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Abstract
Markov chain Monte Carlo (MCMC) methods are a powerful tool in Bayesian computation.

They provide asymptotically consistent estimates as the number of iterations tends to

infinity. However, in large data applications, MCMC can be computationally expensive per

iteration. This has catalyzed interest in sampling methods such as approximate MCMC,

which trade off asymptotic consistency for improved computational speed. In this article,

we propose estimators based on couplings of Markov chains to assess the quality of such

asymptotically biased sampling methods. The estimators give empirical upper bounds

of the Wassertein distance between the limiting distribution of the asymptotically biased

sampling method and the original target distribution of interest. We apply our sample

quality measures to two stylized examples in high dimensions.

1. Introduction

1.1. Sample quality of asymptotically biased Monte Carlo methods

Markov chain Monte Carlo (MCMC) methods are commonly used for the approximation of
intractable integrals arising in Bayesian statistics, probabilistic inference, machine learning,
and other fields (Gelman and Brooks, 1998; Liu, 2008; Robert and Casella, 2013). In modern
applications with a large number of data points or high dimensions, MCMC methods can
have high computation cost per iteration. This has catalyzed the use of approximate MCMC
methods (e.g. Welling and Teh, 2011; Bardenet et al., 2017; Narisetty et al., 2019; Johndrow
et al., 2020), which have lower computation cost per iteration but may not converge to the
target distribution of interest, and methods such as variational inference (e.g. Wainwright
and Jordan, 2008; Blei et al., 2017), which inexactly approximate the target distribution
through optimization.

Measuring the sample quality of such asymptotically biased samplers is of great interest for
researchers who develop new approximate inference methodology. Standard MCMC diagnostic
tests (e.g., Johnson, 1998; Biswas et al., 2019; Vats and Knudson, 2020; Vehtari et al., 2020)
are not directly suitable for such settings as they do not account for asymptotic bias.
Researchers often resort to comparing summary statistics or marginal univariate traceplots
of samples from such methods with samples from an asymptotically unbiased Markov chain.
Such marginal traceplots and summary statistics may fail to capture higher order moments
and dependencies between different components. Moreover, in high-dimensional settings,
visualizing all marginal traceplots may not even be feasible. These limitations of existing
diagnostics and heuristics have stimulated recent work in measuring the quality of sample
approximations, with Gorham and Mackey (2015); Chwialkowski et al. (2016); Liu et al.
(2016); Gorham and Mackey (2017); Huggins and Mackey (2018); Gorham et al. (2020)
developing measures based on Stein discrepancies which do not require sampling from
the target distribution of interest. In this manuscript, we develop generic upper bound
estimates of the Wasserstein distance that apply to any distributions that can be targeted
with fast-mixing Markov chains and do not require any additional distributional knowledge.
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1.2. Couplings and Wasserstein distances

Consider a metric space (X , c) where c is a metric. A probability measure µ on (X , c) has
finite moments of order p if there exists some x0 2 X such that

R
X c(x0, x)pdµ(x) < 1. For

any p � 1, let Pp(X ) denote the set of all probability measures on (X , c) which have finite
moments of order p. The p-Wasserstein distance is a metric on Pp(X ), defined for any µ and
⌫ in Pp(X ) as

Wp(µ, ⌫) =
⇣

inf
�2�(µ,⌫)

Z

X⇥X
c(x, y)pd�(x, y)

⌘1/p
(1)

where �(µ, ⌫) is the set of probability measures on X ⇥ X with marginal measures µ and ⌫
respectively. Any probability measure in �(µ, ⌫) is called a coupling of µ and ⌫.

The Wasserstein distance has many advantageous properties compared to metrics such as
Total Variation distance and divergences such as Kullback–Leibler divergence and Rényi’s ↵-
divergence (Villani, 2008; Peyré and Cuturi, 2019; Huggins et al., 2020). It allows comparison
between singular distributions that may have disjoint supports, captures geometric properties
characterized by the metric c and captures differences between moments of distributions.
In this manuscript, we use couplings of Markov chains to estimate upper bounds on the
Wasserstein distance between the limiting distribution of the asymptotically biased sampling
method and the original target distribution of interest.

2. Bounding the Wasserstein distance with couplings

Given distributions P and Q on (X ,B(X )) and some p � 1, we wish to estimate upper bounds
on Wp(P,Q). Our estimates are based on Markov chains (Xt)t�0 and (Yt)t�0 with marginal
transition kernels K1 and K2 which have invariant distributions P and Q respectively.
Specifically, we construct Markovian kernels K̄ on the joint space X ⇥ X such that for all
x, y 2 X and all A 2 B(X ),

K̄
�
(x, y), (A,X )

�
= K1(x,A) and K̄

�
(x, y), (X , A)

�
= K2(y,A). (2)

Such kernels have been used analytically to develop perturbation theory for Markov chains
(Pillai and Smith, 2015; Johndrow and Mattingly, 2018; Rudolf and Schweizer, 2018). Given
K̄, we instead simulate the coupled Markov chain (Xt, Yt)t�0 using Algorithm 1. Algorithm
1 is an extension of the joint kernels considered in (Johnson, 1998; Glynn and Rhee, 2014;
Heng and Jacob, 2019; Middleton et al., 2019; Jacob et al., 2020; Biswas et al., 2019, 2021)
for unbiased estimation and MCMC convergence diagnostics, where K1 = K2 and X0 ⇠ Y0
such that (Xt)t�0 and (Yt)t�0 have the same marginal distributions. Algorithms to sample
from K̄ are in the supplement.

Algorithm 1: Coupled Markov chain Monte Carlo for sample quality
Input: Initial distribution Ī0 on X ⇥ X , joint kernel K̄, number of iterations T
Initialize: Sample (X0, Y0) ⇠ Ī0
for t = 1, . . . , T do sample (Xt+1, Yt+1)|(Xt, Yt) ⇠ K̄

�
(Xt, Yt), ·

�

return Markov chain (Xt, Yt)Tt=0
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Figure 1: Upper bounds on 2-Wasserstein distances with L2 norm between P = N (0,⌃) and
Q = N (0, Id). cW(UB)

p (P,Q) corresponds to our upper bound estimate from (3).

Consider a coupled Markov chain (Xt, Yt)t�0 generated using Algorithm Algorithm 1.
Suppose the marginal distributions of Xt and Yt converge in p-Wasserstein distance to P
and Q respectively as t tends to infinity. Informally, the coupling representation of the
Wasserstein distance implies Wp(P,Q)p  lim infS!1

PT
t=S+1 E[c(Xt, Yt)p]/(T � S) for all

T > S. This motivates our upper bound

cW(UB)
p (P,Q) :=

⇣ 1

I(T � S)

TX

t=S+1

IX

i=1

c(X(i)
t , Y (i)

t )p
⌘1/p

, (3)

where (X(i)
t , Y (i)

t )Tt=0 are coupled Markov chains sampled using Algorithm Algorithm 1
independently for each chain i = 1, . . . , I, with burn-in S � 0 and trajectory length T > S.
We formally establish the consistency of this and related upper bound estimators in the
supplement.

We now consider the empirical performance of this upper bound on two stylized examples.
We focus on the distance metric c(x, y) = kx� yk2 induced by the L2 norm, which controls
the difference between the first and second moments between distributions.

2.1. Upper bound on Wasserstein distance

Figure 1 highlights the performance of the upper bound in (3) for two multivariate Gaussian
distributions on Rd, given by

P = N (0,⌃) where [⌃]i,j = 0.5|i�j| for 1  i, j  d and Q = N (0, Id). (4)

The marginal kernels K1 and K2 are based on Metropolis–adjusted Langevin algorithm
(MALA) targeting P and Q respectively. The joint kernel K̄ is based on a common random
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numbers (CRN; also called “synchronous”) coupling of both the proposal step and the accept-
reject step of MALA, and is in the supplement. We initialize each X(i)

0 ⇠ P and Y (i)
0 ⇠ Q

independently.
Figure 1(a) shows the performance of our upper bound on the 2-Wasserstein distance

W2(P,Q) with dimension d = 100. For the coupled MALA kernel we use a step-size of
�P = �Q = 0.5 for both the marginal chains. The solid line plots the upper bound estimates
cW(UB)

2 (P,Q)2 from (3) based on I = 5 independent coupling chains with burn-in S = 0 and
varying trajectory length 1  T  500. The dotted line corresponds to E[kX � Y k22] for
X ⇠ P and Y ⇠ Q independent, and equals 2d = 200. The dot-dashed line corresponds to
an upper bound estimate based on solving linear programs on the empirical distributions
of P and Q. It plots

PI
i=1W2(P̂

(i)
T , Q̂(i)

T )2/I where P̂ (i)
T and Q̂(i)

T are empirical distribution
of P and Q respectively based on T = 500 independent samples and each W2(P̂

(i)
T , Q̂(i)

T ) is
calculated by solving a linear program independently for i = 1, . . . , I = 5. The dashed line
corresponds to the true Wasserstein distance squared (e.g. Peyré and Cuturi, 2019, Remark
2.23). The grey error bands correspond to one standard deviation arising from Monte Carlo
error. By our choice of initialization, the averaged trajectory has the same initial distance
value as the distance under an independence coupling. For greater trajectory length T ,
cW(UB)

2 (P,Q)2 gives an improved upper bound. Overall, Figure 1(a) shows that couplings
give informative upper bounds to W2(P,Q)2.

Figure 1(b) considers higher dimensions. The solid line plots the upper bound estimates
cW(UB)

2 (P,Q)2 from (3), based on I = 10, T = 1, 500 and S = 500. We use a step-size of
�P = �Q = 0.5d�1/6 for both the marginal chains (Kennedy and Pendleton, 1991; Roberts
and Rosenthal, 1998, 2001). The grey error bands are now too small to be visible. The
dotted line plots E[kX � Y k22] for X ⇠ P and Y ⇠ Q independent, and equals 2d. The
dot-dashed line plots an upper bound estimate based on solving linear programs on the
empirical distributions of P and Q. It plots

PI
i=1W2(P̂

(i)
T , Q̂(i)

T )2/I where P̂ (i)
T and Q̂(i)

T are
empirical distribution of P and Q respectively based on T = 1, 500 independent samples and
each W2(P̂

(i)
T , Q̂(i)

T ) is calculated by solving a linear program for I = 10. The dashed line
plots the true Wasserstein distance squared W2(P,Q)2. Figure 1(b) highlights that couplings
can give upper bounds that remain informative in higher dimensions. Theoretical analysis of
such properties are in the supplement.

2.2. Bias of approximate MCMC methods

Figure 2 highlights the performance of coupling based upper bounds when the marginal
kernels K1 and K2 are based on a MALA Markov chain and an unadjusted Langevin algorithm
(ULA) Markov chain respectively, with both chains targeting the distribution N (0,⌃) on Rd

as defined in (4). The MALA kernel K1 produces an exact Markov chain which is N (0,⌃)
invariant. The ULA kernel K2 produces an approximate Markov chain which is not N (0,⌃)
invariant. The joint kernel K̄ is based on a CRN coupling of the proposal steps of the MALA
and the ULA algorithms, and is in the supplement. We use a step-size of �P = �Q = 0.5d�1/6

for both chains, and initialize X(i)
0 ⇠ N (0, Id) and Y (i)

0 ⇠ N (0, Id) independently for each
coupled chain i. Let Pt and Qt denote the marginal distributions of X(i)

t and Y (i)
t respectively.
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Figure 2: Upper bounds on 2-Wasserstein distances with L2 norm between limiting distribu-
tions of ULA and MALA targeting P = N (0,⌃) on Rd. Analytic upper bounds are
from Durmus-Moulines (Durmus and Moulines, 2019). cW(UB)

p (P,Q) corresponds
to our upper bound estimate from (3).

