distribution, time scales,
signal-to-noise ratio, and feature types, among others. In order to establish a universally applica-
ble approach for diverse time-series data, we draw inspiration from a classic method for general
time series frequency domain extraction: the Fourier transform. Usually, in the field of time series
analysis, widely used transformations such as the Discrete Fourier Transform (DFT) and Discrete
Cosine Transform (DCT) are applied, while the Continuous Fourier Transform (CFT) is used in
special cases. They all come with equations suggesting that each sample point contains information
about the frequency domain Zieliński (2021). Therefore, CFT, DFT and DCT transformations con-
vert these sample points into corresponding frequency components in the frequency domain, based
on their underlying principle that each sample point in the time-series data can be represented by a
set of frequency amplitude and phase. Building upon the fundamental capabilities of the frequency
domain transformations, we have designed a method to synthesize data by superimposing several
sine waves with varying phases, frequencies and amplitudes, simulating a range of rhythmic signals
that may occur in the real world. Similar approaches to modeling rhythmic data have also been
employed in other works Kükrer & İnce (2023) Maric (2017) Huo et al. (2021).

As the second challenge, real-world time-series data often contain noises of various frequencies
and distributions, which can interfere with the accurate extraction of frequency components by the
transformations. The transformations assume that each sample point can be represented exclusively
by a combination of frequency, amplitude, and phase. However, in real data, individual signal
sample points often incorporate non-rhythmic noise components that should not be converted into
frequency, amplitude, and phase values. This inherent noise contamination impedes these transfor-
mations from precisely extracting the rhythmic portion’s spectral information from the actual data.
Secondly, time-series data may contain long-term features that remain undetected in the sampled
data due to their minimum feature periods exceeding the sampling window’s duration. As a result,
these transformations may fail to identify such long-period features within the sampled data, poten-
tially causing information loss or distortion in the frequency domain. In conclusion, although these
transformations are useful in certain scenarios, their limitations are difficult to avoid when dealing
with complex real-world time-series data.

Our approach to handling these challenges involves the explicit design of separately contained multi-
source rhythmic data (MRD) information, various types of noise and their respective noise ratios (TN
& NR), as well as trend information (TI) that extends beyond the sampling window. Real-world data
typically lacks these explicit information. To address this, we develop a data synthesis approach that
revolves around synthesizing MRD, TN & NR, and TI to create synthetic data with explicit infor-
mation. Each set of synthetic data inherently corresponds to a specific set of generating parameters,
including MRD, TN & NR, and TI. The data synthesis process only require sampling methods cus-
tomized for MRD, TN & NR, and TI, with various random synthetic parameters. It does not rely
on any learnable parameters to generate highly versatile synthetic data to solve the generalization
problem of time-series data. This versatility is demonstrated by the fact that a DL model trained
solely on InfoBoost’s non-DL synthetic data outperforms that trained on large amounts of real data
when validated on real data test sets.

In addition to applying synthetic data in unsupervised and self-supervised training, as an applica-
tion of our synthetic data, we explored the idea of using the Rhythm, Noise, and Trend components
in the synthesis process as reverse engineering to train a feature decomposer. This decomposer
would be able to separate real-world time-series data into its Rhythm, Noise, and Trend constituents.
We achieved this by training the decomposer with synthetic data as inputs and their corresponding
Rhythm, Noise, and Trend components as labels. The resulting feature decomposer can effectively

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

divide any single-channel time-series into its Rhythm, Noise, and Trend parts. Given the decom-
poser’s ability to isolate the rhythm component, we compare the frequency-domain representations
derived from the raw data and the isolated rhythm. Visual analysis shows that the frequency-domain
characteristics of the rhythm component are more distinct.

Summarized below are the main contributions of this work:

1. We present a general-purpose, non-DL approach (no need for real data to train) for synthesizing
time-series data aimed at alleviating the challenges associated with acquiring domain-specific real
time-series datasets.

2. We have validated the efficacy of our data synthesis method across multiple domains, such as
finance, health, weather, among others. In most cases, training outcomes with synthesized data
outperformed those using real data.

3. We enable the learning of a feature decomposer that only relies on synthetic data, enabling the
decomposing of rhythmic, noise, and trend components of real time-series data.

2 RELATED WORKS

Although there are a variety of DL-based time-series data augmentation and synthesis methods Luo
et al. (2023); Yang et al. (2022); Yang & Hong (2022); Dooley et al. (2023a), it is almost impossible
to find a method that does not rely on training DL with real data and can be universally applied
across domains, while simultaneously contributing downstream machine learning tasks Trirat et al.
(2024). Expanding the probability distribution units for generated data using DL-based methods
makes it challenging to ensure that the generated data covers unseen or diverse data distribution
from other domains, even Meta-learning methods makes assumptions about tasks coming from the
same distribution Swan et al. (2022). The development and exploration of non-DL-based universal
time-series data synthesis methods provide a promising way to address the limitations of current
DL-based approaches and improve the generalizability of synthetic data across diverse domains.
FractalDB Kataoka et al. (2022) is known as a similar method in the field of imaging and π-GNN
Yin et al. (2023a) in the field of graph.

In the field of time series, ForecastPFNDooley et al. (2023b) and ChronosAnsari et al. (2024) may
appear similar to our work. However, these two approaches focus on implementing a zero-to-many
training method using existing, straightforward data synthesis techniques paired with their designed
time series prediction models. In contrast, our work concentrates on developing an innovative data
synthesis method that benefits various model architectures and tasks. But, of course, to meet the
requirements for comparison with related work, we have also detailed in Appendix subsection A.8
the fundamental differences in the data synthesis methods used by these two studies and model
prediction performance under the same datasets and experimental settings.

Notably, our method enables models trained without real data to outperform those trained on real
data in time-series field across all tested datasets, as demonstrated in subsection 4.1, even in the
absence of real data or any real data information. Currently, data synthesis methods that claim to
achieve zero to many require specific information from the dataset. For example, ForecastPFN needs
the temporal periodicity (such as year, month, day) of the dataset, whereas Chronos’s data synthesis
method, which relies 90% on TsMix, requires segments of real data for concatenation and synthesis.

Furthermore, our work innovatively enables unconditional feature decomposition(without limita-
tions on temporal periodicity or other additional information) based on DL for trends, noise, and
rhythms features using our synthesized data as train data. Classic methods like STL decomposition
require accurate timepoint index information from the dataset and need extra predefined parame-
ters for seasonality and trend to function effectively. The feature decomposition is demonstrated in
subsection 4.3.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 METHODOLOGY

3.1 INFOBOOST SYNTHETIC TIME-SERIES DATA

In this section, we will demonstrate how to generate multi-source rhythmic data (MRD), different
types of noise and their noise ratios (TN & NR), and trend information (TI) based on parametric
design. These components will be combined according to their respective ratios to create synthetic
data. Ablation study for 3 components is illustrated in appendix subsection 4.4.

3.1.1 GENERATING MULTI-SOURCE RHYTHMIC DATA

To synthesize rhythmic data that accurately reflects the diversity and complexity of real-world time
series, we follow the Nyquist-Shannon Sampling Theorem to ensure that all sine waves’ frequencies
are uniformly sampled during the synthesis of rhythms. Our design involves creating rhythmic data
comprising both simple and complex waveforms, which are constructed from a random number of
sine waves with uniformly random amplitudes, frequencies, and phases.

Motivation and Theory: 1)Frequency Distribution: Each sine wave represents a distinct frequency
component that simulates a specific rhythm in real-world data. By adhering to the Nyquist-Shannon
Sampling Theorem and using uniform sampling for the frequencies, we ensure that each discrete
sample has an equal probability of representing the entire spectrum from the minimum to the max-
imum frequency. This approach avoids potential biases introduced by concentrating frequencies
around certain values, leading to more realistic synthetic data. 2)Amplitude Normalization: For
each sine wave, we assign a random initial weight sampled uniformly from the range [0, 1]. These
weights are then normalized, ensuring that the resulting amplitudes are scaled between 0 and 1. This
step guarantees that all sine waves, regardless of their frequencies, have an equal chance of becom-
ing the dominant rhythm feature in the final composite signal. 3)Phase Parameter: Although often
neglected in machine learning applications, phase variations significantly impact the shape of the
composite signal even when the frequencies and amplitudes remain constant. Uniformly sampling
the phase ensures that the phase distribution does not introduce additional bias into the synthetic
data, allowing for a wide range of possible signal shapes. The phase values typically range between
0 and 2π , aligning with the conventional understanding of the sine function’s periodicity.

Frequency Selection: As shown in Equation 1, 1)Upper Limit Frequency (fmax): The upper limit
frequency is set to half the sampling frequency (fs2), where the sampling frequency (fs) is defined
as the inverse of the time interval between adjacent discrete time points. This ensures that all sine
waves are sampled without aliasing, adhering to the Nyquist-Shannon Sampling Theorem. 2)Lower
Limit Frequency (fmin): The lower limit frequency is approximately the inverse of the total number
of discrete time points (N) in the sampling window. This ensures that the lowest frequency sine
wave can complete at least one full cycle within the sampling window.

fmax =
fs
2

=
1

2t
, fmin ≈ 1

N
. (1)

The synthesis of multi-source rhythmic data is presented in Figure 2.

