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Abstract
Text-to-video (T2V) models like Sora have made
significant strides in visualizing complex prompts,
which is increasingly viewed as a promising path
towards constructing the universal world simula-
tor. Cognitive psychologists believe that the foun-
dation for achieving this goal is the ability to un-
derstand intuitive physics. However, the capacity
of these models to accurately represent intuitive
physics remains largely unexplored. To bridge
this gap, we introduce PhyGenBench , a compre-
hensive Physics Generation Benchmark designed
to evaluate physical commonsense correctness in
T2V generation. PhyGenBench comprises 160
carefully crafted prompts across 27 distinct phys-
ical laws, spanning four fundamental domains,
which could comprehensively assess models’ un-
derstanding of physical commonsense. Alongside
PhyGenBench , we propose a novel evaluation
framework called PhyGenEval . This framework
employs a hierarchical evaluation structure utiliz-
ing appropriate advanced vision-language mod-
els and large language models to assess physical
commonsense. Through PhyGenBench and Phy-
GenEval , we can conduct large-scale automated
assessments of T2V models’ understanding of
physical commonsense, which aligns closely with
human feedback. Our evaluation results and in-
depth analysis demonstrate that current models
struggle to generate videos that comply with phys-
ical commonsense. Moreover, simply scaling up
models or employing prompt engineering tech-
niques is insufficient to fully address the chal-
lenges presented by PhyGenBench (e.g., dynamic
physical phenomenons). We hope this study will
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inspire the community to prioritize the learning
of physical commonsense in these models beyond
entertainment applications. We release the data
and codes at https://github.com/OpenGVLab/
PhyGenBench

1. Introduction
Text-to-video (T2V) models such as Sora have made signifi-
cant strides in visualizing complex ideas and scenes based
on textual input (Yang et al., 2024; Wang et al., 2023). These
advancements are increasingly viewed as a promising path
towards constructing universal simulators of the physical
world, which holds immense promise for video generation
(Zhu et al., 2024), autonomous driving (Gao et al., 2024),
and the development of embodied agents (Mazzaglia et al.,
2024). Cognitive psychology posits that intuitive physics,
which is demonstrated even by human infants (Wood et al.,
2024; Battaglia et al., 2013), is essential for achieving this
goal. Intuitive physics emphasizes rendered scenes should
be visually and interactively natural to humans, rather than
adhere to strict physical accuracy. Consequently, on the
path towards developing a world simulator (Xiang et al.,
2024), video generation should first be capable of accurately
reproducing simple yet fundamental physical phenomenons.
However, even state-of-the-art models trained on vast re-
sources (Tan et al., 2024) encounter difficulties in correctly
generating seemingly trivial physical phenomenons, as de-
picted in Figure 1, the model fails to understand that the
stone should sink in water. This clear pitfall shows a sub-
stantial gap between current video generation models’ and
human’s understanding of basic physics. It reveals how far
these models are from being true world simulators.

Given this context, it becomes important to assess the extent
to which current T2V models can capture intuitive physics
in their generated outputs. This requires the development
of comprehensive evaluation frameworks that beyond tradi-
tional metrics. While numerous Text-to-Video (T2V) evalu-
ation benchmarks have emerged (Sun et al., 2024; Huang
et al., 2024), they primarily focus on various qualities of
generated videos (e.g., motion smoothness, background
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Gravity

A bottle of juice is slowly poured out in 
the space station, releasing the liquid 
into the surrounding area

Buoyancy

A stone is gently placed on the surface of 
a pool filled with water.

Elasticity

A vibrant, elastic basketball is thrown 
forcefully towards the ground, capturing 
its dynamic interaction with the surface 
upon impact.

Mechanics

Reflection

A plane is gliding over a still and crystal-
clear river.

Refraction Interference & Diffraction

A large number of soap bubbles are 
floating in the air under the sunlight.Optics

Sublimation

A timelapse captures the transformation 
of dry ice as it is exposed to a gradually 
increasing temperature at room 
temperature

Melting

A timelapse captures the gradual 
transformation of ice cream as the 
temperature rises significantly above
100 degree Celsius

Boiling

Thermal

Hardness

A delicate, fragile egg is hurled with 
significant force towards a rugged, 
solid rock surface, where it collides 
upon impact

Solubility

A clear glass of juice is gently poured 
into a glass of water.

Dehydration property

A timelapse captures the reaction as 
concentrated sulfuric acid is poured 
onto a piece of bread.

Material
Properties

A blue marker is used to write on the 
white surface of a whiteboard, 
showcasing the interaction between the 
marker and the whiteboard surface.

Friction

A clear plastic straw is slowly inserted 
into a glass of crystal-clear water, 
revealing the visual changes that occur as 
the straw interacts with the liquid.

Liquefaction

A timelapse captures the transformation 
as water vapor in a humid environment 
comes into contact with a cool glass 
surface.

Flame Reaction

A piece of copper is ignited, emitting a 
vivid and unique flame as it burns 
steadily.

Tyndall Effect

A ray of light generated by a projector is 
passing through a dark room with fine dust 
particles.

A timelapse captures the transformation 
of tea in a teapot as the temperature 
rapidly rises above 100 degree Celsius

Figure 1: Samples of videos generated by Kling or Gen-3 in PhyGenBench with 4 different aspects. The results show that
current T2V models struggle to generate videos that align with physical commonsense (e.g., the lack of a plane’s reflection
in water in the first video of the second row).

consistency) or spatial relationships, failing to address the
critical issue of whether the generated videos adhere to
fundamental physical laws. Although some studies have
explored the alignment of generated videos with dynamic
motions naturalness (Bansal et al., 2024), their benchmarks
fail to succinctly capture fundamental physical laws or pro-
pose sufficiently robust evaluation methods. Therefore, the
development of benchmarks and evaluation methodologies
specifically tailored to assess intuitive physics in generated
videos remains a critical yet largely unexplored frontier.