We obtain

Pt = N (0,⌃) =: P, Qt = N
�
0,�2

Q

t�1X

j=0

B2j
�
, and Qt

t!1) N (0,�2
Q(Id �B2)�1) =: Q (5)

where B := Id� (�2
Q/2)⌃

�1, and weak convergence of Qt to Q holds for �Q sufficiently small.
Figure 2 shows the performance of our upper bound on W2(P,Q) to measure the asymp-

totic bias of ULA. The solid line shows the asymptotic bias upper bound calculated using
our coupled chains. For each dimension d, it is calculated using cW(UB)

2 (P,Q)2 from (3) with
I = 10 independent chains each of length T = 3000 with a burn-in of S = 1000 iterations.
For such number of independent chains and chain length, the grey error bands for the
the coupling based estimates are too small to be visible. The dashed line shows the true
asymptotic bias W2(P,Q)2, which is analytical tractable for this example. The dotted line
corresponds to E[kX � Y k22] for X ⇠ P and Y ⇠ Q independent, and is analytical tractable
for this example. The dot-dashed line shows the analytic upper bounds of the asymptotic
bias of ULA developed via couplings-based theoretical analysis (Durmus and Moulines, 2019,
Corollary 9). Figure 2 highlights that simulating couplings can give informative empirical
upper bounds to the asymptotic bias for practitioners which are much tighter compared to
an independent coupling and to the analytic upper bounds derived for ULA and thus directly
useful for practitioners. Overall, Figure 2 highlights that couplings can give empirically
informative upper bounds to W2(Pt, Qt) in higher dimensions.

3. Discussion

We have used couplings of Markov chains to estimate upper bounds on the Wasserstein
distance between the limiting distribution of the asymptotically biased sampling method and
the original target distribution of interest. Our supplement contains further details including:
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(i) consistency of our upper bound estimates, (ii) sufficient conditions for our upper estimates
to remain informative in high dimensions, (iii) comparison with alternative methods, (iii)
application of our sample quality measures on stochastic gradient MCMC, variational Bayes,
and Laplace approximations for tall data, and approximate MCMC for linear and logistic
regression in 5,000 dimensions.
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1. Properties and Implementation

In this section we establish the consistency of the estimators in the main text, consider
how to sample from the joint kernel K̄ , and investigate theoretical properties of our upper
bounds. All proofs are deferred to Appendix 4.

1.1. Consistency of upper bounds on Wasserstein distance

Let (X(i)
t , Y (i)

t )t�0 denote coupled Markov chains, where each chain i = 1, . . . , I is indepen-
dently generated with initial distribution Ī0 and joint kernel K̄ on X ⇥ X with marginal
kernels K1 and K2. For each t � 0, let Pt and Qt denote the distribution of X(i)

t and Y (i)
t

respectively. Fix some p 2 [1,1), and suppose Pt and Qt have finite moments of order p
for all t � 0. Under this setup, we establish the consistency of the p-Wasserstein estimators
proposed.

Proposition 1.1 Define the estimator

cW(UB)
p (Pt, Qt) :=

⇣1
I

IX

i=1

c(X(i)
t , Y (i)

t )p
⌘1/p

. (1)

Then cW(UB)
p (Pt, Qt) has finite moments of order p for all I � 1, and

Wp(Pt, Qt)
p
 E[cW(UB)

p (Pt, Qt)
p] for all t � 0. (2)

Similarly, we can consider the Wasserstein distance between mixtures of the marginal
distributions.

Corollary 1.2 Wp(
1
T

PT
t=1 Pt,

1
T

PT
t=1Qt)p 

1
T

PT
t=1 E[cW

(UB)
p (Pt, Qt)p].

When the marginal chains have stationary distributions and are initialized at stationarity
marginally, we can obtain upper bound estimates of the Wasserstein distance between the
two stationary distributions.

Corollary 1.3 Suppose kernels K1 and K2 have stationary distributions P and Q respec-

tively, where P and Q have finite moments of order p. Suppose we initialize (X0, Y0) ⇠ Ī0
such that X0 ⇠ P and Y0 ⇠ Q marginally. Then for any number of independent chains I � 0

and trajectories with burn-in S � 1 and length T � S, the estimator cW(UB)
p (P,Q) has finite

moments of order p, and

Wp(P,Q)p  E[cW(UB)
p (P,Q)p]. (3)
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Under Proposition 1.1, Corollary 1.2 and Corollary 1.3, by strong law of large numbers the
estimators cW(UB)

p (Pt, Qt),
PT

t=1
cW(UB)

p (Pt, Qt)/T and cW(UB)
p (P,Q) converge almost surely

to upper bounds of Wp(Pt, Qt), Wp(
PT

t=1 Pt/T,
PT

t=1Qt/T ) and Wp(P,Q) respectively as
I ! 1. We may not always be able to initialize from the stationary distributions P and
Q marginally. To obtain upper bounds of Wp(P,Q) without starting at the stationary
distributions P and Q marginally, we make an assumption related to convergence of marginal
distributions (Pt)t�0 and (Qt)t�0 on X .

Assumption 1.4 As t ! 1, Pt and Qt converge in p-Wasserstein distance to distributions

P and Q respectively, where P and Q have finite moments of order p.

Proposition 1.5 Under Assumption 1.4, for all ✏ > 0 there exists some S � 1 such that

for all T � S,

Wp(P,Q)p  ✏+
1

T � S

TX

t=S+1

E
⇥cW(UB)

p (Pt, Qt)
p
⇤

(4)

where
PT

t=S+1 E
⇥cW(UB)

p (Pt, Qt)p
⇤
/(T � S) is finite.

Proposition 1.5 presents an asymptotic upper bound. In practice, we can use the estimate

⇣ 1

T � S

TX

t=S+1

cW(UB)
p (Pt, Qt)

p
⌘1/p

(5)

with a large burn-in S � 1 to obtain an upper bound to Wp(P,Q) under any initialization
(X0, Y0) ⇠ Ī0.

For p = 1, we can also obtain non-asymptotic upper bounds using the L-lag coupling
approach of (Biswas et al., 2019). Suppose (X̃t�L, Xt)t�L is an L-lag coupling chain for
kernel K1 and (Ỹt�L, Yt)t�L is an L-lag coupling chain for kernel K2. We make the following
assumptions on K1 and K2 following (Jacob et al., 2020) and (Biswas et al., 2019).

Assumption 1.6 For all t � L, E[c(X̃t�L, Xt)2+⌘]  D and E[c(Ỹt�L, Yt)2+⌘]  D for

some ⌘ > 0, D < 1.

Assumption 1.7 The meeting times ⌧P := inf{t > L : Xt = X̃t�L} and ⌧Q := inf{t >

L : Yt = Ỹt�L} satisfy P( ⌧P�L
L > t)  C�t and P( ⌧Q�L

L > t)  C�t for all t � 0, for some

constants C < 1 and � 2 (0, 1).

Assumption 1.8 Faithfulness after meeting: Xt = X̃t�L for all t � ⌧P and Yt = Ỹt�L for

all t � ⌧Q.

Proposition 1.9 For any lag L � 1, consider the coupled chain (X̃t�L, Xt, Yt, Ỹt�L)t�L

such that (X̃t�L, Xt)t�L is an L-lag coupling chain for the kernel K1, (Ỹt�L, Yt)t�L is an

L-lag coupling chain for the kernel K2, and (Xt, Yt)t�L is a coupled chain sampled using the

2
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joint kernel K̄. Under assumption 1.4 with p = 1, and assumptions 1.6, 1.7 and 1.8, for all

t � 0

W1(P,Q)  E

cW(UB)

1 (Pt, Qt)+

d(⌧P�L�t)/LeX

j=1

c(X̃t+(j�1)L, Xt+jL)+

d(⌧Q�L�t)/LeX

j=1

c(Ỹt+(j�1)L, Yt+jL)

�
,

(6)
where the expectation is finite and can be computed in finite time.

In Proposition 1.9, E
⇥Pd(⌧P�L�t)/Le

j=1 c(X̃t+(j�1)L, Xt+jL)
⇤
and E

⇥Pd(⌧Q�L�t)/Le
j=1 c(Ỹt+(j�1)L, Yt+jL)

⇤

correspond to upper bounds of W1(Pt, P ) and W1(Qt, Q) respectively (Biswas et al., 2019).
This captures the 1-Wasserstein convergence of the marginal distributions (Pt)t�0 and (Qt)t�0

to give the non-asymptotic upper bound in (6).
We emphasize that the results of this section hold for any coupled chain sampled with the

joint kernel K̄. For example, this includes both the CRN coupled chains and independently
coupled chains. We now consider how to sample from the joint kernel K̄ and investigate
when our upper bounds can be informative.

1.2. Algorithms to sample from the coupled kernel K̄

In this section, we develop algorithms to sample from the joint kernel K̄ such that the
estimators from Section 1.1 can produce informative upper bounds. Our construction makes
use of the coupled kernels �1 on X ⇥ X and �� on X such that:

1. �1 is a Markovian coupling of the kernel of K1: for all x, y 2 X , �1(x, y) is a coupling
of the distributions K1(x, ·) and K1(y, ·).

2. �� is coupling of kernels K1 and K2 from the same point: for all z 2 X , ��(z) is a
coupling of the distributions K1(z, ·) and K2(z, ·).

The coupled kernel �1 characterizes the marginal chain corresponding to K1. For example,
when K1 is a Metropolis–Hastings kernel, �1 can be a CRN coupling of both the proposal
step and the accept-reject step. Alternatively when the proposal step is based on a spherically
symmetric distribution such as a Gaussian (e.g. Random-Walk Metropolis–Hastings or the
momentum component in Hamiltonian Monte Carlo), �1 can be a reflection coupling of the
proposal step and a CRN coupling of the accept-reject step ((Lindvall and Rogers, 1986;
Bou-Rabee et al., 2020); see also (O’Leary et al., 2021)). The coupled kernel �� characterizes
the perturbation between the marginal kernels K1 and K2. For example, when K1 and K2

are MALA and ULA kernels respectively, �� can be a CRN coupling of the proposal step
(when MALA and ULA have the same step-size, this gives the same proposal) with the
MALA chain having a further accept-reject Metropolis–Hastings correction step and the
ULA chain always accepting the proposal. Choice of coupled kernels �1 and �� is further
discussed in Section 1.3.

Given coupled kernels �1 and ��, we sample from the joint kernel K̄ using Algorithm 1.
Given Xt�1 and Yt�1, Algorithm 1 gives the conditional marginal distributions

Xt|Xt�1, Yt�1 ⇠ K1(Xt�1, ·) Zt|Xt�1, Yt�1 ⇠ K1(Yt�1, ·) Yt|Xt�1, Yt�1 ⇠ K2(Yt�1, ·).
(7)
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Algorithm 1: Joint kernel K̄ on X ⇥ X , which couples marginal kernels K1 and K2

Input: chain states Xt�1 and Yt�1, kernels K1 and K2, coupled kernels �1 and ��

Sample (Xt, Zt, Yt) such that (Xt, Zt)|Xt�1, Yt�1 ⇠ �1(Xt�1, Yt�1) and
(Zt, Yt)|Xt�1, Yt�1 ⇠ ��(Yt�1)

return (Xt, Yt)
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Figure 1: Upper bounds based on single and multiple trajectories, and under different choices
of coupling.

