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Abstract

For decades, classical point process models, such as the epidemic-type aftershock sequence
(ETAS) model, have been widely used for forecasting the event times and locations of
earthquakes. Recent advances have led to Neural Point Processes (NPPs), which promise
greater flexibility and improvements over such classical models. However, the currently-
used benchmark for NPPs does not represent an up-to-date challenge in the seismological
community, since it contains data leakage and omits the largest earthquake sequence from
the region. Additionally, initial earthquake forecasting benchmarks fail to compare NPPs
with state-of-the-art forecasting models commonly used in seismology. To address these
gaps, we introduce EarthquakeNPP: a benchmarking platform that curates and standardizes
existing public resources: globally available earthquake catalogs, the ETAS model, and
evaluation protocols from the seismology community. The datasets cover a range of small
to large target regions within California, dating from 1971 to 2021, and include different
methodologies for dataset generation. Benchmarking experiments, using both log-likelihood
and generative evaluation metrics widely recognised in seismology, show that none of the five
NPPs tested outperform ETAS. These findings suggest that current NPP implementations
are not yet suitable for practical earthquake forecasting. Nonetheless, EarthquakeNPP
provides a platform to foster future collaboration between the seismology and machine
learning communities.

1 Introduction

Operational earthquake forecasting by global governmental organisations such as the US Geological Survey
(USGS) necessitates the development of models which can forecast the times and locations of damaging
earthquakes. While model development is ongoing in the seismology community, recent progress has relied
upon refinement of a spatio-temporal point process model known as the Epidemic-Type Aftershock Sequence
(ETAS) model (Ogata, 1988; 1998). This continued reliance on a low-dimensional parametric framework
stands in contrast to the substantial growth in available earthquake data (Takanami et al., 2003; Shelly,
2017; Ross et al., 2019; White et al., 2019; Mousavi et al., 2020; Tan et al., 2021; Mousavi & Beroza, 2023).

In contrast, the machine learning community has offered promising advancements over classical point process
models like ETAS with Neural Point Process (NPP) models, showcasing greater flexibility (Du et al., 2016;
Omi et al., 2019a; Shchur et al., 2019; Jia & Benson, 2019; Chen et al., 2021; Zhou et al., 2022; Zhou &
Yu, 2024). While some initial benchmarking of these models has been conducted on an earthquake dataset
in Japan, these experiments lack relevance for stakeholders in the seismology community. The benchmark
omits the largest earthquake sequence from the region, introduces data leakage with non-sequential train-test
splits, and does not compare against state-of-the-art models like ETAS.

Here, we introduce EarthquakeNPP: a curated collection of datasets designed for benchmarking NPP models
in earthquake forecasting, accompanied by a state-of-the-art benchmark model. These datasets are derived
from publicly available raw data, which we process and configure within our platform to facilitate meaningful
forecasting experiments relevant to stakeholders in the seismology community. Covering various regions
of California, these datasets represent typical forecasting zones and encompass data commonly utilized
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by forecast issuers. Moreover, employing modern techniques, some datasets include smaller magnitude
earthquakes, exploring the potential of numerous small events to enhance forecasting performance through
flexible NPPs. To unify efforts, we present an operational-level implementation of the ETAS model alongside
the datasets, serving as the benchmark for NPPs.

Although initial benchmarking shows that none of the five tested NPP implementations outperform ETAS,
EarthquakeNPP is designed to support ongoing model development and evaluation. In addition to the
standard log-likelihood metric common in the NPP literature, the platform incorporates the generative eval-
uation procedures used in seismology for more rigorous benchmarking. This ensures that future NPPs (and
other models such as time series approaches (Wang et al., 2017) and Bayesian point processes (Serafini et al.,
2023)) can have direct relevance to seismological stakeholders. All datasets, experiments, and documentation
are available at https://anonymous.4open.science/r/EarthquakeNPP--anon--C444/README.md.

1.1 Related Work

1.1.1 Benchmarking by the NPP Community

Chen et al. (2021) introduced an earthquake dataset for benchmarking the Neural Spatio-temporal Point
Process (NSTPP) model using a global dataset from the U.S. Geological Survey, focusing on Japan from
1990 to 2020. They considered earthquakes with magnitudes above 2.5, splitting the data into month-long
segments with a 7-day offset. They exclude earthquakes from November 2010 to December 2011, deeming
these sequences "too long" and "outliers". However, this period includes the 2011 Tohoku earthquake (Mori
et al., 2011), the largest earthquake recorded in Japan and the fourth largest in the world, at magnitude
9.0. This exclusion renders the benchmarking experiment irrelevant for seismologists, as it is precisely these
large earthquakes and their aftershocks that are crucial to forecast due to their damaging impact.

The dataset is partitioned into training, testing, and validation segments. Rather than following a chrono-
logical split that would reflect operational forecasting, the segments are assigned in an alternating pattern.
This design introduces data leakage, as it misrepresents a realistic forecasting setup and artificially inflates
performance measures due to the nature of earthquake triggering (Freed, 2005). Specifically, because the
model is evaluated on windows that immediately precede its training windows, it can exploit backward-in-
time causal dependencies. Section B.2 quantifies the resulting performance inflation, expressed in terms of
information gain.

Although earthquakes with magnitudes above 2.5 are considered by Chen et al. (2021), following a change in
USGS policy on global data collection, from 2009 onwards, only events above magnitude 4.0 are recorded in
the dataset. For earthquake forecasting in Japan, seismologists use datasets from Japanese data centers since
they are more comprehensive and complete than global datasets. Section A.2 describes the biases incurred
from such data missingness.

Chen et al. (2021) benchmark their model against another spatio-temporal model, Neural Jump SDEs (Jia &
Benson, 2019), and a temporal-only Hawkes process, even though a spatio-temporal Hawkes process would
provide a more rigorous benchmark. Subsequent papers adopting this benchmark (Zhou et al., 2022; Yuan
et al., 2023; Zhou & Yu, 2024) similarly lack comparisons to a spatio-temporal Hawkes process, benchmarking
instead against temporal-only or spatial-only baselines or other spatio-temporal NPPs.

1.1.2 Benchmarking by the Seismology Community.

Model comparison has been crucial in the development of earthquake forecasting models since their inception
(Kagan & Knopoff, 1987; Ogata, 1988). The Collaboratory for the Study of Earthquake Predictability
(CSEP) (Michael & Werner, 2018; Schorlemmer et al., 2018; Savran et al., 2022; Iturrieta et al., 2024)
(https://cseptesting.org/ ) aims to unify the framework for earthquake model testing and evaluation,
hosting retrospective and fully prospective forecasting experiments globally. CSEP benchmarks short-term
models using performance metrics that require forecasts to be generated by simulating many repeat sequences
over a specified time horizon (typically one day). These simulated forecasts are compared by discretizing time
and space intervals, with test statistics calculated for event counts, magnitudes, locations, and times. The
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simulation-based approach allows the inclusion of generative models that do not output explicit earthquake
probabilities (i.e., a likelihood), and enables evaluation of the full distribution of entire sampled sequences.

Two existing works benchmark NPPs for earthquake forecasting within the seismology community. The
first by Dascher-Cousineau et al. (2023) extends a temporal-only NPP from Shchur et al. (2019) to include
earthquake magnitudes. The second by Stockman et al. (2023) extends another temporal-only model by
Omi et al. (2019a) to target larger magnitude events. Both models are benchmarked against a temporal
ETAS model, showing moderate improvements over the baseline. Extending these models to include spatial
data is necessary for further testing and potential operational use in the seismological community.

2 Background

2.1 Spatio-Temporal Point Processes

A spatio-temporal point process is a continuous-time stochastic process that models the random number of
events N(S × (ta, tb]) which occur in a space-time interval S × (ta, tb], S ⊆ R2, (ta, tb] ⊂ R+. This process
is typically defined by a non-negative conditional intensity function

λ(t, x|Ht) := lim
∆t,∆x→0

E [N([t, t + ∆t) × B(x, ∆x)|Ht]
∆t|B(x, ∆x)| , (1)

where Ht = {(ti, xi)|ti < t} denotes the history of events preceding time t and |B(x, ∆x)| is the Lebesgue
measure of the ball B(x, ∆x) with radius ∆x. Given we observe a history of events up to ti, the probability
density function (pdf) of observing an event at time t and location x is given by

p(t, x|Hti
) = λ(t, x|Hti

) · exp
(

−
∫ t

ti

∫
S

λ(s, z|Hs)dzds

)
. (2)

Most models specify the conditional intensity function, though some (e.g. Shchur et al., 2019; Chen et al.,
2021; Yuan et al., 2023) directly model this pdf. Model parameters are typically estimated by maximizing
the log-likelihood of observed events within a training time interval [T0, T1] and spatial region S,

log p(HT ) =
n∑

i=0
log λ(ti|Hti

) −
∫ T1

T0

∫
S

λ(s, z|Hs)dzds︸ ︷︷ ︸
Temporal log-likelihood

+
n∑

i=0
log f(xi|ti, Hti

)︸ ︷︷ ︸
Spatial log-likelihood

, (3)

where the decomposition of the spatio-temporal conditional intensity function, λ(ti, xi|Hti) = λ(ti|Hti) ·
f(xi|ti, Hti

), allows the log-likelihood to be written as contributions from the temporal and spatial compo-
nents. In practice, this exact function is often not maximized directly during training: for models specified
through the conditional intensity function, an analytical solution to the integral term is generally not possible
and is approximated numerically.

