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Abstract: While camera-based 3D object detection has evolved rapidly, these
models are susceptible to overfitting to specific sensor setups. For example, in
autonomous driving, most datasets are collected using a single sensor configu-
ration. This paper evaluates the generalization capability of camera-based 3D
object detectors, including adapting detectors from one dataset to another and
training detectors with multiple datasets. We observe that merely aggregating
datasets yields drastic performance drops, contrary to the expected improvements
associated with increased training data. To close the gap, we introduce an efficient
technique for aligning disparate sensor configurations —a combination of camera
intrinsic synchronization, camera extrinsic correction, and ego frame alignment,
which collectively enhance cross-dataset performance remarkably. Compared
with single dataset baselines, we achieve 42.3 mAP improvement on KITTI, 23.2
mAP improvement on Lyft, 18.5 mAP improvement on nuScenes, 17.3 mAP im-
provement on KITTI-360, 8.4 mAP improvement on Argoverse2 and 3.9 mAP
improvement on Waymo. We hope this comprehensive study can facilitate research
on generalizable 3D object detection and associated tasks.
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1 Introduction

3D object detection has emerged as an important task for robots. For example, autonomous vehi-
cles require precise localization of traffic participants, such as cars, pedestrians, and bicycles, to
ensure safe driving. Consequently, 3D object detection has garnered significant attention, leading
to improved accuracy across several benchmarks [1, 2, 3]. Nonetheless, a common limitation of
existing methods [4, 5, 6, 7, 8, 9, 10] is their tendency to be trained and evaluated on the same
benchmark.This practice overlooks the influence of data diversity, often under the assumption that
training and testing datasets are uniformly distributed - an assumption that might not always stand in
real-world applications, especially when a detector is deployed across varied vehicle models. This
raises concerns regarding the capability of these methods to learn from and adapt to a diverse range
of datasets.

To investigate this, we initiated a straightforward experiment, training a model on one dataset and
testing it on another. The results revealed a severe decline in performance: a detector trained on the
Argoverse2 [2] dataset experiences a 70.4% performance drop when evaluated on the Waymo [3]
dataset, compared to the counterpart trained directly on Waymo. Then, we add the nuScenes [11]
dataset to augment the training data volume. However, the model with additional data fails to achieve
meaningful performance (5.2 mAP) when tested on Waymo. This outcome amplifies a critical
question within the field of 3D perception: how to effectively utilize diverse data sources during
training.
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Figure 1: Top: Similar cars in different datasets. We provide image patches of the same resolution and LiIDAR
point clouds of the same scale. Objects in similar 3D shapes and distances differ significantly in 2D shapes.
Bottom: Different Sensor Suite Parameters. The focal length and resolution vary, forming different imaging
planes. The camera longitudinal offset from the ego center also varies.

Why incorporating additional data hampers model performance. What differences between the
datasets are responsible for such catastrophic failures? Suspecting the disparities in sensor configura-
tions to be the issue, we conduct another concise experiment to validate this hypothesis. In Fig. 2, we
train a 3D detector on Waymo images with a 2070 mm focal length and evaluated it on images of
different focal lengths, achieved through digital zooming. Optimal performance was observed when
the focal lengths of both training and testing images were aligned. This finding remained consistent
even when applied to disparate datasets, e.g. Argoverse2.

This observation reinforces our hypothesis concerning the significant influence of camera parameter
variations on 3D detection. The underlying reason is rooted in the nature of imaging [12]: an image
serves as a 2D projection, capturing and rendering visual information from the 3D physical world.
As depicted in Fig. 1, varying sensor configurations lead to unique projections.

We term this issue as sensor misalignment across different datasets. Our in-depth analysis underscores
the pivotal roles of intrinsic, extrinsic, and ego coordinate system in this misalignment, as detailed in
(§ 3.4). To mitigate this issue, we introduce straightforward strategies that leverage sensor parameters
to compensate for biases in input signals. First, we resize all the input images to unify the focal
lengths. Second, an Extrinsic Aware Feature Sampling is incorporated into the detection pipeline
to counteract the effects of camera translations. Third, ego frame alignment is employed to resolve
ambiguities in the ego frame definition, addressing the intertwined issues of camera height and ego
center. Our method yields a massive improvement in the generalization capability of the detector,
with an average increment of 29.5 mAP when adapting nuScenes to other datasets. In summary, the
main contributions of this paper include:

* A thorough evaluation pinpointing the critical issues resulting in performance decline during
cross-dataset testing and multi-dataset training. Our findings highlight three key elements: intrinsic,
extrinsic, and the ego coordinate system.
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Figure 2: Training and testing on the same focal length setting gives optimal results.

* A simple yet effective sensor alignment method to counteract this issue by correcting the input
signals, leading to notable performance boosts across all evaluated datasets.

» Remarkable performance enhancements across various datasets. Compared to direct transfer, our
approach achieves an average improvement of 29.5 mAP in cross-domain adaptability. Additionally,
our jointly trained models outperform those trained on individual datasets, even surpassing models
specifically trained on Lyft, KITTI, and KITTI-360 datasets without utilizing these datasets during
the training phase.

2 Related Work

Camera-based 3D Detection. Recently, Significant advancements have been made in camera-based
3D object detection in the Bird’s Eye View (BEV) space [4, 6, 13, 5, 14, 15, 7, 16, 17]. The majority
of these approaches transform 2D image features into 3D space by camera parameters. Inspired by
LSS [18], certain methods [6, 7, 16] estimate depths for image features and shoot them to a predefined
3D grid to create a BEV feature map. Another branch of methods utilizes object queries [19]. They
generate 3D queries [4, 13, 5, 8] and project them onto the image plane to sample features. Notably,
many works are derivatives of DETR3D [4] and BEVDet [6], sharing substantial similarities.

Domain Adaptation. This line of methods aims to improve model performance from the source
to the target domain [20, 21, 22, 23, 24, 25, 26, 27, 28, 29]. In paper [30], the authors explore the
impact of data distribution on the cross-dataset performance of LiDAR-based 3D detectors. In [31],
Wang et al. analyze the impact of camera intrinsic parameter on image features and depth estimation
based on BEVDepth [7]. Diverging from focusing on a single dataset, our study extends experiments
to training on multiple datasets, addressing misalignments in distribution during both training and
inference phases. Besides intrinsic, we include the role of camera extrinsic and the ego coordinate
system in causing such misalignments.

Multi-dataset training. A number of studies have improved generalization capability by training on
combined datasets. In monocular depth estimation, MiDAS [32] illustrates the efficacy of mixing
five datasets from complementary sources. Uni3D [31] focuses on joint training strategies and their
impact on LiDAR-based 3D object detection. Both studies mentioned that naively adding datasets
does not guarantee improvement. We echo this sentiment in vision-centric 3D object detection, and
propose a solution through cross-dataset sensor alignment.

3 Experiment and Analysis

3.1 Experiment Protocols

Datasets. Our experiments involve six datasets: Argoverse2 [2], KITTI [1], KITTI-360 [33], Lyft [34],
nuScenes [11] and Waymo [3], with a focus on camera-based 3D object detection data. Each of
these datasets offers ground-truth 3D bounding box labels for various object types. An overview
of these datasets is available in Table 1. We have standardized different dataset formats to the
MMDetection3D [35] format for a cohesive analysis.



Table 1: Datasets overview.