Often Algorithm 1 can be implemented to capture this dependency between Xt and Yt
given (Xt�1, Yt�1) without explicitly sampling Zt. As an example, consider Algorithm
1 for the coupled chain when K1 and K2 are MALA and ULA kernels with step-sizes
�P and �Q and target distributions P and Q respectively. �1 and �� are chosen to
be CRN coupled kernels. Given (Xt�1, Yt�1), we sample the common random number
✏CRN ⇠ N (0, Id) and calculate proposals X⇤ = Xt�1 + (�2

P /2)r logP (Xt�1) + �P ✏CRN ,
Z⇤ = Yt�1+(�2

P /2)r logP (Yt�1)+�P ✏CRN and Y ⇤ = Yt�1+(�2
Q/2)r logQ(Yt�1)+�Q✏CRN .

Then we accept or reject proposals X⇤ and Z⇤ based on a Metropolis–Hastings correction
with a common random number UCRN ⇠ Uniform(0, 1) to obtain Xt equal to X⇤ or Xt�1,
Zt equal to Z⇤ or Yt�1, and always accept Y ⇤ to obtain Yt = Y ⇤. This CRN coupling of
MALA and ULA is included in Algorithm 4 of Appendix 7, where each Zt is not explicitly
sampled. Appendix 7 also contains general CRN and reflection coupling between two
Metropolis–Hastings kernel.

We conclude this section with a discussion on practical implementation and potential
limitations.
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Number of coupled chains and chain length to simulate. We first highlight the
importance of simulating multiple coupled chains independently and running long chains
to obtain reliable upper bound estimates. Figure 1(a) considers the performance of the our
coupled chains to obtain 1-Wasserstein upper bounds between distributions P and Q on Rd

for d = 4, given by

P =
1

2
N (1d, Id) +

1

2
N (�1d, Id) and Q = N (1d, Id) (8)

such that one of the marginal target distributions is bimodal with well-separated modes. We
simulate the coupled chains (X(i)

t , Y (i)
t )t�0 independently for each i , where the joint kernel

K̄ is based on a CRN coupling of MALA kernels K1 and K2 targeting distributions P and Q

respectively. The MALA kernels have a common step-size d�1/6, and we initialize X(i)
0 = 1d

and Y (i)
0 = 1d such that both marginal chains start at the common mode. Under this setup,

Figure 1(a) of main text shows the trajectories of distance metric c(x, y) = kx�yk2 induced by
the L2 norm. The grey solid line shows the single trajectory (c(X(1)

t , Y (1)
t ))1000t=1 and the black

solid line shows the averaged trajectory (c̄(Xt, Yt))1000t=1 where c̄(Xt, Yt) :=
PI

i=1 c(X
(i)
t , Y (i)

t )/I
for I = 100 independent chains. The grey solid line alternates between values close to 0 or
4, corresponding to when the marginal chains from a single trajectory are both near the
common mode (1d) or near different modes (�1d and 1d) respectively. This highlights that
upper bound estimates based on only a single trajectory of short chain length can have high
variance. For multiple independent coupled chains, the averaged trajectory has lower variance
as shown by the grey confidence bands and the black solid line which remains close to the true
W1(P,Q) distance (shown by black dotted line). This highlights that upper bound estimates
based on multiple chains are more reliable in the presence of multiple modes. We note that
these multiple chains can be simulated in parallel, and that the memory requirements can be
negligible as it suffices to only store a scalar trajectory (c(X(i)

t , Y (i)
t ))Tt�1 of chain length T

for each independent coupled chain i. Also even for upper bound estimates based on a single
chain, the ergodic average

PT
t=1 c(X

(1)
t , Y (1)

t )/T for a sufficiently large chain length T can
produce estimates with low variance, as shown by the grey confidence bands and the black
solid line in Figure 1(b).

Choice of coupled kernel. Secondly, we highlight the importance of the choice of the
coupled kernel K̄. Figure 1(c) considers the performance of the our coupled chains to obtain
1-Wasserstein upper bounds between distributions P and Q on R, given by

P =
1

2
N (2, 1) +

1

2
N (�2, 1) and Q =

1

2
N (1, 1) +

1

2
N (�1, 1), (9)

such that now both the marginal target distributions are bimodal. Under this setup, we
simulated coupled chains based on both a CRN coupling and a reflection coupling of MALA
kernels K1 and K2 targeting distributions P and Q respectively. The MALA kernels have a
common step-size 2, and we initialize such that each X(i)

0 ⇠ P and Y (i)
0 ⇠ Q are independent.

In Figure 1(c), the grey and black solid lines show averaged trajectories from 100 independent
coupled chains based on CRN and reflection coupling respectively. It highlights that reflection
coupling gives tighter upper bounds compared to CRN for this example. In general, the
choice of coupling can have an impact on the tightness of our upper bounds. We emphasize

5



Authors

that any choice of such couplings still produces valid upper bounds (as shown in Section
1.1), and in practice one can simulate different coupling algorithms to empirically assess
which choice of coupling produces tighter upper bounds. Finally, Figure 1(c) highlights
that our upper bounds may not always be very close to the true Wasserstein distance.
Alternative coupling algorithms and Wasserstein distance upper bounds between mixtures
of distributions (application of Corollary 1.2, as shown by the black dotted line) can give
further improvements for this example. Details of the application of Corollary 1.2 here is
included in Appendix 3.

1.3. Theoretical guarantees of upper bounds on Wasserstein distance

We have established the consistency of our estimators based on coupled chains to produce
upper bounds on Wasserstein distances (Section 1.1), and have developed algorithms to sample
these coupled chains (Sections 1.2). In this section, we establish theoretical guarantees of
upper bounds generated from these algorithms. Our analysis is based on analytic perturbation
theory for Markov chains in 1-Wasserstein distance (Pillai and Smith, 2015; Johndrow and
Mattingly, 2018; Rudolf and Schweizer, 2018), and we generalize existing such results to
p-Wasserstein distances for all p � 1. This is a useful extension, as distances such as
2-Wasserstein better reflect geometric features compared to the 1-Wasserstein (e.g. Villani,
2008, Remark 6.6). We also highlight examples where the upper bounds on the Wasserstein
distance do not explicitly depend on the dimension of the state space, and are stable up to a
coupling of the one-step marginal kernels.

To establish theoretical guarantees of our upper bounds, we assume the Markovian
coupling �1 in Algorithm 1 gives uniform contraction in Wasserstein distance.

Assumption 1.10 There exists a constant ⇢ 2 (0, 1) such that for all Xt, Yt 2 X ,

E[c(Xt, Yt)
p
|Xt, Yt]

1/p
 ⇢c(Xt, Yt) for (Xt+1, Yt+1)|(Xt, Yt) ⇠ �1(Xt, Yt). (10)

Assumption 1.10 is stronger than the convergence assumption of the marginal chain
corresponding to kernel K1 (Assumption 1.4 for the marginal distributions (Pt)t�0). For
many popular MCMC algorithms, Assumption 1.10 has been established under certain
metrics c and coupled kernel �1 to give contraction rates ⇢ that do not explicitly depend on
the dimension on the state space X . This includes MALA (Eberle, 2014; Eberle and Majka,
2019), Hamiltonian Monte Carlo (HMC) (Bou-Rabee et al., 2020) and Pre-conditioned HMC
(Bou-Rabee and Eberle, 2020). When the target distributions are log-concave, Assumption
1.10 can hold with metric c(x, y) = kx � yk2 induced by L2 norm and the coupled kernel
�1 based on a CRN coupling. For target distributions (including for example, multimodal
distributions with Gaussian tails) which satisfy a weaker distant dissipativity condition
(Eberle, 2016; Gorham et al., 2019), Assumption 1.10 can hold with transformed metrics of
the form c̃(x, y) = f(kx � yk2) for some chosen increasing concave function f such that c̃
is equivalent to the original metric c(x, y) = kx� yk2 with rc̃(x, y)  c(x, y)  Rc̃(x, y) for
some constants 0 < r  R < 1, and the coupled kernel �1 based on a combination of CRN
and reflection coupling.

Further, we could directly weaken Assumption 1.10 to a geometric ergodicity condition
as in (Rudolf and Schweizer, 2018), where for some C � 1, ⇢ 2 (0, 1) and for all L � 1,
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E[c(Xt+L, Yt+L)p|Xt, Yt]1/p  C⇢Lc(Xt, Yt) for (Xt+L, Yt+L)|(Xt, Yt) ⇠ �L
P (Xt, Yt). Our

analysis then is based on the construction of a multi-step coupling kernel. This may be of
independent interest, and is included in Appendix 6 for completeness.

Under Assumption 1.10, we can upper bound the distance from our coupled chains
explicitly in terms of the initial distribution Ī0, contraction constant ⇢, and coupled kernel
�� corresponding to perturbations between the marginal kernels K1 and K2.

Theorem 1.11 Let (Xt, Yt)t�0 denote a coupled Markov chain with initial distribution Ī0
and joint kernel K̄ on X ⇥ X from Algorithm 1. Suppose the coupled kernel �1 satisfies

Assumption 1.10 for some ⇢ 2 (0, 1). Then for all t � 0,

E[cW(UB)
p (Pt, Qt)

p]1/p = E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢t�iE[�p(Yi�1)]
1/p

(11)

where (X0, Y0) ⇠ Ī0 and �p(z) := E[c(X,Y )p|z] for (X,Y )|z ⇠ ��(z).

Remark 1.12 It suffices to consider some metric c̃ which satisfies Assumption 1.10 and

dominates the metric c of interest, such that c(x, y)  Rc̃(x, y) for some constant R 2 (0,1).
Then E[c(Xt, Yt)p]1/p  RE[c̃(Xt, Yt)p]1/p, and by Theorem 1.11 for c̃ we can obtain upper

bounds with respect to metric c.

When the marginal distributions (Qt)t�0 converge, we obtain a simpler expression for
the upper bound.

Corollary 1.13 Under the setup and assumptions of Theorem 1.11, consider when the

marginal distributions Qt converge in p-Wasserstein distance to some distribution Q as

t ! 1. Then for all ✏ > 0, there exists some S � 1 such that for all t � S,

E[cW(UB)
p (Pt, Qt)

p]1/p = E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p + (1� ⇢t)
E[�p(Y ⇤)]1/p

1� ⇢
+ ✏.

(12)
where (X0, Y0) ⇠ Ī0, �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z), and Y ⇤

⇠ Q.

Corollary 1.13 gives Wp(P,Q)  lim inft!1 E[cW(UB)
p (Pt, Qt)p]1/p  E[�p(Y ⇤)]1/p/(1�

⇢). It implies that estimators from our coupled chains may give informative empirical upper
bounds of Wp(P,Q) when kernels K1 and K2 are close such that the expected perturbation
E[�p(Y ⇤)] for Y ⇤

⇠ Q is small. Further if the contraction rate ⇢ does not explicitly depend
on the dimension, then our coupled chains may give upper bounds which are informative
even in high dimensional settings.

The marginal distributions (Qt)t�0 can correspond to an approximate Markov chain, and
may not always converge to a limiting distribution. In such cases, we can upper bound the
distance from our coupled chains in terms of perturbations between the marginal kernels
weighted by a Lyapunov function of K2.