For model evaluation and comparison, the log-likelihood of observing events in the test set can be used as a
performance metric. This is consistent with a wealth of literature in the seismology community (see Zechar
et al., 2010, and references therein) as well as the wider general point process literature (Daley & Vere-Jones,
2004), which now includes neural point processes (Shchur et al., 2021). The metric evaluates models that
output probability distributions over their predictions and consequently penalises models that are overcon-
fident. Although evaluating on events in the test set, the test log-likelihood, log p ((ti, xi)|ti ∈ [T2, T3], HT2),
may still contain dependence upon events prior to the test window [T2, T3], typically contained in the his-
tory HT2 of the intensity function. Comparing the difference in mean log-likelihood per event provides the
information gain from one model to another (Daley & Vere-Jones, 2004).

Point processes are the dominant modeling approach in the seismology community, used extensively in both
real-time operational earthquake forecasting (Mizrahi et al., 2024a) and established benchmarking experi-
ments (CSEP) (Taroni et al., 2018; Rhoades et al., 2018). The point process representation of earthquake
data aligns naturally with their occurrence as discrete events in time (Kagan, 1994). Furthermore, this
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modeling approach is favored over discretized forecasting models (e.g., time series) because it eliminates the
need for optimizing binning strategies and allows for immediate updates, rather than waiting until the end
of a time bin - a delay that could miss critical, potentially damaging events.

2.2 ETAS

The Epidemic Type Aftershock Sequence (ETAS) model (Ogata, 1998) is a spatio-temporal Hawkes process
Hawkes (1971); Siviero et al. (2024); Bernabeu & Mateu (2025) which models how earthquakes cluster in time
and space. It has been adopted for operational earthquake forecasting by government agencies in California
(Milner et al., 2020), New-Zealand (Christophersen et al., 2017), Italy (Spassiani et al., 2023), Japan (Omi
et al., 2019b) and Switzerland (Mizrahi et al., 2024b), and performs consistently well in CSEP’s retrospective
and fully prospective forecasting experiments (e.g. Woessner et al., 2011; Rhoades et al., 2018; Taroni et al.,
2018; Cattania et al., 2018; Mancini et al., 2019; 2020; 2022). The general formulation of the model is

λ(t, x|Ht; θ) = µ +
∑

i:ti<t

g(t − ti, ||x − xi||22, mi), (4)

where µ is a constant background rate of events, g(·, ·, ·) is a non-negative excitation kernel which describes
how past events contribute to the likelihood of future events and mi are the associated magnitudes of
each event. The equivalent formulation as a Hawkes branching process accompanies a causal branching
structure B. This concept broadly aligns with the understanding of the physics of earthquake triggering and
interaction, e.g. via dynamic wave triggering (Brodsky & van der Elst, 2014) and static stress triggering
(Gomberg, 2018; Mancini et al., 2020).

Although ETAS can be fit by maximizing the log-likelihood function directly, parameter estimation is typ-
ically performed by simultaneously estimating the branching structure B. Veen & Schoenberg (2008) de-
veloped an Expectation Maximisation (EM) procedure, which maximises the marginal likelihood over the
unobserved branching structure, log

∫
p(HT1 |B, θ)p(B|θ)dB through the iteration

θ(k+1) = arg max
θ

EB∼p(·|HT1 ,θ(k)) [log p(HT1 , B|θ)] . (5)

This avoids the need to numerically approximate the integral term in the likelihood, provides more stability
during estimation, and simultaneously distinguishes background events from triggered events.

The formulation of the ETAS model we present in the EarthquakeNPP benchmark is implemented in the
etas python package by Mizrahi et al. (2022). It defines the triggering kernel as

g(t, r2, m) = e−t/τ · k · ea(m−Mc)

(t + c)1+ω ·
(
r2 + d · eγ(m−Mc)

)1+ρ , (6)

where r2 is the squared distance between events and k, a, c, ω, τ, d, γ, ρ are the learnable parameters along
with the constant background rate µ. This triggering kernel is derived from statistical distributions found
through decades of observational studies (Utsu & Seki, 1955; Utsu, 1970; Utsu et al., 1995) and several of
the learnable parameters have been linked to physical properties of the earthquake rupture process (Utsu
et al., 1995; Ide, 2013).

Despite its widespread use, it is commonly accepted that ETAS is a misspecified model of seismicity. By
construction, ETAS describes only self-exciting triggering behaviour and therefore cannot capture inhibitory
effects or stress relaxation processes, such as those represented by stress-release models (Zheng & Vere-
Jones, 1991; Xiaogu & Vere-Jones, 1994; Bebbington & Harte, 2003), or by models based on elastostatic
stress transfer and Coulomb rate-and-state friction (Dieterich, 1994). In addition, foreshock activity has
been observed to deviate from ETAS assumptions, both spatially and temporally (McGuire et al., 2005;
Brodsky, 2011; Lippiello et al., 2012; Ogata & Katsura, 2014). Finally, to simplify inference, ETAS typically
assumes isotropic spatial triggering kernels, despite observational evidence for anisotropic and fault-aligned
aftershock distributions (Page & van der Elst, 2022). Together, these limitations motivate the exploration
of more flexible modelling frameworks capable of capturing richer spatio-temporal structure in earthquake
sequences.
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2.3 Neural Point Processes

Neural point processes (NPPs) have emerged in recent years within the machine learning literature as flexible
alternatives to classical parametric point process models. Their central motivation is to replace restrictive,
hand-crafted parametric forms with neural network based components that can learn complex, non-linear
dependencies directly from data. This makes them particularly appealing for earthquake forecasting to
overcome the known limitations of the ETAS model discussed in Section 2.2.

Early developments focused on temporal point processes (Shchur et al., 2021). Du et al. (2016) introduced
the use of recurrent neural networks (RNNs) to encode the event history into a fixed-dimensional latent
state, replacing explicit summation over past events with a learned representation of temporal dependence.
Subsequent work explored alternative sequence encoders, including LSTMs (Mei & Eisner, 2017) and Trans-
formers (Zuo et al., 2020), alongside a variety of decoding strategies for modelling the conditional intensity
or inter-event time distribution (Du et al., 2016; Omi et al., 2019a; Shchur et al., 2019). In most cases, model
parameters are learned by maximising the log-likelihood of observed event sequences, although alternative
training objectives have also been proposed (Xiao et al., 2017; Li et al., 2018).

These temporal formulations were later extended to spatio-temporal settings (Mukherjee et al., 2025) by
incorporating event locations into the history encoder and introducing flexible decoders for the conditional
spatial distribution of future events. Existing spatio-temporal NPPs can be broadly grouped into three mod-
elling classes. The first class extends Hawkes-type formulations by replacing parametric triggering kernels
with neural network based influence functions, allowing non-stationary and history-dependent excitation
(Zhou et al., 2022; Dong et al., 2022; Zhou & Yu, 2024). A second class models event dynamics in contin-
uous time using neural ordinary differential equations, jointly evolving latent temporal states and spatial
distributions (Jia & Benson, 2019; Chen et al., 2020). A third, more recent class adopts fully generative
approaches based on diffusion or score matching, learning the joint spatio-temporal distribution of events
without explicitly parameterising an intensity function (Yuan et al., 2023; Li et al., 2023; Lüdke et al.,
2024). These approaches differ substantially in their computational cost, interpretability, and suitability for
simulation and likelihood-based evaluation; see Mukherjee et al. (2025) for a detailed discussion.

Figure 1: Earthquakes contained in the observational datasets found in EarthquakeNPP. Colours indicate
the respective datasets, including the target region, magnitude of completeness Mc, number of events and
the time period that the dataset spans. In red is a fault map from the GEM Global Active Faults Database
(Styron & Pagani, 2020).
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3 EarthquakeNPP Datasets

The EarthquakeNPP datasets (Figure 1) encompass earthquake records, including timestamps, geographical
coordinates, and magnitudes, documented within California from 1971 to 2021. California, with its dense
network and high seismic hazard, has been extensively studied, demonstrating the utility of forecasting
algorithms (Gerstenberger et al., 2004; Field, 2007; Field et al., 2021). It encompasses the San Andreas fault
plate boundary system (Zoback et al., 1987) and includes modern high-resolution catalogs with numerous
small magnitude earthquakes, offering potential for new, more expressive models.

Table 1: Summary of EarthquakeNPP datasets, including: region, dataset development, magnitude threshold
(Mc), number of training (combined with validation) events, and number of testing events. The chronological
partitioning of training, validation, and testing periods is also detailed. An auxiliary (burn-in) period begins
from the Start date, followed by the respective starts of the training, validation, and testing periods. All
dates are given as 00:00 UTC on January 1st, unless noted (* refers to 00:00 UTC on January 17th). Finally,
we give our purpose for including each dataset.

ComCat SCEDC White QTM

Region Whole of California Southern California San Jacinto Fault-
Zone

QTM_SanJac:
San Jacinto Fault-
Zone,

QTM_SaltonSea:
Salton Sea

Development The U.S. Geological Survey
(USGS) National Earth-
quake Information Center
(NEIC) monitors global
earthquakes (Mw 4.5 or
larger) and provides com-
plete seismic monitoring of
the United States for all sig-
nificant earthquakes (> Mw
3.0 or felt). Its contribut-
ing seismic networks have
produced the Advanced
National Seismic System
(ANSS) Comprehensive
Catalog of Earthquake
Events and Products.

The Southern Califor-
nia Seismic Network
(SCSN) has developed
and maintained the
standard earthquake
catalog for Southern
California (Hutton
et al., 2010) since the
Caltech Seismological
Laboratory began rou-
tine operations in 1932.
Significant network
improvements since
the 1970s and 1980s
reduced the catalog
completeness from Mw
3.25 to Mw 1.8.

White et al. (2019)
created an enhanced
catalog focusing on
the San Jacinto fault
region, using a dense
seismic network in
Southern California.
This denser network,
combined with auto-
mated phase picking
(STA/LTA), ensures a
99% detection rate for
earthquakes greater
than Mw 0.6 in a
specific subregion
(White et al., 2019).

Using data collected
by the SCSN, Ross
et al. (2019) gener-
ated a denser catalog
by reanalyzing the
same waveform data
with a template
matching procedure
that looks for cross-
correlations with
the wavetrains of
previously detected
events.