Dataset | Abbr. | #frame Image resolution Object type  #RGB camera
Argoverse2 | A 26,687 (2048, 1550) 26 7

Kitti K 7,481 (1224, 370) 8 2

Kitti-360 K360 | 61,569 (1408, 376) 26 4 (2 fisheye)
Lyft L 22,680 (1920, 1080)/(1224, 1024) 9 7

nuScenes N 28,130 (1600, 900) 8 6

Waymo W 39,614 (1920, 1280) 3 5

3D Object Detectors. Aiming for a method applicable to both multi-view and single-view detection,
we employ BEV detectors, DETR3D [4], and BEVDet [6] as our baselines, steering clear of image-
based detectors like FCOS3D [36] due to their proven limitations in multi-view scenarios [4].

Metrics. We adopt the LET-3D-AP [37] metric in line with the 2022 Waymo Open Dataset Chal-
lenge [3]. All dataset categories are merged into three primary classes: vehicle, pedestrian, and
bicycle. We present the LET-3D-AP for each using IoU thresholds of 0.5, 0.3, and 0.3 within a
unified perception range of 51.2 meters.

For clarity, we only showcase monocular detection results of DETR3D, and the average mAP for
the three classes in the main paper. More detailed insights, including multi-view detection results,
BEVDet experiments, individual class mAP, and training specifics, are elaborated in the Appendix.

3.2 Training on one dataset and testing across datasets

We began by training detectors on individual datasets and testing their performance across different
datasets. The “Direct” block in Table 2 illustrates both in-domain (i.e., train and test on the same
dataset) and cross-domain performance. According to the numbers in bold font, DETR3D exhibits
satisfactory in-domain mAP on Waymo and Argoverse2 (AV2) but falters on Lyft, nuScenes, KITTI,
and KITTI-360. One cause of the declination is diverse data collection conditions: Lyft is collected by
20 different autonomous vehicles, while nuScenes includes data in Singapore and the USA, causing
difficulty in the model’s convergence. Another cause is insufficient data volume and pixel limitation.
KITTI only has 4,000 training samples, and KITTI-360 has the smallest focal length, rendering
pedestrians and cyclists nearly undetectable. Regarding cross-domain mAP, it almost drops to O for
most dataset pairs. This downfall cannot be attributed to domain shifts in the environment or object
size, evidenced by the failed transfer between KITTI and KITTI-360, which are collected in the same
city.

An auxiliary experiment depicted in Fig. 2 underscores the model’s sensitivity to focal length. The
model’s performance dips on Waymo itself with focal length deviation but improves markedly when
AV2 is resized to Waymo’s focal length. This indicates intrinsic variation, as depicted in Fig. 1, to be
a core issue. In the ensuing subsection, we demonstrate that merely expanding the volume of training
data is insufficient to overcome this challenge.

3.3 Training on multiple datasets and testing across datasets

We augment data diversity by sequentially adding datasets into the training mix and develop six
distinct models 3. The “Direct” section of Table 3 showcases fluctuating performance metrics as the
dataset expands. There’s an mAP increase for nuScenes from 36.3% to 46.2% but an observable
decline upon the integration of KITTI-360. Similarly, KITTI’s mAP recedes from 41.4% to 36.3%.

From a broader view, neither cross-domain nor in-domain performance (avg.S and avg.T) achieve
meaningful improvement despite the increased data volume. The detector continues to overlook the
intrinsic disparities within the input images, even with a mixed dataset.

3Here, our adding order is nuScenes, AV2, Lyft, KITTI, KITTI-360, and Waymo. However, the trend of
performance is invariant to the order. See section 5.4 in the Appendix for another result starting with Waymo.



Table 2: Cross-domain performance DETR3D [4] trained on a single dataset. “Direct” means direct transfer.
“avg.T” stands for average in target domains. The bold font highlights the in-domain performance. See § 4 for
details of “K-sync”, “E-aware”, and “Ego-sync”.

Setting | sre\dst | N A L K K360 W | avgT
N 363 0.8 1.8 00 0.0 1.1 0.7
A 02 48.0 0.1 0.0 0.0 174 | 3.5
Direct L 0.5 0.1 37.3 04 0.0 0.1 0.2
K 2.8 1.2 00 245 1.1 0.7 1.2
K360 | 0.1 0.2 0.0 3.2 26.1 0.1 0.7
W 0.1 89 00 00 0.0 588 | 1.8
N 40.8 255 18.6 29.7 18.0 234 | 23.0
A 132 514 175 6.6 4.6 38.8 | 14.1
K-sync L 1.0 1.3  44.0 8.1 5.7 1.5 35
K 24 1.2 1.2 310 6.1 0.5 2.3
K360 | 14.6 147 7.3 346 347 82 15.9
w 145 378 143 94 5.6 57.7 | 163
N 43.1 33.6 328 33.0 184 33.0 | 30.2
K-sync A 244 481 34.1 18.1 8.7 374 | 24.5
E—awaré L 157 19.6 47.1 20.0 129 189 | 174
and Egoisync K 7.1 8.7 102 291 93 24 |75
K360 139 17.7 16.6 39.1 36.7 8.4 19.1
A\ 254 382 336 212 11.7 57.6 | 26.0

3.4 Analysis

In this section, we model 3D-2D correspondence of objects and scrutinize 3D detection pipeline. Our
analysis reveals that apart from intrinsic, extrinsic and ego coordinate system also influence detection
performance.

3D-2D correspondence of objects. We begin by examining the projection of an 3D object via
pinhole camera model. With a frontal camera of focal length f, at coordinates (t,,1,,t,) relative
to the ego frame origin and an object at (x,y, ), having a 3D size S and pixel size spize;, their

relationship can be formulated as:
S
Spixel = fa X m, (D
where x — t, indicates the depth in the camera frame, and each variable in the equation is a scalar.
Changes in f, and ¢, result in different s;;.; values, causing the same object to appear differently

—a factor often overlooked in cross-dataset training and testing.

3D detection pipeline. To understand the impact of Eq. (1) on 3D detection, we trace the detection
process. Initially, the detector projects a 3D query point p, (2o, Yo, 20) to a 2D coordinate (u, v). It
then samples image features and predicts the object’s attributes using both positional and semantic
information:

7—[:(I(u—s,v—&u—i—s,v—i—s),po)—>l30,éo, 2)

where I(u—s,v—s,u+s,v+ s) denotes an image patch centered at (u, v) with dimensions 2s X 2s.
We simplify our analysis by treating this patch as the image feature, skipping the feature extraction
process. The vector f)o denotes the predicted position and size, while the scalar ¢ is the classification
score. Additionally, according to the pinhole camera model, the projection from py, to (u, v) follows:

d(u,v,1)" = KTp,, ©)
with K and T being the intrinsic and extrinsic matrices, and d = xo — t,, being the depth of p in the
camera frame, embodied in KTp,. The mapping function # is learned during training.

Considering the query point is the object center, and the image patch contains the object, the
implications of Eq. (1) extend to Eq. (2): variations in intrinsic K and extrinsic T scale the object



Table 3: Performance of DETR3D trained on multiple datasets. “Direct” means direct merge for training and
direct transfer for testing. “avg.T” stands for the average in target domains. “avg.S” stands for the average in
source domains. See § 4 for details of “K-sync”, “E-aware” and “Ego-sync”.