7



Authors

Proposition 1.14 Under the setup and assumptions of Theorem 1.11, let V : X ! [0,1)
be a pth-order Lyapunov function of K2 such that E[V (Yt+1)p|Yt = z]  �V (z)p + L for all

z 2 X and for some fixed constants � 2 [0, 1) and L 2 [0,1). Define

� := sup
z2X

✓
�p(z)

1 + V (z)p

◆1/p

 :=
⇣
1 + max

n
E[V (Y0)

p],
L

1� �

o⌘1/p
. (13)

where �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z). Then for all t � 0,

E[cW(UB)
p (Pt, Qt)

p]1/p = E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p + (1� ⇢t)
�

1� ⇢
. (14)

Remark 1.15 For Proposition 1.14 to be informative, we wish to find functions V such

that � is finite and small. In the case p = 1, Proposition 1.14 is related to Theorem 3.1 of

(Rudolf and Schweizer, 2018).

An application of these results on three simple examples related to MALA, ULA and
Stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011) Markov chains is
given in Appendix 5.

1.4. Comparison with related methods

In this section we compare our coupling based estimators of sample quality with related
methods.

Linear programs and Sinkhorn distances. Given samples from the distributions P
and Q, the Wasserstein distance between the corresponding empirical distributions may be
used to estimate Wp(P,Q). Proposition 1.16 notes a bound for the non-asymptotic bias of
such estimate.

Proposition 1.16 Suppose P and Q are distributions on the metric space (X , c) with finite

moments of order p. Let P̂N , P̃N , Q̂N and Q̃N denote empirical distributions of the samples

(X1, . . . , XN ), (X̃1, . . . , X̃N ), (Y1, . . . , YN ) and (Ỹ1, . . . , ỸN ) respectively, where Xi ⇠ P ,

X̃i ⇠ P , Yi ⇠ Q and Ỹi ⇠ Q for all i = 1, . . . , N . Suppose (X1, . . . , XN ) and (Y1, . . . , YN )
are independent, (X1, . . . , XN ) and (X̃1, . . . , X̃N ) are independent, and (Y1, . . . , YN ) and

(Ỹ1, . . . , ỸN ) are independent. Then,

E
⇥
Wp(P̂T , Q̂T )

p
⇤1/p

�

⇣
E
⇥
Wp(P̂T , P̃T )

p
⇤1/p

+E
⇥
Wp(Q̂T , Q̃T ))

p
⇤1/p⌘

 Wp(P,Q)  E
⇥
Wp(P̂T , Q̂T )

p
⇤1/p

.

(15)

We can consider the computational cost and the statistical performance of such empir-
ical Wasserstein’s distance based estimates. Calculating Wp(P̂N , Q̂N ) corresponds to an
uncapacitated minimum cost flow problem and requires O(N3 logN) computational cost
(Orlin, 1988), which can be prohibitive for large sample sizes. An alternative would be to
add entropic regularization and apply Sinkhorn’s algorithm (Cuturi, 2013), which involves a
regularization parameter � > 0. As � approaches zero, the induced distance from the optimal
matching of the regularized problem approaches the induced distance from an Wasserstein
optimal matching. However, using smaller values of � leads to more expensive O(N2/(�✏))

8



Supplementary material

computation time for ✏-accurate matchings (Altschuler et al., 2017; Dvurechensky et al.,
2018) and potential instability of the Sinkhorn’s algorithm. For empirical distributions P̂N

and Q̂N based on N independent samples from P and Q, in the worst case Wp(P̂N , Q̂N )
converges to Wp(P,Q) at rate ⌦(N�1/d) for dimension d > 2p (e.g. Dudley, 1969; Weed and
Bach, 2019; Lei, 2020). This can lead to the empirical Wasserstein distance giving loose
upper bounds of Wp(P,Q) when the number of samples does not increase exponentially with
dimension.

In comparison to such estimators based on empirical distributions of independent samples,
our coupling based estimators do not require solving any expensive optimization problems.
Furthermore, in cases when Assumption 1.10 is satisfied with favorable dependence on the
dimension, our estimates do not necessarily suffer from a curse of dimensionality. On the
other hand, such linear program based estimates converge to the true Wasserstein distance
as the number of samples tend to infinity. Therefore if one has access to a substantially large
computational budget and solving such linear programs with much larger sample sizes is
feasible, then the linear program based estimates will produce tighter upper bounds.

Comparison with the approach of Dobson et al. Related work by Dobson et al.
(Dobson et al., 2019) apply couplings to assess the sample quality of discretization of stochastic
differential equations. Our approach avoids the challenging problem of contraction-constant
estimation required in (Dobson et al., 2019). In a future revised version of this manuscript,
we intend to give a comparison of our approach and (Dobson et al., 2019).

Comparison with the approach of Huggins et al. Related work by Huggins et al.
(Huggins et al., 2019) derive analytic upper bounds on Wasserstein distances in terms of
divergences, and estimate such upper bounds using importance sampling. Accurate estimation
using importance sampling requires a number of samples that grow exponentially with the
Kullback-Leibler divergence (Agapiou et al., 2017; Chatterjee and Diaconis, 2018). Our
upper bound estimators in comparison do not require importance sampling, and can remain
effective even in high dimensions if the marginal Markov chains are fast-mixing. In a future
revised version of this manuscript, we intend to give a comparison of our approach and
(Huggins et al., 2019).

2. Applications

In this section, we illustrate our methods on three important applications.

2.1. Stochastic Gradient MCMC and variational inference for tall data

Our first application concerns Bayesian inference for tall datasets (Bardenet et al., 2017),
where the number of observations n is large compared to dimension d. In such settings, exact
MCMC algorithms can be computationally expensive with O(n) cost per iteration. This
computational bottleneck and the prevalence of tall datasets have catalysed recent interest in
approximate MCMC and variational approximation based algorithms. Approximate MCMC
algorithms include ULA, popular stochastic gradient based variants such as Stochastic Gra-
dient Langevin Dynamics (SGLD) (Welling and Teh, 2011) (see (Nemeth and Fearnhead,
2021) for a recent review of stochastic gradient MCMC), and related algorithms based on
deterministic approximations to the likelihood function (Huggins et al., 2016; Campbell and
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Broderick, 2018). Popular variational approximation methods include Laplace’s approxi-
mation, variational Bayes (see (Blei et al., 2017) for a review), and related variants (e.g.
Hoffman et al., 2013). In this section, we use couplings to assess the quality of these sampling
methods in the tall data regime. We consider ULA, SGLD, Laplace’s approximation and
mean field variational Bayes applied to Bayesian logistic regression for the Pima Indians
Diabetes dataset (Dua and Graff, 2017) with n = 768 observations and d = 8 covariates and
the DS1 life sciences dataset (Komarek and Moore, 2003) with n = 26732 observations and
d = 10 covariates.

Figures 2(a) and 2(b) highlight the Wasserstein distance upper bound estimates based on
coupled chains. In particular, each line corresponds to the averaged trajectory (c̄(Xt, Yt)2)t�0,
where c̄(Xt, Yt)2 :=

PI
i=1 c(X

(i)
t , Y (i)

t )2/I for I = 100 independent chains, each trajectory
(X(i)

t )t�0 is an exact MCMC MALA chain targeting the posterior P and each trajectory
(Y (i)

t )t�0 is linked to an approximate MCMC or a variational approximation algorithm. In
particular, the black solid, black dashed and black doted lines correspond to when each
(Y (i)

t )t�0 is an ULA chain, an SGLD chain based on sub-sampling 50% of the observations
and an SGLD chain based on sub-sampling 10% of the observations respectively all targeting
P . The grey solid and grey dashed lines correspond to when each (Y (i)

t )t�0 is an MALA
chain targeting N (µL,⌃L) and N (µMFV B,⌃MFV B) respectively. The parameters µL 2

Rd,⌃L 2 Rd⇥d are obtained from a Laplace approximation of ⇡, and parameters µMFV B 2

Rd, ⌃MFV B 2 Rd⇥d (where ⌃MFV B is a diagonal matrix) are obtained from a mean
field variational Bayes approximation of P with a Gaussian family. In all these cases,
we consider a CRN coupling between the kernels corresponding to the marginal chains
(X(i)

t )t�0 and (Y (i)
t )t�0 with common step-sizes. Figures 2(a) and 2(b) both highlight

the promising performance of Laplace’s approximation for such tall data problems. By
considering the limiting distance of the trajectories, we obtain an informative upper bound
estimate of approximately 10�3 and 10�7 for W

2
2

�
P,N (µL,⌃L)

�
for the Pima and DS1

datasets respectively. This promising performance of Laplace’s approximations can be linked
to concentration of the posterior and accuracy of the corresponding Bernstein-von Mises
approximation (Bardenet et al., 2017), and has been noted before for logistic regression
(Chopin and Ridgway, 2017). Our bounds also highlight how the Metropolis–Hastings
correction and stochastic gradients affect sample quality for ULA and SGLD for a fixed
step-size.

Lastly, we note that the true Wasserstein distance may have a different ordering compared
to our coupling based upper bounds. To check this, in Figure 2 we plot our 2-Wasserstein
upper bound alongside the lower bound of Gelbrich (Gelbrich, 1990), based on the empirical
mean and covariance estimates of the marginal chains. This allows comparison between
approximate MCMC and variational approximation based methods, and highlights the
promising empirical performance of our upper bounds. Furthermore, even in cases when the
true Wasserstein distances are not known or the lower bounds are challenging to estimate,
our upper bounds remain useful for the researcher as a geometrically faithful measure of
sample quality.
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(a) W2 with L2 distance metric upper
and lower bounds for Pima Indians
dataset.
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(b) Single and averaged CRN trajecto-
ries for W1 with L2 distance.

Figure 2: Wasserstein distance upper bounds of Stochastic Gradient MCMC and Gaussian
variational approximations for Bayesian Logistic regression.

2.2. Approximate MCMC for high-dimensional linear regression

We now consider high-dimensional Bayesian linear regression, where the dimension d is larger
than the number of observations. The likelihood is given by L(�; y,X,�2) = N (y;X�;�2In)
where N (·;X�,�2In) denotes the probability density function of N (X�;�2In) on Rn, y 2 Rn

is the observed response vector, X 2 Rn⇥d is the observed design matrix, � 2 Rd unknown
signal vector that is assumed to be sparse, and �2 > 0 is the unknown noise variance. We
consider a class of global-local mixture priors in this setting, given by

⇠�1/2
⇠ Cauchy+(0, 1) ⌘�1/2

j
i.i.d.
⇠ t+(⌫) ��2

⇠ Gamma
⇣a0
2
,
b0
2

⌘
�j |⌘, ⇠,�

2 ind.
⇠ N

⇣
0,

�2

⇠⌘j

⌘

(16)
where Cauchy+(0, 1) is the half-Cauchy distribution on [0,1) and t+(⌫) is the half-t distri-
bution on [0,1) with ⌫ degress of freedom. When ⌫ = 1, this corresponds to the popular
Horseshoe prior (Carvalho et al., 2009, 2010; Bhadra et al., 2019). This setting differs consid-
erably from the log-concave tall data example (Section 2.1), as now the posterior distribution
is multi-modal, has polynomial tails along directions in the null space of the design matrix
X and has infinite density about the origin (Biswas et al., 2021). The state-of-the-art exact
MCMC algorithms to sample from the posterior are Gibbs samplers which cost O(n2d) per
iteration (Bhattacharya et al., 2016). This computation cost arises from a weighted matrix
product calculation of the form X Diag(⌘t)�1XT where ⌘t 2 [0,1)p corresponds to the
local scale parameters which take different values at each iteration t. For the Horseshoe
prior (⌫=1), approximate MCMC methods have been recently developed for this problem
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Figure 3: W2 with L2 distance metric upper and lower bounds.

