

000 001 002 003 004 005 STOP GUESSING WHEN TO STOP TESTING: EFFICIENT 006 MODEL EVALUATION WITH JUST ENOUGH DATA 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020

021 1 INTRODUCTION 022

023 The rapid advancement of large vision-language models (VLMs) and language models (LLMs) has
024 spurred the creation of numerous benchmarks to assess their capabilities (Li & Lu, 2024; Chang
025 et al., 2023). However, processing high-resolution images, handling large contexts, comparing per-
026 formance across multiple datasets, and utilizing expensive metrics like LLM-as-Judge have drasti-
027 cally increased evaluation costs (Zhao et al., 2024; Perlitz et al., 2024). Current evaluation practices,
028 typically employing fixed-size benchmarks, are inherently wasteful, continuing to the predetermined
029 sample size even when the outcome is statistically clear. While practitioners often reduce costs by
030 using fewer samples (Perlitz et al., 2024; Polo et al., 2024; Fogliato et al., 2024; Zhao et al., 2024),
031 these heuristic approaches lack statistical guarantees.

032 Critically, fixed-size approaches, whether high-cost and precise or low-cost and imprecise, fail to
033 align the evaluation effort with the evaluation’s objective. Debugging a model may only require
034 a inexpensive coarse approximation, while definitively determining a superior model among close
035 contenders demands sufficient data to achieve statistical significance.

036 In this work, we propose a statistically grounded solution: an *adaptive evaluation* framework based
037 on sequential testing. Rather than enforcing a fixed sample size, adaptive evaluation stops when
038 the practical and statistical needs are met. Thus, users explicitly define their needs, and the method
039 ensures that evaluations are neither underpowered nor excessive, effectively balancing reliability and
040 efficiency. In addition, when efficiency is prioritized, users are fully aware of what was lost in terms
041 of statistical power, allowing them to make informed decisions rather than rely on guesswork. This
042 makes adaptive evaluation not only *efficient* but also *transparent*.

043 Our contributions are: 1) A call to eschew fixed-size evaluation. 2) A framework to optimize sample
044 efficiency while maintaining statistical reliability through the adoption of sequential testing.¹ 3)
045 An analysis of efficiency-reliability trade-offs in single-model scoring, pairwise comparisons, and
046 ranking tasks.

047 2 USE CASE EXAMPLES 048

049 To demonstrate the versatility and impact of adaptive evaluation, we highlight three diverse use cases
050 where our approach provides clear advantages over traditional fixed-sample methods. We show the
051 empirical results of our method in § 7 and show usecase experiments in §7.3.

052 **Compute-Constrained Evaluation with Statistical Guarantees.** Many practitioners must eval-
053 uate models under limited compute and time budgets. Traditionally, this means arbitrarily sub-
054 sampling benchmarks (or worse, skipping some datasets altogether (Perlitz et al., 2024)), sacrificing
055 reliability in an unknown way. With adaptive evaluation, users can stop evaluation early, without
056 compromising reliability.

057 **Meaningful Change Achieved** In production, teams must repeatedly decide whether to replace
058 an existing model with a new one. However, not all improvements are meaningful; gains of 0.1
059 points – even if statistically significant – may not justify deployment. Adaptive evaluation ensures
060 that comparisons stop as soon as the observed difference is statistically and practically significant,
061 preventing both over-evaluation and premature conclusions.

062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
13

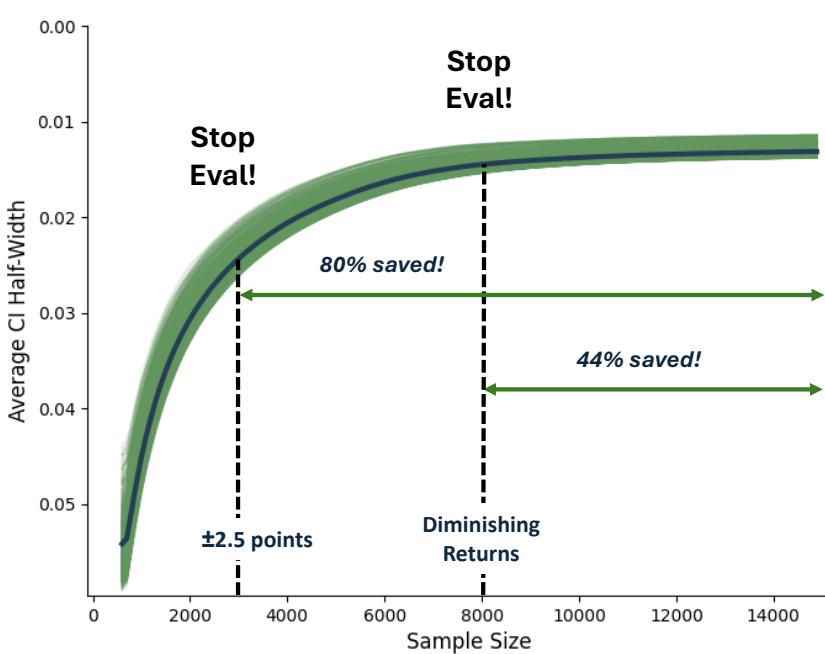


Figure 1: Half-width of the confidence interval as a function of sample size for 206 models in the Open VLM Leaderboard benchmark, averaged over 10 random seeds. As sample size increases, the CI narrows, reducing uncertainty in model performance estimates. Two stopping strategies are illustrated: (1) stopping when the CI reaches ± 2.5 , saving 80% of the evaluation cost, and (2) stopping when diminishing returns plateau, reducing cost by 44% while sacrificing only 0.132 points in precision. Our framework can detect and stop evaluation based on such rules, ensuring both statistical rigor and evaluation efficiency.