Setting | sre\dst | N A L K K360 W | avgS | avg.T
N 36.3 0.8 1.8 00 0.0 1.1 36.3 0.7
+A 405 492 05 0.0 0.0 52 | 449 1.4

Direct +L 41.6  50.5 437 0.0 0.0 3.8 45.3 1.3

+K 415 497 460 414 1.1 36 | 446 |24
+K360 | 42.6 543 46.8 363 297 33 | 419 |33
+W 46.2 537 494 395 297 619 | 46.7 | -
N 40.8 255 186 29.7 18.0 234|408 | 23.0

+A 455 500 251 358 213 442 | 478 | 31.6
K-sync +L 46.8 532 551 37.8 231 453 | 517 | 354

+K 474 535 536 578 218 444 | 53.1 33.1

+K360 | 50.2 544 54.0 602 396 44.7 | 51.7 | 44.7

+W 51.8 553 566 619 40.7 6377|550 | -

N 43.1 336 328 33.0 184 33.0 | 43.1 30.2
K-sync +A 52.1 527 384 422 232 40.7 | 524 | 36.1
E—awar;:, +L 52.6 532 595 46.1 261 43.6 | 55.1 38.6

+K 51.0 547 602 639 284 446 | 575 | 365
+K360 | 50.0 55.0 59.8 650 427 452|545 | 452
+W 548 564 605 668 434 627|574 | -

and Ego-sync

within the image, altering the contents of the image patch I (u—s, v—s, u+s, v+s). Meanwhile, shifts
in the ego frame influence the value of query p, and object location (z, y, z)*. Observing identical
3D objects with different sensor configurations alters the distributions of both 2D features and 3D
positions, yielding an inconsistent mapping function . Consequently, detectors make incorrect
predictions during cross-dataset testing and learn from conflicting data samples in multi-dataset
training. In summary, the sensor deviation between datasets is three-fold:

¢ Intrinsic. Variations in camera intrinsic parameters, particularly the focal length, cause objects of
identical size and location to be rendered differently in images across datasets.

» Extrinsic. As indicated in Eq. (1), extrinsic parameters or camera poses, especially ¢, also impact
the apparent size of the object in images.

* Ego coordinate system. Fluctuations in ego centers affect data distribution. Notable differences in
ego height impair the reliability of query prior knowledge in cross-dataset testing.

These discrepancies are illustrated in Fig. 1, where similar 3D information corresponds to highly
distinct 2D image information with changes in the sensor suite.

4 Sensor Alignment Approaches

We introduce three efficient strategies to tackle the challenges: Intrinsic Synchronization, Extrinsic
Aware Feature Sampling and Ego Frame Alignment. We observe that implementing the last two
without Intrinsic Synchronization leads to sub-optimal outcomes®. Our approaches collectively create
a sensor-invariant 3D-2D mapping relationship, enhancing model consistency across diverse datasets.

4.1 Intrinsic Synchronization (K-sync)

Among the factors impacting model performance, camera intrinsic parameters prove the most
straightforward yet crucial to synchronize. Inspired by the intrinsic-decoupled technique prevalent in
depth estimation [31, 32], we resize the images to a fixed focal length, fy, using bi-linear interpolation.

4Also known as the ground-truth labels.
>See section 5.4 in the Appendix for ablation studies on sensor alignment approaches.
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Figure 3: (a): Resizing both input images and their focal length to achieve a unified focal length. (b): Altering
the fixed sampling region to vary in size, dependent on the distance between the camera center and query
points(yellow to red). (¢): Aligning varied ego frames by adjusting the ego origin in accordance with the actual
height and dataset distribution.

As depicted in Fig. 3(a), we align all focal lengths with that of Waymo, which has the largest focal
length.

As shown in Table 2, simple resizing makes huge improvement. Compared to testing naively, over 24
mAP gains is achieved when transferring from nuScenes to Argoverse2 and KITTI. From KITTI-
360 to KITTI, DETR3D attains a mAP of 34.6%, a result on par with in-domain evaluation. This
enhancement aligns with the minimal domain gap between these two datasets, except for their focal
length difference (707mm vs. 552mm). Table 3 displays the result of models trained on multiple
datasets, where both in-domain and cross-domain performances exhibit substantial uplifts. The
adverse effect previously associated with KITTI-360 is mitigated, signaling a resolution to the issue
of conflicting data samples. Consequently, models are now efficiently utilizing the increased data
volume to enhance performance.

4.2 Extrinsic Aware Feature Sampling (E-aware)

We introduce the Extrinsic Aware Feature Sampling (E-aware) to counteract the challenges posed by
variations in camera extrinsics, specifically the frontal translation ¢,.. Our focus is on the impact of ¢,
on the apparent object size s;;¢; and the related content within a fixed image receptive field 2s x 2s,
as explained in Eq. (1) and Eq. (2).

Given the assumption that 3D query p, as the object’s 3D center, we modify the receptive field of
P, to be proportional to ro%tf’ ensuring that the sampled image content remains consistent across
varying t,. This modification is implemented by sampling more points followed by average pooling,
analogous to the ROI Align process [38].

To validate the effectiveness of E-aware, we simulate changes in camera position through random
translations within a range of [—2m, 2m/|. Our method exhibits enhanced robustness to these po-
sitional fluctuations, as indicated in Table 4. The influence of ¢, is found to be minimal, while
adjustments for ¢, are incorporated in the subsequent approach. Evaluations of E-aware under
cross-dataset testing and multi-dataset training are also combined with the next approach.

4.3 Ego Frame Alignment (Ego-sync)

Variations in the definition of the ego frame across datasets, particularly the height of the ego centers,
lead to inconsistencies in data distribution. Our initial strategy involves transforming the ego x-y
plane to the ground, which ensures consistent physical interpretations of the z-coordinates across
datasets. However, this straightforward approach yields no significant improvements. We turn to a
nuanced strategy, employing DETR3D trained on the Waymo dataset as a reference. The ego center’s
x-z coordinates for each dataset are adjusted to align with this reference. A grid search, conducted
at a resolution of 0.5m, identifies the optimal alignment settings that maximize performance, as
visualized in Fig. 4. We find that not only the height, but also the frontal position of the ego center
play a pivotal role, since it influence the distribution of object’s x-coordinates in each dataset.
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Figure 4: Exploring optimal performance through grid-search modifications of the x- and z-coordinates of ego
centers, with the integration of K-sync and E-aware. The results indicate that both the height and frontal position
of the ego center significantly impact performance metrics.

Table 4: Results of random jittering experiments on nuScenes, with the x-axis aligned to the car’s direction of
movement and the y-axis perpendicular to it.

methods | None ony onx onxy

Direct 36.3 347 279 269
w/ E-aware | 36.9 355 354 349

The comprehensive alignment of ego frames, depicted in Fig. 3, yields enhanced performance metrics
in Table 2 and Table 3. For instance, when training on six diverse datasets, DETR3D exhibits an
mAP enhancement of up to 27.3% on KITTI compared to the baseline direct merging approach.

5 Conclusion

In this paper, we meticulously examined the obstacles hindering image-based detectors from deliver-
ing optimal performance and adaptability across various autonomous driving datasets. We pinpointed
the root of the issue to the inconsistent 3D-2D mapping relationships, primarily caused by disparate
sensor configurations encompassing camera intrinsic, extrinsic, and ego coordinate systems. We
demonstrate that simple sensor alignment techniques can significantly alleviate this performance
degradation. Our approach yielded an average enhancement of 29.5 mAP in cross-dataset testing
from nuScenes to other datasets, capitalizing on nuScenes’ diverse data distribution. We also achieve
21, 17.2, 6.3, 18.4, and 24.2 mAP boosts when AV2, Lyft, KITTI, KITTI-360 and Waymo serve as
the source domain. Unlike many existing studies that only focus on vehicles, our evaluation metric
also takes into account pedestrians and bicycles, offering a more comprehensive assessment.

In multi-dataset training, we fully exploit the potential of data volume, with 18.5, 8.4, 23.2, 42.3,
17.3, and 3.9 mAP gaining by combining 6 datasets instead of training on them separately. Compared
to direct merging, we achieve an average performance boost of more than 10 mAP on all datasets.
We believe that our insights will stimulate further research in multi-dataset training and domain
adaptation for vision-centric 3D object detection and localization. We emphasize the importance of
applying data corrections before incorporating additional datasets or developing new computer vision
algorithms to bridge the remaining domain gaps.