Mc Mw 2.5 SCEDC_20: Mw 2.0,
SCEDC_25: Mw 2.5,
SCEDC_30: Mw 3.0

Mw 0.6 Mw 1.0

# Train/Test
Events

79,037 / 23,059 SCEDC_20:
128,265 / 14,351,
SCEDC_25:
43,221 / 5,466,
SCEDC_30:
12,426 / 2,065

38,556 / 26,914 QTM_SanJac:
18,664 / 4,837,

QTM_SanJac:
44,042 / 4,393

Start-Train-
Val-Test-End

1971-1981-1998-2007-2020∗ 1981-1985-2005-2014-
2020

2008-2009-2014-2017-
2021

2008-2009-2014-
2016-2018

Purpose Example of data currently
in use for operational
forecasting (USGS utilizes
ComCat in aftershock fore-
casts they release to the
public).

Three magnitude
thresholds (Mw 2.0,
2.5, 3.0 for SCEDC_20,
SCEDC_25, SCEDC_30)
explore the effect of
truncation on forecast-
ing model performance.

To explore if newly
detected low magni-
tude earthquakes con-
tain additional predic-
tive information.

To explore if newly
detected low mag-
nitude earthquakes
contain additional
predictive informa-
tion (with different
detection methodol-
ogy).
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A central challenge when working with earthquake catalogs is data missingness, referred to in seismology as
catalog incompleteness (Mignan & Woessner, 2012). Earthquakes are assumed to be only fully detected above
a time- and region-dependent completeness magnitude Mc, which reflects limitations of the seismic network
and changes in detection capability over time. Ignoring this incompleteness can introduce substantial bias
into both model fitting and evaluation (Sornette & Werner, 2005), particularly for methods that rely on
smaller magnitude events.

All EarthquakeNPP datasets are constructed from publicly available raw catalogs provided by their respective
data centres. To enable a consistent and realistic retrospective forecasting experiment, the raw data is
preprocessed by restricting each dataset to a target spatial region and truncating events above a dataset-
specific magnitude threshold Mcut ≥ Mc (e.g., Mignan et al., 2011; Mignan & Woessner, 2012).

Notebooks to access and preprocess the datasets, along with the associated benchmarking experiments,
are publicly available at https://anonymous.4open.science/r/EarthquakeNPP--anon--C444/README.
md, accompanied by detailed dataset documentation. A more in-depth discussion of earthquake catalog
generation, completeness, and preprocessing choices is provided in Appendix A. Table 1 summarises the key
characteristics of each EarthquakeNPP dataset.

4 Benchmarking Experiment

We use EarthquakeNPP to benchmark five spatio-temporal Neural Point Processes (NPPs) against the ETAS
model described in Section 2.2. Each of these NPPs has prior positive claims in earthquake forecasting, yet
lacks performance comparison with the ETAS model.

Neural Spatio-Temporal Point Process (NSTPP) (Chen et al., 2021): A probability density function
(pdf)-based NPP that parametrizes the spatial pdf with continuous-time normalizing flows (CNFs). We
evaluate their Attentive CNF model due to its superior computational efficiency and overall performance
compared to the Jump CNF model (Chen et al., 2021).

Deep Spatio-Temporal Point Process (DeepSTPP) (Zhou et al., 2022): A conditional intensity
function-based NPP that constructs a non-parametric space-time intensity function driven by a deep la-
tent process. This model features a closed-form intensity function, eliminating the need for numerical
approximations.

Automatic Integration for Spatiotemporal Neural Point Processes (AutoSTPP) (Zhou & Yu,
2024): A conditional intensity function-based NPP that jointly models the 3D space-time integral of the
intensity and its derivative (the intensity function) using a dual network approach.

Spatio-temporal Diffusion Point Process (DSTPP) (Yuan et al., 2023): A generative NPP that
does not have a likelihood function. DSTPP employs diffusion models to capture complex spatio-temporal
dynamics.

Score Matching-based Pseudolikelihood Estimation of Neural Marked Spatio-Temporal Point
Process (SMASH)(Li et al., 2023): A generative NPP that also lacks a likelihood function. SMASH adopts
a normalization-free objective by estimating the pseudolikelihood of marked STPPs through score-matching.

Appendix D provides details on the computational cost of training and inference for all the models tested.

4.1 Likelihood Evaluation

Since generating repeated sequences over forecast horizons is computationally costly, the seismology commu-
nity uses the mean log-likelihood on held-out data for a more streamlined metric during model development
(Ogata, 1988; Harte, 2015). Other traditional next-event metrics like Root Mean Square Error (RMSE) and
Mean Absolute Error (MAE) are misleading for earthquake forecasting (Hodson, 2022), as earthquake occur-
rence follows power law distributions (Kagan, 1994; Felzer & Brodsky, 2006) that are heavy-tailed, making
the errors non-Gaussian and non-Laplacian, contrary to the assumptions underlying RMSE and MAE (see
Section I).
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Figure 2: Test temporal log-likelihood scores for all the spatio-temporal point process models on each of the
EarthquakeNPP datasets. SCEDC_20, SCEDC_25 and SCEDC_30 correspond to magnitude thresholds (Mw 2.0,
2.5, 3.0) of the SCEDC dataset. Error bars of the mean and standard deviation are constructed for the NPPs
using three repeat runs.

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2

Sp
at

ia
l l

og
-li

ke
lih

oo
d

ComCat

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2
QTM_SaltonSea

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2
QTM_SanJac

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2
White

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2

Sp
at

ia
l l

og
-li

ke
lih

oo
d

SCEDC_20

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2
SCEDC_25

Auto
ST

PP

Dee
pS

TP
P

NST
PP

ETA
S

Poi
sso

n

14

12

10

8

6

4

2
SCEDC_30

Figure 3: Test spatial log-likelihood scores for all the spatio-temporal point process models on each of the
EarthquakeNPP datasets. SCEDC_20, SCEDC_25 and SCEDC_30 correspond to magnitude thresholds (Mw 2.0,
2.5, 3.0) of the SCEDC dataset. Error bars of the mean and standard deviation are constructed for the NPPs
using three repeat runs.
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For the three models with valid likelihood functions (NSTPP, DeepSTPP, and AutoSTPP), we present the
mean log-likelihood scores in Figures 2 and 3. These scores are compared alongside the ETAS model (Section
2.2) and a homogeneous Poisson process. The Poisson model is fit to events in the auxiliary, training, and
validation windows to provide a baseline score for comparison.

Unlike the NPPs, which follow the standard machine learning procedure of training, validation, and testing,
ETAS does not typically incorporate validation in its estimation procedure. Thus, it is fit using both the
training and validation windows combined. For NPPs, the likelihood for training, validation, and testing
depends on events occurring before the respective splits through memory in their history. The exception is
NSTPP, which lacks a direct dependency on prior events. Nevertheless, its likelihood is evaluated on the
same data as the other models.

To ensure that fitting ETAS on both the training and validation windows does not bias the comparison, we
also tested an alternative configuration where ETAS was trained only on the training window. As shown
in Appendix C, ETAS performance remains effectively unchanged under this setup. The ETAS formulation
(Equation 4) also specifies how the magnitudes of prior earthquakes contribute to the conditional intensity;
this magnitude dependence is not implemented in any of the NPPs we benchmark, since it requires modelling
choices beyond the scope of this work.

The ETAS model consistently achieves the highest temporal log-likelihood, with NPPs performing compa-
rably or, in some cases, marginally better, except at the higher magnitude thresholds of the SCEDC catalog.
Among the NPPs, AutoSTPP and NSTPP perform well across several datasets, though their performance
is more variable than that of DeepSTPP, which demonstrates consistent, comparable performance to ETAS.
Differences in Poisson performance across Figures 2 and 3 are driven by variations in clustering strength,
with weakly clustered catalogs appearing nearly Poisson-like and strongly clustered catalogs exhibiting larger
departures.

Closer analysis of model performance over time (see Section E) reveals that relative performance to ETAS is
poorest during large earthquake sequences. This is likely due to ETAS leveraging the magnitude feature of
the data, which enables it to handle these sequences effectively. Conversely, model performance is strongest
during "background" periods, when no large earthquakes occur. During these periods, ETAS models the
background with a constant rate, while the NPPs improve upon this by capturing the non-stationary nature
of the background data. This effect is most pronounced in the ComCat dataset, which includes more complex
physical processes, such as those near the Mendocino Triple Junction (Hellweg et al., 2024). The improved
relative temporal performance of all NPPs compared to ETAS, particularly when the magnitude threshold
is lowered from 3.0 to 2.0 in the SCEDC dataset, indicates that low magnitude earthquakes provide valuable
predictive information for NPPs.

ETAS consistently outperforms all NPPs in spatial log-likelihood. Further analysis of model performance
over space (see Section E) shows relative performance to ETAS is weakest in the most active and clustered
areas (see Figures 12 and 13), likely due to the absence of a magnitude feature in the NPPs. However,
NPPs tend to perform more competitively in regions characterised by spatially complex or diffuse seismicity.
AutoSTPP achieves the highest spatial log-likelihood, attributed to its ability to capture anisotropic Hawkes
kernels (see Figure 2 of Zhou & Yu (2024)), which are commonly observed in earthquake data (Page &
van der Elst, 2022).