Model Development: Efficient Candidate Model Selection. Modern model pre and post training pipelines often produce hundreds or thousands of candidate models, many of which are redundant or under-performing. As such projects are often under tight time constraints, evaluating all models fully is impractical, and thus the need for rapid assessment makes efficiency crucial. Adaptive evaluation enables early detection of both promising and faulty checkpoints, terminating evaluations only when necessary, dramatically reducing computational waste and saving time (see §7.3).

The above examples demonstrate the versatility of adaptive evaluation, aiding single model decisions and full ranking, saving compute, time, annotation effort, mistakes due to unreliability and more.

3 RELATED WORK

Efficient Evaluation. Previous works have explored the use of small subsets of benchmarks for efficient evaluation (Choshen et al., 2024), analyzing their impact on reliability (Perlitz et al., 2024; Maynez et al., 2023). Other approaches have proposed intelligent sampling methods to maintain reliable results (Polo et al., 2024; Zhang et al., 2024; Vivek et al., 2024). However, many of these methods rely on past statistics, requiring full benchmark runs on multiple models and assuming future models will follow similar distributions, which limits their applicability in dynamic evaluation settings (Zhang et al., 2024; Vivek et al., 2024). Some other methods predict model scores (Zhao et al., 2024), or improve reliability without providing guarantees (Fogliato et al., 2024). In contrast, our method offers strict statistical guarantees without needing to run models on the full benchmark to gather past statistics. The closest work to ours uses sequential testing to stabilize performance estimates in reinforcement learning (RL) algorithms, where multiple runs with different seeds are required for statistical significance (Mathieu et al., 2023). Unlike their RL-specific focus, our framework prioritizes sample efficiency and generalizes to diverse tasks, enabling adaptive evaluation with user-defined stopping criteria for model comparison, ranking, and benchmarking.

108

4 DEFINITIONS AND BACKGROUND

110 We propose a method to stop given certain criteria and account for peeking into the data in the
 111 reported statistics. In this paper, we focus on the general case of multi-dataset benchmarks, which
 112 are increasingly common in general-purpose model assessment and particularly sensitive to this
 113 trade-off (as shown in § 7). Formally, let a benchmark consist of n datasets:

$$114 \quad 115 \quad D = \{D_1, D_2, \dots, D_n\},$$

116 where each dataset D_i contains m_i examples $e_{ij} \in \mathcal{E}_i$

$$117 \quad 118 \quad D_i = \{e_{i1}, e_{i2}, \dots, e_{im_i}\},$$

119 and has an associated scoring function $S_i : \mathcal{E}_i \rightarrow [0, 1]$, where higher values indicate better performance.
 120 We define S_i^A as the application of S_i on the outputs of model A . The overall benchmark
 121 score for model A is given by

$$122 \quad 123 \quad 124 \quad S_A(D) = \frac{1}{n} \sum_{i=1}^n \left(\frac{1}{m_i} \sum_{j=1}^{m_i} S_i^A(e_{ij}) \right). \quad (1)$$

125 This mean-of-means formulation ensures equal weighting across datasets, regardless of individual
 126 sizes.

127 A typical evaluation involves finding the score of a model A or comparing A against a baseline B
 128 on benchmark D , where the observed performance difference is

$$129 \quad \hat{\delta}_{A,B}(D) = S_A(D) - S_B(D). \quad (2)$$

130 If $\hat{\delta}_{A,B}(D) > 0$, model A appears better than B , with a larger δ indicating a greater performance
 131 difference. However, this observed difference could be due to chance. Put simply, the reliability of
 132 an evaluation is how much we can trust that the observed difference reflects true model performance
 133 rather than measurement noise.

134 Broadly speaking, the more examples we use, the more confident we can be in our conclusions.
 135 However, the number of available examples in a benchmark might be excessive, or not enough. This
 136 creates a fundamental challenge: how to control the trade-off between reliability and efficiency in
 137 model evaluation.

138

4.1 QUANTIFYING RELIABILITY: STATISTICAL SIGNIFICANCE

139 To enable adaptive evaluation, we first need a formal definition of reliability. The standard statistical
 140 framework for this comes from the theory of hypothesis testing and confidence intervals Dror et al.
 141 (2018).

142 Given a benchmark D , we assess the probability that an observed difference in performance between
 143 models A and B , $\hat{\delta}_{A,B}$ (2) could occur by chance under the null hypothesis (H_0). This is formulated
 144 as the following hypothesis test:

$$145 \quad H_0 : \hat{\delta}_{A,B}(D) = 0, \\ 146 \quad H_1 : \hat{\delta}_{A,B}(D) > 0.$$

147 Here, $\hat{\delta}_{A,B}(D)$ represents the true performance difference. A p-value is given by the probability to
 148 observe a difference at least as extreme as the one observed, under the assumption that H_0 is true.
 149 If the p-value is greater than a predefined threshold α , we reject H_0 and conclude that model A is
 150 better than B at statistical significance level α .

151 The results of hypothesis testing are influenced by sample size, effect size, and the significance
 152 level (α). Larger sample sizes help reduce noise, making it easier to detect true differences. A
 153 larger effect size, or true difference between models, also makes the difference more detectable. The
 154 significance level determines the threshold for rejecting H_0 , which directly impacts the test's power
 155 and the reliability of conclusions.

156 Confidence intervals offer a complementary view by quantifying uncertainty, providing a likely
 157 range of plausible values for the true performance difference between models. For example, given

162 $\alpha = 0.05$ a CI $[L, U]$ suggests that the true performance difference or the model’s scores lie within
 163 this range with 95% probability. However, repeatedly checking (and acting upon) results during
 164 data collection, a practice known as “peeking,” invalidates the standard interpretation of p-values
 165 and confidence intervals.
 166

167 5 PROPOSED ADAPTIVE FRAMEWORK

169 Several key capabilities are necessary to enable efficient and statistically sound adaptive evaluation.
 170

171 The first one (see §5.1) is providing near real-time insights into the model’s performance. Naively
 172 checking the performance at multiple stages of the evaluation can lead to inflated error rates and
 173 reduce reliability, since the probability of obtaining a false positive increases.