3.1.2 GENERATING DIFFERENT TYPES OF NOISE

To simulate noise for all types of time-series data, we designed a synthetic noise generator that
encompasses 15 different types of noise distributions, classified into 5 primary categories. This
design offers a wide range of noise distributions, and closely mirror real-world scenarios. To achieve
this, for discrete distributions, we adopted Bernoulli Sinharay (2010), geometric Sinharay (2010),
and Poisson distributions Sinharay (2010). Additionally, included heavy-tailed distributions Kotz
et al. (2001), distributions related to the normal distribution (t-distribution Li & Nadarajah (2020)
and Pareto distribution Coles (2001)), shape parameter distributions (Beta and Gamma distributions
Liu & Serota (2023)), scale parameter distributions (exponential family distribution Gupta et al.
(2010)) and normal distribution family Wiley & Wiley (2020). 15 noise distributions and their 5
categories are listed in Figure3.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

when: number of sins = 5

...

freq0 amp 0pℎase0

freq4 amp 4pℎase4

Figure 2: This image illustrates a possible set of five corresponding sine waves, each obtained by
random sampling of frequency phases and amplitudes within their respective ranges, and it should
be noted that the number of sine waves is also randomly determined. Additionally, the image show-
cases the composite rhythmic data generated by the superposition of these randomly determined sine
waves.

Noise Name Category Noise Name Category
Normal CCD Pareto HTD

Student's t CCD Generalized Gamma HTD
Uniform CCD Log-Normal DRND

Exponential CCD Exponential LogNorm DRND
Poisson CDD Gamma SPD

Binomial CDD Beta SPD

Negative
Binomial CDD

Weibull SPD

Rayleigh SPD

Normal
Student's t
Uniform
Exponential
Poisson
Binomial
Negative Binomial
Pareto
Generalized Gamma
Log-Normal
Exponential Family
Gamma
Beta
Weibull
Rayleigh

正态分布 Normal Distribution
t 分布 Student's t-Distribution
均匀分布 Uniform Distribution
指数分布 Exponential Distribution
泊松分布 Poisson Distribution
二项分布 Binomial Distribution
负二项分布 Negative Binomial Distribution
帕累托分布 Pareto Distribution
广义伽玛分布 Generalized Gamma Distribution
对数正态分布 Log-Normal
对数正态分布 Exponential Log-Normal（这里指的应该是另一种形式的对数正态分布）
伽玛分布 Gamma Distribution
贝塔分布 Beta Distribution
韦布尔分布 Weibull Distribution
雷利分布 Rayleigh DistributionFigure 3: The list of noise distributions along with their corresponding categories. The ”Category”

column specifies the category each noise type belongs to. The categories are abbreviated as follows:
CCD (Common Continuous Distributions), CDD (Common Discrete Distributions), HTD (Heavy-
Tailed Distributions), DRND (Distributions Related to Normal Distribution), and SPD (Shape Pa-
rameter Distributions).

Due to the highly uncertain nature of noise distributions in real data, when sampling the noise, we
undertake the following three steps:

1. We customize random parameter sampling based on the fundamental parameters of each noise
distribution to introduce relative randomness into each distribution, if X is the Sampled noise, the
equation as follow:

X ∼ NoiseDist(p). (2)

2. We perform a partial y-axis inversion on the sampled results of each parameter distribution.
This ensures that distributions overly concentrated around a maximum or minimum value do not
adversely impact the uniformly normalized sampled results.

3. We apply random kernel size smoothing to the sampled noise, enhancing the diversity of the
noise data distribution and simulating temporal dynamics that are difficult to classify as rhythmic
information in some real datasets. To prevent overlap between noise and trend information, the
kernel size for the random smoothing in the third step is constrained to a relatively small proportion
compared to that of the total data length. When Kernel size:K = 2k + 1 and Smoothed noise: Yt

and X stands for Sampled noise:

Yt =
1

2k + 1

k∑
j=−k

Xt+j . (3)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.1.3 GENERATING TREND INFORMATION

Generating trend information involves a randomized selection between two distinct methods. This
random selection process providing a degree of stochasticity in simulating different types of data
trends. Our trend generation process involves the random selection between two distinct methods:

1. Multi-Sine Trend Generation: This method enables the simulation of complex periodic patterns
by generating multiple sine waves with random parameters and combining them to form a composite
trend. we utilize a similar approach to the one used in subsubsection 3.1.1, which entails the super-
position of multiple sine waves. However, unlike subsubsection 3.1.1, when generating long-period
trends, we constrain the superposition of sine waves to ensure a relatively smaller number of spikes
and less complex waveforms in the resulting trend. We ensure that the generated minimum period
is greater than the range captured by the sample window. Additionally, we introduce a random mul-
tiplier greater than 1 to enhance the diversity of the generated data. This adjustment ensures that the
generated periods exhibit a certain level of diversity and can simulate a variety of periodic trends
across a wider range. If Ai is the amplitude of ith sine wave , fi: frequency and ϕi: phase

T (t) =

N∑
i=1

Ai sin(2πfit+ ϕi). (4)

2. Random Noise Trend Generation: This method allows for the simulation of random fluctuations
or irregularities often observed in real data, and introduces controlled randomness and smooths out
the generated trend, replicating the stochastic nature of many real-world trends. By generating noise
with the same method as described in subsubsection 3.1.2, and applying a larger kernel size for
smoothing, this approach enhances the diversity and stability of the data, mitigates overfitting, and
better simulates real-world data trends. When N(t) stands for noise signal sampled from random
noise distribution, to prevent overlap between noise and trend information, the kernel size for the
random smoothing in the trend is constrained to be relatively big proportion compared to noise
smooth window, in the same equation described in Equation 3.

The random selection between these two methods aims to enhance the diversity and stochasticity of
the generated trend data, providing a more realistic features of the multifaceted nature of data trends
commonly observed in real-world datasets.

3.1.4 SIGNAL-TO-NOISE-AND-TREND RATIO

Given the rhythm noise and trend information generated through their respective random parameters,
the next step involves standardizing each of the three generated outputs to fall within the range of
-1 and 1. This standardization facilitates the computation of the contribution ratio of each synthetic
component in the final composite data. As this ratio directly determines the signal-to-noise ratio of
the rhythmic information in the composite data, it significantly influences the overall performance
and characteristics of the synthesized data. We will randomly generate a set of three ratios, whose
sum is 1, to serve as the ratios for the rhythmic, noise, and trend components:

rrhyth + rnoise + rtrend = 1. (5)

Consequently, we will utilize these individual ratios to weight the generation of the final composite
data, combining the components based on their respective ratios:

Sync = rrhyth × Rhyth + rnoise × Noise + rtrend × Trend. (6)

3.2 UNIVERSAL UNCONDITIONAL TIME SERIES FEATURES EXTRACTION

As an unique application of our synthetic data, we will demonstrate how to train a features extractor
solely based on the synthetic data generated from the random parameters and the composite data
obtained from subsection 3.1. This features extractor is designed to explicitly separate MRD, TN &
NR, and TI (rhythmic, noise, trend)information, using only the synthetic data for training. Classic
methods like STL decomposition require accurate timepoint index information from the dataset and
need extra pre-defined parameters for seasonality and trend to function effectively, our method only
needs input data.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

loss
schedule

...

train

sync

norm
params

rℎytℎ ratio

noise ratio

trend ratio

freq0 amp 0pℎase0

freqn amp npℎasen

n sins

noise type
noise class

smooth kernel

trend type

Figure 4: Normalization of parameters (norm params) used in the data synthesis process. The nor-
malized parameters are organized into a multi-channel matrix, aligning with the sampling window
length of the synthetic data.

In data synthesis process, the majority of parameters consist of continuous values, such as frequen-
cies, phases, amplitudes, and ratios. However, there are also crucial parameters that are composed
of discrete information, including the number of sine waves, noise type and class, trend class, and
similar kernel size parameters resembling smoothing windows, whose actual values may scale sig-
nificantly with the length of the data sampling window.

To ensure that a wide range of values and diverse parameter types numbering over a dozen (the total
count being dependent on the preset range of the number of sine waves, typically empirically set
between 3 and 10), can be effectively fitted as labels for deep models and to mitigate potential in-
terference from different types of loss functions, we have custom-tailored a standardization scheme
for all parameters. Ultimately, all values are constrained within the range of -1 to 1 (with some
parameters set between 0 and 1). Through broadcasting or interpolation, we map all parameters to a
length equivalent to the sampling window of the synthetic data. This process ensures that MRD, TN
& NR, and TI, along with the generated parameters, are organized into a multi-channel matrix of the
total parameter count multiplied by the sampling window length, serving as labels. The synthetic
data is then utilized as input to train the features extractor. The parameters contained within the
multi-channel normalized parameters are shown in Figure 4. For normalization, if P̂ ij stands for
normalized ith parameter value at the jth data point and Pij stands for original parameter value.