4.2 CSEP Consistency Tests

EarthquakeNPP supports the earthquake forecast evaluation protocol developed by the Collaboratory for the
Study of Earthquake Predictability (CSEP). In this procedure, a model generates 24-hour forecasts through
10,000 repeated simulations of earthquake sequences at the beginning of each day in the testing period. This
approach mirrors how earthquake forecasts are produced in operational settings (van der Elst et al., 2022).
Models are then evaluated by comparing the observed sequence with the distribution of forecasts generated
by the simulations. Four test statistics assess the temporal, spatial, likelihood, and magnitude components
of the forecasts. A test is considered failed if the observed statistic falls within a pre-defined rejection
region (Figure 14). We apply this evaluation procedure to the two generative NPPs (DSTPP and SMASH)
alongside ETAS (Table 2) and present a case study on the 2010 M7.2 El Mayor-Cucapah earthquake, using
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the forecasts from these models (Figure 4). Appendix F provides an introduction to the CSEP consistency
tests, with further details found at https://cseptesting.org/, and Appendix G provides further analysis
on the simulated forecasts.

Figure 4: Forecasts from ETAS, SMASH, and DSTPP during the 2010 M7.2 El Mayor-Cucapah earthquake
contained in the ComCat dataset. Top: Spatial forecasts for the day following the mainshock. ETAS ac-
curately captures the primary aftershock zone along the Laguna Salada fault system. SMASH produces
smoother forecasts with broader spatial spread, while DSTPP concentrates its probability mass north of the
mainshock epicenter. Bottom: Cumulative earthquake counts over time, with magnitudes shown as scaled
orange circles. Forecast number distributions from each model are plotted with 95% confidence intervals.
All models initially underestimate aftershock activity. ETAS and SMASH begin to recover after the first
week, whereas DSTPP continues to systematically underpredict event counts throughout the sequence.

ETAS consistently performs best across all datasets and tests. It achieves the highest pass rates and lowest
KS statistics, indicating strong calibration and reliability. SMASH shows moderate performance, often
outperforming DSTPP but trailing ETAS. Its results vary more across datasets and tests, with occasional
strengths (e.g. in White for spatial KS). DSTPP generally performs worse, with lower pass rates and higher
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Table 2: CSEP consistency tests evaluate the calibration of daily forecasts from three models (ETAS,
SMASH, DSTPP) on EarthquakeNPP datasets. A test is performed at the α = 0.05 significance level on
each day in the testing period. The pass rate indicates the proportion of testing days with non-rejected
hypotheses. If the model is the data generator, quantile scores should be uniformly distributed. The KS-
Statistic quantifies deviation from uniformity (see Appendix F). ETAS is the only model that forecasts
earthquake magnitudes, so is the only model evaluated with the magnitude test.

Dataset Model Number Test Spatial Test Pseudo Likelihood Test Magnitude Test
Pass Rate KS-Stat. Pass Rate KS-Stat. Pass Rate KS-Stat. Pass Rate KS-Stat.

ComCat
ETAS 95.8% 0.222 92.0% 0.029 97.6% 0.128 93.8% 0.113
SMASH 86.2% 0.212 68.6% 0.217 87.6% 0.134 – –
DSTPP 86.7% 0.116 88.6% 0.070 86.3% 0.138 – –

SCEDC
ETAS 92.6% 0.347 88.3% 0.119 95.9% 0.233 90.0% 0.256
SMASH 69.6% 0.602 51.1% 0.471 68.0% 0.611 – –
DSTPP 27.4% 0.840 6.1% 0.935 0.8% 0.988 – –

QTM_SanJac
ETAS 95.4% 0.151 91.7% 0.095 96.6% 0.123 94.8% 0.076
SMASH 81.7% 0.290 55.6% 0.385 53.4% 0.584 – –
DSTPP 85.7% 0.110 85.7% 0.240 85.3% 0.136 – –

QTM_SaltonSea
ETAS 93.6% 0.210 90.9% 0.206 96.4% 0.119 90.6% 0.136
SMASH 75.8% 0.486 53.6% 0.371 73.7% 0.451 – –
DSTPP 87.7% 0.154 88.8% 0.136 85.6% 0.127 – –

White
ETAS 88.3% 0.167 86.6% 0.225 90.8% 0.233 88.8% 0.052
SMASH 69.3% 0.274 84.5% 0.150 67.7% 0.246 – –
DSTPP 0.5% 0.987 30.9% 0.691 32.3% 0.892 – –

KS statistics, especially for the SCEDC and White datasets. However, it achieves relatively good spatial
calibration in some cases (e.g., ComCat).

Further analysis of the simulated forecasts in Appendix G provides insight into the consistency test results.
Temporally, all models struggle to capture the highest-rate seismicity days, indicating substantial room
for improvement in modelling the most hazardous periods. SMASH exhibits highly variable, spiky daily
rate forecasts that result in frequent over- and underprediction, while DSTPP produces much smoother
forecasts that systematically underestimate seismicity across both background and active periods. Spatially,
ETAS assigns concentrated rates along known fault structures through its explicit clustering mechanism. In
contrast, SMASH generates diffuse spatial forecasts with weak contrast between active and inactive regions,
whereas DSTPP more accurately follows fault-aligned structure but often assigns uniformly low spatial rates,
particularly in the SCEDC and White datasets.

We were unable to apply the CSEP evaluation procedure for NSTPP, AutoSTPP and DeepSTPP, since the
models are not explicitly formulated to be generative and therefore suffer from slow sampling (see details
in Appendix D). This limitation significantly hinders their ability to be applied to real-time operational
earthquake forecasting.

5 Discussion and Conclusion

We introduce EarthquakeNPP, a benchmarking platform designed to evaluate Neural Point Process (NPP)
models against the state-of-the-art ETAS model for earthquake forecasting. The platform hosts datasets
from diverse regions of California, both standard forecasting zones and datasets that incorporate modern
detection techniques. We establish two evaluation frameworks tailored to seismology: standard log-likelihood
metrics and the generative consistency tests developed by the Collaboratory for the Study of Earthquake
Predictability (CSEP), ensuring that successful models can be directly relevant to operational forecasting.

In benchmarking five neural point process (NPP) models against ETAS, we found that none outperformed
the baseline, indicating that current NPP architectures are not yet suitable for operational earthquake
forecasting. While several NPPs achieve competitive performance during low-activity background periods,
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they consistently struggle during highly active phases following large earthquakes. Our results highlight
several concrete architectural and methodological gaps, which we summarise below as actionable directions
for future NPP development.

Action 1: Encode explicit magnitude dependence. ETAS explicitly encodes magnitude dependence,
whereby larger earthquakes exponentially increase both the rate and spatial extent of subsequent seismic-
ity. None of the benchmarked NPPs incorporate such explicit magnitude scaling, which limits their ability
to capture the dominant influence of large events. Future NPP architectures could address this by in-
troducing magnitude-aware design choices, such as hierarchical encodings that distinguish small and large
events, magnitude-weighted attention mechanisms, or parameterisations aligned with the logarithmic fre-
quency–magnitude scaling observed in seismicity (Richter, 1935). These approaches would allow NPPs to
retain flexibility while incorporating structure that has proven critical for ETAS performance.

Action 2: Design scalable long-term memory mechanisms. All evaluated NPPs truncate the con-
ditioning history due to the computational cost of sequence encoders, with models such as DeepSTPP and
AutoSTPP conditioning on as few as 20 past events. In contrast, ETAS integrates the full event history, al-
lowing long-past earthquakes, including large or spatially distant events, to influence future rates. Designing
NPPs with scalable long-term memory is therefore a critical avenue for improvement. Promising directions
include sparse or dilated attention mechanisms (Child et al., 2019; Hassani & Shi, 2022) to reduce quadratic
complexity, hierarchical or coarse-to-fine representations of earthquake histories (Yang et al., 2016), and ex-
plicit memory compression modules (Kim et al., 2023) that preserve the influence of distant but significant
events. Advances in long-context modelling within the NLP literature suggest that such mechanisms are
technically feasible (Liu et al., 2025) and may translate naturally to earthquake triggering dynamics.

Action 3: Align generative training with operational evaluation. Third, our results reveal a mis-
match between how generative NPPs are trained and how they are evaluated. Models such as SMASH and
DSTPP are trained to predict or sample the next event, whereas CSEP consistency tests require simulating
complete event sequences over fixed forecasting windows. This discrepancy helps explain why some gener-
ative models show reasonable short-term accuracy (Yuan et al., 2023; Li et al., 2023) but perform poorly
in our multi-event simulation tests. Future generative NPPs may therefore benefit from training objectives
that explicitly target long-horizon trajectory behaviour, for example by optimising multi-event simulation
losses (e.g. Lüdke et al., 2024) or designing statistics (e.g. equation 13) aligned with the CSEP evaluations
used in this study.

Action 4: Incorporate empirically supported scaling laws. Finally, our results suggest that the com-
plete removal of physically motivated structure may be counterproductive. While NPPs aim to move beyond
parametric models, ETAS kernels encode power-law scaling relationships that are strongly supported by em-
pirical seismology (Kagan, 1994; Felzer & Brodsky, 2006). Hybrid architectures that combine neural density
estimation with ETAS-inspired power-law kernels or magnitude-dependent triggering functions may offer a
productive middle ground, retaining empirical laws while allowing greater flexibility than purely parametric
formulations. For example, replacing Gaussian spatial kernels in existing NPPs (e.g in DeepSTPP) with
learned power-law forms could improve their ability to represent aftershock clustering without sacrificing
expressiveness.

EarthquakeNPP, available at https://anonymous.4open.science/r/EarthquakeNPP--anon--C444/
README.md, provides a platform for future NPP developments to be benchmarked against these initial
results. The platform is under ongoing development and in the future will see the direct comparison of
emerging and other existing models developed within the seismology community, as well as an expansion of
datasets included to other seismically active global regions. Successful NPP models on these datasets, for
both log-likelihood and CSEP metrics, will be directly impactful to stakeholders in seismology, ultimately
enabling their integration into operational earthquake forecasting by government agencies.
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Figure 5: Generating an earthquake catalog involves several key steps: seismic phase picking, magnitude
estimation, and the association and location of seismic sources. This process transforms raw waveform data
recorded at seismic stations to locations, times, and magnitudes of earthquakes.