(Johndrow et al., 2020), which are based on the weighted matrix product X Diag(⌘̃t)�1XT ,
where ⌘̃j,t := ⌘j,t {⌘j,t>✏} is a truncated approximation of ⌘t for some small threshold ✏ > 0.

In this section, we use couplings to measure the sample quality of the approximate MCMC
algorithm. We consider a synthetic dataset with n = 100 and dimension d = 5, 000. For
the half-t prior in (16), we consider a CRN coupling with one marginal chain corresponding
to the exact MCMC kernel and the other chain corresponding to the approximate MCMC
kernel. The marginal kernels are based on the MCMC algorithms introduced in (Johndrow
et al., 2020; Biswas et al., 2021)

Figure 3 highlights our results. We plot the corresponding Wasserstein upper bound
and lower bounds of (Gelbrich, 1990). The upper bound and lower bounds are based on
10 independent coupled chains each of length 5, 000 with a burn-in of 500 iterations. This
highlights how considering a higher value of ⌫ (corresponding to a more concentrated prior
about zero) can improve the quality of the approximate MCMC samples for the same
threshold parameter ✏. This can be linked to Theorem 1.11, and a higher degree of freedom
⌫ giving a faster contraction under a CRN Markovian coupling of the exact MCMC kernel,
as empirically observed in (Biswas et al., 2021).

2.3. Approximate MCMC for high-dimensional logistic regression

In this section, we consider high-dimensional Bayesian logistic regression with spike and slab
priors. The likelihood is given by L(�; y,X) =

Qn
i=1(1 + exp(�yixTi �))

�1 where y 2 Rn is
the observed response vector with components yi 2 {0, 1}, X 2 Rn⇥d is the scaled design
matrix with rows xTi , and � 2 Rd is the unknown signal vector that is assumed to be sparse.
We consider a spike and slab prior for Bayesian variable selection is this setting, given by

Zj
i.i.d.
⇠ Bernoulli(q) �j |Zj = 0 ⇠ N (0, ⌧20 ) �j |Zj = 1 ⇠ N (0, ⌧21 ) (17)
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for j = 1, . . . , d where q 2 (0, 1), ⌧0 > 0, ⌧1 > 0 are hyper-parameters. We take ⌧0 ⌧ ⌧1
such that Zi = 0 and Zi = 1 correspond to null and a non-null components �j respectively.
Spike and slab priors have been commonly used for Bayesian variable selection (George
and McCulloch, 1993; Ishwaran and Rao, 2005; Narisetty and He, 2014). By consider
the posterior distributions of each variable Zj on {0, 1}, spike and slab priors provide
an easily interpretable method for Bayesian variable selection. The state-of-the-art exact
MCMC algorithms to sample from the posterior are Gibbs samplers which cost O(n2d) per
iteration (Bhattacharya et al., 2016). Recently, (Narisetty et al., 2019) have been developed
approximate MCMC methods for this logistic regression setting. For their approximate
MCMC algorithm, (Narisetty et al., 2019) consider matrix approximations of the form

✓
XT

AXA + ⌧�2
1 I XT

AXI

XT
I XA XT

I XI + ⌧�2
0 I

◆
⇡

✓
XT

AXA + ⌧�2
1 I 0

0 (n+ ⌧�2
0 )I

◆
(18)

where A = {j : Zj = 1} , XA is an n⇥ |A| matrix corresponding the active columns j 2 A of
the design matrix, and XI is an n ⇥ (p � |A|) matrix corresponding the inactive columns
j /2 A. The algorithm also has a corresponding correction step which ensures that the
approximate chain converges to a desirable target distribution. The approximate MCMC
algorithm has overall computation cost of O(nmin{p, |A|

2
}) per iteration.

In this section, we use couplings to measure the sample quality of the approximate
MCMC algorithm. We consider a synthetic dataset with n = 100 and dimensions d 2

{100, 200, 300, 400}. For the spike and slab prior in (17), we consider a CRN coupling on one
marginal chain corresponding to the exact MCMC kernel and the other chain corresponding
to the approximate MCMC kernel. The upper bound and lower bounds are then based on 10
independent coupled trajectories each of length 5, 000 with a burn-in of 5, 000 iterations.

Figure 4 highlights our results. We consider the 1-Wasserstein distance with respect to
the Hamming distance on Z 2 {0, 1}d. The upper bounds are based on our coupled chains.
For the lower bounds, note that the Hamming distance equals square of the L2 distance
metric, so the bounds of (Gelbrich, 1990) are applicable. Figure ?? shows that the upper and
lower bounds for the 1-Wasserstein distance increase with dimension on synthetic datasets,
highlight the approximate chain may have worsening sample quality in higher dimensions for
this example.
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for Bayesian logistic regression with the spike and slab prior. n = 100 and varying
dimension d.
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where P and Q are distributions on the metric space (X , c) with finite moments of order p,
and P̂T and Q̂T denote empirical distributions of the samples (X1, . . . , XT ) and (Y1, . . . , YT )
where Xi ⇠ P and Yi ⇠ Q for all i = 1, . . . , T . For p = 2 and P 6= Q, the dot-dashed lines in
Figure ?? of main text plots the estimate

IX

i=1

W2(P̂
(i)
T , Q̂(i)

T )2/I

of this upper bound, where P̂ (i)
T and Q̂(i)

T are empirical distribution of P and Q respectively
based on T samples. For each i = 1, . . . , I, such empirical distributions P̂ (i)

T and Q̂(i)
T are gen-

erated independently and then W2(P̂
(i)
T , Q̂(i)

T ) is calculated by solving a linear program. The
error bands plot �̂/

p
I for �̂2 defined as the variance of

�
W2(P̂

(i)
T , Q̂(i)

T )2
�I
i=1

, corresponding
to one standard deviation of the upper bound estimate.

For large T and P 6= Q, we could also employ a central limit theorem of (del Barrio and
Loubes, 2019) for the 2-Wasserstein distance between empirical distributions of independent
samples on Rd under the L2 distance metric.

Theorem 3.1 (del Barrio and Loubes, 2019, Theorem 4.1) Consider the 2-Wasserstein

distance on Rd
with metric c as the L2 distance. Suppose P and Q are distributions on Rd

each with finite moments of order 4 + � for some � > 0 and positive density in the interior

of its convex support. Let P̂T and Q̂T denote empirical distributions corresponding to two

independent sets of independent samples of size T from P and Q respectively. Then,

p

T
⇣
W2(P̂T , Q̂T )

2
� E

⇥
W2(P̂T , Q̂T )

2
⇤⌘ T!1

) N
�
0,�2(P,Q) + �2(Q,P )

�
, (20)

where �2(P,Q) := Var
�
kXk

2
2 � 2�0(X)

�
for X ⇠ P and �0 is the optimal transport potential

from P to Q (such that r�0 is an optimal transportation map from P to Q), and �2(Q,P ) :=
Var

�
kY k

2
2 � 2�1(Y )

�
for Y ⇠ Q and �1 is the optimal transport potential from Q to P .

3.1. Stylized example calculations

Equation (??) of main text calculation. As X0 ⇠ N (0,⌃) = P and kernel K1 is P
invariant, Xt ⇠ P for all t � 0. For the ULA chain (Yt)t�0, we have

Yt = (Id � (�2
Q/2)⌃

�1)Yt�1 + �QZt = BYt�1 + �QZt (21)

for all t � 0, where Y0 = 0, and Zt
i.i.d.
⇠ N (0, Id) and B = (Id � (�2

Q/2)⌃
�1). By induction,

this gives

Yt = BtY0 + �Q
⇣
Bt�1Z1 +Bt�2Z2 + · · ·+BZt�1 + Zt

⌘
= �Q

t�1X

j=0

BjZt�j ⇠ N
�
0,�2

Q

t�1X

j=0

B2j
�
=: Qt

(22)

as required. Finally, note that for �Q = 0.5d�1/6 sufficiently small such that kBk2 < 1
(where k · k2 is the matrix operator norm), limt!1

Pt�1
j=0B

2j = (Id � B2)�1. This gives
Qt

t!1
) N (0,�2

Q(Id �B2)�1) =: Q.
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ULA asymptotic bias upper bound calculation. We recall a result on the asymptotic
bias of ULA.

Proposition 3.2 (Durmus and Moulines, 2019, Corollary 9) Consider an ULA Markov

chain targeting the distribution ⇡ on Rd
with un-normalized density exp(�U(x)). For k · k2

the L2 norm on Rd
, assume:

1. U is continuously differentiable and lipschitz: there exists some L � 0 such that for all

x, y 2 Rd
,

krU(x)�rU(y)k  Lkx� yk2.

2. U is m-strongly convex for some m > 0: there exists some m > 0 such that for all

x, y 2 Rd
,

U(x)  U(y) + hrU(x), y � xi+ (m/2)kx� yk22

3. U is three times continuously differentiable and there exists some L̃ > 0 such that for

all x, y 2 Rd
,

kr
2U(x)�r

2U(y)k2  L̃kx� yk2.

Let the step-size � of the Markov chain be sufficiently small such that � := �2/2 < 1/(m+L).
Then the ULA Markov chain converges to some distribution ⇡�, and

W2(⇡,⇡�)
2
 2�1�2d

⇣
2L2 + �L4

��
6
+

1

m

�
+ �1

�4dL̃2

3
+ �L4 +

4L4

3m

�⌘
(23)

where  = 2mL/(m+ L).

The dotted line in Figure ?? of main text is plotted by applying (23) for ⇡ = N (0,⌃), where
L = �min(⌃)�1, m = �max(⌃)�1 and L̃ = 0. Here �max(⌃) and �min(⌃) are the largest and
smallest eigenvalue of ⌃ respectively.

Application of Corollary 1.2 in Figure 1(c). By Corrollary 1.2 applied to the targets
in Equation 9, we obtain

Wp(P,Q)p = Wp

⇣1
2
N (2, 1) +

1

2
N (�2, 1),

1

2
N (1, 1) +

1

2
N (�1, 1)

⌘p
(24)


1

2

⇣
Wp

�
N (2, 1),N (1, 1)

�p
+Wp

�
N (�2, 1),N (�1, 1)

�p⌘ (25)


1

2

⇣
E
⇥cW(UB)

p (N (2, 1),N (1, 1))p
⇤
+ E

⇥cW(UB)
p (N (�2, 1),N (�1, 1))p

⇤⌘
. (26)

The black solid line in Figure 1(c) was obtained by calculating cW(UB)
p (N (�2, 1),N (�1, 1))

based on a CRN coupling of MALA kernels targeting N (�2, 1) and N (�1, 1) marginally
with a common step-size 2, and by calculating cW(UB)

p (N (2, 1),N (1, 1)) based on a CRN
coupling of MALA kernels targeting N (2, 1) and N (1, 1) marginally also with a common
step-size 2.
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4. Proofs

4.1. Consistency proofs

Technical Results. We first record some technical results.

Lemma 4.1 Let (aj)j�0 be a sequence on R such that aj
j!1
! 0, and let ⇢ 2 (0, 1). Then

Pt
j=1 ⇢

t�jaj
t!1
! 0.