6 Limitations

While our study provides valuable insights into addressing sensor misalignment in image-based
detectors for autonomous driving, there are two limitations to consider. First, due to the lack of
datasets with highly diverse camera poses, we were unable to explore the impact of camera rotation on
the detection performance. Second, We were unable to scale our method to a larger-scale in-the-wild



dataset due to annotation scarcity. A potential solution could be employing semi-supervised 3D
detectors as baselines, and we leave it to future work.
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Section 1: brief introduction to the six datasets.

Section 2: data format conversion and dataset merging settings.
Section 3: details of training settings.

Section 4: analysis and results of BEVDet.

Section 5: additional results from DETR3D.

1 Datasets

Argoverse2. The Argoverse2 dataset [1] is collected across six cities in the U.S., including Pittsburgh,
Detroit, Austin, Palo Alto, Miami, and Washington D.C. It encompasses data captured in various
weather conditions and at different times of the day. The dataset includes images from two grayscale
stereo cameras and seven cameras that provide 360-degree coverage. It offers 3D annotations at
a frame rate of 10Hz. To align with the frame rate in the nuScenes dataset, we sub-sample the
Argoverse2 dataset, resulting in 21,982 frames for training and 4,705 for validation, with a frame rate
of 2Hz.

KITTI. The KITTTI [2] object detection benchmark consists of 7,481 frames for training. These
scenes were captured in clear weather and during daytime around Karlsruhe, Germany. The dataset
provides images from two RGB cameras and two grayscale cameras, forming two stereo pairs. For
our study, we solely utilize the left RGB camera. Following [3], we separate the data into 3,712
training frames and 3,769 validation frames.

KITTI-360. The KITTI-360 dataset [4] is significantly larger than KITTI, comprising 61,569 valid
frames with 3D annotations at a frame rate of 10Hz. The labelled data is obtained from nine video
clips. To create a training and validation split, we utilize the first 80% of each video clip for training
and the remaining 20% for validation. This results in a training set containing 49,253 frames and a
validation set containing 12,316. Unlike KITTI, the KITTI-360 dataset provides RGB images from
two frontal perspective cameras and two side fish-eye cameras. Similar to the KITTI settings, we
exclusively use the images from the left frontal camera in our study.

nuScenes. The nuScenes dataset [5] contains 28130 training and 6019 validation keyframes. The
scenes are collected around Boston, USA and Singapore in multiple weathers and during different
time frames. For each frame, the dataset provides six images that collectively cover a 360-degree
view.

Lyft. The Lyft Level 5 dataset [6] consists of 22,680 annotated frames captured around Palo Alto,
USA, during clear weather conditions and daytime. Each frame within the dataset includes images
from six surrounding view cameras as well as a long-focal-length frontal camera. It is essential to
mention that this dataset is collected using 20 independent vehicles, and the surrounding view images
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have two different resolutions. Following the approach outlined in MMDetection3D [7], we partition
the dataset into 18,900 frames for training and 3,780 frames for validation.

Waymo. The Waymo [8] dataset is collected across Phoenix, Mountain View, and San Francisco,
encompassing various weather conditions and different times of the day. It includes images from five
cameras and offers 3D annotations at a frame rate of 10Hz. The training set consists of 158,081 frames,
while the validation set contains 39,990 frames. To align with a 2Hz frame rate, we sub-sample the
dataset, resulting in 31,616 frames for training and 7,998 frames for validation.

2 Converting Datasets into a Unified Format

This section provides a detailed explanation of how we convert Argoverse2, KITTI, KITTI-360, Lyft,
nuScenes, and Waymo datasets into a unified format. We specifically focus on the issues related to
coordinate systems and 3D annotations that arise when merging these datasets. We convert data under
MMDetection3D v1.1.0.

2.1 Coordinate Systems

Regarding sensor configuration, the datasets differ in terms of three types of coordinate systems: ego
frame, LiDAR frame, and camera frame. The definition of camera is clear, so we primarily focus on
the former two. Each dataset typically includes at least one LIDAR mounted on the vehicle’s roof.
The origin of the LiDAR frame is commonly located at the center of the top LiDAR if there is no
specification.

The ego frame is more confusing as the origin is defined differently across the datasets. In Argoverse?2,
nuScenes and Waymo, the ego origin is located at the center of the car’s rear axle. In Argoverse2,
it is approximately 33cm above the ground, while in the latter two datasets, it is projected onto the
ground plane. Lyft does not explicitly specify the location; however, based on the statistical analysis
of 3D annotations, it is also considered on the ground. These four datasets have corrected their axes,
ensuring the z-axis consistently points upwards from the road surface. On the other hand, for KITTI
and KITTI-360, the Inertial Measurement Unit (IMU) defines the ego frame. Across all the datasets,
the x-axis aligns with the car’s longitudinal direction, while the y-axis points to the left.

Regarding LiDAR point clouds and 3D annotations, Argoverse2 and Waymo define them in the ego
frame, while KITTI, KITTI-360, Lyft, and nuScenes define them in the LIiDAR frame. Consequently,
during training, we consider the LiDAR centers of the latter datasets as the ’ego centers’.

In terms of ego frame alignment, for Argoverse2, KITTI, and KITTI-360, we simply lower their ego
centers by 0.33m, 1.73m, and 1.73m, respectively, to align them with the road surface. For Lyft and
nuScenes, we transform the entire coordinate system to their original ego frames, which are also
pressed against the road.

2.2 Object Filtering

To ensure consistency and data quality, we discard object annotations that fall outside the camera
view. This is accomplished by projecting the eight corners of each object’s 3D bounding box onto the
image plane. The object annotation is removed if all eight corners are outside the image boundary.
Additionally, we filter annotations based on a specific range in the X, y, and z coordinates, namely
[-51.2,51.2] x [-51.2,51.2] x [—5.0,4.0]. As every dataset includes LiDAR data, we also discard
annotations with no LiDAR points within the 3D bounding box since they may be occluded.

2.3 Merging Categories

To unify the category labels across datasets, we merge the categories within each dataset into three
classes: vehicle, pedestrian, and bicycle. This taxonomy closely resembles Waymo’s classification but
with a little difference in the bicycle category. Waymo excludes bicycles without a rider, whereas we
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Table 1: The original categories in each dataset vs. merged categories
Dataset Vehicle Pedestrian Bicycle
REGULAR VEHICLE, LARGE VEHICLE,

Argoverse2 BUS, BOX TRUCK, TRUCK, WII—){}]EE]EEEERé?gER BYCYCLE,
MOTORCYCLE, VEHICULAR TRAILER, OFFICIAL SIGNALER BYCYCLIST

TRUCK CAB, SCHOOL BUS
KITTI Car, Van, Trunk, Tram Pedestrian, Person Sitting | Cyclist
bus, car, caravan, motorcycle,

KITTI-360 trailer, train, truck, unknown vehicle person bicycle, rider
car, truck, bus, emergency vehicle, . .
Lyft other vehicle, motorcycle pedestrian bicycle
car, truck, construction vehicle, . .
nuScenes R pedestrian bicycle
bus, trailer, motorcycle
Waymo Car Pedestrian Cyclist

Table 2: Percentage of each class in each dataset.
Dataset | Vehicle | Pedestrian | Cyclist

N 70.3% | 26.6% 3.1%
A 71.9% | 26.9% 1.2%
L 93.4% | 3.7% 2.9%
K 84.8% | 11.4% 3.8%
K360 89.9% | 4.9% 5.1%
\ 64.3% | 34.7% 1.0%

include such objects when relabeling the other datasets. Table 1 shows the mapping of all categories
to the three classes. Any types not listed in the table are discarded during the merging process. Table 2
also shows the percentage of each class in each dataset.