P̂ ij =

{
Pij−min(P)

max(P)−min(P) × 2− 1, for P in [−1, 1];

fracPij −min(P)max(P)−min(P), for P in [0, 1].
(7)

The training details are presented in appendix subsection A.7

4 EXPERIMENTS

To test the generalizability of the synthetic data within the InfoBoost framework and evaluate the
features extraction performance of the features Extractor on real-world data, we gathered 35 pub-
licly available time-series datasets from two prominent time-series collections, the Tslib and Monash
collections Wu et al. (2023); Godahewa et al. (2021), along with various other datasets, all datasets
names presented in appendix subsection A.9. These datasets encompass a wide range of data types,
including electroencephalography (EEG) data, epidemiological data, electricity data, cryptocurrency
data, traffic data, and meteorological data. Due to space limitations, we have placed the imputation
experiments(subsection A.6) and comparisons with related work(subsection A.8) and second abla-
tion study(subsection A.3) in the appendix.

4.1 SYNTHETIC DATA COVERAGE VERIFICATION VIA UNSUPERVISED LEARNING

Setting: Unsupervised autoencoding task requires the model to learn from input data and recreate the
original data, and evaluate the model’s learning performance to learn data features and generalize to
new, unseen data, without the necessity of labels or domain-specific inferences. In the ’sync’ group,
we train using only synthetic data but test using real data, the goal is to determine if the synthetic
data sufficiently covers the range of real-world data features.

Training: With MSE loss, We trained models on InfoBoost’s synthetic data and random real-world
subsets for unsupervised-autoencoding. The rest of the real datasets served as a test to compare

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0

1

2 Real Sync

0

0.005

0.01 Real Sync

0

50

100 Real Sync

0.00E+00

5.00E-06

1.00E-05 Real Sync

PatchTST

finance health energy weather traffic finance health energy weather traffic finance health energy weather traffic

DLinear

SDL DH MSEDTW

0.00E+00

5.00E-06

1.00E-05

0.0314 0.0605 0.0419 0.022 0.1214

0

1

2

3

0
5
10
15
20

BiLSTM

0
0.02
0.04
0.06
0.08

0

5

10

15

0
100
200
300
400

0

0.0002

0.0004

0.0006

0.0008

0.001

all results
smaller better

0

0.002

0.004

0.006

0.008

 weather traffic
finance health energy

Figure 5: The experimental results in Figure 4.1 show that smaller values for all metrics indicate
better performance. Unsupervised autoencoding performance directly across various domains of
time-series data(categorized into five major groups).

synthetic-trained models with real-data-trained ones. To ensure fairness, approximately 70% of
the real-world datasets, specifically 24 datasets, were randomly selected as the baseline training
data. Due to the entirely random selection, it is difficult to avoid overlaps between some of the
baseline training datasets and the test set in terms of data types, further increasing the difficulty of
surpassing the baseline. The selected baseline training set ultimately comprised a specific number
(usually around 200,000 segments depending on random selection) of instances of real time-series
data. To put it into perspective using the common methodology employed in time series studies, the
number of time points used in the training data for this study amounts to approximately 160,000,000
time points. Similarly, our synthetic data generation also yielded a similar number of instances of
synthetic time-series data, which were used to train the model for Unsupervised autoencoding based
on InfoBoost’s synthetic data.

Evaluation matrices: We evaluated four distinct losses to measure the unsupervised autoencoding
performance. 1) Structural dissimilarity loss, derived by subtracting the structural similarity index
(SSIM) Venkataramanan et al. (2021) from 1, is to assess structural variance between the recon-
structed and original data. 2) Dynamic time warping (DTW) Salvador & Chan (2007) distance,
a metric suitable for measuring similarity between two time series, accomodates time shifts and
stretches. 3) Distance between histograms Cha & Srihari (2002) is to gauge dissimilarities between
the histograms of the reconstructed and original time-series data, providing insights into their simi-
larity. 4) Mean squared error (MSE) loss is a common metric used to quantify differences between
the reconstructed and original data. By incorporating 4 diverse losses, we comprehensively eval-
uated Unsupervised autoencoding performance from various perspectives. To mitigate the impact
of model architecture selection on experimental results, we opted for three highly representative di-
verse model structures: recurrent architecture BiLSTM Abduljabbar et al. (2021), linear networks
DLinear Zeng et al. (2023), and transformer architecture PatchTST Nie et al. (2023). These were
chosen to assess the Unsupervised autoencoding performance on a real data test set after training
solely on synthetic data and real data, respectively. The results are shown in Figure 5.

The results: Figure 5 indicate that, except for two scenarios (such as the DH & DTW value of
PatchTST on the Energy class dataset), the performance of the model trained on InfoBoost’s syn-
thetic data surpasses that of the model trained on real data in the real data test set in 55 out of 60
testing scenarios. It demonstrates the generalization capability of InfoBoost’s synthetic data across
various types of scenarios. Even in other testing scenarios of the Energy class dataset, although
slightly inferior to the performance after training on real data, the performance of the model trained
on synthetic data is mostly very close. The reasons for the slightly inferior performance of synthetic
data in the PatchTST scenario on the Energy class dataset will be discussed in Figure A.1.

4.2 SELF-SUPERVISED DOMAIN-SPECIFIC FORECASTING

Setting: To validate the effectiveness of InfoBoost’s synthetic data in assisting models on common
time-series tasks across various real-world scenarios, we employ a self-supervised forecasting task
and utilize the same model across five distinct domains. Within each domain, we conduct training
and testing based on both real and synthesized data, using that domain’s unique dataset. We chose
the same models as in Unsupervised experiment subsection 4.1.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Trade Weather EEG Covid Energy

REALmax mini meanSYNC max mini mean
SYNC

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

REALmax mini mean REALmax mini mean

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

Trade Weather EEG Covid EnergyTrade Weather EEG Covid Energy Trade Weather EEG Covid Energy

S Y N Cmax mini meanR E A L max mini mean

DLinear BiLSTM PatchTST

Predict loss smaller better

Figure 6: Forecasting experiments per domain, lower losses the better. The numerical version illus-
trate in Table 4.

Training: Specifically, we allocate the last one-eighth portion of each dataset as labels and the pre-
ceding seven-eighth segment as inputs for our training and evaluation. Furthermore, approximately
two-thirds of the data from each domain are selected for the training set (serving as a proxy for the
limited datasets that can be collected in real scenarios), while the remaining one-third is designated
for the test (acting as a substitute for the unseen data that is difficult to obtain for training purposes),
training with MSE loss. In this experiment, each domain is trained separately.

Evaluation: We assess the models’ performance by calculating the Mean Squared Error (MSE) loss
between the model’s predicted patches for the last one-eighth segment and their corresponding actual
patches in the real data. The outcomes of multiple experiment runs per domain are summarized
with the maximum, minimum, and average losses depicted in Figure 6, differentiating between
models trained on synthetic data and those trained on real data. This visualization allows for a clear
comparison of how InfoBoost’s synthetic data impacts model performance relative to training solely
on authentic datasets across all domains.

Results: In the five prevalent time-series domains including Trade, Weather, EEG, Covid, and En-
ergy, the DLinear model trained exclusively on synthetic data consistently demonstrated superior
mean loss and minimal loss performances. Notably, the only exception was observed in the Energy
domain, where it struggled to match the results achieved through training on real data. This finding
aligns with the experimental outcomes presented in Figure 5, reinforcing the notion that InfoBoost’s
synthetic data effectively empowers tested models to transcend the limitations of real data reliance.
Consequently, except for the Energy sector, these models exhibit enhanced performance on unseen
data within these scenarios, highlighting InfoBoost’s capability to facilitate improved generalizabil-
ity across diverse time-series applications.

4.3 CASE STUDY OF EXPLICIT FEATURE EXTRACTION

-1.5

-1

-0.5

0

0.5

1

-2

-1

0

1

2

-1

-0.5

0

0.5

-0.4

-0.2

0

0.2

0.4

0.6

-1.5

-1

-0.5

0

0.5

1

-2

-1

0

1

2

Finance: NN5 Daily

-1.5

-1

-0.5

0

0.5

1

IEEG: FNUSA

-1

-0.5

0

0.5

1

-1.5

-1

-0.5

0

0.5

1

-2

-1

0

1

2

-1.5

-1

-0.5

0

0.5

1

Epidemiological : Covid death

-2

-1

0

1

2

0.5
0

-0.5

0.5
0

-0.5

0.5
0

-0.5

0.5
0

-0.5

0.5

0

-0.5

0.5

0

-0.5

0.5
0

-0.5

1
0

-1

1
0

-1

1

0

-1

1

0

-1

0.2
0

-0.2

Origi data

Noise

Rhyth

Trend

Figure 7: The general feature extractor extracts MRD, TN, NR, and TI information from three
distinct and characteristic time-series datasets, following training solely on synthetic data. The ratio
information has already been incorporated in a weighted manner across the data scales of each
extracted feature after decomposition.