Proof As aj
j!1
! 0, the sequence (aj)j�0 is bounded by some M 2 (0,1). Also for all

✏ > 0, there exists some j0 � 1 such that |aj | < ✏ for all j � j0. For all t > j0, this gives

���
tX

j=1

⇢t�jaj
��� 

j0X

j=1

⇢t�j
|aj |+

tX

j=j0+1

⇢t�j
|aj |  M⇢t�j0 1� ⇢j0

1� ⇢
+ ✏

1� ⇢t�j0

1� ⇢
. (27)

Taking limits we obtain limt!1

���
Pt

j=1 ⇢
t�jaj

���  ✏/(1 � ⇢), where ✏/(1 � ⇢) can be made
arbitrarily small.

Lemma 4.2 (Gluing lemma) (Villani, 2008, Chapter 1) Let µi be probability measures on the

Polish measurable spaces (Xi,B(Xi)) for i = 1, . . . , 3. Let X1, X2, Y2, Y3 be random variables

such that (X1, X2) is a coupling of (µ1, µ2) and (Y2, Y3) is a coupling of (µ2, µ3). Then,

there exists random variables Z1, Z2, Z3 such that (Z1, Z2) has the same law as (X1, X2) and

(Z2, Z3) has the same law as (Y2, Y3).

Proof [Proof of Proposition 1.1] Note that Wp(Pt, Qt) is well-defined and E[c(Xt, Yt)p] is
finite as distributions P and Q have finite moments of order p. We obtain

Wp(Pt, Qt)
p
 E[c(Xt, Yt)

p] = E[cW(UB)
p (Pt, Qt)

p], (28)

where the inequality follows from the coupling representation of Wasserstein distance, and
the equality follows from the definition of cW(UB)

p (Pt, Qt).

Proof [Proof of Corollary 1.2] It suffices to check that Wp(
1
T

PT
t=1 Pt,

1
T

PT
t=1Qt)p 

1
T

PT
t=1Wp(Pt, Qt)p and apply Proposition 1.1. Let �t denote the p-Wasserstein optimal

coupling between distributions Pt and Qt for t = 1, . . . , T . Sample the coupling (X,Y )
such that (X,Y )|I = t ⇠ �t for I ⇠ Uniform({1, . . . , T}). Then X ⇠

1
T

PT
t=1 Pt and

Y ⇠
1
T

PT
t=1Qt marginally, and

Wp(
1

T

TX

t=1

Pt,
1

T

TX

t=1

Qt)
p
 E[c(X,Y )p] =

1

T

TX

t=1

E[c(X,Y )p|I = t] =
1

T

TX

t=1

Wp(Pt, Qt)
p

(29)
as required.
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Proof [Proof of Corollary 1.3] Note that Wp(P,Q) is well-defined and
PT

t=S+1 E[c(Xt, Yt)p]/(T�
S) is finite as distributions Pt and Qt have finite moments of order p. We obtain,

Wp(P,Q)p =
1

T � S

TX

t=S+1

Wp(Pt, Qt)
p


1

T � S

TX

t=S+1

E[c(Xt, Yt)
p] = E[cW(UB)

p (P,Q)p].

(30)

where the first equality follows as Pt = P and Qt = Q for all t � 0, the inequality follows
Proposition 1.1, and the last equality follows from the definition of cW(UB)

p (P,Q).

Proof [Proof of Proposition 1.5] Let (Pt)t�0 and (Qt)t�0 denote the marginal distributions
of Markov chains (Xt)t�0 and (Yt)t�0 respectively. By Assumption 1.4, distributions (Pt)t�0,
(Qt)t�0, P and Q all have finite moments of order p. Then for all t � 1,

Wp(P,Q)  Wp(P, Pt) +Wp(Pt, Qt) +Wp(Qt, Q) (31)

 Wp(P, Pt) + E[c(Xt, Yt)
p]1/p +Wp(Qt, Q), (32)

where (31) follows by the triangle inequality as Wp is a metric on the space of measure on X

with finite moments of order p , and (32) follows from the coupling representation of Wp. By
Assumption 1.4, limt!1Wp(P, Pt) = 0 and limt!1Wp(Qt, Q) = 0. Taking the limit infimum
in (32) and raising to the pth exponent gives Wp(P,Q)p  lim inft!1 E[c(Xt, Yt)p]. Therefore
for all ✏ > 0, there exists S � 1 such that for all t � S, Wp(P,Q)p  ✏+ E[c(Xt, Yt)p], and

Wp(P,Q)p  ✏+
1

T � S

TX

t=S+1

E[c(Xt, Yt)
p] = ✏+

1

T � S

TX

t=S+1

E
⇥cW(UB)(Pt, Qt)

p
⇤

(33)

for all T � S.

Proof [Proof of Proposition 1.9] By the triangle inequality,

W1(P,Q)  W1(Pt, Qt) +W1(Pt, P ) +W1(Pt, P ). (34)

By Proposition 1.1, W1(Pt, Qt)  E[cW(UB)
1 (Pt, Qt)]. Under assumptions 1.6, 1.7 and 1.8, by

(Biswas et al., 2019, Theorem 2.5) we obtain

W1(Pt, P )  E
⇥ d(⌧Q�L�t)/LeX

j=1

c(Ỹt+(j�1)L, Yt+jL)
⇤

and (35)

W1(Qt, Q)  E
⇥ d(⌧P�L�t)/LeX

j=1

c(X̃t+(j�1)L, Xt+jL)
⇤
. (36)

Equation (6) now directly follows.
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4.2. Wasserstein upper bound proofs

Proof [Proof of Theorem 1.11] Under the coupled kernel K̄ from Algorithm 1, for each
t � 1 we have the coupling (Xt, Zt, Yt) where (Xt, Zt)|Xt�1, Yt�1 ⇠ �1(Xt�1, Yt�1) and
(Zt, Yt)|Xt�1, Yt�1 ⇠ ��(Yt�1). This gives

E[c(Xt, Yt)
p]1/p = E[E[c(Xt, Yt)

p
|Xt�1, Yt�1]]

1/p (37)

 E[E[
�
c(Xt, Zt) + c(Zt, Yt)

�p
|Xt�1, Yt�1]]

1/p (38)

 E[E[c(Xt, Zt)
p
|Xt�1, Yt�1]]

1/p + E[E[c(Zt, Yt)
p
|Xt�1, Yt�1]]

1/p (39)

 ⇢E[c(Xt�1, Yt�1)
p]1/p + E[�p(Yt�1)]

1/p (40)

where (38) follows as c is a metric, (39) follows by Minowski’s inequality, and (40) follows
by Assumption 1.10 with �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z). By induction, (40)
implies

E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢t�iE[�p(Yi�1)]
1/p. (41)

Proof [Proof of Corollary 1.13] Denote a := E[�p(Y ⇤)]1/p for Y ⇤
⇠ Q and ak := E[�p(Yk)]1/p

for k � 0. Then ak
k!1
! a, because Qt converges in p-Wasserstein distance to Q as t ! 1.

By Lemma 4.1, this implies

tX

i=1

⇢t�iai�1
t!1
!

tX

i=1

⇢t�ia =
1� ⇢t

1� ⇢
a. (42)

Therefore, for all ✏ > 0 there exists S � 1 such that for all t � S,
Pt

i=1 ⇢
t�i

|ai � a| < ✏. By
Theorem 1.11,

E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢t�iai�1 (43)

 ⇢tE[c(X0, Y0)
p]1/p +

tX

i=1

⇢t�ia+
tX

i=1

⇢t�i
|ai�1 � a| (44)

= ⇢tE[c(X0, Y0)
p]1/p +

1� ⇢t

1� ⇢
a+ ✏. (45)

Proof [Proof of Proposition 1.14] As V is a a pth-order Lyapunov function of K2, by induction

E[V (Yi)
p]  �iE[V (Y0)

p] + (1� �i)
L

1� �
for all i � 0. (46)
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for all i � 0. Therefore,

E[�p(Yi)]  �E[1 + V (Yi�1)
p]  �p

⇣
1 + �i�1E[V (Y0)

p] + (1� �i�1)
L

1� �

⌘
 �pp

for all i � 1, where the first inequality follows from the definition of �, second inequality
from (46), and the second inequality from the definition of . By Theorem 1.11, we obtain

E[c(Xt, Yt)
p]1/p  ⇢tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢t�iE
h
�p(Yi�1)

i1/p
(47)

 ⇢tE[c(X0, Y0)
p]1/p + �

tX

i=1

⇢t�i (48)

= ⇢tE[c(X0, Y0)
p]1/p + (1� ⇢t)

�

1� ⇢
. (49)

4.3. Wasserstein distances of empirical distributions proofs

To prove Proposition 1.16, we first record a technical result.

Lemma 4.3 Suppose S and T are distributions on the metric space (X , c) with finite

moments of order p. Given Ui ⇠ S for i = 1, . . . , n, let ŜN denote the empirical distribution

of (U1, . . . , UN ). Then,

Wp(S, T )
p
 E[Wp(ŜN , T )p]. (50)

Proof Our proof follows a coupling construction. Define random variables V ⇠ T and Ui ⇠ S
for i = 1, . . . , n such that V and (U1, . . . , UN ) are independent. Then V |U1, . . . UN ⇠ V ⇠ T
by independence. Let ŜN denote the empirical distribution of (U1, . . . , UN ). Define a random
variable U such that U |U1, . . . UN ⇠ ŜN and (U, V )|U1, . . . UN is a Wasserstein optimal
coupling of ŜN and T . Note that unconditionally V ⇠ T and U ⇠ S as Ui ⇠ S for all
i = 1, . . . , n. Therefore (U, V ) is a coupling of S and T . We obtain,

Wp(S, T )
p
 E[c(U, V )p] by the coupling representation of Wasserstein distance (51)
= E[E[c(U, V )p|U1, . . . UN ]] (52)

= E[Wp(ŜN , T )p]. (53)

Proof [Proof of Proposition 1.16]

Upper bound. Let P̂N and Q̂N denote the empirical distributions of the samples (X1, . . . , XN )
and (Y1, . . . , YN ) respectively, where Xi ⇠ P , Yi ⇠ Q for all i = 1, . . . , n, and (X1, . . . , XN )
and (Y1, . . . , YN ) are independent. By Lemma 4.3 with S = P , Ui = Xi and T = Q,

Wp(P,Q)p  E[Wp(P̂N , Q)p].
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As (X1, . . . , XN ) and (Y1, . . . , YN ) are independent, Yi|(X1, . . . , XN ) ⇠ Yi ⇠ Q for all
i = 1, . . . , N . We can therefore apply Lemma 4.3 conditional on (X1, . . . , XN ) now with
S = Q, Ui = Yi and T = P̂N to obtain

Wp(P̂N , Q)p  E[Wp(P̂N , Q̂N )p|X1, . . . , XN ]

almost surely for all X1, . . . , XN . Overall, this gives

Wp(P,Q)p  E[Wp(P̂N , Q)p]  E[E[Wp(P̂N , Q̂N )p|X1, . . . , XN ]] = E[Wp(P̂N , Q̂N )p].