There are two challenges impeding the evaluation of physi-
cal commonsense in T2V models. On one hand, there is a
lack of benchmarks focused on evaluating physical common-
sense. This requires selecting semantically simple physical
phenomenons that exhibit clear physical phenomena, allow-
ing for accurate assessment by either humans or machines.
On the other hand, there is a lack of corresponding evalu-
ation metrics. Traditional metrics like FVD (Unterthiner
et al., 2018) exhibit limitations in detecting implausible mo-
tions (Brooks et al., 2022) and necessitate reference videos,
which are often challenging to procure for novel scenes.
Recent studies have used video-based VLMs for compre-
hensive video evaluation (He et al., 2024b; Sun et al., 2024).
However, they often struggle to correctly assess physical
commonsense. This limitation stems from their inadequate
understanding of physical laws (Jassim et al., 2023) and
the fact that these methods are not specifically designed to
evaluate physical laws.

To address these challenges, we propose PhyGenBench and
PhyGenEval to automate the evaluation of physical com-
monsense understanding capability from T2V models. Phy-
GenBench is designed to evaluate physical commonsense
based on fundamental physical laws in text-to-video gen-
eration. Inspired by (Halliday et al., 2013), we categorize
physical commonsense in the world into four main areas:
mechanics, optics, thermal, and material properties. Then
principle physical laws and easily observable physical phe-
nomenons are identified for each category, resulting in com-
prehensive 27 physical laws and 160 validated prompts in
the proposed benchmark. Through brainstorming, we con-
struct prompts that easily reflect physical laws using sources
like textbooks (Harjono et al., 2020). This process results in
a comprehensive but simple set of prompts reflecting physi-
cal commonsense, which are sufficiently clear for evaluation.
As shown in Figure 1, the correctness of physical common-
sense in PhyGenBench can be observed through clear phe-
nomena (e.g., plane should have reflections in water) On
the other hand, benefiting from the simple yet clear physi-
cal phenomena in PhyGenBench prompts, we can propose
PhyGenEval , which is a novel video evaluation framework
for assessing physical commonsense correctness in PhyGen-
Bench . PhyGenEval first uses GPT-4o1 to analyze physical
laws in text, addressing the poor understanding of physical
common sense in video-based VLMs. Moreover, consid-
ering that previous evaluation metrics did not specifically

1The version is gpt4o-0806
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target physical correctness, we propose a three-tier hierar-
chical evaluation strategy for this aspect, transitioning from
image-based to comprehensive video analysis: single image,
multiple images, and full video stages. Each stage employs
distinct VLMs along with custom instructions generated by
GPT-4o to form judgments. By combining PhyGenBench
and PhyGenEval , we can efficiently evaluate different T2V
models’ understanding of physical commonsense at scale,
producing results highly consistent with human feedback.

The contributions of our work are three-fold. i): We pro-
posed PhyGenBench , which compasses a wide range of
clear physical phenomenons and explicit physical laws.
This benchmark can comprehensively measure whether T2V
models understand intuitive physics and indirectly assess
their gap from world simulator capabilities ii): Along with
the benchmark, we propose an automated evaluation frame-
work - PhyGenEval , which overcomes the challenges of
assessing the correctness of physical commonsense with
other metrics and demonstrates high consistency with hu-
man feedback on PhyGenBench , enabling users to conduct
large-scale automated testing of various T2V models. iii):
We conduct extensive evaluations of popular T2V models,
even the best-performing model, Gen-3, scores only 0.51.
This indicates that current models are still far from function-
ing as world simulators. Based on our evaluation results, we
conduct an in-depth analysis and discover that addressing
issues such as dynamics is still challenging through prompt
engineering or simply scaling up model. We hope this work
inspires the community to focus on the learning of physi-
cal commonsense in T2V models, rather than merely using
them as tools for entertainment.

2. Related work
2.1. Benchmarks for text-to-video generation

The rapid advancement of text-to-video (T2V) generation
models has necessitated various benchmarks for accurate
assessment. Traditional works in video generation, such as
FVD (Unterthiner et al., 2018), rely on datasets like UCF-
101 (Soomro, 2012) and Kinetics-400 (Kay et al., 2017),
which are limited in scope. Recent benchmarks, includ-
ing VBench (Huang et al., 2024) and EvalCrafter (Liu et al.,
2024c), aim to comprehensively evaluate general video qual-
ity across multiple dimensions. In contrast, some studies
focus on fine-grained evaluation of text-to-video (T2V) mod-
els from specific aspects. For instance, T2V-CompBench
(Sun et al., 2024) assesses compositional generation capa-
bilities, while DEVIL (Liao et al., 2024) evaluates dynamic
characteristics of generated videos. Although some research
like VideoPhy (Bansal et al., 2024) efforts address the dy-
namic motions naturalness of video generation, their bench-
marks fail to succinctly capture fundamental physical laws.
Consequently, most existing works overlook this crucial

aspect, which forms the foundation for realizing a world
simulator. To address this gap, we introduce PhyGenBench ,
a benchmark designed to comprehensively measure T2V
models’ understanding of physical commonsense. We pro-
vide more releated works in Appendix A

3. PhyGenBench
Inspired by (Swartz, 1985), we first define the following
terms: “Physical Commonsense:” Basic intuitive under-
standing of how physical objects and actions behave in ev-
eryday life; “Physical Laws:” Universal scientific principles
that describe consistent behaviors in nature; “Physical Phe-
nomenon:” Observable events or processes caused by the
interaction of physical laws. The purpose of PhyGenBench
is to evaluate whether T2V models understand physical com-
monsense, while each prompt in PhyGenBench presents a
clear physical phenomenon and an underlying physical law.