Zihao Zhou, Xingyi Yang, Ryan Rossi, Handong Zhao, and Rose Yu. Neural point process for learning
spatiotemporal event dynamics. In Learning for Dynamics and Control Conference, pp. 777–789. PMLR,
2022.

Weiqiang Zhu and Gregory C Beroza. Phasenet: a deep-neural-network-based seismic arrival-time picking
method. Geophysical Journal International, 216(1):261–273, 2019.

Mark D Zoback, Mary Lou Zoback, Van S Mount, John Suppe, Jerry P Eaton, John H Healy, David
Oppenheimer, Paul Reasenberg, Lucile Jones, C Barry Raleigh, et al. New evidence on the state of stress
of the san andreas fault system. Science, 238(4830):1105–1111, 1987.

Simiao Zuo, Haoming Jiang, Zichong Li, Tuo Zhao, and Hongyuan Zha. Transformer hawkes process. In
International conference on machine learning, pp. 11692–11702. PMLR, 2020.

A Earthquake Catalog Data

A.1 Earthquake Catalog Generation

Data missingness, referred to in seismology as catalog (in)completeness, is the primary challenge faced with
earthquake catalogs. It is an important and unavoidable feature, and is a result of how earthquakes are
detected and characterised. Below, we briefly overview the process of generating an earthquake catalog
to illustrate the data quality issues. In the subsequent section, we review catalog incompleteness and its
potential impact on the performance and evaluation of forecasting models.

Seismometers and Seismic Networks. A seismometer is an instrument that detects and records the
vibrations caused by seismic waves (Stein & Wysession, 2009; Shearer, 2019). It consists of a sensor to detect
ground motion and a recording system to log three-dimensional ground motion over time, typically vertical
and horizontal velocities. Seismic networks, comprising multiple seismometers, monitor seismic activity at
regional, national or global scales (see, e.g., (Woessner et al., 2010) and references therein). High-density
networks with modern, sensitive equipment provide more detailed and accurate data, enhancing the ability
to detect and analyse smaller and more distant earthquakes.

From Waveforms to Phase Picking. The process of converting raw continuous seismic waveforms into
useful earthquake data begins with phase picking, which identifies the arrival times of the primary (P) and
secondary (S) waves of an earthquake. Historically, this was done manually, but now automated algorithms,
such as the STA/LTA algorithm, detect wave arrivals by analyzing signal amplitude changes (Allen, 1982).
Recent algorithms, such as machine learning classifiers (e.g. Zhu & Beroza, 2019; Lapins et al., 2021) and
template-matching (e.g. Ross et al., 2019), can process much higher volumes of data efficiently and are often
able to detect events of much smaller magnitudes.

Earthquake Association and Location After phase picking, the next step is to associate phases from
different seismometers with the same earthquake. Simple algorithms require at least four phase arrivals
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to be detected on different stations within a short time interval to declare an event. Once phases are
associated, location estimation determines the earthquake’s hypocenter and origin time by minimizing travel-
time residuals using linearized or global inversion algorithms (Thurber, 1985; Lomax et al., 2000). Given the
potential for misidentified or mis-associated phase arrivals due to low signal-to-noise of small events or the
near-simultaneous occurrence during very active aftershock sequences, an automated system typically first
picks arrival times and determines a preliminary location, which is subsequently reviewed by a seismologist
(e.g. Woessner et al., 2010, and references therein). Locations are typically reported as the geographical
coordinates and depths where earthquakes first nucleated (hypocenters), although some catalogs report the
centroid location, a central measure of the extended earthquake rupture.

Earthquake Magnitude Calculation The magnitude of an earthquake quantifies the energy released
at the source and was originally defined in the seminal paper by Richter (1935). The original definition,
now referred to as the local magnitude (ML), is calculated from the logarithm of the amplitude of waves
recorded by seismometers. This scale, however, "saturates" at higher magnitudes, meaning it underestimates
magnitudes for various reasons. This led to introduction of the moment magnitude scale (Mw) (Hanks &
Kanamori, 1979), which computes the magnitude based on the estimated seismic moment M0, which can be
related to the physical rupture process via

M0 = rigidity × rupture area × slip, (7)

where rigidity is a mechanical property of the rock along the fault, rupture area is the area of the fault
that slipped, and slip is the distance the fault moved. Mw is determined seismologically via a spectral
fitting process to the earthquake waveforms. In practice, it can be challenging to use a single magnitude
scale for a broad range of magnitudes, therefore a range of scales may be present within a single catalog,
and approximate magnitude conversion equations may be used to homogenize the scales (e.g. Herrmann &
Marzocchi, 2021, and references therein).

A.2 Earthquake Catalog Completeness

All of the EarthquakeNPP datasets are made publicly available by their respective data centers in raw
format. However, constructing a suitable retrospective forecasting experiment from this raw data requires
appropriate pre-processing. This typically involves truncating the dataset above a magnitude threshold
Mcut and within a target spatial region to address incomplete data, known as catalog completeness Mc (e.g.,
Mignan et al., 2011; Mignan & Woessner, 2012).

There are several reasons why an earthquake may not be detected by a seismic network. Small events may
be indistinguishable from noise at a single station, or insufficiently corroborated across multiple stations.
Another significant cause of missing events occurs during the aftershock sequence of large earthquakes, when
the seismicty rate is high (Kagan & Knopoff, 1987; Hainzl, 2022). Human or algorithmic detection abilities
are hampered when numerous events occur in quick succession, e.g. when phase arrivals of different events
overlap at different stations or the amplitudes of small events are swamped by those of large events. Since
catalog incompleteness increases for lower magnitude events, typically the task is to find the value Mc above
which there is approximately 100% detection probability. Choosing a truncation threshold Mcut that is too
high removes usable data. Where NPPs have demonstrated an ability to perform well with incomplete data
(Stockman et al., 2023), typically a threshold below the completeness biases classical models such as ETAS
(Seif et al., 2017). Seismologists often investigate the biases of different magnitude thresholds by performing
repeat forecasting experiments for different thresholds (e.g. Mancini et al., 2022; Stockman et al., 2023),
which we also facilitate in our datasets.

Typically Mc is determined by comparing the raw earthquake catalog to the Gutenberg-Richter law (Guten-
berg & Richter, 1936), which states that the distribution of earthquake magnitudes follows an exponential
probability density function

fGR(m) = βe−β(m−Mc) : m ≥ Mc. (8)

where β is a rate parameter related to the b-value by β = b log 10. Histogram-based approaches, such as
the simple Maximum Curvature method (Wiemer & Wyss, 2000) as well as many others (e.g. Herrmann
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Table 3: Summary of additional datasets, including: magnitude threshold (Mc), number of training events,
and number of testing events. The chronological partitioning of training, validation, and testing periods is
also detailed. An auxiliary (burn-in) period begins from the "Start" date, followed by the respective starts
of the training, validation, and testing periods. All dates are given as 00:00 UTC on January 1st, unless
noted (* refers to 00:00 UTC on January 17th).

Catalog Mc Start-Train-Val-Test-End Train Events Test Events

ETAS 2.5 1971-1981-1998-2007-2020∗ 117,550 43,327

ETAS_incomplete 2.5 1971-1981-1998-2007-2020∗ 115,115 42,932

Japan_Deprecated 2.5 1990-1992-2007-2011-2020 22,213 15,368

& Marzocchi, 2021, and references therein), identify the magnitude at which the observed catalog deviates
from this law, indicating incompleteness (See Figure 6b).

In practice, catalog completeness varies in both time and space Mc(t, x) (e.g. Schorlemmer & Woessner,
2008). During aftershock sequences, Mc(t) can be very high (e.g., Agnew, 2015; Hainzl, 2016b) (See Figure
6a). Thresholding at the maximum value might remove too much data. Instead, modelers either omit
particularly incomplete periods during training and testing (Kagan, 1991; Hainzl et al., 2008), model the
incompleteness itself (Helmstetter et al., 2006; Werner et al., 2011; Omi et al., 2014; Hainzl, 2016a;b; Mizrahi
et al., 2021; Hainzl, 2022), or accept known biases from disregarding this issue (Sornette & Werner, 2005).
Spatially, catalogs are less complete farther from the seismic network (Mignan et al., 2011), so the spatial
region can be constrained to remove outer, more incomplete areas (See Figure 6c).

B Additional Datasets

Beyond the official EarthquakeNPP datasets, we include 3 further datasets that either provide additional
scientific insight or continuity from previous benchmarking works.

B.1 Synthetic ETAS Catalogs.

We simulate a synthetic catalog using the ETAS model with parameters estimated from ComCat, at Mc 2.5,
within the same California region. A second catalog emulates the time-varying data-missingness present in
observational catalogs by removing events using the time-dependent formula from Page et al. (2016),

Mc(M, t) = M/2 − 0.25 − log10(t), (9)

where M is the mainshock magnitude. Events below this threshold are removed using mainshocks of Mw 5.2
and above. The inclusion of these datasets allows us to test whether NPPs are inhibited by data missingness
to the same extent that ETAS is.

B.2 Deprecated Catalog of Japan.

To provide continuity from the previous benchmarking for NPPs on earthquakes, we also provide results
on the Japanese dataset from Chen et al. (2021), however with a chronological train-test split and with-
out removing any supposed outlier events. To reflect our recommendation not to use this dataset in any
future benchmarking following the dataset completeness issues mentioned above, we name this dataset
Japan_Deprecated.