3 Training Details

For all detectors, the image backbone is a Resnet-50 [9] pretrained on ImageNet [10].
DETR3D. We use images with original resolution and the original training policy [11].

BEVDet. The input images are at 1/2 width and height. We use adamW [12] with weight decay
1 x 10~7 as optimizer, and train it for 24 epochs with batch size 64 and initial learning rate 2 x 10~%,
which will be decreased 10 times on 20th and 24th epoch. We also set the depth bins to be [1, 140].

During training, we deploy data augmentations in BEV space and image input for BEVDet. We
follow the original settings in [13], except that we do random scaling with a range of [0.8, 1.2]. After
scaling, we crop the bottom part of the images from every dataset and pad them to a unified resolution:
960 x 448.

4 Analysis and Results of BEVDet

We have verified our sensor alignment strategy on BEVDet, which leverages depth estimation to
shoot 2D image features to 3D space. The results are shown in Table 3 and Table 4. Since BEVDet
represents another type of BEV detector against DETR3D (LSS-based vs. Query-based), there are
some differences in the alignment approaches.

4.1 Sensor Alignment Approaches

Intrinsic Synchronization (K-sync). Because BEVDet requires inputs of fixed resolution, image
resizing is not very compatible since it introduces dynamic resolution. Instead, we sync focal
length by applying intrinsic-decoupled depth estimation as [14, 15, 16] do. It is confusing that the
performance (“K-sync” in Table 3 and Table 4) does not improve much. We visualize the prediction in
Fig. 1. Surprisingly, this module predicts depth correctly. The reason for failure is the wrong heights.
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Table 3: 3D-mAP of BEVDet [13] trained on single dataset. “Direct” means direct transfer, “K-sync” means
Intrinsic Synchronization (“K” stands for the intrinsic matrix K), and “Ego-sync” means Ego Frame Alignment.

Setting | sre\dst | N A L K K360 W | avg.T
N 295 00 03 0.0 00 0.0 | 0.1
A 00 343 00 00 00 9.0 1.8
Direct L 00 00 31.8 0.1 0.2 0.0 | 0.1
K 0.0 0.0 0.1 9.2 0.0 0.0 0.0
K360 |00 00 0.0 02 195 00 | 0.0
W 0.0 0.4 0.0 0.0 0.0 45.1 | 0.1
N 30.7 0.2 3.9 5.0 1.3 0.5 2.2
A 24 379 00 0.0 00 4.2 1.3
K-sync L 0.2 0.0 320 03 0.6 0.0 0.2
K 02 00 0.1 10.7 1.5 00 | 04
K360 | 0.0 0.1 2.7 11.0 183 0.0 2.8
W 0.3 178 00 00 0.0 476 | 3.6
N 319 98 28 63 3.7 0.6 | 4.6
A 7.0 37.8 4.6 2.9 1.2 3.1 3.8
K-sync + Ego-sync L 05 00 316 26 35 0.0 1.3
K 0.2 0.3 1.3 10.0 1.6 0.2 0.7
K360 | 00 00 34 124 213 0.0 3.2
W 11.6 263 8.8 10.8 3.9 476 | 123

Table 4: 3D-mAP of BEVDet trained on multiple datasets. “Direct” means direct merge and transfer.

Setting | sre\dst | N A L K K360 W | avgS avgT
N 295 00 03 00 00 0.0 | 295 0.1
+A 337 38.8 0.0 0.1 0.0 8.7 36.2 2.2
Direct +L 36.2 40.0 382 0.1 0.1 4.5 38.1 1.6
+K 321 403 377 299 02 5.7 35.0 3.0
+K360 | 33.4 40.0 390 325 234 87 33.7 8.7
+W 30.8 37.7 384 346 223 45.2 | 34.8 -
N 30.7 0.2 3.9 5.0 1.3 0.5 30.7 2.2
+A 348 412 14 1.2 04 4.3 38.0 1.8
K-sync +L 37.1 40.5 387 4.6 3.6 16.8 | 38.8 8.3
+K 38.7 41.1 385 329 7.1 122 | 37.8 9.6
+K360 | 353 425 394 369 232 6.4 35.5 6.4
+W 36.7 46.8 392 383 252 523|398 -
N 319 98 28 6.3 3.7 0.6 319 46
+A 36.8 412 7.2 11.8 2.5 3.2 39.0 6.2
K-sync + Ego-sync +L 38.7 440 364 164 103 2.6 39.7 9.8
+K 375 415 388 342 110 94 38.0 10.2
+K360 | 394 439 384 402 273 2.7 37.8 2.7
+W 40.8 46.1 39.7 427 28.1 514 | 415 -

When we use a BEV metric that ignores heights or executes Ego Frame Alignment, the performance
improves immediately. See § 4.2 and § 4.3 for more details of BEV metric and intrinsic-decoupled

depth estimation.

Extrinsic Aware Feature Sampling (E-aware). This module is no longer applicable since the depth
estimation module does not predict depths from the ego center. On the contrary, it predicts from
the camera optical center and naturally bypasses the impact of extrinsic. However, even if the depth
of image features are correctly inferred, we hypothesis that model still struggles in estimating the
dimensions of objects, which may be addressed by introducing extrinsic embedding.

Ego Frame Alignment (Ego-sync). We use the same Ego-sync settings as in the main paper. In
Table 3, transferring from Waymo to other datasets has an improvement of 12.2 in 3D-mAP. In
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Figure 1: Visualization of objects in point clouds and images. The top is prediction made by BEVDet and the
bottom shows groundtruths.

Table 4, BEVDet achieves a performance boost of 6.7 mAP when training on all datasets. The similar
mAP gains proves the importance of ego frame definition once again.

4.2 3D Metric vs. BEV Metric

The poor cross-dataset improvement after applying K-sync seems inconsistent with the one we gained
in DETR3D. However, after careful examination, we find that although K-sync corrects the depth
prediction, it cannot correct object heights.

The visualization of detection results proves this point. As shown in Fig. 1, in bird-eye view, the
predicted objects have become very close to the ground truth after we apply K-sync. However, a large
but consistent offset appears on the image plane: the objects are predicted lower than they should be.
Although the depths are estimated correctly, the heights are wrong, causing the 3D mAP to be nearly
Zero.

We show the power of K-sync by changing our 3D metric into a BEV metric. In Table 5, we switch
the metric by setting the center heights to zero for both prediction and ground truth objects. A
significant improvement emerges after we apply both BEV metric and K-sync, up to 10 points.

The reason is simple: K-sync only corrects depths. In DETR3D, objects are inferred from 3D query
points that contain height information, while BEVDet collapses 3D grid into BEV pillars, losing the
height information. LSS-based [17] methods often assume all objects to be on flat ground. Under
this setting, it ignores height information and can not deal with changes in altitude, such as irregular
terrains and ego frame changes. This could be solved by setting 3D voxel grid instead of BEV pillars,
or post-process the heights according to the terrain.