174 The second one (see §5.3) is to adapt the evaluation process as more data is collected. This in-
 175 cludes implementing stopping rules that help determine when to halt the evaluation based on the
 176 accumulated evidence. By using these rules, we can stop testing once we gathered that necessary
 177 information rather than when we run out of resources.

178 In this section, we introduce a sequential testing-based framework for adaptive testing with stan-
 179 dard criteria for adaptive stopping, and discuss how different stopping rules align with evaluation
 180 objectives.
 181

182 5.1 MAINTAINING VALIDITY WITH SEQUENTIAL TESTING

184 We formalize adaptive evaluation using the group sequential testing framework with the Pocock
 185 spending function Pocock (1977). Rooted in classical statistical analysis (Wald, 1945b; Jennison &
 186 Turnbull, 1999a; Lan & DeMets, 1983; O’Brien & Fleming, 1979), this approach has been widely
 187 applied in fields like clinical trials and quality control Jennison & Turnbull (1999b). Sequential
 188 testing addresses the reliability-efficiency tradeoff, enabling data-driven decisions on when to stop
 189 or continue testing based on evolving needs.

190 While other sequential analysis methods and spending functions, such as *SPRT* method Wald
 191 (1945a) and *O’Brien-Fleming* spending function O’Brien & Fleming (1979), are available, we
 192 choose the Pocock spending function for demonstration purposes, as it provides a well-balanced
 193 framework particularly suited for batch-based model evaluation. Though this and any sequential
 194 analysis method introduces a modest power reduction and slight computational overhead, its ef-
 195 ficiency gains far outweigh these costs. Next, we present the mathematical formulation of group
 196 sequential testing adapted for model evaluation.
 197

198 5.2 GROUP SEQUENTIAL TESTING

200 Formally, group sequential methods partition the evaluation process into t stages. At each stage k ,
 201 data is collected in a batch of size b , resulting in a cumulative sample size N_t defined as

$$202 \quad N_k = kb, \quad k = 1, \dots, t.$$

204 The test statistic Z_k is computed using all data accumulated up to stage k .
 205

206 The choice of t significantly influences the testing process. A larger t enables more frequent interim
 207 analyses, potentially allowing earlier stopping decisions, but it requires a more samples to account
 208 for multiple testing (i.e., repeated “looks” at the data). In practice, we find it not to be an issue as
 209 long as the batch is reasonably sized (e.g., not 1).
 210

211 For pairwise comparison of models A and B using an evaluation metric S (see Eq. 1), the test
 212 statistic at stage k is defined as

$$212 \quad Z_k^{AB} = \frac{S_k^A(D) - S_k^B(D)}{\sqrt{\hat{\sigma}_k^2 \cdot (1/N_k)}}, \quad (3)$$

213 where $S_k^A(D)$ and $S_k^B(D)$ represent the observed performance scores of models A and B , respec-
 214 tively, based on data D up to stage k (see Eq. 2), and $\hat{\sigma}_k^2$ is the pooled variance estimator.
 215

At each interim analysis, the p-value p_k is derived from Z_k^{AB} and compared to a stage-adjusted significance threshold α_k . Similarly, confidence intervals are constructed using an adjusted α to maintain appropriate reliability.

Deriving p_k is the central challenge in sequential testing. If we were to apply the same critical value at each interim analysis as we would for a fixed-size test, the error rate would be inflated. The Pocock approach addresses this by using a constant critical value c across all stages, such that the overall Type I error rate equals α .

This method rests on several key assumptions: (i) the observations are independent, (ii) the test statistic Z_k^{AB} follows an approximately normal distribution under the null hypothesis (as justified by the Central Limit Theorem when T_k is sufficiently large), and (iii) t is pre-specified. We note that other sequential methods may rely on different assumptions, for example relaxing the normality assumption nor and specifying pre-specified maximum number of analyses (Bibaut et al., 2024).

5.3 STOPPING RULES

Our framework incorporates multiple stopping criteria that we see as commonly practical or are commonly used in the sequential testing literature (Lewis, 2023; Rauch et al., 2020). We note that in principle, a user can stop for any reason, and the statistical guarantees will hold.

- **Efficacy Stopping:** Evaluation stops when the observed difference between models reaches statistical significance, and evaluating on more example will not aid the decision-making.
- **Equivalence Margin Stopping (Model Comparison):** Evaluation halts when the difference between models falls within a predefined equivalence margin, indicating that the models can be considered functionally equivalent. This is ideal for situations like model replacement, where the user wants to confirm that the new model is substantially better than the current.
- **Precision-Based Stopping (Single Model):** Evaluation terminates when the confidence interval around the model’s estimated score is sufficiently narrow, aligning with the minimum detectable effect size (MDES). This ensures the model’s performance is assessed with enough precision for practical decision-making, without unnecessary sampling.
- **Threshold Crossing Stopping:** Evaluation stops once the model’s performance confidently exceeds or falls below a predefined threshold. This provides a definitive decision on whether the model meets or fails to meet a specified criterion, for example confirming it is faulty, avoiding further evaluation once a clear decision is made.
- **Futility Stopping:** Evaluation is stopped early if interim results suggest that achieving a practically meaningful difference is unlikely, thus preventing wasted resources.
- **Diminishing Returns Stopping:** Evaluation halts when the marginal gain in precision from additional samples falls below a specified threshold. This rule safeguards against excessive data usage once further sampling offers negligible improvements in reliability.

Each use case may call for a different stopping rule or a combination of rules. For instance, industry applications that require a minimal but robust performance difference may benefit from MDES-based precision stopping, whereas compute-constrained settings might prioritize efficacy stopping to reduce evaluation cost.