This section will showcase, through visualizations, the performance of a universal features extractor
trained on synthetic data containing MRD, TN & NR, and TI information. The visualizations will
demonstrate the extraction efficacy of MRD, TN & NR, and TI across various data types, which

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

is shown in Figure 7. Due to the influence of noise and trend information, the frequency domain
information extracted by the commonly employed DFT method in DL often experiences a reduc-
tion in quality. Therefore, in Figure 9, we present the DFT frequency domain extraction results
of rhythmic information based on the InfoBoost feature extractor. This demonstrates that the dis-
rupted frequency domain information in the original data’s DFT results can be removed for rhythmic
information extraction in the frequency domain.

This section visually demonstrates the fundamental functionality of the feature decomposer by pre-
senting the original forms of data instances from three domains alongside the Rhythms, Noise, and
Trends (as depicted in Figure 7) extracted using the feature decomposer trained on synthetic data
produced by InfoBoost.

4.4 ABLATION OF RHYTH, NOISE AND TREND COMPONENTS

Setting & Evaluation: The ablation experiment aimed to validate the contributions of the three com-
ponents—Rhyth, Noise and Trend—of the synthetic data to the model’s performance. All models
were trained exclusively on the synthetic data and subsequently subjected to unsupervised autoen-
coding on all real datasets. We used the DLinear modelZeng et al. (2023) as a baseline, which has
a relatively simple architecture and demonstrated median performance in Experiment Figure 5. Per-
formance differences across various configurations were evaluated by computing the Mean Squared
Error (MSE) between the original real data and the model’s output.

Results: The final results indicated that the model achieved the best performance when all three
modules were included in the synthetic data, as evidenced by the loss values in Table 1. According to
the experimental results, the configuration RNT, which incorporates all three rhythmic, noise, trend
components for data synthesis, yields the lowest MSE, indicating that the quality of the synthesized
data is optimal when all three components are used concurrently.

Sync Config Min MSE Max MSE Mean MSE

RNT 1.5× 10−7 1.6× 10−7 1.5× 10−7

NT 3.7× 10−7 3.9× 10−7 3.8× 10−7

RT 2.0× 10−7 2.1× 10−7 2.1× 10−7

RN 4.1× 10−7 4.2× 10−7 4.8× 10−7

Table 1: Ablation Experiment Results: Mean Squared Error (MSE) for Different Synthetic Data
Configurations. We employ the abbreviations R, N, and T to represent the components Rhyth,
Noise, and Trend, respectively.

5 CONCLUSION

In this study, we have introduced a unique approach, marking the first to simultaneously fulfill the
requirements of a universal time-series data synthesis method that does not rely on real data or DL,
and a universal time-series data feature decomposition and extraction method that does not require
fine-tuning on real data. Most notably, our method empowers models trained in the absence of real
data information to outperform those trained on real data across almost all tested datasets. This
achievement opens up a new path for future time-series data analysis and modeling, as well as a new
solution for time-series unsupervised or self-supervised learning.

REFERENCES

Rusul L. Abduljabbar, Hussein Dia, and Pei-Wei Tsai. Development and evaluation of bidirectional
lstm freeway traffic forecasting models using simulation data. Scientific Reports, 11(1):23899,
2021. ISSN 2045-2322. doi: 10.1038/s41598-021-03282-z. URL https://doi.org/10.
1038/s41598-021-03282-z.

Ralph G. Andrzejak, Klaus Lehnertz, Florian Mormann, Christoph Rieke, Peter David, and Chris-
tian Erich Elger. Indications of nonlinear deterministic and finite-dimensional structures in

10

https://doi.org/10.1038/s41598-021-03282-z
https://doi.org/10.1038/s41598-021-03282-z

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

time series of brain electrical activity: dependence on recording region and brain state. Phys-
ical review. E, Statistical, nonlinear, and soft matter physics, 64 6 Pt 1:061907, 2001. URL
https://api.semanticscholar.org/CorpusID:8582357.

Ralph G. Andrzejak, Kaspar Schindler, and Christian Rummel. Nonrandomness, nonlinear depen-
dence, and nonstationarity of electroencephalographic recordings from epilepsy patients. Physical
Review E Statistical Nonlinear & Soft Matter Physics, 86(4):046206, 2012.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Syndar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Hao Wang, Michael W. Mahoney, Kari Torkkola, An-
drew Gordon Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the
language of time series. arXiv preprint arXiv:2403.07815, 2024.

Sung-Hyuk Cha and Sargur N. Srihari. On measuring the distance between histograms. Pat-
tern Recognition, 35(6):1355–1370, 2002. ISSN 0031-3203. doi: 10.1016/S0031-3203(01)
00118-2. URL https://www.sciencedirect.com/science/article/pii/
S0031320301001182.

Stuart Coles. An introduction to statistical modeling of extreme values. Journal of the American Sta-
tistical Association, 97:1204–1204, 2001. URL https://api.semanticscholar.org/
CorpusID:117926560.

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha Naidu, and Colin White.
Forecastpfn: Synthetically-trained zero-shot forecasting, 2023a.

Samuel Dooley, Gurnoor Singh Khurana, Chirag Mohapatra, Siddartha V Naidu, and Colin White.
Forecastpfn: Synthetically-trained zero-shot forecasting. In Advances in Neural Information Pro-
cessing Systems, 2023b.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. In Neural Information Processing Systems Track
on Datasets and Benchmarks, 2021.

Arjun Gupta, Wei-Bin Zeng, and Yanhong Wu. Exponential Distribution, pp. 23–43. 08 2010. ISBN
978-0-8176-4986-9. doi: 10.1007/978-0-8176-4987-6 2.

Wen Huo, Chenxing Wang, and Feipeng Da. Fast fringe enhancement by improved bidimensional
sinusoids-assisted empirical mode decomposition. Optik, 247:167834, 2021. ISSN 0030-4026.
doi: https://doi.org/10.1016/j.ijleo.2021.167834. URL https://www.sciencedirect.
com/science/article/pii/S0030402621014170.

Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada,
Nakamasa Inoue, Akio Nakamura, and Yutaka Satoh. Pre-training without natural images. 2022.

Samuel Kotz, Tomasz Kozubowski, and Krzysztof Podgorski. The Laplace Distribution and Gener-
alizations. 01 2001. ISBN 0-8176-4166-1. doi: 10.1007/978-1-4612-0173-1 5.

Osman Kükrer and Erhan A. İnce. Frequency estimation of multiple complex sinusoids using noise
suppressing predictive fir filter. Digital Signal Processing, 143:104235, 2023. ISSN 1051-2004.
doi: https://doi.org/10.1016/j.dsp.2023.104235. URL https://www.sciencedirect.
com/science/article/pii/S1051200423003305.

Rui Li and Saralees Nadarajah. A review of student’s t distribution and its generalizations. Empirical
Economics, 58(3):1461–1490, 03 2020. ISSN 1435-8921. doi: 10.1007/s00181-018-1570-0.
URL https://doi.org/10.1007/s00181-018-1570-0.

Jiong Liu and R. A. Serota. Rethinking generalized beta family of distributions. The European
Physical Journal B, 96(2):24, 2023. ISSN 1434-6036. doi: 10.1140/epjb/s10051-023-00485-3.
URL https://doi.org/10.1140/epjb/s10051-023-00485-3.

Dongsheng Luo, Wei Cheng, Yingheng Wang, Dongkuan Xu, Jingchao Ni, Wenchao Yu, Xuchao
Zhang, Yanchi Liu, Yuncong Chen, Haifeng Chen, and Xiang Zhang. Time series contrastive
learning with information-aware augmentations, 2023.

11

https://api.semanticscholar.org/CorpusID:8582357
https://www.sciencedirect.com/science/article/pii/S0031320301001182
https://www.sciencedirect.com/science/article/pii/S0031320301001182
https://api.semanticscholar.org/CorpusID:117926560
https://api.semanticscholar.org/CorpusID:117926560
https://www.sciencedirect.com/science/article/pii/S0030402621014170
https://www.sciencedirect.com/science/article/pii/S0030402621014170
https://www.sciencedirect.com/science/article/pii/S1051200423003305
https://www.sciencedirect.com/science/article/pii/S1051200423003305
https://doi.org/10.1007/s00181-018-1570-0
https://doi.org/10.1140/epjb/s10051-023-00485-3

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ivan Maric. Retrieving sinusoids from nonuniformly sampled data using recursive formulations. Ex-
pert Systems with Applications, 72:245–257, 2017. ISSN 0957-4174. doi: https://doi.org/10.1016/
j.eswa.2016.10.057. URL https://www.sciencedirect.com/science/article/
pii/S0957417416306005.

Cristina G. B. Martı́nez, Johannes Niediek, Florian Mormann, and Ralph G. Andrzejak.
Seizure onset zone lateralization using a non-linear analysis of micro vs. macro elec-
troencephalographic recordings during seizure-free stages of the sleep-wake cycle from
epilepsy patients. Frontiers in Neurology, 11, 2020. ISSN 1664-2295. doi: 10.3389/
fneur.2020.553885. URL https://www.frontiersin.org/journals/neurology/
articles/10.3389/fneur.2020.553885.