4.3 Intrinsic Decoupled Module

The dense depth estimation module in BEVDet requires a fixed input resolution throughout training
and testing, which prevents BEVDet from changing the input resolution as flexibly as DETR3D can.
As an alternative, We scale the predicted depth according to the focal length. We call it Intrinsic
Decoupled Module.
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Table 5: BEV-mAP of BEVDet [13] trained on single dataset with Intrinsic Synchronization. We show avg.T
improvement compared to 3D-mAP

Setting | src/dst | N A L K K360 W | AavgT

N 33.6 225 87 124 44 16.8 | +10.8
A 136 397 72 80 34 21.6 | 495
K-sync L 30 09 343 32 50 1.7 | 42.6
K 09 25 32 134 2.7 1.1 +1.7
K360 | 02 05 95 134 224 03 +2.0
W 16.1 29.1 102 10.6 3.7 503 | +10.3

Assuming that we have a depth estimation network, which is trained on a dataset with fixed focal
length (e.g. nuScenes with f=1266), it will predict objects’ depth according to their pixel size. Given
Spizel s the pixel size of a certain object and d as the metric depth (in meters), the network learns a

mapping:

M 5pizer — d. ()

Intuitively, if an object looks small, it predicts a large depth, and vice versa, and if we resize the
image to be smaller, all the objects look smaller, so the predicted depths increase. However, the 3D
locations of objects do not change with image resizing, so predictions are eventually wrong.

We want the model learns and predicts a mapping that is invariant to the focal length changes, so we
set a scale-invariant depth d*:

d*—ixd, 2)

~ fo

where f is the input focal length, and fj is a constant. It can be understood as the “reference focal
length”, i.e., let the depth network “feel” as if it were working on a single camera, although it receives
images of various focal lengths from different datasets.

In practice, we force the model to learn:

M* : Spiger — d¥, 3)
and we recover the metric depth by:
Jo
d= =" xd", 4
f

for shooting image features to BEV grid later.

S Additional Results from DETR3D
In this section, we first provide additional results on monocular 3D detection using DETR3D.

5.1 Ablation Studies by Cropping the Input Images

To investigate whether the model relies on other visual cues for object detection, we conduct an
experiment where we crop the input images at different positions during testing. In Table 6, we find
no performance drop in DETR3D, whereas BEVDet shows a substantial decrease. This indicates
that DETR3D does not rely on objects’ position in the images. On the other hand, BEVDet, which
incorporates a depth network in its architecture, relies more on this kind of pictorial cues, as suggested
in prior work [18].
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Table 6: Results of DETR3D and BEVDet which are trained on Waymo, using images cropped at different
positions during testing.

Cropped height | [192,992] [288,1088] [384,1184] [480,1280] Origin

DETR3D 56.9 59.3 59.3 59.7 57.7
BEVDet 20.8 30.5 36.4 31.5 39.0

Table 7: Ablation study of synchronizing focal length to different values. We add “*” to indicate the original
focal lengths.

Train | focal length | N A L K K360 W
notsynced | 363 08 1.8 0.0 0.0 1.1
1260* 357 219 138 271 169 19.2
N 2070 40.8 255 18.6 29.7 180 234
3100 41.7 262 18.7 285 1777 258
4140 433 264 194 318 175 263
notsynced | 0.2 480 0.1 00 00 17.4
1780%* 11.8 468 72 64 54 384
A 2070 132 514 75 66 46 38.8
3100 121 511 89 75 51 40.7
4140 11.5 539 92 6.1 40 40.9
notsynced | 0.5 0.1 37.3 04 0.0 0.1
L 2070 1.0 13 440 81 57 1.5
3100 1.1 1.3 410 82 48 1.4
4140 1.0 1.6 429 105 32 1.6
not synced | 0.1 02 00 32 261 0.1
K360 550% 82 45 33 184 259 55
2070 14.6 147 73 346 347 82
3100 140 154 94 336 359 75
not synced | 0.1 89 00 00 0.0 58.8
W 2070* 145 378 143 94 56 57.7
3100 146 381 136 7.7 32 62.6
5170 10.1 387 107 88 20 62.1

5.2 Synchronize Focal Length to Different Values

This subsection shows that our Intrinsic Synchronization strategy works with different focal lengths.
We perform an ablation study by increasing the synchronized focal length value in both training and
testing. In Table 7, we observe that enlarging the images does improve mAP; however, the extent of
improvement diminishes as the input image size increases. We argue that this phenomenon can be
attributed to the fact that smaller objects become easier to detect in larger images.

5.3 Ablation Studies on Sensor Alignment Approaches

We evaluate various combinations of modules across all datasets and present the results in Table 8.
We observe that each component contributes to the overall performance; however, only after aligning
the intrinsic parameters does the extrinsic and ego coordinate system start to impact the detection per-
formance. While the Extrinsic Aware Feature Sampling (E-aware) may cause a drop in performance,
we argue that this module provides extrinsic robustness in real-world scenarios.

5.4 Multi-dataset Training Beginning with Waymo

We begin with Waymo as the first dataset and gradually add datasets into the training set. Table 9
shares the same mAP trend with Table 3 in the main paper, which means our observation is invariant
to the addition order. Here, KITTI-360 drags down the performance again. This decline can be



177
178

179

180
181
182

Table 8: Ablation study on the effectiveness of each module in sensor alignment approaches. All models are
trained on Waymo. “Ego” stands for Ego Frame Alignment. “Avg.T” stands for the average cross-dataset
performance.

K-sync E-aware Ego | N A L K K360 W | avgT

0r 89 00 00 00 588 | 1.8

v 00 84 00 00 00 583 | 1.7

v 00 50 00 00 00 594 | 1.0

v v 00 35 00 00 00 594 | 0.7
v 145 378 143 94 56 57.7 1 16.3
v v 247 394 330 212 13.6 577 | 264
v v 141 377 170 93 58 57.6 | 16.8
v v v 254 382 336 212 117 57.6 | 26.0

Table 9: 3D-mAP of DETR3D trained on multiple dataset, beginning with Waymo.
Setting | src/dst | W N A L K K360 | avg.S avg.T

w 58.8 0.1 89 00 00 0.0 58.8 1.8
+N 604 384 112 02 00 00 494 28
+A 63.0 427 548 01 00 00 535 00
+L 60.2 444 53.1 473 00 00 512 00
+K 63.1 455 534 492 443 19 51.1 1.9
+K360 | 619 46.2 5377 494 395 297 | 467 00

Direct

attributed to a significant amount of discordant data, as illustrated in Fig. 2, which provides statistics
on the data volume across different datasets.

5.5 Per-class and Per-location Evaluation Results

Table 10 and Table 11 are the extended version of Table 2 and Table 3 in the main paper, showing
per-class mAP on each dataset. Furthermore, Table 12 shows the evaluation result of the best model
in Table 3 on each city in each dataset.

I S Y
o N A~ O

Frame# x 10000

o N A~ OO

W +N +A +L +K +K360
Waymo mnuScenes mAV2  Lyft ©KITTI =K360

Figure 2: Data volume of each dataset under monocular detection setting



Table 10: 3D-mAP of DETR3D trained on single dataset(full version). The performance is reported in the format
of all(vehicles/ pedestrians/ bicycles).