Lower bound. Let P̂N and Q̂N denote empirical distributions of the samples (X1, . . . , XN )
and (Y1, . . . , YN ) respectively, where Xi ⇠ P , Yi ⇠ Q for all i = 1, . . . , n. Given (X1, . . . , XN )
and (Y1, . . . , YN ), by the triangle inequality we obtain

Wp(P̂N , Q̂N )  Wp(P̂N , P ) +Wp(P,Q) +Wp(Q, Q̂N ). (54)

By Minowski’s inequality, this gives

E[Wp(P̂N , Q̂N )p]1/p  E
h⇣

Wp(P̂N , P ) +Wp(P,Q) +Wp(Q, Q̂N )
⌘pi1/p

(55)

 E[Wp(P̂N , P )p]1/p + E[Wp(P,Q)p]1/p + E[Wp(Q, Q̂N )p]1/p (56)

= E[Wp(P̂N , P )p]1/p +Wp(P,Q) + E[Wp(Q, Q̂N )p]1/p (57)

Let P̃N denote empirical distributions of the samples (X̃1, . . . , X̃N ), where X̃i ⇠ P
for all i = 1, . . . , n and (X̃1, . . . , X̃N ) and (X1, . . . , XN ) are independent. Independence
implies X̃i|(X1, . . . , XN ) ⇠ X̃i ⇠ P for all i = 1, . . . , n. We can therefore apply Lemma 4.3
conditional on (X1, . . . , XN ), with S = P , T = P̂N and X̃i = Ui to obtain

Wp(P̂N , P )p  E[Wp(P̂N , P̃N )p|X1, . . . , XN ]. (58)

Similarly,
Wp(Q, Q̂N )p  E[Wp(Q̃N , Q̂N )p|Y1, . . . , YN ] (59)

where Q̃N denotes empirical distributions of the samples (Ỹ1, . . . , ỸN ), where Ỹi ⇠ Q for all
i = 1, . . . , n and (Ỹ1, . . . , ỸN ) and (Y1, . . . , YN ) are independent. By (57), we now obtain

E[Wp(P̂N , Q̂N )p]1/p  E[Wp(P̂N , P )p]1/p +Wp(P,Q) + E[Wp(Q, Q̂N )p]1/p (60)

= E[E[Wp(P̂N , P )p|X1, . . . , XN ]]1/p +Wp(P,Q) + E[E[Wp(Q, Q̂N )p|Y1, . . . , YN ]]1/p

(61)

 E[E[Wp(P̂N , P̃N )p|X1, . . . , XN ]]1/p +Wp(P,Q) + E[E[Wp(Q̃N , Q̂N )p|Y1, . . . , YN ]]1/p

(62)

= E[Wp(P̂N , PN )p]1/p +Wp(P,Q) + E[Wp(Q̃N , Q̂N )p]1/p (63)

as required.

25



Authors

5. Example applications of theoretical results

In this section we consider the theoretical results of Section 1.3 applied to three simple
examples, working with the metric c(x, y) = kx� yk2 induced by the L2 norm.

MALA and ULA. Consider a MALA chain and an ULA chain with a common step size
� both targeting a distribution P . Assume the negative log density of P is gradient Lipschitz
and strongly convex. In this setting, let (Xt, Yt)t�0 be a CRN coupling of ULA and MALA
simulated using Algorithm ??, such that the Markov chains (Xt)t�0 and (Yt)t�0 marginally
correspond to ULA and MALA respectively. For � sufficiently small, the marginal ULA
chain (Xt)t�0 converges to some distribution P� and satisfies Assumption 1.10 for p = 2
under a CRN coupling (Durmus and Moulines, 2019, Proposition 3), giving a contraction
rate ⇢ such that 1� ⇢ = C�2/2 for some constant C which depends on the gradient Lipschitz
constant and convexity of the negative log density of P rather than depending explicitly on
the dimension of the state space. By Corollary 1.13,

W2(P�, P )  lim inf
t!1

E[cW(UB)
2 (Pt, Qt)

2]1/2 
E
⇥
kY � Y 0

k
2
�
1� ↵�

�
Y, Y 0��⇤1/2

C�2/2
, (64)

where Y ⇠ P is the limiting distribution of the MALA chain, Y 0
|Y ⇠ N (Y+�2

2 r logP (Y ),�2Id)
corresponds to the Euler–Maruyama discretization based proposal, and ↵�

�
Y, Y 0�

2 [0, 1] is
the Metropolis–Hastings acceptance probability. As the step-size � tends to zero, the upper
bound in (64) require further analysis of the MALA acceptance probabilities (Bou-Rabee
and Hairer, 2012; Eberle, 2014) and could degenerate. Recently, discrete sticky couplings
(Durmus et al., 2021) have been developed for perturbed functional autoregressive processes,
which produce stable upper bounds on total variation and the Wasserstein distance in such
limiting regimes.

ULA and ULA. We can similarly consider two ULA chains with a common step size
� targeting different distributions P and Q. As above, assume both logP and logQ are
gradient Lipschitz and strongly convex. In this setting, let (Xt, Yt)t�0 be a CRN coupling of
two ULA chains simulated using Algorithm ??, such that the Markov chains (Xt)t�0 and
(Yt)t�0 marginally correspond to ULA targeting distributions P and Q respectively. For �
sufficiently small, the marginal chains (Xt)t�0 and (Yt)t�0 converge to some distributions
P� and Q� respectively. Both marginal chains also satisfy Assumption 1.10 for p = 2
under a CRN coupling, with contraction rates ⇢P and ⇢Q such that 1� ⇢P = CP�2/2 and
1� ⇢Q = CQ�2/2 respectively for some constants CP and CQ that do not explicitly depend
on the dimension. By Corollary 1.13, this gives

W2(P�, Q�)  lim inf
t!1

E[cW(UB)
2 (Pt, Qt)

2]1/2 
E
⇥
kr logP (Y�)�r logQ(Y�)k2

⇤1/2

CP
(65)

where Y ⇠ Q�. By symmetry, we can obtain a similar bound in terms of some random
variable X ⇠ P� and CQ. As � approaches zero, the numerator in (65) approaches the
square root of the Fisher divergence between distributions Q and P , given by F (Q,P ) :=
E[kr logP (Y )�r logQ(Y )k2] for Y ⇠ Q. Such link between the Fisher divergence and the
Wasserstein distance has been noted previously by considering continuous-time Langevin
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diffusions (e.g. (Huggins et al., 2019)). Finally, note that the upper bound in (65) does not
explicitly depend on dimension, highlighting that estimators based on our coupled chains
may give upper bounds that remain informative in high dimensions.

ULA and SGLD. Consider an ULA chain and a Stochastic gradient Langevin dynamics
(SGLD) (Welling and Teh, 2011) chain with a common step size � and both targeting
a distribution P . The SGLD chain is based on unbiased estimates of the gradient of
the log density of P , such that \r logPSGLD(z) = r logP (z) + eSGLD(z) for all z 2 X ,
where eSGLD(z) is mean zero error. We assume this error is bounded such that �2 :=
supz2X eSGLD(z)/(1+V (z)2) < 1, for some 2nd-order Lyapunov function V as in Proposition
1.14 and that the negative log density of P is gradient Lipschitz and strongly convex. In this
setting, let (Xt, Yt)t�0 be a CRN coupling of ULA and SGLD simulated using Algorithm ??,
such that the Markov chains (Xt)t�0 and (Yt)t�0 marginally correspond to ULA and SGLD
with marginal distributions (P (ULA)

t )t�0 and (P (SGLD)
t )t�0 respectively. For � sufficiently

small, the marginal ULA chain (Xt)t�0 satisfies Assumption 1.10 for p = 2 under a CRN
coupling, giving a contraction rate ⇢ such that 1� ⇢ = C�2/2 for constants C that does not
explicitly depend on the dimension. Then by Proposition 1.14,

lim sup
t!1

W2
�
P (ULA)
t , P (SGLD)

t

�
 lim inf

t!1
E
h
cW(UB)

2

�
P (ULA)
t , Q(ULA)

t

�2i1/2


�

C
. (66)

Note that the upper bound in (66) does not explicitly depend on dimension, and approaches
zero as � approaches zero. This shows that estimators based on our coupled chains give
upper bounds which may remain informative in high dimensions and are tight with respect
to the error from the stochastic gradients. This example also highlights the stability of our
upper bounds even when one of marginal chains (SGLD) may not converge to a limiting
distribution.

6. Multi-step couplings

We can consider coupling algorithms for multi-step kernels and investigate their theoretical
properties.

6.1. Coupling algorithms for multi-step kernels

Consider the L-step Markov chains (XLt)t�0 and (YLt)t�0 for L � 1, corresponding to
marginal multi-step Markov kernels KL

P and KL
Q respectively. Following (??) of main text

and Section 1.2, we now construct a kernel K̄L�step on the joint space X ⇥ X such that for
all x, y 2 X and all A 2 B(X ),

K̄L�step
�
(x, y), (A,X )

�
= KL

P (x,A) and K̄L�step
�
(x, y), (X , A)

�
= KL

Q(y,A). (67)

Given coupled kernels �1 and ��, Figure 5 illustrates how to sample from the joint kernel
K̄L�step. By construction, this gives the marginal distributions Xs|X0, Y0 ⇠ Ks

P (X0, ·) and
Ys|X0, Y0 ⇠ Ks

Q(Y0, ·) for all s = 1, . . . , L, such that Equation (67) is satisfied. Algorithm 2
samples from this coupled kernel K̄L�step. It characterizes the dependency between XLt and
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X0 Y0

X1 Z(1)
1

Y1

X2 Z(1)
2 Z(2)

2
Y2

...
...

...
... . . .

XL�1 Z(1)
L�1 Z(2)

L�1
. . . Z(L�1)

L�1
YL�1

XL Z(1)
L Z(2)

L
. . . Z(L�1)

L Z(L)
L

YL

�1 ��

�1 �1 ��

�1 �1 �1 �1 �1 ��

Figure 5: Joint kernel K̄L�step on X ⇥ X , which couples marginal kernels KL
P and KL

Q

YLt such that

XLt|XL(t�1), YL(t�1) ⇠ KL
P (XL(t�1), ·) (68)

Z(j)
L |YL(t�1)+(j�1) ⇠ KL�(j�1)

P (YL(t�1)+(j�1), ·) (69)

YLt|XL(t�1), YL(t�1) ⇠ KL
Q(YL(t�1), ·) (70)

for s = 1, . . . , L � 1. When L = 1, we obtain K̄L�step = K̄ from Algorithm 1. Note that
K̄1�step is the single-step kernel K̄ from Algorithm 1, but K̄L�step and K̄L are not equivalent
in general.

Having developed algorithms to sample from the coupled kernels K̄ and K̄L�step, we now
investigate theoretical properties our upper bounds.

Algorithm 2: Joint kernel K̄L�step on X ⇥X , which couples marginal kernels KL
P and

KL
Q

Input: chain states X0 and Y0, kernels K1 and K2, coupled kernels �1 and ��

for s=1,. . . ,L do

Sample
(Xs, Z

(1)
s , . . . , Z(s)

s , Ys)|(Xs�1, Z
(1)
s�1, . . . , Z

(s�1)
s�1 , Ys�1) (71)

jointly such that

(Xs, Z
(1)
s ) ⇠ �1(Xs�1, Z

(1)
s�1) (72)

(Z(j)
s , Z(j+1)

s ) ⇠ �1(Z
(j)
s�1, Z

(j+1)
s�1 ) for j = 1, . . . , s� 1 (73)

(Z(s)
s , Ys) ⇠ ��(Ys�1) (74)

end

return (XL(t�1)+s, YL(t�1)+s) for s = 1, . . . , L.
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6.2. Theoretical properties of coupling of multi-step kernels

To establish theoretical guarantees of coupled Markov chains based on the coupled kernel
K̄L�step, we assume the Markovian coupling �1 in Algorithm 2 satisfies a geometric ergodicity
condition.