Petr Nejedly, Vaclav Kremen, Vladimir Sladky, Jan Cimbalnik, Petr Klimes, Filip Plesinger, Filip
Mivalt, Vojtech Travnicek, Ivo Viscor, Martin Pail, Josef Halamek, Benjamin H. Brinkmann,
Milan Brazdil, Pavel Jurak, and Gregory Worrell. Multicenter intracranial eeg dataset for classi-
fication of graphoelements and artifactual signals. Scientific Data, 7(1):179, 2020. doi: 10.1038/
s41597-020-0532-5. URL https://doi.org/10.1038/s41597-020-0532-5.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
Jbdc0vTOcol.

Sriramalakshmi P, V. Subhasree, Srimathnath Thejasvi Vondivillu, and Sanjeev Prakash L. Time
series analysis and forecasting of wind turbine data. In 2022 International Virtual Conference
on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy
Sector for Sustainable Future (PECCON), pp. 1–9, 2022. doi: 10.1109/PECCON55017.2022.
9850973.

Mehrdad Saeidi, Waldemar Karwowski, Farzaneh V. Farahani, Krzysztof Fiok, Redha Taiar, Pe-
ter A. Hancock, and Ahmed Al-Juaid. Neural decoding of eeg signals with machine learning: A
systematic review. Brain Sci., 11(11):1525, 2021. doi: 10.3390/brainsci11111525.

Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear time and space.
Intell. Data Anal., 11(5):561–580, October 2007. ISSN 1088-467X.

Neil Savage. Synthetic data could be better than real data. Nature Outlook: Robotics and artificial
intelligence, April 27 2023. doi: 10.1038/d41586-023-01445-8. URL https://doi.org/
10.1038/d41586-023-01445-8.

Maryam Shaygan, Collin Meese, Wanxin Li, Xiaoliang (George) Zhao, and Mark Nejad. Traffic
prediction using artificial intelligence: Review of recent advances and emerging opportunities.
Transportation Research Part C: Emerging Technologies, 145:103921, 2022.

S. Sinharay. Discrete probability distributions. In Penelope Peterson, Eva Baker, and Barry
McGaw (eds.), International Encyclopedia of Education (Third Edition), pp. 132–134. El-
sevier, Oxford, third edition edition, 2010. ISBN 978-0-08-044894-7. doi: 10.1016/
B978-0-08-044894-7.01721-8. URL https://www.sciencedirect.com/science/
article/pii/B9780080448947017218.

Jerry Swan, Eric Nivel, Neel Kant, Jules Hedges, Timothy Atkinson, and Bas Steunebrink. Chal-
lenges for Deep Learning, pp. 23–32. Springer International Publishing, Cham, 2022. ISBN 978-
3-031-08020-3. doi: 10.1007/978-3-031-08020-3 4. URL https://doi.org/10.1007/
978-3-031-08020-3_4.

Yajiao Tang, Zhenyu Song, Yulin Zhu, Huaiyu Yuan, Maozhang Hou, Junkai Ji, Cheng Tang, and
Jianqiang Li. A survey on machine learning models for financial time series forecasting. Neuro-
computing, 512:363–380, 2022.

Patara Trirat, Yooju Shin, Junhyeok Kang, Youngeun Nam, Jihye Na, Minyoung Bae, Joeun Kim,
Byunghyun Kim, and Jae-Gil Lee. Universal time-series representation learning: A survey, 2024.

12

https://www.sciencedirect.com/science/article/pii/S0957417416306005
https://www.sciencedirect.com/science/article/pii/S0957417416306005
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.553885
https://www.frontiersin.org/journals/neurology/articles/10.3389/fneur.2020.553885
https://doi.org/10.1038/s41597-020-0532-5
https://openreview.net/forum?id=Jbdc0vTOcol
https://openreview.net/forum?id=Jbdc0vTOcol
https://doi.org/10.1038/d41586-023-01445-8
https://doi.org/10.1038/d41586-023-01445-8
https://www.sciencedirect.com/science/article/pii/B9780080448947017218
https://www.sciencedirect.com/science/article/pii/B9780080448947017218
https://doi.org/10.1007/978-3-031-08020-3_4
https://doi.org/10.1007/978-3-031-08020-3_4

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Abhinau K. Venkataramanan, Chengyang Wu, Alan C. Bovik, Ioannis Katsavounidis, and Zafar
Shahid. A hitchhiker’s guide to structural similarity. IEEE Access, 9:28872–28896, 2021. doi:
10.1109/ACCESS.2021.3056504.

Wei K. Wang, I Chen, L Hershkovich, Jun Yang, A Shetty, G Singh, Y Jiang, A Kotla, J. Z. Shang,
R Yerrabelli, A. R. Roghanizad, M. M. H. Shandhi, and J Dunn. A systematic review of time
series classification techniques used in biomedical applications. Sensors (Basel), 22(20):8016,
2022. doi: 10.3390/s22208016.

Matt Wiley and Joshua F. Wiley. Understanding Probability and Distributions, pp. 175–223. Apress,
Berkeley, CA, 2020. ISBN 978-1-4842-6053-1. doi: 10.1007/978-1-4842-6053-1 7. URL
https://doi.org/10.1007/978-1-4842-6053-1_7.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis. In International Conference on
Learning Representations, 2023.

Ling Yang and Shenda Hong. Unsupervised time-series representation learning with iterative bilin-
ear temporal-spectral fusion, 2022.

Xinyu Yang, Zhenguo Zhang, and Rongyi Cui. Timeclr: A self-supervised contrastive learning
framework for univariate time series representation. Know.-Based Syst., 245(C), jun 2022. ISSN
0950-7051. doi: 10.1016/j.knosys.2022.108606. URL https://doi.org/10.1016/j.
knosys.2022.108606.

Jun Yin, Chaozhuo Li, Hao Yan, Jianxun Lian, and Senzhang Wang. Train once and ex-
plain everywhere: Pre-training interpretable graph neural networks. In A. Oh, T. Nau-
mann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), Advances in Neural
Information Processing Systems, volume 36, pp. 35277–35299. Curran Associates, Inc.,
2023a. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/6ecd51685e2d765bc0ad32a2e73faf62-Paper-Conference.pdf.

Jun Yin, Chaozhuo Li, Hao Yan, Jianxun Lian, and Senzhang Wang. Train once and explain every-
where: Pre-training interpretable graph neural networks. In 37th Conference on Neural Informa-
tion Processing Systems (NeurIPS 2023), 2023b.

A. Zeng, M. Chen, L. Zhang, and Q. Xu. Are transformers effective for time series forecasting?
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11121–11128,
Online, 2023. AAAI Press. URL https://doi.org/10.1609/aaai.v37i9.26317.

Bo Zhang, Xinyu Cai, Jiakang Yuan, Donglin Yang, Jianfei Guo, Xiangchao Yan, Renqiu Xia,
Botian Shi, Min Dou, Tao Chen, Si Liu, Junchi Yan, and Yu Qiao. Resimad: Zero-shot 3d domain
transfer for autonomous driving with source reconstruction and target simulation, 2024.

Daoze Zhang, Zhizhang Yuan, Yang Yang, Junru Chen, Jingjing Wang, and Yafeng Li. Brant: Foun-
dation model for intracranial neural signal. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Qingbo Zhu, Jialin Han, Kai Chai, and Cunsheng Zhao. Time series analysis based on in-
former algorithms: A survey. Symmetry, 15(4):951, 2023. URL https://www.mdpi.com/
2073-8994/15/4/951.

Tomasz P. Zieliński. Discrete Fourier Transforms: DtFT and DFT, pp. 65–92. Springer International
Publishing, Cham, 2021. ISBN 978-3-030-49256-4. doi: 10.1007/978-3-030-49256-4 4. URL
https://doi.org/10.1007/978-3-030-49256-4_4.

A APPENDIX

A.1 UNSUPERVISED LEARNING WITH UNLIMITED QUANTITY SYNTHETIC DATA

While the model based on synthetic data outperforms the model trained on real data, we observe a de-
cline in performance with excessive epochs at a fixed learning rate, particularly in transformer-based

13

https://doi.org/10.1007/978-1-4842-6053-1_7
https://doi.org/10.1016/j.knosys.2022.108606
https://doi.org/10.1016/j.knosys.2022.108606
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ecd51685e2d765bc0ad32a2e73faf62-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/6ecd51685e2d765bc0ad32a2e73faf62-Paper-Conference.pdf
https://doi.org/10.1609/aaai.v37i9.26317
https://www.mdpi.com/2073-8994/15/4/951
https://www.mdpi.com/2073-8994/15/4/951
https://doi.org/10.1007/978-3-030-49256-4_4

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

DLINEAR

METHOD MINVALILOSS MINVALILOSS EPOCH

REAL 4.0× 10−7 21
SYNC 1.5× 10−7 21
UNLIMITSYNC 8× 10−8 8

BILSTM

METHOD MINVALILOSS MINVALILOSS EPOCH

REAL 7.4× 10−7 68
SYNC 3× 10−8 65
UNLIMITSYNC 1× 10−8 30

PATCHTST

METHOD MINVALILOSS MINVALILOSS EPOCH

REAL 8.70× 10−6 21
SYNC 7.52× 10−6 5
UNLIMITSYNC 7.26× 10−6 4

Table 2: Table for subsection A.1.The minimum validation loss for the three test models are pre-
sented, each of which is trained on different data sets and minimizes on different epochs. The data
in the table indicates that by replacing the training data with new synthetic data at every epoch, the
models can achieve better performance in fewer epochs.

models PatchTST. This suggests that although synthetic data enhances generalizability, limiting the
size of the training set for the sake of fairness in the experiment may cause the model to overfit to
specific features within this subset.