Setting | sre/dst | N A L K K360 w
N 36.3 (56.7/36.7/15.7) 0.8 (0.9/1.4/0.3) 1.8 (1.6/1.1/2.7) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 1.1 (0.6/1.2/1.4)
A 0.2 (0.1/0.5/0.1) 48.0(73.8/38.7/31.7) 0.1 (0.0/0.1/0.1) 0.0 (0.0/0.1/0.0) 0.0 (0.0/0.1/0.0) 17.4 (19.7/14.1/18.3)
Direct L 0.5 (0.9/0.7/0.0) 0.1 (0.1/0.1/0.0) 37.3(70.5/16.6/24.9) 0.4 (0.5/0.7/0.1) 0.0 (0.0/0.1/0.0) 0.1 (0.0/0.3/0.0)
K 2.8 (4.8/3.0/0.5) 1.2 (0.9/1.3/1.5) 0.0 (0.1/0.1/0.0) 24.5(40.2/25.1/8.3) 1.1 (0.9/2.1/0.4) 0.7 (0.2/0.4/1.3)
K360 | 0.1(0.1/0.2/0.0) 0.2(0.0/0.2/0.4) 0.0(0.0/0.0/0.0) 3.2(0.9/6.7/2.2) 26.1(60.2/4.5/13.7) 0.1(0.0/0.1/0.2)
w 0.1 (0.0/0.1/0.0) 8.9 (14.5/9.2/3.1) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 58.8 (78.1/50.3/47.9)
N 40.8 (58.5/42.1/21.8)  25.5 (45.6/25.1/5.7) 18.6 (39.8/14.4/1.6) 29.7 (41.1724.2/23.7) 18.0 (37.6/11.3/4.9)  23.4 (37.4/24.8/7.9)
A 13.2 (20.4/13.7/5.5) 51.4 (74.8/43.5/36.0) 7.5 (16.7/3.9/1.9) 6.6 (8.9/1.8/9.1) 4.6 (12.2/0.8/0.8) 38.8 (60.4/31.3/24.6)
K-syne L 1.0 (1.8/1.2/0.1) 1.3 (3.3/0.4/0.1) 44.0 (76.4/20.9/34.6) 8.1 (17.3/4.7/2.3) 5.7 (12.7/2.0/2.4) 1.5 (3.2/1.0/0.2)
sy K 2.4 (2.0/4.9/0.4) 1.2 (2.6/0.8/0.1) 1.2 (3.0/0.5/0.1) 31.0 (45.7/28.0/19.4) 6.1 (13.3/2.7/2.5) 0.5 (1.2/0.2/0.1)
K360 14.6 (34.0/9.3/0.4) 14.7 (36.4/2.7/4.9) 7.3 (20.0/1.6/0.2) 34.6 (59.9/25.1/18.9)  34.7 (69.4/10.0/24.7)  8.2(22.7/0.7/1.1)
w 14.5(25.9/13.3/4.4) 37.8(67.3/34.1/11.9)  14.3(25.5/8.5/8.8) 9.4(6.3/4.8/17.0) 5.6(13.1/1.1/2.6) 57.7(78.0/50.2/45.0)
N 43.1(63.0/45.0/21.4)  33.6(62.4/30.4/1.9) 32.8(60.8/19.3/18.4)  33.0(49.0/28.2/21.7)  18.4(37.0/12.8/5.5) 33.0(47.8/28.4/22.8)
K-syne E- A 24.4(42.0/23.0/8.3) 48.1(75.3/41.7/127.3)  34.1(61.5/22.4/18.3)  18.1(22.0/17.3/15.0) ~ 8.7(16.1/3.1/6.8) 37.4(58.4/28.8/24.9)
awaze ’ L 15.7(35.1/10.3/1.9) 19.6(42.6/13.1/3.0) 47.1(79.3/21.2/40.8)  20.0(38.7/11.5/9.9) 12.9(31.8/4.0/2.9) 18.9(30.2/11.2/15.2)
and E' o-sync K 7.1(12.6/7.9/0.8) 8.7(19.2/3.8/2.9) 10.2(20.7/4.2/5.6) 29.1(49.5/28.1/9.6) 9.3(20.2/4.9/2.7) 2.4(3.6/2.5/1.1)
80-5Y] K360 13.9(33.2/8.3/0.3) 17.7(41.7/5.6/5.8) 16.6(38.4/4.2/7.3) 39.1(67.6/26.5/23.2)  36.7(72.4/10.9/26.6)  8.4(18.2/2.8/4.3)
N 25.4(45.0/26.3/5.0) 38.2(68.3/34.6/11.7)  33.6(63.3/16.8/20.7)  21.2(13.5/25.3/24.7)  11.7(25.6/6.2/3.3) 57.6(77.9/50.9/44.2)

Table 11: 3D-mAP of DETR3D trained on multiple dataset, beginning with nuScenes (full version). The
performance is reported in the format of all(vehicles/ pedestrians/ bicycles)

Setting | sre/dst | N A L K K360 w
N 36.3 (56.7/36.7/15.7) 0.8 (0.9/1.4/0.3) 1.8 (1.6/1.1/2.7) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 1.1 (0.6/1.2/1.4)
+A 40.5 (60.4/38.9/22.1)  49.2 (76.0/42.3/29.4) 0.5 (0.7/0.5/0.3) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 5.2 (4.5/4.2/6.9)
Direct +L 41.6 (61.0/40.7/23.1)  50.5 (78.4/42.3/30.9)  43.7 (74.5/26.3/30.4) 0.0 (0.0/0.0/0.0) 0.0 (0.0/0.0/0.0) 3.8(4.2/4.2/2.9)
+K 41.5(62.7/39.6/22.1)  49.7 (78.5/42.4/28.3)  46.0 (75.8/28.1/34.2)  41.4(62.1/38.7/23.5) 1.1 (1.2/1.2/1.0) 3.6 (4.3/4.212.2)
+K360 | 42.6 (64.2/40.8/22.8) 54.3 (78.6/43.8/40.6) 46.8 (76.7/26.5/37.1)  36.3 (51.3/35.0/22.7)  29.7 (60.6/8.6/20.0) 3.3 (4.2/3.8/1.8)
+W 46.2 (66.6/42.7/29.2)  53.7 (79.8/47.9/33.5) 49.4 (76.7/33.0/38.4)  39.5 (54.2/36.1/28.0)  29.7 (60.6/9.4/19.2)  61.9 (82.0/55.4/48.2)
N 40.8 (58.5/42.1/21.8)  25.5 (45.6/25.1/5.7) 18.6 (39.8/14.4/1.6) 29.7 (41.124.2/23.7)  18.0 (37.6/11.3/4.9) 23.4(37.4/24.8/1.9)
+A 45.5 (64.5/45.0/127.0)  50.0 (77.9/44.0/28.1)  25.1 (49.2/18.0/8.1) 35.8(48.1/26.2/33.1)  21.3 (42.5/15.0/6.5) 44.2 (67.9/35.8/28.7)
K-syne +L 46.8(64.3/47.1/28.9)  53.2(79.5/46.6/33.6)  55.1(82.6/36.4/46.2)  37.8(50.7/30.6/31.9)  23.1(44.6/16.9/7.8) 45.3(69.2/37.0/29.6)
sy +K 47.4 (64.5/48.0/29.8)  53.5(79.3/45.6/35.6)  53.6 (82.5/34.3/43.9) 57.8 (77.7/48.7/46.9) 21.8 (36.4/17.2/11.6) 44.4 (69.4/37.2/26.7)
+K360 | 50.2 (68.0/47.5/34.9) 54.4 (80.7/48.3/34.3) 54.0 (83.7/36.4/42.0) 60.2 (81.9/47.2/51.4) 39.6 (72.7/16.9/29.3) 44.7 (71.6/38.2/24.2)
+W 51.8(68.2/49.8/37.3)  55.3 (82.1/48.8/34.9)  56.6 (84.4/38.4/47.1) 61.9 (83.0/51.5/51.1)  40.7 (73.6/19.9/28.7)  63.7 (83.2/55.0/52.8)
N 43.1(63.0/45.0/21.4)  33.6(62.4/30.4/7.9) 32.8(60.8/19.3/18.4)  33.0(49.0/28.2/21.7)  18.4(37.0/12.8/5.5) 33.0(47.8/28.4/22.8)
K-syne. E- +A 52.1(68.1/50.8/37.4)  52.7(77.9/47.3/32.9)  38.4(70.4/23.5/21.2)  42.2(54.9/33.6/37.9)  23.2(43.0/16.5/10.3)  40.7(64.1/35.6/22.5)
awa);e ’ +L 52.6(68.9/50.2/38.6)  53.2(79.1/47.4/33.2)  59.5(85.6/45.5/47.4)  46.1(61.6/37.8/38.9)  26.1(47.6/19.7/10.9)  43.6(67.1/35.6/28.0)
and E’ o-sync +K 51.0(67.9/51.8/33.3)  54.7(79.8/47.7/36.5)  60.2(85.6/44.5/50.5)  63.9(83.2/58.0/50.6)  28.4(48.8/22.9/13.5)  44.6(67.1/35.4/31.4)
80-5Y +K360 | 50.0(70.5/50.4/29.3)  55.0(81.4/47.4/36.2)  59.8(86.9/43.9/48.4)  65.0(85.4/54.5/55.1)  42.7(75.5/20.3/32.3)  45.2(68.6/36.2/30.9)
+W 54.8(72.7/52.5/39.1)  56.4(82.3/49.0/38.0)  60.5(87.4/45.7/48.4)  66.8(85.2/58.1/57.2)  43.4(76.3/22.3/31.5)  62.7(83.4/56.9/47.9)