6 EXPERIMENTAL SETUP

Given adaptive calculation of significance (§5.1) and testing criteria (§5.3), we describe the technical implementation choice in our VLM benchmark experiments (§7). Specifically, we describe the data used (§6.1) and our implementation choices (§6.2).

270 6.1 DATA
271

272 We conduct our experiments using evaluation data from the *Open VLM Leaderboard* (Duan et al.,
273 2024)², which, at the time of writing, includes 206 VLMs evaluated across 31 multimodal bench-
274 marks. The leaderboard provides detailed metadata on the models, including their architectural
275 components, underlying vision and language models, and model sizes. For a detailed list of the
276 datasets see Appendix A.

277 For the benchmark’s overall score, we adopt the standard unweighted mean-of-means as our metric.
278 Since their released evaluation records provide only predictions, not scores, we utilize their LLM-
279 as-a-Judge implementation with *Llama 3.1 8B*, to extract scores from the predictions.

280 6.2 ALGORITHM AND IMPLEMENTATION
281

283 In this section, we present the algorithm suggested for adaptive evaluation in model selection and its
284 implementation details. The evaluation algorithm (for 2 models) proceeds as follows:

- 285 1. Let b_{init} be the initial sample size, b be the batch size, A and B the models we compare
286 (see §5.2).
- 288 2. Generate predictions for batch k using models A and B .
- 289 3. Compute the evaluation scores over the data N_k : $S_A(N_k)$ and $S_B(N_k)$.
- 290 4. Acquire significance from the sequential testing algorithm.
- 291 5. Apply any mixture of the stopping rules defined in §5.1.
 - 293 (a) If a stopping condition is met, finalize the evaluation and return the computed score.
 - 294 (b) Otherwise, repeat the process from step 2.

295 Next, we describe implementation choices for our experiments. Utilizing the *gsDesign*³ R package,
296 which supports group sequential testing design and is widely used in clinical trials and medical
297 research for efficient decision-making. We integrate this package into our Python pipeline, enabling
298 seamless incorporation of group sequential design for model evaluation. The integration allows for
299 adaptive evaluation with minimal computational and time overhead.

300 When comparing multiple models, we use pairwise comparisons. While pairwise comparisons in-
301 troduce the challenge of multiple hypothesis testing and require additional correction methods, we
302 simplify this aspect for the purpose of this study.

304 In all experiments, we configure our group algorithm with an initial sample size of 600 (100 per
305 model), a batch size of 100 per iteration, a beta of 0.9, and the Pocock spending function as described
306 in §5.1. These values were selected as reasonable defaults and were not tuned. From our experience
307 in initial experiments, we expect them to work well enough for other settings, with an option for
308 marginal gains upon hyperparameter search.

309 7 EXPERIMENTS AND RESULTS
310

312 To demonstrate the practical benefits of adaptive evaluation, we present a series of experiments that
313 address common challenges in model evaluation. We quantify the efficiency gains for single-model
314 score estimation (§7.1), show how adaptive stopping reduces the data required for reliable pairwise
315 comparisons (§7.2), and illustrate the framework’s applicability in real-world model development
316 and deployment scenarios (§7.3).

317 7.1 SINGLE MODEL SCORE: APPROXIMATE ESTIMATION FOR COST-SAVING
318

319 In many real-world applications, users are often willing to accept a degree of uncertainty in exchange
320 for faster evaluations and reduced costs. This experiment demonstrates how our framework enables

322 ²Data sourced from the evaluation records available at <https://huggingface.co/datasets/VLMEval/OpenVLMRecords>, using commit *dbc5e10*.

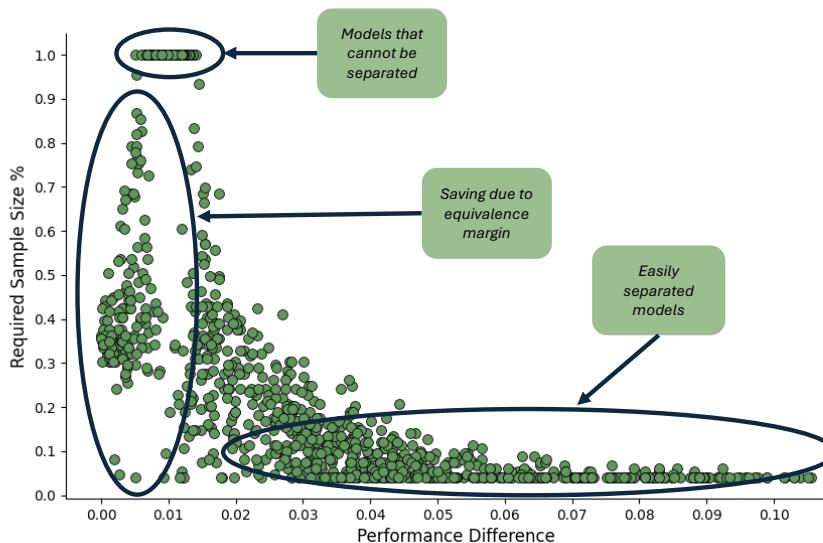
323 ³<https://github.com/keaven/gsDesign>

324 users to obtain an approximate (“ballpark”) score for a model efficiently, by dynamically adjusting
 325 the number of samples used based on a user-defined confidence interval (CI) threshold.
 326

327 We calculated the 95% CI half-width for each of the 206 models in the benchmark over 10 random
 328 seeds. Figure 1 shows the trade-off between the obtained CI and the number of examples. With
 329 our framework, users willing to accept a ± 3 -point CI will only need to run $\approx 15\%$ of the samples,
 330 significantly reducing evaluation cost. If a ± 2 -point CI is required, around 30% of the samples are
 331 needed, and for a more precise ± 1.5 -point estimate, just about half of the samples will be necessary.
 332 Beyond this point, CI stabilizes due to diminishing returns: precision improves as $n^{-1/2}$ yielding
 333 rapid early gains but minimal impact from further sampling. A strong contributor to this effect is
 334 that in heterogeneous benchmarks, smaller datasets with higher variance dominate the unweighted
 335 mean of means. This caps overall uncertainty, and thus amplifies the effect of diminishing returns.
 336 For example, with 8,000 examples (55% of the dataset), the width of the confidence interval is 2.96
 337 points. Expanding to the full 14,400 examples (100%) reduces the CI to 2.696 points—a mere
 338 0.264-point difference. This marginal improvement (negligible in most practical cases) comes at the
 339 cost of nearly doubling the dataset size, underscoring the diminishing returns of additional sampling
 339 once a reasonable threshold is reached.