Overview. As illustrated in Figure 2 (a), PhyGenBench
encompasses four major categories of physical common-
sense: “Mechanics”, “Optics”, “Thermal”, and “Material
Properties”. It incorporates 27 physical phenomena with
intrinsic physical laws reflected by the corresponding de-
signed 160 prompts:

1. “Mechanics” covers 7 common mechanical laws: gravity,
buoyancy, solid pressure, atmospheric pressure, elasticity,
friction, and surface tension, with 40 validated prompts. For
example, we use “A piece of iron is gently placed on the
surface of the water in a tank filled with water” to test T2V
model’s understanding of Buoyancy, where the iron should
sink due to its higher density compared to water.

2. “Optics” categorizes 6 aspects based on light phenomena:
reflection, refraction, scattering, dispersion, interference
& diffraction, and straight-line propagation, yielding 50
prompts. A prompt like “a kite soaring above a smooth and
tranquil pond” is used to test reflection.

3. “Thermal” considers 6 phase transitions: Solidification,
Melting, Liquefaction, Boiling, deposition, Sublimation,
comprising 30 prompts. Inspired by ChronoMagicBench
(Yuan et al., 2024), the vaporization process is evaluated
by the prompt “a timelapse capturing the transformation of
water as the temperature rapidly rises above 100◦C”.

4. “Material Properties” includes 5 physical properties
(color, hardness, solubility, combustibility, and flame reac-
tion) and 3 chemical properties (acidity, redox potential, and
dehydrating properties), resulting in 40 prompts. We reflect
material properties, e.g., “hardness”, through the prompts
with expected phenomena, e.g., “an egg being hurled with
significant force towards a rock”, where the egg should
break while the rock remains intact.

Multiple physical laws could be included in a single prompt,
which may bring confusion to the evaluation of physical
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Gravity， Buoyancy， Solid Pressure， Atmospheric Pressure, 
Elasticity, Friction, Surface Tension, Reflection, Refraction,  
Dispersion,  Scattering, Linear Propagation, Interference & 
Diffraction, Melting,  Boiling,  Solidification, Liquefaction, 
Deposition, Sublimation, Color, Flame Reaction, Solubility, 
Hardness, Combustibility, Redox, Dehydration

4 Physical Knowledge 27 Physical Laws 160 Prompts

A piece of white 
chalk is used to 

write on the rough, 
dark surface of a 

blackboard…

A kite is soaring 
above a smooth and 

tranquil pond

a delicate, fragile, raw 
egg is hurled with 
significant force 

towards a rugged, solid 
rock…

A cup of water is 
slowly poured out in 
the space station 
without gravity, 

releasing the 
liquid …

A vibrant, elastic 
basketball is thrown 
forcefully towards 

the ground …

A timelapse captures 
the transformation of a 
clean and smooth piece 

of iron in a humid 
environment over 

decades…

Material Properties
 (25%)

Optics (31%)Mechanics (25%)

Thermal (19%)
...

(a) The overview of the PhyGenBench

Prompt Engineering
Prompt

Prompt:
an egg collides with a stone 

Physical law:
Hardness of egg is lower than rockMechanics

(40 samples)

Material 
Properties

(40 samples)

Optics
(50 samples)

Thermal
(30 samples)

Conceptualization

Prompt Augmentation
Detailed Prompts

Detailed Prompt:
A delicate, fragile egg is hurled with 
significant force towards a rugged, 
solid rock surface, where it collides 
upon impact.  

Diversity Enhancement
Replace Object

Object:
egg  ->  vase, glass bottle, glass cup…

Object:
rock   ->   wall, metal, wooden table…

Quality Control
Review Criteria

Prompt:
1.Implication
2.Simplicity
3.Diversity
4.Completeness

Physical Law:
1.Correctness
2.Completeness
3.Correspondence
4.Expressiveness

(b) The data construction pipeline of the PhyGenBench

Key Physical Phenomena Detection:
A retrieval prompt for locating, QAs based on a 
single image
Physics Order Verification: 
A retrieval prompt; Two ideal descriptions based on 
frame pairs ;The explicit description of whole process 
Overall Naturalness Evaluation: 
4 – level descriptions: Completely Fantastical; 
Clearly Unrealistic
Slightly Unrealistic; Almost Realistic

Requirements

Questions Generation

Generated
Questions:
…

Figure 2: (a) is the overview of the proposed PhyGenBench . (b) is the PhyGenBench data pipeline, which covers four
physics categories. We select key physical laws and manually craft initial prompts that reflect the corresponding physical
phenomena. GPT-4o adds details and enhances diversity by varying objects. Then, we generate different questions for
scoring in each evaluation stage. After manual review, we obtain 160 T2V prompts.

common sense in video generation, even for human annota-
tors. To avoid this, we carefully curate prompts to ensure a
one-to-one correspondence for each physical phenomenon
it reflects, with clear physical law inside. By incorporating
physical laws from four distinct physical categories, Phy-
GenBench offers a thorough assessment of current T2V
models’ understanding of physical commonsense.

Benchmark Construction. As shown in Figure 2 (b), we
develop a comprehensive approach to create PhyGenBench .
The methodology encompasses five steps: 1) Conceptual-
ization: Following (Halliday et al., 2013), We first iden-
tify key physical commonsense from four major categories
of physics. For each category, we select specific physical
laws from textbooks (Harjono et al., 2020), which can be
widely recognized and can be easily demonstrated through
clear, observable physical phenomenon. 2) Prompt En-
gineering: For each physical law, we manually craft the
initial T2V prompts to clearly depict the underlying phys-
ical phenomenon 3) Prompt Augmentation: To enhance
the model’s video generation capabilities, we augment the
initial T2V prompts by adding additional details, such as
more precise descriptions of objects and actions (Yang et al.,

2024). This augmentation process is carefully designed to
avoid revealing the expected physical phenomenon. 4) Di-
versity Enhancement: Following T2V-CompBench (Sun
et al., 2024), we employ GPT-4o to perform object substi-
tution on the augmented prompts. This step increases the
diversity of the benchmark. 5) Question Generation: Con-
sidering that understanding the physical principles implied
in prompts increases the evaluation difficulty, following the
method of (Singh & Zheng, 2023). For each prompt in Phy-
GenBench , we leverage the world knowledge of LLMs to
generate different questions for scoring for different eval-
uation stage in PhyGenEval that reflect physical correct-
ness. These questions are manually reviewed, filtered, and
then incorporated into the benchmark. 6) Quality Control:
We conduct a thorough review of the prompts, questions
and their associated physical laws to ensure accuracy and
relevance. Specifically, we ensure that they are clear and
accurate. We then randomly use the current T2V model
to check if the prompts are simple enough for the model
to generate semantically accurate videos. In this process,
we focus on the most fundamental physical laws, the most
common scenarios, and rigorous quality standards. We find
that excessive prompts are unnecessary: even the most basic
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physical laws and scenarios are sufficient to reveal signif-
icant issues in current models and effectively distinguish
between different models. For more detailed information
can be referred to the Appendix B.