Assumption 6.1 There exists constants C 2 [1,1) and ⇢ 2 (0, 1) such that for all L � 1,

E[c(Xt+L, Yt+L)
p
|Xt, Yt]

1/p
 C⇢Lc(Xt, Yt) for (Xt+L, Yt+L)|(Xt, Yt) ⇠ �L

P (Xt, Yt). (75)

Assumption 6.1 is weaker than uniform contraction in Wasserstein’s distance as in
Assumption 1.10. Under Assumption 6.1, we now characterize the distance from our coupled
chains based on the coupled kernel K̄L�step explicitly in terms of the initial distribution Ī0
and the coupled kernel �� corresponding to perturbations between the marginal kernels K1

and K2. At the heart of our analysis is the construction of the coupled kernel K̄L�step given
in Figure 5 and Algorithm 2. When the coupled kernel �� characterizing the perturbation
between the marginal kernels K1 and K2 is Wasserstein optimal, our analysis is linked to
(Rudolf and Schweizer, 2018), which only considers the 1-Wasserstein distance and establishes
similar results using analytic rather than probabilistic arguments.

Theorem 6.2 Let (Xt, Yt)t�0 denote a coupled Markov chain generated using Algorithm

?? with initial distribution Ī0 and joint kernel K̄ on X ⇥ X from Algorithm 1. Suppose the

coupled kernel �1 satisfies Assumption 6.1 for some C = 1 and ⇢ < 1. Fix some L � 1 such

that ⇢̃ = C⇢L < 1, and consider the coupled chain (Xt, Yt)t�0 generated using Algorithm 2

with the L-step coupled kernel K̄L�step. Then for all t � 0,

E[c(XLt, YLt)
p]1/p  ⇢̃tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�jE
h
�p(YL(i�1)+j)

i1/p⌘
(76)

where (X0, Y0) ⇠ Ī0 and �p(z) := E[c(X,Y )p] for (X,Y )|z ⇠ ��(z).

Corollary 6.3 Under the setup and assumptions of Theorem 6.2, consider when the marginal

distributions Qt converge in p-Wasserstein distance to some distribution Q with finite moments

of order p as t ! 1. Then for all ✏ > 0, there exists some S � 1 such that for all t � S,

E[c(XLt, YLt)
p]1/p  (C⇢L)tE[c(X0, Y0)

p]1/p + C
⇣1� (C⇢L)t

1� C⇢L

⌘⇣1� ⇢L

1� ⇢

⌘
E[�p(Y

⇤)]1/p + ✏.

(77)
where (X0, Y0) ⇠ Ī0, �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z) and Y ⇤

⇠ Q.

As in Section 1.3, we can also upper bound the limiting distance from our coupled chains
in terms of the perturbations between the marginal kernels weighted by a Lyapunov function
of K2.

Proposition 6.4 Under the setup and assumptions of Theorem 6.2, let V : X ! [0,1) be

a pth-order Lyapunov function of K2 such that

E[V (Yt+1)
p
|Yt = z]  �V (z)p + L (78)
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for all z 2 X , where � 2 [0, 1) and L 2 [0,1) are constants. Define

� := sup
z2X

✓
�p(z)

1 + V (z)p

◆1/p

 := 1 + max
n
E[V (Y0)

p]1/p,
⇣ L

1� �

⌘1/po⌘
. (79)

where �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z). Then for all t � 0,

E[cW(UB)
p (Pt, Qt)

p]1/p = E[c(Xt, Yt)
p]1/p  (C⇢L)tE[c(X0, Y0)

p]1/p+C
⇣1� (C⇢L)t

1� C⇢L

⌘⇣1� ⇢L

1� ⇢

⌘
�.

(80)

6.3. Proofs

Proof [Proof of Theorem 6.2] Under the coupled kernel K̄L�step from Algorithm 1, for each
t � 1 we obtain

(XLt, Z
(1)
L , . . . , Z(L)

L , YLt) (81)

where

(XLt, Z
(1)
L )|XL(t�1), YL(t�1) ⇠ �L

P (XL(t�1), YL(t�1)) (82)

(Z(j)
L , Z(j+1)

L )|YL(t�1)+j�1 ⇠ ��(YL(t�1)+j�1)�
L�j
1 for j = 1, . . . , L� 1 (83)

(Z(L)
L , YLt)|YL(t�1)+L�1 ⇠ ��(YL(t�1)+L�1). (84)

As (XLt, Z
(0)
t )|XL(t�1), YL(t�1) ⇠ �L

1 (XL(t�1), YL(t�1)), we obtain

E[c(XLt, YLt)
p]1/p = E[E[c(XLt, YLt)

p
|XL(t�1), YL(t�1)]]

1/p (85)

 E[E[
�
c(XLt, Z

(1)
L ) + c(Z(1)

L , YLt)
�p
|XL(t�1), YL(t�1)]]

1/p (86)

 E[E[c(XLt, Z
(1)
L )p|XL(t�1), YL(t�1)]]

1/p + E[E[c(Z(1)
L , YLt)

p
|XL(t�1), YL(t�1)]]

1/p

(87)

 ⇢̃E[c(XL(t�1), YL(t�1))
p]1/p + E[c(Z(1)

L , YLt)
p]1/p (88)
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where (86) follows as c is a metric, (87) follows by Minowski’s inequality, and (88) follows by
Assumption 6.1. Denote �p(z) := E[c(X,Y )p|z] for (X,Y ) ⇠ ��(z). Then,

E[c(Z(1)
L , YLt)

p]1/p  E
h⇣

(Z(L)
L , YLt) +

L�1X

j=1

c(Z(j)
L , Z(j+1)

L )
⌘pi1/p

(89)

 E
h
(Z(L)

L , YLt)
p
i1/p

+
L�1X

j=1

E
h
c(Z(j)

L , Z(j+1)
L )p

i1/p
(90)

= E
h
E
h
(Z(L)

L , YLt)
p
|YL(t�1)+L�1

ii1/p
+

L�1X

j=1

E
h
E
h
c(Z(j)

L , Z(j+1)
L )p|YL(t�1)+j�1

ii1/p

(91)

= E[�p(YL(t�1)+(L�1))]
1/p +

L�1X

j=1

E
h
E
h
c(Z(j)

L , Z(j+1)
L )p|YL(t�1)+j�1

ii1/p

(92)

 E[�p(YL(t�1)+(L�1))]
1/p +

L�1X

j=1

C⇢L�jE
h
�p(YL(t�1)+j�1)

i1/p
(93)



LX

j=1

C⇢L�jE
h
�p(YL(t�1)+j)

i1/p
(94)

(88) now gives

E[c(XLt, YLt)
p]1/p  ⇢̃E[c(XL(t�1), YL(t�1))

p]1/p +
LX

j=1

C⇢L�jE
h
�p(YL(t�1)+j)

i1/p
(95)

By induction, (95) implies

E[c(XLt, YLt)
p]1/p  ⇢̃tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�jE
h
�p(YL(i�1)+j)

i1/p⌘
(96)

as required.

Proof [Proof of Corollary 6.3] Denote a := E[�p(Y ⇤)]1/p for Y ⇤
⇠ Q and ak := E[�p(Yk)]1/p

for k � 0. Then ak
k!1
! a, because Qt converges in p-Wasserstein distance to Q as t ! 1.

This implies

tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�jaL(i�1)+j

⌘
t!1
!

tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�ja
⌘
. (97)
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Therefore, for all ✏ > 0 there exists S � 1 such that for all t � S,
Pt

i=1 ⇢̃
t�iPL

j=1C⇢L�j
|aL(i�1)+j�

a| < ✏. By Theorem 6.2,

E[c(XLt, YLt)
p]1/p  ⇢̃tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�jaL(i�1)+j

⌘
(98)

 ⇢̃tE[c(X0, Y0)
p]1/p +

tX

i=1

⇢̃t�i
LX

j=1

C⇢L�ja+
tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�j
|aL(i�1)+j � a|

⌘

(99)

 ⇢̃tE[c(X0, Y0)
p]1/p +

tX

i=1

⇢̃t�i
LX

j=1

C⇢L�ja+ ✏ (100)

= (C⇢L)tE[c(X0, Y0)
p]1/p + C

⇣1� (C⇢L)t

1� C⇢L

⌘⇣1� ⇢L

1� ⇢

⌘
a+ ✏ (101)

as required.

Proof [Proof of Proposition 6.4] As V is a a pth-order Lyapunov function of K2, by induction

E[V (Yj)
p]  �jE[V (Y0)

p] + (1� �t)
L

1� �
(102)

for all j � 0. This gives

E
h
�p(Yj)

i1/p
 �E[1 + V (Yj�1)

p]1/p (103)

 �(1 + E[V (Yj�1)
p]1/p) (104)

 �

✓
1 +

⇣
�t�1E[V (Y0)

p] + (1� �t�1)
L

1� �

⌘1/p
◆

(105)

 �

✓
1 + max

n
E[V (Y0)

p]1/p,
⇣ L

1� �

⌘1/po◆
(106)

= � (107)

for all j � 0. By Theorem 6.2, we obtain

E[c(XLt, YLt)
p]1/p  ⇢̃tE[c(X0, Y0)

p]1/p +
tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�jE
h
�p(YL(i�1)+j)

i1/p⌘
(108)

 ⇢̃tE[c(X0, Y0)
p]1/p +

tX

i=1

⇢̃t�i
⇣ LX

j=1

C⇢L�j�
⌘

(109)

 ⇢̃tE[c(X0, Y0)
p]1/p + C

⇣1� (C⇢L)t

1� C⇢L

⌘⇣1� ⇢L

1� ⇢

⌘
� (110)

7. Additional Algorithms
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Algorithm 3: Common random numbers coupling of two MALA kernels marginally
targetting distributions P and Q

Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step-sizes �P
and �Q

Sample ✏CRN ⇠ N (0, Id). Calculate proposals

X⇤ := Xt +
1

2
�2
Pr log p(Xt) + �P ✏CRN and Y ⇤ := Yt +

1

2
�2
Qr log q(Yt) + �Q✏CRN

Sample UCRN ⇠ Uniform([0, 1])

if UCRN 
p(X⇤)N (X⇤;Xt+

1
2�

2
Pr log p(Xt),�2

P Id)

p(Xt)N (Xt;X⇤+ 1
2�

2
Pr log p(X⇤),�2

P Id)
, then set Xt+1 = X⇤ ; else set Xt+1 = Xt

if UCRN 
q(Y ⇤)N (Y ⇤;Yt+

1
2�

2
Qr log q(Yt),�2

QId)

q(Yt)N (Yt;Y ⇤+ 1
2�

2
Qr log q(Y ⇤),�2

QId)
, then set Yt+1 = Y ⇤ ; else set Yt+1 = Yt

return (Xt+1, Yt+1)

Algorithm 4: Common random numbers coupling of a MALA kernel and an ULA
kernel marginally targetting distributions P and Q respectively

Input: (Xt, Yt), unnormalized densities p and q of P and Q respectively, step-sizes �P
and �Q

Sample ✏CRN ⇠ N (0, Id). Calculate proposals

X⇤ := Xt +
1

2
�2
Pr log p(Xt) + �P ✏CRN and Y ⇤ := Yt +

1

2
�2
Qr log q(Yt) + �Q✏CRN .

Sample U ⇠ Uniform([0, 1])

if U 
p(X⇤)N (X⇤;Xt+

1
2�

2
Pr log p(Xt),�2

P Id)

p(Xt)N (Xt;X⇤+ 1
2�

2
Pr log p(X⇤),�2

P Id)
, then set Xt+1 = X⇤ ; else set Xt+1 = Xt

Set Yt+1 = Y ⇤

return (Xt+1, Yt+1)
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