340 This highlights two key aspects: First, using the full benchmark is often wasteful, as reliability gains
 341 diminish beyond a certain point. Second, common heuristics Perlitz et al. (2024) – such as selecting
 342 1,000 or fewer examples – tend to produce highly uncertain estimates, often exceeding ± 5.5 points.
 343 Such large confidence intervals can render the results impractical for real-world decision-making.
 344 A secondary finding is that full benchmarks should be larger (echoing Perlitz et al. (2024)) and in-
 345 clude large datasets to allow for reliable results. Specifically, the smallest and most varying datasets
 346 included in the benchmark are the ones most important to increase in size.
 347

348 7.2 PAIRWISE MODEL COMPARISON



371 Figure 2: Required sample size (%) for model comparison with an equivalence margin of 2 points,
 372 as a function of performance difference. Each point represents a pairwise comparison between two
 373 models sampled from the top 50, evaluated sequentially. The y-axis shows the proportion of the
 374 full benchmark required to reach a confident decision, while the x-axis represents the performance
 375 difference between the models. As expected, larger performance differences require fewer samples,
 376 while smaller differences necessitate a larger portion of the dataset. Additionally, models with low
 377 performance differences that are inseparable without the equivalence margin can be distinguished
 377 when the margin is applied, leading to further sample savings.

378 When comparing two models, particularly those with subtle performance differences, practitioners
 379 often face the challenge of determining when enough evidence has been gathered to prefer one. This
 380 task becomes especially resource-intensive, and time-intensive when evaluating many models over
 381 large datasets. Our framework dynamically determines the minimum samples needed for statistically
 382 sound conclusions. Evaluation stops automatically when user-defined significance criteria are met,
 383 optimizing resource utilization.

384 To demonstrate the efficiency of our framework, we compare 1000 sampled pairs of models from
 385 the top 50 models in the benchmark. Evaluation was stopped as soon as the difference between the
 386 models reached statistical significance with 95% confidence.
 387

388 We considered two distinct use cases in this experiment. In the first, the goal was strict comparison:
 389 we aimed to differentiate between the models and determine which one is definitively better. In
 390 the second use case, we introduced a relaxed comparison with an equivalence margin of 2 points.
 391 In this case, if the performance difference between the models was deemed to fall within 2 points,
 392 we stopped the evaluation and considered the models to be statistically equivalent. This approach is
 393 particularly useful for situations where small performance differences are of no practical importance
 394 or where the models are likely to be indistinguishable despite large sample sizes (in the latter futility
 395 stopping may also be useful).

396 The results, shown in Figure 7.2, reveal a clear and intuitive pattern: the number of examples re-
 397 quired to confidently rank two models depends directly on the size of the performance gap. Larger
 398 differences can be detected with fewer examples, while smaller gaps require more data to achieve
 399 the same level of statistical confidence.
 400

401 When performing strict comparisons, we observed that model pairs with a performance difference
 402 smaller than 1.2 points typically required the full dataset, as the evaluation failed to reach statisti-
 403 cal significance with fewer samples ($\approx 24\%$). However, those might also be the least interesting
 404 comparisons as the comparison is futile and the models might be deemed practically equivalent. In
 405 contrast, for model pairs with differences larger than 2 points, our framework usually saved at least
 406 60% of the evaluation effort, stopping early with high confidence.
 407

408 In the more relaxed comparison with the 2-point equivalence margin, the number of examples re-
 409 quired was indeed substantially reduced for pairs where the difference was close to zero. This is
 410 because the framework quickly identified that the models were within the predefined margin, and
 411 thus, further evaluation was unnecessary.
 412

413 We compare our approach to a baseline where the user heuristically selects a fixed sample size
 414 of 200 examples per dataset, totaling 1,200 samples overall—a reasonable and practical guess for
 415 evaluation. For each model pair and seed, we assess whether this fixed sample size is sufficient to
 416 distinguish between the models with 95% confidence. To ensure a fair comparison, we use boot-
 417 strapping for the fixed-size approach.⁴ The results reveal a significant limitation of the fixed-sample
 418 approach: out of 1,000 model pairs, only 55% could be reliably differentiated with 95% confidence,
 419 as opposed to 76% by our framework. Most importantly, these failures are not visible to the user,
 420 unlike with our method.
 421

422 This finding highlights the risk of arbitrarily selecting a sample size to reduce evaluation
 423 costs—while it may seem efficient, it is often just fast, but leading to the wrong conclusions. In
 424 contrast, our method dynamically determines the required number of examples, ensuring that eval-
 425 uations are only as efficient as we can afford to be.
 426

427 7.3 CASE STUDIES

428 Now that we’ve examined the experimental results in §7, we can return to the motivating use cases
 429 outlined earlier in §2. While these use cases are conceptually similar to the experiments we’ve
 430 conducted, we introduce additional rules for each scenario to highlight the flexibility of our adaptive
 431 evaluation framework. This demonstrates how users can mix and match different stopping rules
 432 ($\S 5.3$) based on their specific needs. In these experiments, we report the final sample savings and
 433 compare the baseline results to those achieved using a fixed sample size where applicable.
 434