4. PhyGenEval
PhyGenEval aims to assess whether the physical phenomena
in the generated videos conform to the corresponding phys-
ical laws. To obtain a clear judgment, we decompose the
evaluation into semantic alignment (SA) and physical com-
monsense alignment (PCA). While SA evaluates whether
the semantic meaning inferred by the generated video and
the input prompt are matched, PCA measures whether the
evaluated physical laws are grounded in the videos. For
example, for the scene “an egg collides with a stone”, SA
requires a video containing the egg, the stone, and the colli-
sion action. PCA necessitates a video for the whole physical
motions in which the egg hits a stone and then breaks, while
the stone remains intact. Following (He et al., 2024b), we
convert both SA and PCA to a four-point scale, as well as
the human ratings.

4.1. Semantic Alignment Evaluation

Directly asking the Vision-Language Model(VLM) to align
the semantic meaning between videos and input prompts
are difficult, as prompts usually are mixed with semantic
entities and physical phenomena, and the intermediate out-
comes are subtly implied by the videos. For example, in
a prompt like “A timelapse captures the transformation of
soup as the temperature rises above 100°C”, a possible
video generation would appear like “The video shows a
soup, but there is no transformation of the soup”. To ad-
dress the challenge, we first employ GPT-4o to extract object
and action from the original text prompt, we then utilize
GPT-4o to sequentially determine the presence of extracted
objects in the video and verify the occurrence of specified
actions. This decomposition provides more fine-grained
captures and prevents the model from confusing semantic
and physical correctness during evaluation. Experimental
results demonstrate that our automated evaluation method
aligns more closely with human judgment and outperforms
previous methods (He et al., 2024b; Sun et al., 2024) in
PhyGenBench (Appendix C.1). In this process, we ensure
that GPT-4o’s API is configured without randomness, e.g.,
setting the temperature to 0, to guarantee the reproducibility
of the results.

4.2. Physical Commonsense Evaluation

To evaluate physical correctness in the video, we evaluated
multiple common evaluation metrics comparing human as-

sessments2. Experimental results in Table 1 demonstrate
that these methods struggle to generalize to the assessment
of physical commonsense correctness on PhyGenBench ,
e.g., VideoScore (He et al., 2024b) has only a spearman
correlation of 0.19 on PhyGenBench , which is most cor-
related with human assessments except PhyGenEval . We
attribute it to the main factor: Directly using video-based
VLMs fails to comprehend the embedded physical com-
monsense (Jassim et al., 2023), as current methods are not
designed with physical commonsense as a foundation. To
fully understand the physical commonsense in the video,
there are three key factors need to solve: i): Physical pro-
cesses typically exhibit clear key phenomena depicted by
the input prompt (e.g., “the egg breaks upon hitting the
rock.”). It is necessary to identify these key physical phe-
nomena and detect their presence in videos. ii): Physical
processes are characterized by causality, manifested in the
correct sequence of critical events(e.g., “The egg touchs the
rock first, then breaks.”). The correct sequence order vali-
dates the correctness of physical processes. iii): Physical
processes need to possess overall naturalness, which repre-
sents the realistic of the overall process. To address these
factors, we design a progressive strategy that starts with key
physical phenomena, then moves through the sequence of
several key phenomena, and finally evaluates the overall
naturalness of the entire video. In addition, we use the cus-
tomized questions designed for each phase in the section 3
to conduct evaluations with different VLMs at each stage.
This hierarchical and refined approach reduces the difficulty
compared to existing methods that directly uses VLMs to
evaluate physical commonsense, enabling PhyGenEval to
achieve results closely aligned with human judgements. In
this process, we ensure that GPT-4o’s API and the infer-
ence code of VLMs is configured without randomness, to
guarantee the reproducibility of the results.

Key Physical Phenomena Detection. This stage aims to
detect whether the key physical phenomena occur in the
video. Here we define the key phenomena as an observable
and distinctive occurrence (e.g., a specific frame) within a
physical process that can directly reveal the corresponding
physical law, like deformations or color changes. During
the process of constructing the benchmark, for each input
prompt in PhyGenBench , we craft a retrieval prompt pr
and a set of physics-related questions Q, where the retrieval
prompt is used to locate the key phenomena frame, and
physical-related questions are utilized to check whether the
expected physics phenomena are present in the keyframe.

As illustrated in Figure 3 (a), we first obtained both Q
and Pr by prompting GPT-4o with the input T2V prompt
and corresponding physical law. Following (Hessel et al.,

2Annotators are asked to score the correctness of physical com-
monsense in the video. Details refer to Section 5 and Appendix
D.1
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CLIP Retrieval

Key Frames

Consider nearby frames

Each Key frame

CLIP Retrieval

Consider nearby frames

VLM Question

Single Image

VLM Retrieval

Single Image
VLM Question2

Multiple Images

First Frame Last Frame

Each Key(R) - Last pair

VLM Retrieval

Single Image

Each Key(R) frameQues1, Ques2, Ques3

Each First-Key(i-2:i) pair

Each Key(i:i+2)-Last pair

First-All Keys(i-2:i+2)-Last

VLM Detailed Grading

The whole video images

All Frames

Key Physical Phenomena Detection Physics Order Verification Overall Naturalness Evaluation

Retrieval Prompt: The egg hits the stone
heavily
Question: Is the egg broken? (Key Frame)
Right_Statement: The egg breaks
Wrong_Statement: The egg does not 
break.