We can use this corrected dataset to quantify the inflation of performance caused by the non-chronological
training-validation-testing splitting in the Chen et al. (2021) dataset. Table 4 presents the information gain
(difference in total log-likelihood, see section 2.1) relative to a Poisson process for the three NPP models
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Figure 6: a) the June 10, 2016 Mw5.2 Borrego Springs earthquake and aftershocks, which occurred on the
San Jacinto fault zone and is recorded in the White catalog. An estimate of the magnitude of completeness
Mc(t) over time using the Maximum Curvature method reveals more incompleteness immediately following
the large earthquake. b) magnitude-frequency histograms reveal that truncating the raw White catalog
to inside the target region decreases Mc. Each histogram is fit to the Gutenberg-Richter (GR) law and an
estimate of Mc for each catalog occurs where the histogram deviates from the (GR) line. c) An estimate of
Mc for gridded regions of the San Jacinto fault zone, using the raw White catalog.
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Table 4: NPP performance comparison on the Original Chen et al. (2021) dataset versus the
Japan_Deprecated dataset. Values are reported in terms of information gain from a homogeneous Pois-
son process.

Model Original Chen et al. (2021) dataset Japan_Deprecated

NSTPP 11.26 1.99

DeepSTPP 11.77 2.95

AutoSTPP 12.16 2.76

across the two datasets. The dramatic drop in information gain highlights how the original data split and
omission of the 2011 Tohoku earthquake inflates model performance.

B.3 Likelihood Evaluation

Figures 7 and 8 report the temporal and spatial log-likelihood scores of all the benchmarked models on
additional datasets. On synthetic data generated by the ETAS model the performance of NPPs mirrors the
results on the observational data (Figures 2 and 3). The performance of NPPs is more comparable to ETAS
in terms of temporal log-likelihood however they cannot capture the distribution of earthquake locations.
Change in temporal performance of models between the ETAS and ETAS_incomplete datasets reveal each
model’s robustness to the missing data typically present in earthquake catalogs (See section A.2). Auto-
STPP and ETAS reduce in performance upon the removal earthquakes during aftershock sequences, whereas
DeepSTPP and NSTPP maintain the same performance indicating a robustness to the data missingness.

On the Japan_Deprecated dataset, whilst ETAS remains the best performing model for spatial prediction, for
temporal prediction it performs comparably to NSTPP and is even marginally outperformed by DeepSTPP.
This performance can be attributed to the data completeness issues of the Japan_Deprecated dataset (see
section 1.1), where the test period is missing all earthquakes bellow magnitude 4.0.
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Figure 7: Test temporal log-likelihood scores for all the spatio-temporal point process models on each of
the additional datasets. Error bars of the mean and standard deviation are constructed for the NPPs using
three repeat runs.

C Effect of Training Window on ETAS Performance

To verify that fitting ETAS on both the training and validation windows does not artificially improve its
performance relative to the NPPs, we retrained ETAS using only the training window and re-evaluated its
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Figure 8: Test spatial log-likelihood scores for all the spatio-temporal point process models on each of the
additional datasets. Error bars of the mean and standard deviation are constructed for the NPPs using three
repeat runs.

test log-likelihoods. As shown in Figures 9 & 10, the resulting log-likelihood scores are effectively unchanged
across all EarthquakeNPP datasets.
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Figure 9: Test temporal log-likelihood scores for all the spatio-temporal point process models on each of
the EarthquakeNPP datasets. Error bars of the mean and standard deviation are constructed for the NPPs
using three repeat runs. ETAS (orange) is trained on both training and validation windows, whereas ETAS*
(light blue) is trained only using the training window.

D Computational Efficiency

D.1 Training

Table 5 reports the training times for each model across all datasets. We ran all the NPP models using a
HPC node with Nvidia Ampere GPU with 4x Nvidia A100 40GB SXM “Ampere” GPUs and AMD EPYC
7543P 32-Core Processor “Milan” CPU using torch==1.12.0 and cuda==11.3.

ETAS training scales O(n2) with the total number of events, since for every event a contribution to the
intensity function is computed from a summation over all previous events. This scaling, coupled with the
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Figure 10: Test spatial log-likelihood scores for all the spatio-temporal point process models on each of the
EarthquakeNPP datasets. Error bars of the mean and standard deviation are constructed for the NPPs
using three repeat runs. ETAS (orange) is trained on both training and validation windows, whereas ETAS*
(light blue) is trained only using the training window.

Table 5: Training times for each model across all datasets, including the number of training events. Times are
formatted as HH:MM:SS, with days included for durations exceeding 24 hours. SMASH times are estimated
as 1.5× AutoSTPP, and DSTPP times are extrapolated assuming linear scaling from Salton Sea.

Dataset # Training Events ETAS Deep-STPP AutoSTPP NSTPP SMASH DSTPP Poisson

ComCat 79,037 08:59:04 00:15:35 01:34:09 3 days, 05:10:17 2:21:13 20:05:57 <1 second

QTM_SaltonSea 44,042 07:28:28 00:26:46 01:45:34 2 days, 00:26:45 2:38:21 11:12:00 <1 second

QTM_SanJac 18,664 00:32:40 00:09:31 00:37:03 1 day, 22:06:33 0:55:34 4:44:46 <1 second

SCEDC_20 128,265 13:42:30 00:38:10 02:54:51 3 days, 02:20:40 4:22:16 1 day, 8:37:05 <1 second

SCEDC_25 43,221 03:09:14 00:09:34 00:56:05 2 days, 16:33:55 1:24:07 10:59:28 <1 second

SCEDC_30 12,426 00:42:25 00:02:44 00:16:01 1 day, 16:39:04 0:24:01 3:10:26 <1 second

White 38,556 03:55:40 00:08:21 01:10:51 2 days, 01:03:57 1:46:17 9:48:47 <1 second

Japan_Deprecated 22,213 06:09:08 00:13:45 01:02:07 2 days, 05:32:03 1:33:06 5:39:32 <1 second

ETAS 117,550 00:33:25 00:15:24 01:10:22 3 days, 03:09:17 1:45:33 1 day, 1:27:44 <1 second

ETAS_incomplete 115,115 00:35:14 00:15:29 01:09:43 3 days, 11:39:51 1:44:34 1 day, 2:28:42 <1 second

lack of parallelization in the current implementation, results in long training times for larger datasets. Poorer
scaling will likely hinder ETAS if dataset sizes continue to grow in the future (Stockman et al., 2024).

Encouragingly, both DeepSTPP and AutoSTPP are significantly faster to train due to GPU acceleration
and their use of a sliding window of the most recent k = 20 events. While exact complexity analyses are
not provided in Zhou et al. (2022) or Zhou & Yu (2024), we can infer that DeepSTPP likely scales as O(kn)
since it benefits from a closed-form expression for the likelihood. AutoSTPP, though requiring automatic
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integration to compute the likelihood, still scales with O(kn) because the additional integration cost does
not affect the overall scaling.

NSTPP, on the other hand, incurs significant training costs, rendering it impractical for real-time forecasting.
Unlike the sliding window mechanism used in DeepSTPP and AutoSTPP, NSTPP partitions the event
sequence into fixed time intervals, leading to sequences that are much longer than the k = 20 events used by
the other models (as shown in Figure 11 of Chen et al. (2021)). Furthermore, solving an ODE for each event
time adds a significant computational burden, even with the use of their faster attentive CNF architecture.

Whilst SMASH and DSTPP are built on the same backbone architecture, SMASH is much quicker to train
than DSTPP, even faster than ETAS. This efficiency arises from its use of a single-step, normalization-free
score-matching objective, which avoids the costly denoising and sampling loops required in diffusion-based
training. SMASH directly learns the gradient of the log-density via pseudolikelihood estimation, enabling
efficient GPU parallelization and bypassing the need for repeated evaluations over diffusion steps. In contrast,
DSTPP simulates a sequential generative process over hundreds of intermediate steps per sample, significantly
increasing computation and memory costs.

D.2 Inference

Whilst log-likelihood computation for ETAS, Poisson, DeepSTPP, AutoSTPP, and NSTPP is fast (< 30 sec-
onds per dataset), real-time earthquake forecasting and CSEP evaluation require simulating many repeated
event sequences (at least 10,000) over a fixed forecasting horizon. While ETAS training scales as O(n2)
with the number of training events, its simulation is considerably more efficient, scaling approximately as
O(n log n) due to its equivalent formulation as a Hawkes branching process (see Section 2.2), which enables
immigration–birth sampling.

Fast simulation is not currently feasible for several NPP architectures. NSTPP is not Hawkes-based and
requires solving a neural ordinary differential equation to generate each new event, rendering simulation
prohibitively slow even for small datasets. DeepSTPP and AutoSTPP, while inspired by Hawkes processes,
employ non-stationary neural triggering kernels that depend on the full event history. As a result, standard
immigration–birth sampling cannot be applied, since triggering relationships change after each event and
new events cannot be generated independently or in parallel. Simulation via thinning is also problematic:
AutoSTPP does not enforce monotonic or decaying kernels, meaning the conditional intensity λ∗(t, x) cannot
be safely upper-bounded, while DeepSTPP can in principle be simulated via thinning but is extremely slow
in practice. For these reasons, DeepSTPP, AutoSTPP, and NSTPP are excluded from CSEP generative
evaluation. For the models where large-scale simulation is tractable (ETAS, SMASH, and DSTPP), we
report inference and simulation times in Table 6. Based on simulation times, DSTPP is fastest, followed by
ETAS, with SMASH consistently the slowest across datasets, reflecting the fact that DSTPP samples events
via a fixed-length diffusion process with closed-form updates, whereas SMASH relies on iterative Langevin
dynamics requiring many gradient evaluations per event.

Table 6: Simulation time for a batch of 100 repeated simulations across datasets. Reported times correspond
to individual forecast days and are summarised as minimum, median, mean, and maximum over the testing
window, reflecting variation in daily event counts rather than runtime stochasticity. Times are formatted as
HH:MM:SS.