To validate this hypothesis, we modified the Unsupervised autoencoding task in Experiment Fig-
ure 4.1 to remove the limit on synthetic data quantity. For each completed epoch, a new set of
synthetic data was generated to serve as the training data for the Unsupervised autoencoding task.
We then compared the change in validation set loss for each epoch between the limited synthetic
data Unsupervised autoencoding task and the unlimited synthetic data Unsupervised autoencoding
task, using the same model architectures. Based on the experimental results shown in Figure 8
and Table 2, models trained with fixed learning rates and synthetic data replacement at every epoch
demonstrates the ability to rapidly and fit well to the validation set with very few epochs, outper-
forming both the model trained on real data and the model trained on a limited set of synthetic data.
Furthermore, as the number of epochs increases, there is no significant increase in validation loss.
Instead, the fluctuation in validation loss corresponds to the variation in the generated training data.

0.00E+00

5.00E-05

1.00E-04

1 10 20 30
PatchTST Real Sync unLimitSync

0.00E+00

1.00E-05

2.00E-05

10 20 30
DLinear Real Sync unLimitSync

0.00E+00

2.00E-06

4.00E-06

10 30 50 70
BiLSTM Real Sync unLimitSync

Figure 8: Figure for subsection A.1. The comparative results, depict the change in the validation
set (composed of randomly selected real data) loss for each epoch. Unlike ’Sync’, ’unlimitSync’
represents the generation of an entirely new synthetic dataset for training at each epoch.

A.2 LIMITATIONS AND FUTURE WORK

Given that our method is designed specifically to synthesize Rhythms, Noise, and Trends, it is highly
likely that extreme events appearing in non-rhythmic formats(For example, in weather forecasting,
there are always unpredictable variables evolving in the form of time series) would be captured as
part of the Noise component when utilizing a feature decomposer trained on InfoBoost synthetic
data, as exemplified in subsection 4.3. Furthermore, extreme events that exhibit exceptionally mild
characteristics within the sampling window might also be treated as part of the Trend component.
Undoubtedly, addressing the handling of such extreme events constitutes a promising avenue for
future work in this work.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 ABLATION EXPERIMENT FOR THE RANDOM SMOOTHING OF NOISE IN STEP3 OF
SUBSUBSECTION 3.1.2 GENERATING DIFFERENT TYPES OF NOISE

In machine learning and AI, noise is often seen just as a way to represent a distribution, so we don’t
usually look at how noise changes over time(such as the density of spikes in the sampling results or
the overall trends of growth or decline). However, when we create noise for our studies, we must
consider that the impact of noise on data in real-world scenarios goes beyond merely disturbing the
data distribution; it also encompasses various types of impacts on the temporal features of rhythmic
data. To account for this, we add a smoothing effect with a randomly sized kernel. This changes
how the noise looks over time and could affect the rhythmic patterns in the data differently. This
experiment tests if this random smoothing makes the synthetic data better.

We will use the same unsupervised setting as in Appendix A.3 to compare the performance of
models trained on synthetic data with and without random smoothing of the noise component on
real vali-data.

Table 3: Comparison of model performance with and without random smoothing of the noise com-
ponent on real validation data

min MSE max MSE mean MSE

Noise part with random smooth 1.5× 10−7 1.6× 10−7 1.5× 10−7

Noise part no smooth 4.7× 10−7 5.0× 10−7 5.1× 10−7

A.4 NUMERICAL RESULTS FOR SUBSECTION 4.2 SELF-SUPERVISED DOMAIN-SPECIFIC
PREDICTION

To clarify the results more clearly, Table 4 here are the numerical versions of the prediction experi-
ment results described in Figure 6:

Table 4: Forecasting experiments per domain, lower losses the better.

Model Dataset Mean ± SD

Real Sync

DLinear

Trade 0.02207 ± 0.0045 0.02056 ± 0.0013
Weather 0.03408 ± 0.0062 0.03289 ± 0.0083
EEG 0.01532 ± 0.0006 0.01522 ± 0.0014
Covid 0.01347 ± 0.0003 0.01057 ± 0.0067
Energy 0.01589 ± 0.0006 0.03723 ± 0.0069

BiLSTM

Trade 0.02101 ± 0.0012 0.01921 ± 0.0011
Weather 0.03405 ± 0.0062 0.03228 ± 0.0078
EEG 0.01553 ± 0.0004 0.01489 ± 0.0003
Covid 0.00640 ± 0.0019 0.00522 ± 0.0010
Energy 0.01624 ± 0.0001 0.03039 ± 0.0046

PatchTST

Trade 0.03664 ± 0.0086 0.01793 ± 0.0033
Weather 0.02400 ± 0.0062 0.02100 ± 0.0042
EEG 0.01421 ± 0.0010 0.01256 ± 0.0047
Covid 0.01051 ± 0.0022 0.00773 ± 0.0025
Energy 0.03197 ± 0.0227 0.03109 ± 0.0049

A.5 USAGE OF EXPLICIT FEATURE EXTRACTION

Moreover, Figure 9 showcases a clearer visual discrimination by presenting the decomposed Rhyth-
mic component compared to the frequency domain calculation results from the original data. Col-
lectively, these illustrations serve to demonstrate one application of the InfoBoost synthetic data in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

-50

0

50

-500

0

500

-2

-1

0

1

-2

-1

0

1

2

DFT

Disturbed freq domain info

Rhyth
info

Origi
data

DFT

Figure 9: DFT results in DL tasks are based on the input depicted in Figure 7, the COVID death data.
Results exhibit an disruption in data’s DFT result. After extracting only the rhythmic information,
the DFT results for the rhythmic data exhibit higher quality in the frequency domain.

facilitating such decomposition processes, also, it substantiates the fundamental feasibility of train-
ing a feature decomposer based on synthetic data.

A.6 IMPUTATION TASK ONLY TRAINED WITH SYNTHESIS DATA

Setting:We train DLinear, BiLSTM, PatchTST on real and sync data to compare their impu perform.
We apply random (uniform) segment masking, masking 10-30% of the data length. Masked data as
input, original data as target. Loss is computed using MSE between output and original data.

Training:Real data training uses 237,269 data segments and the test set contains 91,055. Experi-
ments on single 3090 GPU. Synthetic data training with 237,240 synthetic segments and the same
real test data. Batch sizes are maximized based on each model’s VRAM usage.

Results are presented as MSE losses between the test set’s complete data and the model’s imputed
output, lower values indicating better performance. The models trained on our synthetic data out-
perform those trained on real data in imputation. This suggests that the sync data’s probability
distribution is more robust and generalizable than training with real data:

Table 5: MSE Losses for Imputation Task Using Synthetic vs. Real Data(Smaller better)
Model Real Sync

DLinear 6.302× 10−3 ± 1.027× 10−4 2.527× 10−3 ± 1.057× 10−4

BiLSTM 7.911× 10−4 ± 4.971× 10−5 4.646× 10−4 ± 3.325× 10−5

PatchTST 3.923× 10−3 ± 3.937× 10−4 0.889× 10−3 ± 1.112× 10−4

A.7 FEATURES EXTRACTION TRAINING

After obtaining the multi-channel normalized parameters (norm params) matrix, which encapsulates
the majority of information constituting the synthetic data without containing the data itself, we can
train a features extractor solely on the task of learning from the synthetic data input and the norm
params as labels. The norm params encompass various dimensions such as MRD, TN & NR, and TI,
are derived from random sampling and contain diverse continuous random functions. Consequently,
the combination of parameters used to generate synthetic data is not limited in quantity, allowing for
an infinite variety of corresponding synthetic data. Therefore, training a deep model on the synthetic
data to learn the task of MRD, TN & NR, and TI from norm params makes it nearly impossible for
the model to overfit. To achieve optimal extraction of MRD, TN & NR, and TI within a reasonable
timeframe, we adopt a concise linear loss schedule to train the features extractor. The training
process is also depicted in Figure 4. The training loss is MSE loss function:

L(Θ) =

N∑
i=1

MSELoss (fΘ(xi), yi) (8)

During the training process, in our quest to find the most suitable model architecture for the extrac-
tion of MRD, TN & NR, and TI tasks, we experimented with various model architectures including
Bi-LSTM Abduljabbar et al. (2021), DLinear Zeng et al. (2023), PatchTST Nie et al. (2023), among

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

others. Based on the visualization results, we selected DLinear as the InfoBoost’s features Extractor
due to its superior visual performance.