Retrieval Prompt: The egg touches the stone slightly
Question1: The egg does not break, the stone remains unchanged 
(First-to-Key Frames)
Question2: The egg breaks and the stone remains unchanged 
(Key-to-Last Frames)
Question3: the stone remains unchanged ,but the egg shatters… 
(All Frames)

Prompt: A delicate, fragile egg is hurled with significant force towards a rugged, solid rock surface… Physical Law: The hardness of the stone is high and the hardness of the raw egg is low…

Completely Fantastical The egg bounces off 
unharmed...
Clearly Unrealistic The egg impacts the rock without 
breaking but deforms like rubber...
Slightly Unrealistic egg breaks but some irregularities...
Almost Realistic The egg shatters into numerous 
piece...

i i + 1 i + 2i - 2 i - 1

S𝑘𝑒𝑦 =  max𝑖−2≤𝑗≤𝑖+2 𝑉𝐿𝑀 𝐼𝑗, 𝑃𝑟 + 𝑉𝐿𝑀 𝐼𝑗, 𝑄

Key Frames
i i + 1 i + 2i - 2 i - 1

𝑆𝑎𝑓𝑡𝑒𝑟 =  max
𝑖≤𝑗≤𝑖+2

𝑉𝐿𝑀 𝐼𝑗, 𝑝𝑟 + 𝑉𝐿𝑀 𝐼𝑗, 𝐼−1, 𝑞2 𝑆𝑛𝑎𝑡𝑢𝑟𝑎𝑙 =  𝑉𝐿𝑀 𝐼0:−1, 𝑔𝑠𝑝𝑒𝑐, 𝑝, 𝑙

Generated
Questions in
PhyGenBench

Three-Tier
Evaluation in
PhyGenEval

(a) Key Physical Phenomena Detection (b) Physics Order Verification (using Question 2 as an example) (c) Overall Naturalness Evaluation

Figure 3: An overview of the proposed PhyGenEval . PhyGenEval is divided into three parts: Key Physical Phenomena
Detection, Physics Order Verification, and Overall Naturalness Evaluation. Each part uses an appropriate VLM in
combination with physical-based customized questions generated by GPT-4o. The final score is the combined result of the
three parts. For the example in the figure, the three-stage scores are 0, 1 (only Question1 is correct), and 0. The final score
is calculated as 0 according to Overall Score calculation in Section 4.2.

2021), a keyframe Ii from the video based on the retrieval
prompt, where Ii is the i-th frame in the video. By us-
ing the keyframe, we define a confidence score of the key
phenomena in the video:.

Skey =
∑
q∈Q

max
i−2≤j≤i+2

(VLM(Ij , q) + VLM(Ij , pr)) ,

where VLM(Ij , q) reflects the presence of physical phenom-
ena in Ij for each related question q from Q. VLM(Ij , pr)
checks whether Ij matches the retrieval prompt, which en-
sures key phenomena occur at the correct frame. Since
videos may contain semantic errors, it’s also important
for determining if key physical phenomena occur (e.g., an
egg shouldn’t break in mid-air before hitting a rock). We
consider adjacent 5 frames near the keyframe to enhance
the robustness. For example, the egg may not be cracked
just when it first contacts the stone. We instantiate VLM-
based evaluator VLM(·) with VQAScore (Lin et al., 2024),
which has been shown promising evaluation results on vi-
sual question-answering.

Physics Order Verification. In this stage, we verify
whether key physical phenomena occur in the correct order.
The correct physical sequence is an ordered series of events
in a physical process that reflects causality, which repre-
sents the necessary prerequisites and temporal order of key
physical phenomena. As an example, the egg should first
touch the stone and then crack. Considering current models
in PhyGenBench generally maintain outcome consistency
(Huang et al., 2024) (e.g., the egg would not reassemble

itself after it is broken). we approach this direction by inves-
tigating the order correctness from the keyframes (Figure 3
(b)), e.g., the keyframe of the egg hits the stone should be
ahead of the keyframe of the broken egg.

Similar to the Key Physical Phenomena Detection evalua-
tion, we use a retrieval prompt pr and three physical-related
questions (q1, q2, q3) in PhyGenBench . pr is used to locate
the keyframe (e.g., the moment the egg slightly touches the
stone.). While q1, q2, and q3 are questions to check the order
correctness from the first frame to the keyframe, from the
keyframe to the last frame, and from the first frame to the
last frame, respectively. Similarly, we first use CLIPScore
to locate the key frame Ii, then the order correctness scores
of Sbefore and Safter are defined as:

Sbefore = max
i−2≤j≤i

(VLM(I0, Ij , q1) + VLM(Ij , pr))

Safter = max
i≤j≤i+2

(VLM(Ij , I−1, q2) + VLM(Ij , pr))

q3 assesses the overall physical sequence coherence of
the video. The score of answering q3 is defined as by
Sall = VLM(I0, Ii−2:i+2, I−1, q3), which evaluates the
overall sequence (similar to the input video but using man-
ually selected key frames). Here we employ GPT-4o or
LLaVA-Interleave (Li et al., 2024) as the VLM-based evalu-
ator VLM(·), as they demonstrate exceptional multi-image
comprehension capabilities. The overall score of whole
physical order evaluation can be formulated as Sorder =
Sbefore + Safter + Sall
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Overall Naturalness Evaluation. This stage aims to eval-
uate the overall naturalness of the video. we define nat-
uralness as the dynamic progression that aligns with real-
world physical phenomenons (Liao et al., 2024). During
the construction of PhyGenBench , we generate 4 different
levels of descriptions gspec for each pair of prompts and
their corresponding physical laws. As shown in Figure 3 (c),
we require the VLM to score based on p, l, gspec, and the
corresponding video denoted by I0:−1. Formally, we define
the overall naturalness score as:

Snatural = VLM(I0:−1, p, l, gspec)

We implement the VLM-based evaluator VLM(·) using
InternVideo2 (Wang et al., 2024) and GPT-4o, both of which
have promising results in video understanding.