435 ⁴Since the sample size is predefined, bootstrap is both applicable and statistically more powerful than our
 436 sequential test, offering better reliability per sample.
 437

432 7.3.1 EFFICIENT EVALUATION WITH STATISTICAL GUARANTEES
433434 A user with computational constraints seeks to evaluate models efficiently, but also report to higher-
435 ups how confident they are in their estimations (reliability). In our experiment, this translates to
436 accepting an equivalence margin of ± 2 with $\alpha = 0.05$.437 To simulate this, we rank five models sampled from the top 15 across 10 seeds, using pairwise
438 comparisons. The performance gap between the best and worst models is at most five points, making
439 differentiation challenging. Nonetheless, our method used only 60% of the examples, though 2.4
440 comparisons (out of 20) per run were indistinguishable and required the full benchmark.441 7.3.2 MEANINGFUL CHANGE ACHIEVED
442443 In production, teams must often ensure a new model outperforms the current one by at least 2 points
444 before updating a model for deployment. We simulate this by sampling two models from the top 15,
445 selecting one as a baseline, and comparing the other against it. This simulates the case of relatively
446 small changes between model versions and performance. The stopping criteria chosen are a ≥ 2 -
447 point improvement with 95% confidence or when such an improvement is deemed unlikely.448 Unlike our pairwise ranking experiment, which tested differences in both directions, this approach
449 is one-sided—we only check if the new model exceeds a predefined threshold for deployment. This
450 can sometimes be a tougher test, because even if two models are different, it's not enough; the new
451 model must show a specific, substantial improvement to justify deployment.452 On average (over 100 random sampled pairs), our approach used only 63% of the examples com-
453 pared to a fixed-sample approach.454 7.3.3 MODEL DEVELOPMENT: EFFICIENT MODEL SELECTION.
455456 To efficiently evaluate models while filtering out weak candidates, we apply two stopping rules.
457 First, models scoring below 60 points are discarded immediately. Second, evaluation for higher-
458 scoring models stops once their score is estimated within a ± 2 point confidence interval.459 This extends the single-model evaluation experiment by introducing an additional early-stopping
460 rule, ensuring that only promising models undergo full evaluation while reducing unnecessary com-
461 putation.462 On average, running the benchmark across all models required only 30% of the total sample budget
463 (over 10 seeds). 86 models were filtered out early as underperforming, while the rest stopped upon
464 reaching the target CI. Without a threshold, the total sample usage was 50%, demonstrating the
465 efficiency gained by filtering “faulty” models.466 8 CONCLUSION
467468 We introduce an adaptive evaluation framework that optimizes model benchmarking by balancing
469 statistical reliability with computational efficiency. By leveraging sequential testing and adaptive
470 stopping rules, our framework ensures that evaluations stop when practical and statistical needs
471 are met, minimizing wasted resources without sacrificing the quality of results. We provide a sys-
472 tematic analysis of the trade-offs between efficiency and reliability in various evaluation scenarios,
473 including model scoring, pairwise comparisons, and ranking tasks. This approach not only improves
474 the resource efficiency of large-scale model evaluations but also enhances the transparency of the
475 evaluation process, enabling users to make informed decisions based on clear trade-offs. Our frame-
476 work paves the way for more efficient, robust, and flexible evaluation practices in both research and
477 industry, addressing the growing challenges in benchmarking large language and vision-language
478 models.479 REFERENCES
480481 Shir Ashury-Tahan, Benjamin Sznajder, Leshem Choshen, Liat Ein-Dor, Eyal Shnarch, and Ariel
482 Gera. Label-efficient model selection for text generation. *ArXiv*, abs/2402.07891, 2024. URL
483 <https://api.semanticscholar.org/CorpusID:267627835>.

486 Aurelien Bibaut, Nathan Kallus, and Michael Lindon. Near-optimal non-parametric sequential tests
 487 and confidence sequences with possibly dependent observations, 2024. URL <https://arxiv.org/abs/2212.14411>.

488

489 Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
 490 Yi, Cunxiang Wang, Yidong Wang, Wei Ye, Yue Zhang, Yi Chang, Philip S. Yu, Qiang Yang, and
 491 Xing Xie. A survey on evaluation of large language models, 2023. URL <https://arxiv.org/abs/2307.03109>.

492

493 Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Yuhang Zang, Zehui Chen, Haodong Duan, Jiaqi
 494 Wang, Yu Qiao, Dahua Lin, and Feng Zhao. Are we on the right way for evaluating large vision-
 495 language models?, 2024. URL <https://arxiv.org/abs/2403.20330>.

496

497 Leshem Choshen, Ariel Gera, Yotam Perlitz, Michal Shmueli-Scheuer, and Gabriel Stanovsky. Navigating
 498 the modern evaluation landscape: Considerations in benchmarks and frameworks for large
 499 language models (llms). In *Proceedings of the 2024 Joint International Conference on Computational
 500 Linguistics, Language Resources and Evaluation (LREC-COLING 2024): Tutorial Sum-
 501maries*, pp. 19–25, 2024.

502

503 Rotem Dror, Gili Baumer, Segev Shlomov, and Roi Reichart. The hitchhiker’s guide to testing
 504 statistical significance in natural language processing. In Iryna Gurevych and Yusuke Miyao
 505 (eds.), *Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
 506 (Volume 1: Long Papers)*, pp. 1383–1392, Melbourne, Australia, July 2018. Association for Computational
 507 Linguistics. doi: 10.18653/v1/P18-1128. URL <https://aclanthology.org/P18-1128/>.

508

509 Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
 510 Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluating
 511 large multi-modality models. In *Proceedings of the 32nd ACM International Conference on
 512 Multimedia*, pp. 11198–11201, 2024.