A.8 COMPARISON WITH FORECASTPFN AND CHRONOS

In the field of time series data, the data synthesis methods used in ForecastPFNDooley et al. (2023b)
and ChronosAnsari et al. (2024) may sound similar to ours at first glance. In fact, compared to theirs,
our synthesis method has several key advantages:

1)Unlike ForecastPFN, our method does not have specific time scale (year, month, day) and data
length restrictions. 2)Our rhythmic method is more diverse and complex compared to ForecastPFN’s
seasonal method, allowing for more varied and intricate rhythms without being limited to specific
data scales or domains. 3)Our noise component includes five major categories with 15 different
noise distributions, providing a more comprehensive simulation of real-world noises compared to
ForecastPFN and KernelSynth (used in Chronos). 4)Our trend component, with its random se-
lection of rhythm and noise types, offers a broader coverage of real-world scenarios compared to
ForecastPFN’s relatively simple design. 5)Unlike ForecastPFN, which requires information about
real data scales, and TsMix in Chronos, which relies on 90% real data for synthesis, our method
generates data without needing any information or segments from real data, yet achieves better per-
formance on real data tasks.

In summary, our work, compared to the synthesis methods of ForecastPFN and Chronos (TsMix +
KernelSynth), can be illustrated in the following table:

Synthesis Don’t Need Dozen Different Don’t Need Flexible Rhythm &
Method Real Data Noise Dists Specific Time Data Length Noise &

Periods Trend
InfoBoost(Ours) ✓ ✓ ✓ ✓ ✓
ForecastPFN ✓
TSMix ✓
KernelSynth ✓ ✓ ✓

Table 6: Comparison of Synthesis Methods

And we tested the data synthesis methods of Chronos(TsMix + KSync) and our own data synthesis
method according to the experimental setup and evaluation metrics of ForecastPFN.

Setting: We compared these with the best-performing experimental data provided in the original
ForecastPFN paper(Results of FEDformer, ForecastPFN, Informer & SeasonalNaive). When testing
TsMix + KSync and our InfoBoost synthetic data, we used the DLinear model as a baseline, which
has a relatively simple architecture and was also utilized as a baseline in the original Chronos paper.

Data: In the seven datasets used for ForecastPFN, to access the PeMS datasets (traffic) from the
Data Clearinghouse, it is necessary to have additional registration steps and to be approved; there-
fore, we conducted a direct comparison with the results reported in the ForecastPFN on the other
datasets. The training parameters were set according to the Data Budget = 500 experiment group in
the ForecastPFN paper: an input context length of 36 and an output prediction length ranging from
6 to 48.

And we observed that a significant proportion of the data segments in the ECL dataset consists
of all-zero segments. Direct testing benchmarks showed much lower losses than those reported
for ForecastPFN, but the paper does not detail how these all-zero segments in the ECL data were
handled; thus, we removed the ECL from our results.

Results: As shown in Table 7, ours outperformed ForecastPFN and Chronos in datasets other than
weather. For Chronos’ performance in weather, we believe that since the single weather dataset in-
cludes 13 million data points(3 years data), the synthetic data generated using real data in Chronos’s
TsMix method can benefit more from the sufficient volume of real data. This result and inference
further demonstrate that in scenarios where the data volume is not abundant, our synthetic data can
bring about greater benefits.

Our assessment of InfoBoost’s performance relative to ForecastPFN and TsMix+KSync (Chronos)
in this experiment primarily attributes the difference to the coverage of probability distributions

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Model ETTh1 ETTh2 Exchange Illness Weather

FEDformer 0.133 0.352 0.068 0.707 0.188
ForecastPFN 0.127 0.33 0.058 1.091 0.009
Informer 0.144 0.253 0.529 4.394 0.224
SeasonalNaive 0.203 0.554 0.028 1.41 0.017
Chronos(TsMix+KSync) 0.146 ± 0.002 0.164 ± 0.005 0.015 ± 0.0002 1.00 ± 0.004 0.008 ± 0.001
InfoBoost(Ours) 0.099 ± 0.005 0.118 ± 0.004 0.014 ± 0.001 0.40 ± 0.08 0.010 ± 0.0001

Table 7: Comparison of Different Models on Various Datasets. The results of FEDformer, Fore-
castPFN, Informer, and SeasonalNaive are directly taken from the original ForecastPFN paper Doo-
ley et al. (2023b).

within the train-set. This coverage is intuitively reflected in the size of the training set; when the
dataset is limited in size, the train set can only expose the model to a limited diversity of features
and a less comprehensive range of probability distributions. In Chronos, 90% of TsMix and 10%
of KSync synthetic data are utilized, where TsMix requires real data for augmentation, thus heavily
depending on the coverage of the dataset.

Here are the sizes of the five benchmark datasets included in ForecastPFN:

Illness: 966 data points,

Exchange: 7,588 data points,

ETT1 & ETT2: 26,304 data points,

Weather: Over 13 million data points.

Datasets like Weather provide TsMix with ample material to create a more comprehensive synthetic
training set, enabling better performance without needing any original real data. The KSync synthe-
sis method is related to our noise component in that KSync employs a novel approach to synthesize
data based on white noise. KSync adds Gaussian white noise with a fixed variance to the synthetic
data generated by the Gaussian Process Regressor. Similarly, in our noise synthesis process, we also
incorporate Gaussian noise as one of the noise distributions.

The novelty of our method is combination of uniformly sampled Rhythm, noise, Trend components,
along with providing a set of over a dozen different noise distributions for the noise and Trend. This
allows us to offer any model a simulation scenario that has a probability distribution overlap with
most real-world time series, while ensuring the training set is not constrained by the amount of real
data available. As a result, our method performs better in scenarios with limited real data.

Based on the above, our synthetic data is particularly suitable for real-world scenarios where data
is difficult to collect in large quantities or entirely, such as in cases like Illness, Exchange, ETT,
or iEEG (high surgical risk). Additionally, the TsMix+KSync (Chronos) method, which uses 90%
TsMix synthetic data, significantly outperforms other methods on datasets with ample data and
sufficient coverage, such as the Weather dataset.

A.9 DATASETS USED IN THE EXPERIMENT

Here, we provide all the datasets used, and to ensure balance in the number of segments across each
dataset, those with over ten thousand segments were downsampled to exactly ten thousand segments.
We gathered 35 publicly available time-series datasets from two prominent time-series collections,
the Tslib and Monash collections Wu et al. (2023); Godahewa et al. (2021), along with various other
datasets. Ultimately, this process guarantees that the baseline training set consisting of real data
contains around 200,000 segments, which translates to approximately 160,000,000 time points:

• MAYO Nejedly et al. (2020)

• FNUSA Nejedly et al. (2020)

• Bern12 Andrzejak et al. (2012)

• Bern20 Martı́nez et al. (2020)

• Bonn Andrzejak et al. (2001)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• eeg sleep-edf

• ETT-small

• Foreign exchange rate

• SMAP

• SMD

• weather 2020 whole year

• Individual household electric power consumption dataset

• Traffic congestion

• australian electricity demand dataset

• bitcoin dataset with missing values

• car parts dataset with missing values

• cif 2016 dataset

• covid deaths dataset

• fred md dataset

• hospital dataset

• kaggle web traffic dataset with missing values

• kaggle web traffic weekly dataset

• kdd cup 2018 dataset with missing values

• london smart meters dataset with missing values

• nn5 daily dataset with missing values

• nn5 weekly dataset

• oikolab weather dataset

• rideshare dataset with missing values

• saugeenday dataset

• solar 10 minutes dataset

• solar 4 seconds dataset

• solar weekly dataset

• sunspot dataset with missing values

• temperature rain dataset with missing values

• tourism quarterly dataset

• tourism yearly dataset

• traffic hourly dataset

• traffic weekly dataset

• us births dataset

• vehicle trips dataset with missing values

• weather dataset

• wind 4 seconds dataset

• wind farms minutely dataset with missing values

For the missing values, zero imputation was performed in all cases.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

A.10 SUMMARY OF NOISE DISTRIBUTIONS

A summary of each noise distribution utilized in subsubsection 3.1.2 GENERATING DIFFERENT
TYPES OF NOISE:

Normal distribution: Symmetric bell-shaped dist. Params:mean mu & standard deviation sigma.

Student’s t distribution: Continuous dist with heavier tails than the normal dist,characterized by
degrees of freedom.

Uniform distribution:Flat dist with equal probability within a fixed interval.

Exponential distribution:Continuous dist with a sharp peak at zero and a long tail characterized by a
rate parameter lambda.

Poisson distribution:Discrete dist,models the number of events occurring in a fixed inter-
val,characterized by mean lambda.

Binomial distribution:Discrete dist ,models the number of successes in a fixed number of indepen-
dent trials,characterized by the number of trials n and probability of success p.