Overall Score. We first discretize Skey, Sorder, and
Snatural from the three stages into a 4-point scale, then take
their average and apply floor rounding as the final score. For
robust purposes, we evaluate Sorder with both GPT4o and
LLaVA-Interleave and Snatural with both GPT4o and Intern-
Video2. The final score is calculated as the ensemble of two
methods. Detailed calculation are provided in Appendix C.

5. Experiment
Experiments Setup. We evaluate 8 open-source models,
as well as 6 proprietary models Kling (kli, 2024), Pika
(Pik, 2023), Sora (Sor, 2024), Vidu (Vid, 2024), Hailuo
(Hai, 2024), and Gen-3 (gen, 2024). We compare our pro-
posed metric with existing metrics or benchmarks: Video-
phy (Bansal et al., 2024), VideoScore (He et al., 2024b) and
DEVIL (Liao et al., 2024) More Detailed information is
provided in Appendix D.

For human evaluation, we compared the results across 8 ran-
domly selected different T2V models. We randomly select
64 prompts from PhyGenBench and generate 64 videos for
each T2V model. We ask three annotators to provide se-
mantic and physical scores for each video3. Each annotator
will give an integer score of 0-3 for the semantic and phys-
ical scores, and the final score is the average of the three
scores and rounded up. Finally, we calculate the correlation
between the human scores and automatic evaluation scores
using Kendall’s τ and Spearman’s ρ. we put more detailed
information about human evaluation in Appendix D.1.

Human Evaluation. As shown in Table 1, current video
generation evaluation metrics largely overlook physical cor-
rectness. In contrast, PhyGenEval implements a detailed
design for evaluating physical correctness, demonstrating
strong correlations with human judgments across all cat-
egories. Its overall correlation coefficient reaches 0.81,

3Note that we ask the annotators to focus on the correctness of
the physical phenomena for physical scores.

Table 1: PCA correlation results with proposed Phy-
GenEval in video generation on PhyGenBench . Phy-
GenEval is significantly closer to human feedback on Phy-
GenBench compared to other metrics.

Metric Mechanics Optics Thermal Material Overall

τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

DEVIL (Liao et al., 2024) 0.16 0.16 0.03 0.03 0.10 0.11 0.27 0.29 0.17 0.18
VideoPhy (Bansal et al., 2024) 0.00 −0.03 −0.15 −0.14 0.08 0.08 0.13 0.14 0.03 0.04
VideoScore (He et al., 2024b) 0.18 0.20 0.07 0.08 0.14 0.15 0.14 0.15 0.17 0.19
PhyGenEval 0.72 0.75 0.76 0.77 0.73 0.75 0.81 0.84 0.78 0.81

indicating that PhyGenEval serves as an effective human-
aligned physical commonsense correctness evaluator for
PhyGenBench . we provide more details in Appendix D.1.

We conduct several case studies to illustrate the differences
between various metrics more clearly. As shown in Figure
4, (a) and (f) reveal that VideoScore and DEVIL are prone
to misclassifying videos that have smooth and consistent
motion but violate fundamental physical laws. Specifically,
as for (a), when “an egg exhibits rubber-like elasticity upon
impact with a rock instead of breaking,” these metrics incor-
rectly evaluate it as physically correct. VideoPhy exhibits
similar limitations. In (c), it incorrectly assesses “a rock
floating on water instead of sinking” as physically correct.
Furthermore, our analysis reveals a major flaw in these three
methodologies: they cannot incorporate domain-specific
physical commonsense. As illustrated in (e), where “the
flame from burning copper appears red instead of green,”
these metrics fail to identify the mistake. This indicates
their inability to incorporate domain-specific physical com-
monsense. In contrast, PhyGenEval demonstrates a robust
integration of physical commonsense and comprehensive
video content analysis, resulting in more accurate and phys-
ically consistent evaluations in PhyGenBench .

Quantitative Evaluation. We conduct extensive experi-
ments on a wide range of popular video generation models.
As illustrated in Table 2, even the best-performing model,
Gen-3, only attains a PCA score of 0.51 on PhyGenBench .
This indicates that even for prompts containing obvious
physical commonsense, current T2V models struggle to
generate videos that comply with intuitive physics. It indi-
rectly reflects that these models are still far from achieving
the world simulator.

Furthermore, we identify the following key observations:
1): Across various categories of physical commonsense, all
models consistently demonstrate superior performance in
the domain of optics compared to other areas. Notably, Vchi-
tect2.0 and CogVideoX-5b achieve a PCA score in the optics
domain comparable to that of closed-source models. We
posit that this superior performance in the optics domain can
be attributed to the abundant and explicit representation of
optical knowledge in pre-training datasets, thereby enhanc-
ing the model’s comprehension in this area. 2): Sora and
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A delicate, fragile egg is hurled 
with significant force towards a 
rugged, solid rock surface, 
where it collides upon impact

Text Prompt

Physical Law
Stone is harder than egg

PhysGenEval VideoPhy VideoScore DEVIL

0 0 3 3

A stone is gently placed on the 
surface of a pool filled with 
water.