Dataset No. Days Daily Counts ETAS SMASH DSTPP

(min / med / mean / max) (min / med / mean / max) (min / med / mean / max) (min / med / mean / max)

ComCat 4764 0 / 3 / 4.59 / 1241 00:00:24 / 00:01:25 / 00:01:33 / 01:49:25 00:02:40 / 00:03:41 / 00:04:20 / 08:26:00 00:00:08 / 00:01:10 / 00:01:12 / 00:31:20

SaltonSea 731 0 / 2 / 5.61 / 292 00:00:19 / 00:01:20 / 00:01:39 / 00:26:38 00:02:15 / 00:03:17 / 00:04:45 / 02:00:57 00:00:06 / 00:01:08 / 00:01:14 / 00:08:12

SanJac 731 0 / 5 / 6.02 / 241 00:00:34 / 00:01:35 / 00:01:41 / 00:22:11 00:03:28 / 00:04:30 / 00:04:55 / 01:40:15 00:00:12 / 00:01:13 / 00:01:14 / 00:06:58

SCEDC 2191 0 / 3 / 5.96 / 2134 00:00:23 / 00:01:25 / 00:01:40 / 03:07:19 00:02:40 / 00:03:41 / 00:04:54 / 14:28:21 00:00:07 / 00:01:10 / 00:01:14 / 00:53:05

WHITE 1461 0 / 13 / 16.48 / 520 00:01:15 / 00:02:17 / 00:02:36 / 00:46:31 00:06:43 / 00:07:45 / 00:09:10 / 03:33:28 00:00:23 / 00:01:24 / 00:01:30 / 00:13:46
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E Analysis of Likelihood Scores

E.1 Temporal Information Gain

To better interpret the temporal likelihood results presented in Figure 2, we analyse how model performance
evolves over time in each dataset in Figure 11, presenting the cumulative information gain (log-likelihood
difference) of each NPP model over ETAS.

In Figure 11a on the ComCat dataset, the largest decreases in relative performance occur during the two
largest sequences in the testing window, namely the 2010 El Mayor Cucapah M7.2 and the 2019 Ridgecrest
M7.1 earthquakes. ETAS performs strongly in these periods, likely because it incorporates magnitude scaling
which enables it to model large aftershock cascades effectively. In contrast, the 2014 South Napa M6.0 and
2014 Offshore Eureka M6.8 do not produce such a marked drop in relative performance, and between 2010 and
2019 both DeepSTPP and AutoSTPP dramatically improve relative to ETAS. This suggests that capturing
the largest aftershock sequences is a key limitation of current NPP models, while during background periods
NPPs perform slightly better than ETAS due to their ability to capture non-stationarity, a property directly
not modelled by ETAS. Despite the overall worse performance of NSTPP, the relative decrease during large
events is not as sharp as the other models, suggesting superior performance.

A similar pattern appears in Figure 11b for the SCEDC dataset. All models show a sharp reduction in
performance during the 2019 Ridgecrest M7.1 sequence. During the quieter period leading up to Ridgecrest,
DeepSTPP performs comparably to ETAS, and AutoSTPP exceeds it. This again suggests that the lack of
explicit magnitude conditioning limits NPP performance during large sequences and highlights NPP models
ability to capture background non-staionarities.

Figures 11c, 11d and 11e show results for the smaller regional datasets, SanJac, SaltonSea and White. These
smaller magnitude, more regionally concentrated datasets, don’t display the same constrasting "background",
"mainshock" behaviour present in ComCat and SCEDC. Although the overall performance of the NPP models
is below that of ETAS, improvements occur during the 2017 Brawley swarm in the SaltonSea dataset,
whereby DeepSTPP achieves higher temporal likelihood than ETAS. This behaviour aligns with the known
difficulty ETAS has in modelling swarm-like sequences that are not initiated by a large mainshock.

E.2 Spatial Information Gain

To better interpret the spatial likelihood results presented in Figure 3, we analyse how model performance
evolves over space in each dataset in Figures 12, 13, visualising geographically where NPPs outperform or
fall behind ETAS.

Figures 12 and 13 show the spatial distribution of log-likelihood information gain across all datasets. Across
both figures, a consistent pattern emerges. ETAS performs best in regions dominated by large, magnitude
driven mainshock–aftershock sequences, while NPP performance degrades in the immediate vicinity of these
events. In contrast, NPPs tend to perform more competitively in regions characterised by spatially complex
or diffuse seismicity.

In the larger regional catalogs shown in Figure 12, this distinction is most apparent in the ComCat dataset.
Near the Ridgecrest and El Mayor–Cucapah sequences, NPPs exhibit reduced information gain relative
to ETAS, consistent with the absence of explicit magnitude driven triggering. However, in the complex
tectonic setting of the Mendocino Triple Junction, NPPs achieve comparatively strong spatial performance,
with frequent positive information gain relative to ETAS. This region is characterised by interacting fault
systems and persistent background activity rather than a single dominant mainshock, suggesting that NPPs
are better suited to modelling such non-stationary and spatially heterogeneous seismic regimes.

Figure 13 presents results for the smaller regional datasets San Jacinto, Salton Sea, and White. These
regions are dominated by lower magnitude seismicity and swarm like behaviour, and here NPPs again
perform more competitively relative to ETAS. AutoSTPP assigns probability more smoothly along fault
structures similarly to ETAS, resulting in information gain values concentrated near zero, while DeepSTPP
and NSTPP show more heterogeneous behaviour. NSTPP produces more extreme and spikier information
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Figure 11: Cumulative information gain (IG) plots for the temporal performance of all the NPP models with
respect to ETAS on a) ComCat,b) SCEDC, c) QTM_San_Jac, d) QTM_Salton_Sea, e) White.
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gain values that are spatially scattered, indicating less precise spatial localisation despite occasional high
likelihood assignments. Instability during training led to the drastic underperformance of NSTPP on the
White dataset and consequent low likelihood scores distributed across the entire region.

Overall, the spatial results mirror the temporal analysis. Current NPP architectures struggle most in main-
shock dominated regimes but show clear promise in modelling spatially complex background seismicity and
swarm driven activity, motivating future work on incorporating large magnitude triggering while preserving
this flexibility.

(a) ComCat

(b) SCEDC

Figure 12: Spatial information gain per event, for NPP models relative to ETAS on (a) ComCat and (b)
SCEDC. Scatter points correspond to the geographical location of the forecasted event, coloured by the value
of the information gain over the ETAS model (green positive, red negative). For each model an inset plot
displays the distribution of the spatial information gains for all events in the testing period.
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(a) SanJac

(b) SaltonSea

(c) White

Figure 13: Spatial information gain per event, for NPP models relative to ETAS on (a) SanJac, (b)
SaltonSea, and (c) White. Scatter points correspond to the geographical location of the forecasted event,
coloured by the value of the information gain over the ETAS model (green positive, red negative). For each
model an inset plot displays the distribution of the spatial information gains for all events in the testing
period.

F CSEP Consistency Tests

F.1 Number (Temporal) Test

The number test evaluates the temporal component of the forecast by checking the consistency of the
forecasted number of events, N with those observed in the forecast horizon, Nobs. Upper and lower quantiles
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are estimated using the empirical cumulative distribution from the repeat simulations, FN ,

δ1 = P(N ≥ Nobs) = 1 − FN (Nobs − 1) (10)
δ2 = P(N ≤ Nobs) = FN (Nobs). (11)

F.2 Pseudo-Likelihood Test

The pseudo-likelihood test evaluates the compatibility of a forecast with an observed catalog using an ap-
proximation to the space-time point process likelihood.

The test statistic is based on the pseudo-log-likelihood:

L̂obs =
Nobs∑
i=1

log λ̂s(ki) − N̄ , (12)

where λ̂s(ki) is the approximate rate density in the spatial cell of the ith event, and N̄ is the expected number
of events.

Each forecast simulation j provides a test statistic

L̂j =
Nj∑
i=1

log λ̂s(kij) − N̄ , (13)

which is used to build the empirical cumulative distribution FL. The quantile score is then computed as

γL = P(L̂j ≤ L̂obs) = FL(L̂obs). (14)

F.3 Spatial Test

To evaluate the spatial component of the forecast, a test statistic aggregates the forecasted rates of earth-
quakes over a regular grid,

S =
[

N∑
i=1

log λ̂(ki)
]

N−1, (15)

where λ̂(ki) is the approximate rate in the cell k where the ith event is located. Upper and lower quantiles
are estimated by comparing the observed statistic

Sobs =
[

Nobs∑
i=1

log λ̂(ki)
]

N−1
obs, (16)

with the empirical cumulative distribution of S using the repeat simulations, FS

γs = P(S ≤ Sobs) = FS(Sobs). (17)

The grid is constructed from {0.1, 0.05, 0.01} squares for ComCat, SCEDC and {QTM_Salton_Sea, QTM_SanJac,
White} respectively.

F.4 Magnitude Test

To evaluate the earthquake magnitude component of the forecast, a test statistic compares the histogram of
a forecast’s magnitudes Λ(m), against the mean histogram over all forecasts Λ̄(m),

D =
∑

k

(
log

[
Λ̄(m)(k) + 1

]
− log

[
Λ(m)(k) + 1

])2
, (18)
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Figure 14: CSEP consistency tests on the ETAS model for the first day (01/01/2014) of the testing period
in the SCEDC catalog. A total of 10,000 simulations are generated to compute empirical distributions of the
test statistics for each of the three consistency tests: (a) Number test, (b) Spatial test, and (c) Magnitude
test. The test fails if the observed statistic falls within the rejection region (red), defined by the 0.05 and
0.95 quantiles of the distribution.

where Λ(m)(k) and Λ̄(m)(k) are the counts in the kth bin of the forecast and mean histograms, normalised to
have the same total counts as the observed catalog. Upper and lower quantiles are estimated by comparing
the observed statistic

Dobs =
∑

k

(
log

[
Λ̄(m)(k) + 1

]
− log

[
Λ(m)

obs (k) + 1
])2

, (19)

with the empirical distribution of D using the repeat simulations, FD

γm = P(D ≤ Dobs) = FD(Dobs). (20)

Histogram bins of size δm = 0.1 are used across all datasets.