Negative Binomial distribution:Discrete dist, models the number of failures before a fixed number
of successes,characterized by the number of successes r and probability of success p.

Pareto distribution:Heavy-tailed dist, often used in economics and social sciences,characterized by
scale x m and shape alpha.

Generalized Gamma distribution: Highly flexible dist that can model a wide range of dist
shapes,params: concentration c scale s and power p.

Log-Normal distribution:Models variables constrained to be positive,characterized by mean mu and
standard deviation sigma of the underlying normal distribution.

Exp-LogNorm distribution:With exponential tails, using a log-normal distribution with random
mean and standard deviation.

Gamma distribution: Flexible distribution often used for modeling waiting times or sums of expo-
nentially distributed random variables characterized by shape alpha and rate beta.

Beta distribution: Continuous dist defined on the interval 0-1 often used as a prior dist in Bayesian
statistics characterized by two concentration parameters alpha and beta.

Weibull distribution: Asymmetric, suitable for simulating skewed and heavy-tailed
noise,characterized by scale lambda and shape k.

Rayleigh distribution: Continuous dist,models the magnitude of a two-dimensional vec-
tor,characterized by a scale parameter sigma.

A.11 CURRENT HANDLING OF EXTREME EVENT DATA

We have observed extreme event data in the weather and energy datasets used in our study, to sim-
ulate this, we designed our synthetic data generation method to include long-tailed distributions
among the types of noise distributions to simulate extreme events. Long-tailed distributions are
closely associated with extreme events, as they inherently model the occurrence of rare but signifi-
cant occurrences with heavier tails compared to more common distributions. All noise distributions
is detailed in subsubsection 3.1.2.

The distributions that typically exhibit heavy-tailed (or long-tailed) behavior are as follows:

1) Pareto Distribution: By definition, this is a heavy-tailed distribution.

And potentially Long-tailed Distributions (The sampling function is capable of exhibiting long-
tail characteristics as its input parameters vary. All the sampling parameters are initially obtained
through uniform randomization, thus these distributions will exhibit long-tail noise samples with a
certain probability):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

2) Student’s t-distribution: This distribution exhibits heavy-tail characteristics when the degrees of
freedom are low.

3) Generalized Gamma Distribution: When Power p < 1, the distribution exhibits heavy-tail charac-
teristics, and the tails become heavier as p approaches 0. When Concentration α< 1, the distribution
may also have heavier tails.

4) Gamma Distribution: When the shape parameter k is small (close to 0), the distribution exhibits
heavy-tail characteristics.

Based on the above design, both our synthetic data and feature decomposer will include a certain pro-
portion of long-tailed distributions in the noise component (with a simple estimation of occurrence
probability > 1/15 and < 4/15) to simulate extreme events. The trend component will also have
the same probability of exhibiting a long-tailed distribution during generation, but due to stronger
smoothing, its feature in the time domain will not be as obvious. The reason behind this design
is that extreme events should be defined as parts outside the rhythmic components; otherwise, if
extreme events appear in the form of rhythmic data, our rhythmic generation with uniform sampling
would be sufficient to cover normalized rhythmic extreme events.

Additionally, as mentioned in subsubsection 3.1.2, we performed a random y-axis inversion of our
noise sampling results. This inversion can produce significant changes in noise sampling results
with long-tail distributions, and it also allows the noise component of the synthetic data to simulate
a wider variety of real-world scenarios. The Figure 10 shows the effect of the inversion using a
Pareto distribution as an example.

Pareto

Pareto-inverse

Sampled noise Smoothed noise

Sudden voltage drop in EEG
Stock market crash
Extreme temperature drop

Power consumption
Traffic flow
Tourism flow

In real-world

Figure 10: The effect of the noise inversion using a Pareto distribution as an example, and possible
real-data scenarios that might be involved.

But still, as described in subsection A.2, since our current approach to handling extreme data in-
volves simulating the extreme events data using a long-tailed distribution noise component, we are
unable to distinguish between extreme events and noise when further decomposing the real data.
Currently, we are exploring the design of additional synthesis methods to address this issue.

A.12 OTHER POTENTIAL APPLICATIONS OF INFOBOOST’S SYNTHETIC DATA

Part from training tasks utilized in subsection 4.1 ¡Unsupervised autoencoding of Real Data Solely
Trained on Synthetic Data¿ and subsection 4.2 ¡Self-supervised domain-specific prediction¿ often
seen in Cross-Domain Transfer Learning, as well as the instance depicted in Figure 7 of subsec-
tion 4.3¡Case Study of Explicit Feature Extraction¿ where a feature extractor is trained to identify
and separate rhythmic elements for the sake of purifying frequency domain data, there are further
functions to consider:

1. Data Augmentation and Expansion: In scenarios where real-world time series datasets are limited
or lack certain rare patterns, InfoBoost can generate realistic synthetic time series data, which can fill
gaps and help models better understand diverse patterns, thereby improving their predictive accuracy
on unseen data.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

2. Privacy Protection and Compliance: For sensitive time series data (e.g., medical records, financial
data), InfoBoost offers a solution by synthesizing substitute data that retains representative features
while avoiding direct exposure of confidential information, complying with privacy regulations.

3. Handling Complex Noise and Trends: The InfoBoost framework excels at managing interference
from multiple signal sources, noise, and capturing long-term trends. It creates synthetic data with
such complexities, allowing models to become more robust and adept at parsing and forecasting
actual data amidst challenging environments.

4. Unsupervised or Weakly Supervised Learning: Even in cases of scarce labeled data, InfoBoost
can produce high-quality synthetic data with underlying patterns, making it possible to train models
under unsupervised or weakly supervised settings to uncover significant structures and rules in time
series data.

5. Zero-shot Conditional Generation: In this context, our cross-domain feature decomposer (subsec-
tion 4.3), aiming to develop a method that is not limited by the constraints of real data. The goal is
to infer the probability distributions of the r ratio, n ratio, t ratio of real data through data-synthesis
reverse engineering. This design for predicting the missing information in real data is also presented
in subsection 3.2 & Figure 7. Building upon this research, our ongoing plans focus on leveraging
the capabilities of the feature decomposer to extract info: including ratios, from specific datasets
and tasks without requiring fine-tuning or training on real data. This could further enable zero-shot
conditional generation of specific datasets and tasks.

A.13 EXPERIMENTS COMPUTE RESOURCES

All steps and experiments related to deep model training in this paper were conducted on a single
NVIDIA GeForce 3090 GPU with 24GB memory. The batch sizes used during training were set ac-
cording to the actual GPU memory consumption of each model, aiming to select the largest feasible
batch size that the hardware could accommodate.

The sections in this paper that correspond to this computational resource include: ¡Universal Time
Series features Extraction¿subsection 3.2, ¡Unsupervised autoencoding of Real Data Solely Trained
on Synthetic Data¿subsection 4.1, ¡Self-supervised domain-specific prediction¿subsection 4.2, ¡Un-
supervised autoencoding with unlimited quantity synthetic data¿subsection A.1, ¡Ablation of Rhyth,
Noise and Trend components¿subsection 4.4.

Other supplementary experiments were conducted under hardware limitations, specifically on an
NVIDIA RTX 4060 Ti with 12GB of VRAM.

A.14 OPEN ACCESS TO DATA AND CODE

Due to the absence of private data and training parameters, to ensure that the acceptance of this work
is not affected, we can only make all source code for InfoBoost available as an open-source library
upon acceptance by any conference or journal. Currently, for experimental or verification purposes,
we have anonymously released synthetic data generated using our method, ranging from lengths
of 200 to 1600, in a repository: https://anonymous.4open.science/r/InfoBoost_
synth_data-5F8D/.

22

https://anonymous.4open.science/r/InfoBoost_synth_data-5F8D/
https://anonymous.4open.science/r/InfoBoost_synth_data-5F8D/

	Introduction
	Related works
	Methodology
	InfoBoost Synthetic time-series data
	Generating Multi-source Rhythmic Data
	Generating Different Types of Noise
	Generating Trend Information
	Signal-to-Noise-and-Trend Ratio

	Universal Unconditional Time Series features Extraction

	Experiments
	Synthetic Data Coverage Verification via Unsupervised Learning
	Self-supervised domain-specific forecasting
	Case Study of Explicit Feature Extraction
	Ablation of Rhyth, Noise and Trend components

	Conclusion
	Appendix
	Unsupervised learning with unlimited quantity synthetic data
	Limitations and Future Work
	Ablation experiment for the random smoothing of noise in Step3 of subsubsection 3.1.2 GENERATING DIFFERENT TYPES OF NOISE
	Numerical results for subsection 4.2 Self-supervised domain-specific prediction
	Usage of Explicit Feature Extraction
	Imputation task only trained with synthesis data
	Features Extraction Training
	Comparison with ForecastPFN and Chronos
	Datasets used in the experiment
	Summary of noise distributions
	CURRENT Handling of extreme event data
	Other potential applications of InfoBoost's synthetic data
	Experiments Compute Resources
	Open access to data and code