183 5.6 Results from Surrounding-view Detection

184  We extend our data alignment strategies to surrounding view detection and verify their effectiveness.
185 All input images are of 1/2 height and width. The perception range is still 51.2m, but includes the
186 area behind the ego car.

187 Ablation studies on sensor alignment approaches. In Table 13, DETR3D is trained on Argoverse2,
188 nuScenes and Waymo, and tested in six datasets.

1o Data diversity vs. data volume We test if the model benefits from data diversity more than data
190 volume. Given that Waymo and nuScene are of similar data volume, we use different percentage of
191 training data from the two and test the model on three datasets. As shown in Table 14, mixing the
192 data achieves better performance.



Table 12: Evaluation results per location, using DETR3D with all sensor alignment approaches. The LET-3D-

mAP is reported in the format of all(vehicles/pedestrians/bicycles).

Table 13: Surrounding view 3D detection results:

Dataset | Location | LET-3D-AP
ATX 44.6 (69.7/64.3/0.0)
DTW 71.5 (79.3/60.3/75.1)
Argoverse2 MIA 46.8 (84.0/41.1/15.2)
PAO 64.3 (91.6/51.4/49.7)
PIT 59.9 (82.0/53.2/44.4)
WDC 39.9 (80.1/39.7/0.0)
KITTI Germany 66.8 (85.2/58.1/57.2)
KITTI-360 | Germany 43.3(76.3/22.3/31.4)
Lyft Palo Alto 60.5 (87.4/45.77/48.5)
boston-seaport 61.4 (75.4/51.7/57.1)
nuScenes singapore-hollandvillage | 30.3 (67.4/23.4/0.1)
singapore-onenorth 50.5 (66.8/53.0/31.8)
singapore-queenstown 51.6 (68.5/58.9/27.5)
other 44.9 (72.4/44.8/17.6)
Waymo phx 63.3 (87.0/55.7/47.1)
st 65.1 (83.7/58.8/52.8)

are trained on Argoverse2, nuScenes and Waymo.

Table 14: Surrounding view 3D detection results: models are trained on different combinations of Waymo and

ablation study on sensor alignment approaches. All models

K-sync E-aware Ego | A N W L K K360 | avg.
480 404 548 06 62 07 25.1

v 48.6 410 538 00 3.6 00 24.5

v 49.5 397 547 18 74 1.8 25.8

v v 474 408 533 0.2 4.4 0.6 24.4

v 522 465 552 222 220 11.0 | 349
v v 50.1 47.2 542 30.1 363 22.1 40.0
v v 520 46.7 555 31.1 262 158 37.9
v v v 52.1 475 548 314 397 24.0 41.6

nuScenes.
test/ train(W+N)  0.00+1.00 0.01+0.99 0.10+0.90 0.334+0.67 0.5+0.5 0.67+0.33 1.00+0.00
A 1.0 6.4 9.1 13.0 14.5 16.0 4.3
N 32.5 32.5 323 32.1 31.5 30.4 0.2
w 0.3 234 36.7 45.8 45.6 47.0 46.2
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Derivation of Eq.1 and Eq. 3 in the main paper

In this page, we will derive Eq. 1 and Eq. 3 from the main paper step by step. We will first

analyze Eq. 3 since Eq. 1 can be easily derived from Eq. 3
Derivation of Eq. 3

Given an origin at a fixed location of our ego car, with the x-axis along the direction of travel
and the z-axis perpendicular to the ground pointing upwards, we define a right-handed
Euclidean coordinate system as the ego frame. Assume we have a forward-facing camera
along the x-axis, centered at (¢, t,, t,). According to the pinhole camera model, we have
camera intrinsic matrix K and extrinsic matrix [R|t], where R is a 3 X 3 rotation matrix.

Now R, K, t can be represented as follows:

f 0 ¢
K=|[0 f, ¢
0O 0 1
0O -1 O
R=1]10 0 -1
1 0 0
ty
t=1|¢t |,
_tw

where f, fy are the focal lengths along the x- and y-axis of the camera coordinate system,
and ¢, ¢y are the pixel offsets on the image. For simplicity we assume fz= fy and denote

them as f so:



Now for a point po(;co, Yo, zo) in the ego frame, we want to find the relationship between

Po and its projection on the image plane. Let's assume its image position as (u, v).

For the first step, we transform pg into the camera coordiate system:

0 -1 0 oy ty —Yo + 1ty
pcam:RXp0+t: 0 0 1| X || + | ¢ = |—20+ .
1 0 0 20 —tm o — tm
Here, we assign d = x( — t,, as the ‘depth’ of pg in the camera, and use X = —y + ¢,

Y = —zy + t, as shorthand.

For the second step, we transform p..,, to the image coordinate system:

f 0 Cy X fX + C;cd
Pimg — K X peam = |0 f Cy | + Y| =|fY+ Cyd
0 0 1 d d

For the last step, we collapse depth and project p;,4 onto the imaging plane to obtain the

values of (u, v):

fTX + ¢y Uu
P2p = pimg/d: % +cy| = |V
1 1
In summary:
Pimg = d(u, v, 1)T
pimg::K--cham::K-->< (RXp0+t)
So:

d(u,v,1)T = K(Rpg + t)

Assuming that the points are represented in homogeneous coordinates, then py =

(0, Yo, 20, 1)T, and we can simplify the relationship:

R t

0,1 = K(Rpo+0) = K(| ]

] po) = KTpy



Now:

d(“a v, ]-)T - KTpOa

where

Derivation of Eq. 1

With the derivation and notations of Eq. 3, we can directly derive Eq. 1. Assume that a 3D box
(e.g., a car) is centered at Py, and the origin of ego frame is on the ground, then 2z is the
height dimension of the box. We project p1 = (0, Y0, 0) and p2 = (z0, Yo, 220) onto the
image to get the upper and lower bounds of the box, and the difference between them should

be the pixel height of this box. From the derivation of Eq. 3, we know:

. fY_ f(_20+tz)
v = =

d d

Similarly, for p1 and p2 we have:
ft.
v = +c

1 d Y9

f(_220 + tz)
So the pixel height of the box would be:

220 220

heightop = |vy —va| = f X — = f X
d :llo—tz

Let the 3D size S = 2z, and the 2D pixel size Spizc; = heightap, then we have the Eq. 1 in

main paper:

S

mO_tm

Spizel = f X
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