513

514 Riccardo Fogliato, Pratik Patil, Mathew Monfort, and Pietro Perona. A framework for efficient
 515 model evaluation through stratification, sampling, and estimation. *ArXiv*, abs/2406.07320, 2024.
 516 URL <https://api.semanticscholar.org/CorpusID:270380072>.

517

518 Tianrui Guan, Fuxiao Liu, Xiyang Wu, Ruiqi Xian, Zongxia Li, Xiaoyu Liu, Xijun Wang, Lichang
 519 Chen, Furong Huang, Yaser Yacoob, Dinesh Manocha, and Tianyi Zhou. Hallusionbench: An
 520 advanced diagnostic suite for entangled language hallucination and visual illusion in large vision-
 521 language models. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 522 Recognition (CVPR)*, pp. 14375–14385, June 2024.

523

524 Christopher Jennison and Bruce W. Turnbull. Group sequential methods with applications to clinical
 525 trials. In *Proceedings of the Clinical Trials Conference*, 1999a. URL <https://api.semanticscholar.org/CorpusID:118509576>.

526

527 Christopher Jennison and Bruce W Turnbull. *Group sequential methods with applications to clinical
 528 trials*. CRC Press, 1999b.

529

530 Aniruddha Kembhavi, Mike Salvato, Eric Kolve, Minjoon Seo, Hannaneh Hajishirzi, and Ali
 531 Farhadi. A diagram is worth a dozen images, 2016.

532

533 Jannik Kossen, Sebastian Farquhar, Yarin Gal, and Tom Rainforth. Active testing: Sample-efficient
 534 model evaluation, 2021. URL <https://arxiv.org/abs/2103.05331>.

535

536 K. K. Gordon Lan and David L. DeMets. Discrete sequential boundaries for clinical tri-
 537 als. *Biometrika*, 70:659–663, 1983. URL <https://api.semanticscholar.org/CorpusID:56385666>.

538

539 Fraser I Lewis. An introduction to group sequential methods: planning and multi-aspect optimiza-
 540 tion. *arXiv preprint arXiv:2303.01040*, 2023.

Jian Li and Weiheng Lu. A survey on benchmarks of multimodal large language mod-
 541 els. *ArXiv*, abs/2408.08632, 2024. URL <https://api.semanticscholar.org/CorpusID:271892136>.

540 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Tianhao Wu, Banghua Zhu, Joseph E. Gon-
 541 zalez, and Ion Stoica. From crowdsourced data to high-quality benchmarks: Arena-hard and
 542 benchbuilder pipeline, 2024. URL <https://arxiv.org/abs/2406.11939>.

543

544 Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan,
 545 Jiaqi Wang, Conghui He, Ziwei Liu, Kai Chen, and Daha Lin. Mmbench: Is your multi-modal
 546 model an all-around player? *arXiv:2307.06281*, 2023a.

547 Yuliang Liu, Zhang Li, Mingxin Huang, Biao Yang, Wenwen Yu, Chunyuan Li, Xucheng Yin,
 548 Cheng lin Liu, Lianwen Jin, and Xiang Bai. Ocrbench: on the hidden mystery of ocr in
 549 large multimodal models. *Science China Information Sciences*, 2023b. URL <https://api.semanticscholar.org/CorpusID:274769861>.

550

551 Timothée Mathieu, Riccardo Della Vecchia, Alena Shilova, Matheus Medeiros Centa, Hector
 552 Kohler, Odalric-Ambrym Maillard, and Philippe Preux. Adastop: adaptive statistical testing for
 553 sound comparisons of deep rl agents. *arXiv preprint arXiv:2306.10882*, 2023.

554

555 Joshua Maynez, Priyanka Agrawal, and Sebastian Gehrmann. Benchmarking large language
 556 model capabilities for conditional generation. In *Annual Meeting of the Association for Com-
 557 putational Linguistics*, 2023. URL <https://api.semanticscholar.org/CorpusID:259287175>.

558

559 Peter C. O'Brien and Thomas R Fleming. A multiple testing procedure for clinical trials. *Bio-
 560 metrics*, 35 3:549–56, 1979. URL <https://api.semanticscholar.org/CorpusID:40193042>.

560

561 Yotam Perlitz, Elron Bandel, Ariel Gera, Ofir Arviv, Liat Ein-Dor, Eyal Shnarch, Noam Slonim,
 562 Michal Shmueli-Scheuer, and Leshem Choshen. Efficient benchmarking (of language mod-
 563 els). In Kevin Duh, Helena Gomez, and Steven Bethard (eds.), *Proceedings of the 2024 Con-
 564 ference of the North American Chapter of the Association for Computational Linguistics: Human
 565 Language Technologies (Volume 1: Long Papers)*, pp. 2519–2536, Mexico City, Mexico, June
 566 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.naacl-long.139. URL
 567 <https://aclanthology.org/2024.naacl-long.139/>.

568

569 Stuart J. Pocock. Group sequential methods in the design and analysis of clinical tri-
 570 als. *Biometrika*, 64:191–199, 1977. URL <https://api.semanticscholar.org/CorpusID:122839481>.

571

572 Felipe Maia Polo, Lucas Weber, Leshem Choshen, Yuekai Sun, Gongjun Xu, and Mikhail
 573 Yurochkin. tinybenchmarks: evaluating llms with fewer examples. *ArXiv*, abs/2402.14992, 2024.
 574 URL <https://api.semanticscholar.org/CorpusID:267897919>.

575

576 Géraldine Rauch, Svenja Schüler, and Meinhard Kieser. Group sequential and adaptive
 577 designs. *Springer Series in Pharmaceutical Statistics*, 2020. URL <https://api.semanticscholar.org/CorpusID:125788085>.