Text Prompt

Physical Law
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VideoPhy VideoScore DEVIL
0 2 2 3

A cup of oil is slowly poured 
out in the space station, 
releasing the liquid into the 
surrounding area

Text Prompt

Physical Law

Lack of Gravity

VideoPhy VideoScore DEVIL

0 2 2 3

A timelapse captures the 
reaction as concentrated 
sulfuric acid is poured onto a 
piece of bread.
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Dehydration property

VideoPhy VideoScore DEVIL
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A piece of copper is ignited, 
emitting a vivid and unique 
flame as it burns steadily.
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smooth and tranquil pond.
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Physical Law

Reflection of Light
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PhysGenEval

PhysGenEval

PhysGenEval

PhysGenEval

PhysGenEval

Figure 4: Different video generation evaluation metric in PhyGenBench . Except for the proposed PhyGenEval , the current
methods cannot reasonably assess the correctness of physical commonsense in videos from PhyGenBench .

Table 2: Evaluation results of PCA with the proposed PhyGenEval in videos generated by several models . The results
reveal that all models score very low in physical commonsense accuracy. The scores are normalized to a range of 0-1.

Model Size Mechanics(↑) Optics(↑) Thermal(↑) Material(↑) Average(↑)

CogVideoX (Yang et al., 2024) 2B 0.38 0.43 0.34 0.39 0.39
CogVideoX (Yang et al., 2024) 5B 0.39 0.55 0.40 0.42 0.45
Open-Sora V1.2 (Zheng et al., 2024a) 1.1B 0.43 0.50 0.44 0.37 0.44
Lavie (Wang et al., 2023) 860M 0.30 0.44 0.38 0.32 0.36
Vchitect 2.0 (Wang et al., 2023) 2B 0.41 0.56 0.44 0.37 0.45
Hunyuan (Kong et al., 2024) 13B 0.44 0.53 0.38 0.39 0.47
Pyramid Flow (flux) (Jin et al., 2024) 2B 0.37 0.50 0.47 0.37 0.43
Pyramid Flow (sd3) (Jin et al., 2024) 2B 0.42 0.49 0.36 0.45 0.41

Pika1.0 (Pik, 2023) - 0.35 0.56 0.43 0.39 0.44
Gen-3 (gen, 2024) - 0.45 0.57 0.49 0.51 0.51
Kling (kli, 2024) - 0.45 0.58 0.50 0.40 0.49
Sora (Sor, 2024) - 0.50 0.66 0.56 0.46 0.55
Vidu (Vid, 2024) - 0.48 0.63 0.52 0.50 0.54
Hailuo (Hai, 2024) - 0.49 0.67 0.50 0.50 0.55

Hailuo exhibit significantly higher performance compared
to other models. Specifically, they demonstrate a robust
understanding of material properties, achieving a score of
0.55, which substantially surpasses other models. Kling
performs particularly well in thermal, attaining the highest
score of 0.50 in this domain. 3): Among open-source mod-
els, Hunyuan and CogVideoX 5b perform comparatively
well, both exceeding the performance level of Pika. In con-
trast, Lavie consistently exhibits lower physical correctness.
We provide qualitative analysis in Appendix D.3

Ablation Study. We conduct a detailed robustness analy-
sis, Experimental results demonstrate that the key designs
of PhyGenEval are essential, and even when only using
open-source models, PhyGenEval maintains high effec-
tiveness. Detailed results are provided in Appendix D.4.

6. Discussion
To explore potential solutions for the challenges posed
by PhyGenBench , We focus on widely used and proven-
effective methods such as scaling laws (Kaplan et al., 2020),
prompt engineering (Fu et al., 2024), and some method like

Venhancer (He et al., 2024a) aimed to improve general video
quality (Huang et al., 2024). More detailed results are in
Appendix E.

Rewriting prompt. We aim to explore whether GPT-
augmented prompts can address the PhyGenBench chal-
lenges. Specifically, we rewrite the original prompts using
GPT, adding expected physical outcomes and processes.
For example, after “A bottle of juice is slowly poured out in
the space station, releasing the liquid into the surrounding
area”, we add “The liquid forms floating globules, spread-
ing out and moving randomly through the air.” in the end.

As shown in Table 3, we use CogVideoX 5b and Kling as
representative models for open-source and closed-source
systems, respectively, to conduct tests. The results indi-
cate that prompt rewriting does help the models generate
images aligned with physical laws, but it is still far from
resolving the issues highlighted by PhyGenBench . Both
CogVideoX 5b and Kling exhibit some growth, but even
for Kling, it only achieves a score of 0.56. This demon-
strates that current models still severely lack the ability to
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Table 3: Evaluation results of PCA using the proposed PhyGenEval after rewriting prompts . The results indicate that
although using rewritten prompts leads to some improvement, it is still insufficient to address the challenges highlighted by
PhyGenBench . The scores are normalized to a range of 0-1.

Model Size Mechanics(↑) Optics(↑) Thermal(↑) Material(↑) Average(↑)

Before Rewriting Prompt

CogVideoX (Yang et al., 2024) 5B 0.39 0.55 0.40 0.42 0.45
Kling - 0.45 0.58 0.50 0.40 0.49

After Rewriting Prompt

CogVideoX (Yang et al., 2024) 5B 0.39 0.62 0.53 0.52 0.52
Kling - 0.50 0.64 0.61 0.48 0.56

Table 4: PCA evaluation results with proposed PhyGenEval in videos after VEnhancer. The results indicate that
employing VEnhancer fails to enhance the model’s comprehension of physical commonsense. The scores are normalized to
a range of 0-1.

Model Size Mechanics(↑) Optics(↑) Thermal(↑) Material(↑) Average(↑)

Vchitect 2.0 2B 0.41 0.56 0.44 0.37 0.45
Vchitect 2.0 (Venhancer) 2B 0.41 0.56 0.42 0.38 0.45

accurately render physical scenes, and this deficiency can-
not be easily resolved through simple prompt rewriting. To
illustrate this issue more clearly, as shown in Figure 10,
our qualitative analysis shows that rewriting prompts can
only address simple issues (e.g., flame color reactions), but
remains ineffective for more complex physical processes
(e.g., egg breaking, stone sinking).