Although SMASH is, in principle, capable of modelling earthquake magnitudes, we restrict it to rate fore-
casting in this benchmark, as extending it to fine-grained magnitude prediction led to a deterioration in
spatio-temporal performance metrics during training.

F.5 Evaluating Multiple Forecasting Periods

Savran et al. (2020) describe how to assess a model’s performance across the multiple days in the testing
period (Figure 15). By construction, quantile scores over multiple periods should be uniformly distributed if
the model is the data generator (Gneiting & Katzfuss, 2014). Therefore comparing quantile scores against
standard uniform quantiles (y = x), highlights discrepancies between the observed data and the forecast.
Additional statements can be made about over-prediction or under-prediction of each test statistic (quantile
curves above/bellow y=x respectively). The Kolmogorov-Smirnov (KS) statistic then quantifies the degree
of difference to the uniform distribution for each of the tests.
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Figure 15: Daily number forecasts from SMASH on the ComCat dataset. (a) Forecasted daily distributions
for the number of earthquakes, with green lines indicating days where the observed count falls within the
95% forecast interval, and red lines where the forecast fails. Observed values are marked with dot sizes
proportional to the number of earthquakes. (b) Quantile scores from the number test for each day, with red
markers indicating failed forecasts. Marker size reflects the number of earthquakes observed on that day. (c)
Temporal evolution of observed earthquakes during the testing period, with event magnitudes represented by
marker size. (d) Histogram of quantile scores from the number test. Under ideal calibration, scores should
follow a uniform distribution. Red bars indicate failed forecasts, and the Kolmogorov–Smirnov (KS) statistic
quantifies deviation from uniformity.
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G Analysis of CSEP Tests

G.1 Temporal

To further interpret the CSEP consistency test results reported in Table 2, Figures 16–18 show the daily event
count forecasts produced by ETAS, SMASH, and DSTPP across all EarthquakeNPP datasets. These plots
reveal systematic differences in how the models capture both background seismicity and sudden increases in
earthquake rate.

Across all datasets, ETAS provides the most consistent forecasts of daily event counts. It captures low-
activity days well and responds more effectively than the NPP-based models to increases in seismicity rate,
although it still underpredicts the largest rate excursions associated with major earthquake sequences. This
behaviour is particularly evident in the ComCat and SCEDC datasets during the 2010 El Mayor–Cucapah
and 2019 Ridgecrest sequences (Figures 16a and 16b), and explains ETAS’s consistently high consistency
test pass rates.

SMASH exhibits highly variable daily rate estimates across all regions. While this variability occasionally
allows it to match periods of elevated seismicity, such as during El Mayor–Cucapah in ComCat, it more
often leads to pronounced over and under prediction. This spiky behaviour results in a substantial number
of failed consistency tests.

DSTPP produces much smoother daily rate forecasts than SMASH, but this comes at the cost of systematic
underprediction. Across all datasets, DSTPP underestimates both background seismicity and elevated rate
periods, with the effect becoming especially severe in SCEDC and White (Figures 16b and 18). This
persistent bias explains its low consistency test pass rates.

Performance differences across datasets largely reflect the dominant seismic regime. In smaller regions such
as San Jacinto and Salton Sea (Figures 17a and 17b), all models perform more competitively due to the
absence of large mainshock-driven rate increases. However, even in these settings, SMASH remains overly
variable and DSTPP continues to underestimate daily rates.

G.2 Spatial

Figures 19 and 20 show aggregated spatial forecasts over the entire testing period for ETAS, SMASH, and
DSTPP across all EarthquakeNPP datasets. These plots summarise how each model distributes seismicity
rate spatially when forecasts are integrated over time. While this provides a useful overview of long-term
spatial structure, it does not distinguish whether high rates are forecast before events occur.

Across all datasets, ETAS produces the most spatially concentrated forecasts, with high rates aligned along
known fault structures and low rates assigned to seismically inactive regions. This apparent spatial precision
arises largely from ETAS’s explicit modelling of clustering, whereby elevated rates are assigned in the vicinity
of earthquakes that have already occurred. This behaviour is particularly evident in the ComCat and SCEDC
datasets (Figures 19a and 19b), where ETAS reproduces the large-scale fault network and major clusters
associated with past seismicity.

In contrast, SMASH consistently produces spatially diffuse forecasts. While it sometimes captures regions of
elevated activity, its rate is spread broadly across each domain, leading to weaker spatial contrast between
active and inactive regions. This effect is most pronounced in ComCat, where SMASH concentrates strongly
around the southern end of the domain near the 2010 El Mayor–Cucapah sequence, while remaining diffuse
elsewhere. Similar behaviour is observed in SCEDC, where SMASH is again dominated by the El Mayor region
and assigns comparatively high rates across large areas of the domain.

DSTPP generally produces smoother spatial forecasts than ETAS but with greater structure than SMASH. In
ComCat, San Jacinto, and Salton Sea (Figures 19a, 20a, and 20b), DSTPP follows the main fault-aligned
clustering while attenuating sharp spatial contrasts. However, in SCEDC and White, DSTPP substantially
underestimates the overall seismicity rate, resulting in uniformly low spatial forecasts and visible boundary
effects, particularly near the edges of the domains (Figures 19b and 20c).
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(a) ComCat

(b) SCEDC

Figure 16: Daily number forecasts from ETAS, SMASH, and DSTPP over the full testing period for (a)
ComCat and (b) SCEDC. Vertical lines show the forecasted daily distributions of earthquake counts. Green
lines indicate days where the observed count falls within the 95% forecast interval, while red lines indicate
failures. Observed daily counts are shown as dots, with marker size proportional to the number of earthquakes
and colour indicating pass (green) or fail (red).

36



Under review as submission to TMLR

(a) SanJac

(b) SaltonSea

Figure 17: Daily number forecasts from ETAS, SMASH, and DSTPP over the full testing period for (a)
SanJac and (b) SaltonSea. Vertical lines show the forecasted daily distributions of earthquake counts.
Green lines indicate days where the observed count falls within the 95% forecast interval, while red lines
indicate failures. Observed daily counts are shown as dots, with marker size proportional to the number of
earthquakes and colour indicating pass (green) or fail (red).

37



Under review as submission to TMLR

Figure 18: Daily number forecasts from ETAS, SMASH, and DSTPP over the full testing period for White.
Vertical lines show the forecasted daily distributions of earthquake counts. Green lines indicate days where
the observed count falls within the 95% forecast interval, while red lines indicate failures. Observed daily
counts are shown as dots, with marker size proportional to the number of earthquakes and colour indicating
pass (green) or fail (red).
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(a) ComCat

(b) SCEDC

Figure 19: Spatial forecasts from ETAS, SMASH and DSTPP, aggregated across the entire testing period
of (a) ComCat and (b) SCEDC. For each day in the testing period, every model simulates 10,000 repeated
earthquake catalogs within the boundary region. All simulated catalogs are aggregated across the entire
testing period and the expected earthquake rates are plotted within each grid cell. Observed earthquakes
are overlaid with marker size proportional to magnitude.
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(a) SanJac

(b) SaltonSea

(c) White

Figure 20: Spatial forecasts from ETAS, SMASH and DSTPP, aggregated across the entire testing period of
(a) SanJac, (b) SaltonSea, and (c) White. For each day in the testing period, every model simulates 10,000
repeated earthquake catalogs within the boundary region. All simulated catalogs are aggregated across
the entire testing period and the expected earthquake rates are plotted within each grid cell. Observed
earthquakes are overlaid with marker size proportional to magnitude.
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H Further Dataset Figures

H.1 ComCat

Figure 21: Times and magnitudes of events in the ComCat dataset (with key events labeled). The size of the
points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods
are indicated by colour and a further cumulative count of events is indicated in red.

Figure 22: Locations of events in the ComCat dataset, labeled by their partition into auxiliary, training,
validation and testing periods.
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H.2 SCEDC

Figure 23: Times and magnitudes of events in the SCEDC dataset (with key events labeled). The size of the
points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods
are indicated by colour and a further cumulative count of events is indicated in red.

Figure 24: Locations of events in the SCEDC dataset, labeled by their partition into auxiliary, training,
validation and testing periods.
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H.3 White

Figure 25: Times and magnitudes of events in the White dataset (with key events labeled). The size of the
points are plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods
are indicated by colour and a further cumulative count of events is indicated in red.

Figure 26: Locations of events in the White dataset, labeled by their partition into auxiliary, training,
validation and testing periods.
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H.4 QTM_SanJac

Figure 27: Times and magnitudes of events in the QTM_SanJac dataset. The size of the points are plotted on
a log scale corresponding to Mw. Auxiliary, training, validation and testing periods are indicated by colour
and a further cumulative count of events is indicated in red.

H.5 QTM_SaltonSea

Figure 28: Times and magnitudes of events in the QTM_SaltonSea dataset. The size of the points are
plotted on a log scale corresponding to Mw. Auxiliary, training, validation and testing periods are indicated
by colour and a further cumulative count of events is indicated in red.
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Figure 29: Locations of events in the QTM_SanJac and QTM_SaltonSea datasets, labeled by their partition
into auxiliary, training, validation and testing periods.

I Error Distributions & Next-event metrics
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Figure 30: The distribution of errors (Yobs − Ypred) for the Normal(0, 1), Exponential(1), and Pareto(2)
distributions. Maximum likelihood estimation is used to fit Normal and Laplace distributions to each error
histogram. Normal errors (Normal × Normal) are best approximated by the Root Mean Square Error
(RMSE), while Laplacian errors (Exponential × Exponential) are best approximated by the Mean Absolute
Error (MAE). However, neither RMSE nor MAE effectively capture the errors for the heavy-tailed Pareto
distribution.
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