578

579 Rajan Vivek, Kawin Ethayarajh, Diyi Yang, and Douwe Kiela. Anchor points: Benchmarking
 580 models with much fewer examples, 2024. URL <https://arxiv.org/abs/2309.08638>.

581

582 A. Wald. Sequential Tests of Statistical Hypotheses. *The Annals of Mathematical Statistics*, 16(2):
 583 117 – 186, 1945a. doi: 10.1214/aoms/1177731118. URL <https://doi.org/10.1214/aoms/1177731118>.

584

585 Abraham Wald. Sequential method of sampling for deciding between two courses of action. *Journal
 586 of the American Statistical Association*, 40(231):277–306, 1945b.

587

588 Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens,
 589 Dongfu Jiang, Weiming Ren, Yuxuan Sun, Cong Wei, Botao Yu, Ruibin Yuan, Renliang Sun,
 590 Ming Yin, Boyuan Zheng, Zhenzhu Yang, Yibo Liu, Wenhao Huang, Huan Sun, Yu Su, and
 591 Wenhui Chen. Mmmu: A massive multi-discipline multimodal understanding and reasoning
 592 benchmark for expert agi. 2024 *IEEE/CVF Conference on Computer Vision and Pattern Recog-
 593 nition (CVPR)*, pp. 9556–9567, 2023. URL <https://api.semanticscholar.org/CorpusID:265466525>.

594 Kaichen Zhang, Bo Li, Peiyuan Zhang, Fanyi Pu, Joshua Adrian Cahyono, Kairui Hu, Shuai Liu,
 595 Yuanhan Zhang, Jingkang Yang, Chunyuan Li, and Ziwei Liu. Lmms-eval: Reality check on the
 596 evaluation of large multimodal models. *ArXiv*, abs/2407.12772, 2024. URL <https://api.semanticscholar.org/CorpusID:271244782>.

598 Qinyu Zhao, Ming Xu, Kartik Gupta, Akshay Asthana, Liang Zheng, and Stephen Gould. Can we
 599 predict performance of large models across vision-language tasks? *ArXiv*, abs/2410.10112, 2024.
 600 URL <https://api.semanticscholar.org/CorpusID:273346795>.

602 Vilém Zouhar, Peng Cui, and Mrinmaya Sachan. How to select datapoints for efficient human
 603 evaluation of nlg models?, 2025. URL <https://arxiv.org/abs/2501.18251>.

605 A DETAILED DATASET LIST

607 We use the following datasets from the *Open VLM Leaderboard* benchmark:

- 609 • **MMStarChen et al. (2024):** A multimodal benchmark designed to assess the capabilities
 610 of large VLMs across six core capabilities and 18 evaluation axes. It consists of 1,500
 611 samples, each requiring visual comprehension and complex reasoning.
- 613 • **MMMUYue et al. (2023):** The *Massive Multi-discipline Multimodal Understanding*
 614 *benchmark*, containing questions spanning six disciplines: Art & Design, Business, Sci-
 615 ence, Health & Medicine, Humanities & Social Sciences, and Tech & Engineering. The
 616 benchmark requires college-level knowledge and reasoning. The leaderboard uses the val-
 617 idation split, which consist of 1050 examples, as the test set is private.
- 618 • **OCRBenchLiu et al. (2023b):** A benchmark for evaluating VLMs capabilities in opti-
 619 cal character recognition (OCR). It covers five core tasks: Text Recognition, Scene Text-
 620 Centric Visual Question Answering (VQA), Document-Oriented VQA, Key Information
 621 Extraction, and Handwritten Mathematical Expression Recognition, with a total of 1K
 622 question-answer pairs.
- 623 • **AI2DKembhavi et al. (2016):** The AI2 Diagrams dataset, consisting of 3088 illustrative
 624 diagrams, in our test set, each accompanied by structured annotations and corresponding
 625 multiple-choice questions.
- 626 • **HallusionBench(Guan et al., 2024):** A benchmark designed to assess image-context rea-
 627 soning in large VLMs, focusing on hallucinations and visual illusions. It includes 346
 628 images paired with 1,129 questions. The test set include 951 sasmple in total.
- 629 • **MMBench(Liu et al., 2023a):** A benchmark of multiple-choice questions covering 20
 630 different ability dimensions, such as object localization and social reasoning, for evalua-
 631 ting vision-language models. The questions are organized hierarchically into three levels:
 632 Perception and Reasoning (Level 1), Logic Reasoning (Level 2), and further subdivisions
 633 offering fine-grained assessments (Level 3). We use version V1.1. The test set include
 634 7299 examples.

635 B FUTURE WORK

637 **Benchmark Building** Benchmark builders often limit dataset sizes to manage evaluation costs,
 638 even when large-scale datasets are feasible through automated pipelines (Li et al., 2024). This lim-
 639 itation is exacerbated by the fact that full benchmarks should typically include larger datasets to
 640 provide reliable results, especially for close-performing models (echoing (Perlitz et al., 2024)). Our
 641 framework eliminates this tradeoff. By allowing the sample size to adjust based on user needs,
 642 benchmark creators can release larger, more comprehensive datasets without the concern of eval-
 643 uation costs. This flexibility ensures that benchmarks can scale efficiently, supporting both standard
 644 model comparisons and more complex tasks requiring extensive data.

645 **Human Annotation** Like in model evaluation, many methods for efficient human annotation rely
 646 on statistical and machine learning models, which require trust in their underlying assumptions
 647 and biases (Zouhar et al., 2025; Kossen et al., 2021). While these methods improve reliability per

648 sample, they often lack clear stopping criteria(Ashury-Tahan et al., 2024). Our framework can be
649 directly applied to the annotation process, dynamically halting once sufficient statistical confidence
650 is reached. Additionally, it can be integrated with existing methods, though this would require
651 an examination and possible adjustment of the underlying assumptions to incorporate the stopping
652 rules, which we leave to future work.

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701