The robustness of PhyGenBench and PhyGenEval .
VEnhancer (He et al., 2024a) is a generative space-time
enhancement framework that improves existing videos by
adding spatial details and synthetic motion in the temporal
domain. After enhancement by VEnhancer, Vchitect2.0
shows significant improvement on VBench, even surpass-
ing Kling. However, VEnhancer only enhances the visual
quality of videos (e.g., making them more coherent and
clear) without addressing the model’s poor understanding
of physical commonsense.

As shown in Table 4, Vchitect enhanced by VEnhancer still
scores similarly to the original version on PhyGenBench .
We calculate a high Spearman coefficient of 0.86 between
model scores on PhyGenBench before and after VEnhancer
enhancement. This indicates that PhyGenEval primarily fo-
cuses on physical correctness and is robust to other factors
affecting visual quality. Furthermore, it demonstrates that
even if a model can generate videos with better general qual-
ity (e.g., ranking higher on VBench), it doesn’t necessarily
imply a better understanding of physical common sense.
This highlights the distinction between PhyGenBench and

benchmarks like VBench that evaluate video quality.

7. Conclusion
In this paper, we explore the gap between current T2V mod-
els’ understanding of physical commonsense and their role
as world simulators. To achieve this, we introduce PhyGen-
Bench and PhyGenEval . PhyGenBench is a benchmark
specifically designed to assess models’ understanding of
physical commonsense, featuring various physical laws and
simple, clear physical phenomenons. Alongside PhyGen-
Bench , we propose a novel evaluation framework called
PhyGenEval to automate the evaluation process. Experi-
mental and analytical results show that current T2V models
struggle to generate videos that align with physical common-
sense, highlighting a significant gap from world simulation.

Impact Statement
This work contributes to the long-term vision of advancing
video generation models toward more physics-consistent
world simulators. From an ethical perspective, while strict
physical consistency evaluation may reveal current model
limitations, it also opens new directions for improving mod-
els’ physical understanding, data synthesis, and evaluation
frameworks. The future societal impact includes enhancing
the reliability of video generation technology in scientific
simulation, education, and filmmaking.
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A. Related work
A.1. Benchmarks For Physical Understanding

Recent benchmarks such as SuperCLEVR-Physics (Li et al., 2023), ContPhy (Zheng et al., 2024b), and Physion (Bear et al.,
2021) have significantly advanced the evaluation of AI’s physical reasoning, focusing on understanding and predictive tasks.
SuperCLEVR-Physics emphasizes reasoning about dynamic properties like velocity and collisions in 4D scenes, ContPhy
expands the evaluation scope to include diverse physical properties, such as mass and density, within continuum settings. It
underscores the limitations of existing AI models in handling soft-body dynamics. And Physion evaluates models’ ability
to predict physical phenomena like collisions and motion while benchmarking against human behavior. However, these
works primarily target understanding or prediction rather than generative capabilities. In contrast, our work introduces
PhyGenBench, a comprehensive benchmark designed to evaluate whether Text-to-Video (T2V) models can generate videos
that adhere to physical commonsense. Unlike existing benchmarks, our work highlights the generative challenges in intuitive
physics, revealing critical gaps in current T2V models and underscoring the need to advance physical commonsense for
applications beyond entertainment.

A.2. Evaluation metrics for text-to-video generation

Conventional approaches to video quality assessment often employ metrics such as FVD (Unterthiner et al., 2018) and
IS (Salimans et al., 2016). However, the detection of unrealistic motions is difficult for them (Brooks et al., 2022), and
FVD requires a reference video that is hard to obtain for novel scenes, making it challenging to evaluate the correctness of
physical commonsense. Recent studies have explored the use of advanced vision-language models (VLMs) as evaluators.
For instance, VideoScore (He et al., 2024b) leverages human feedback to train models for video quality assessment, while
T2V-CompBench (Sun et al., 2024) utilizes powerful models like LLaVA (Liu et al., 2024a) to evaluate the correctness
of spatial relationships. Although a few works demonstrate improved alignment with human judgments, they fall short in
generalizing to assessments of physical commonsense correctness. To address this limitation, we introduce PhyGenEval , a
novel method designed to evaluate physical commonsense correctness on PhyGenBench . We validate the efficacy of our
approach through comprehensive human correlation studies.

B. PhyGenBench Details
B.1. Detailed Overview

Table 5: Details of PhyGenBench

Statistic Number

Physical Laws 27
Domains 4

Optics 50
Mechanics 40
Thermal 30
Material Properties 40

Total Captions 160
Total T2V Models 14
Total Generated Videos 2240

Unique Objects 165
Unique Actions 42
Average Length of Caption 18.75

A fine-grained analysis of the dataset is essential for a comprehensive
understanding of the benchmark. As shown in Table 5, PhyGenBench
covers 4 major domains in physics, encompassing 27 representative
physical laws, which enables it to provide a more comprehensive and
fine-grained evaluation of models’ physical capabilities. We evaluate
14 advanced models including Sora, Vidu, and etc. Additionally, our
captions encompass totally 165 unique objects and 42 unique actions
with an average length of 18.75 words.

B.2. Construction

we provide additional details about the Questions Generation and
Quality Control processes described in Section 3.

Questions Generation. Considering that a single prompt cannot
fully reflect expected physical laws—such as placing a wooden
block on water, where buoyancy should cause it to float rather than
sink—direct evaluation of videos by VLMs (Vision-Language Models)
using prompts alone is challenging. Research indicates that VLMs
struggle to directly comprehend physical laws inherent in videos
(Chow* et al., 2025). Therefore, we leverage the extensive world
knowledge of LLMs (Large Language Models) to parse prompts and
generate physics-informed questions for different stages of evaluation (as detailed in PhyGenEval ). This approach enables
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VLMs to accurately determine the physical correctness of videos. We have provided the complete prompt and code in
our anonymous link. Specifically, for different stage in PhyGenEval , we generate different questions for scoring. In Key
Physical Phenomena Detection: At this stage, we detect key frames that contain the expected physical phenomena. For
each input prompt in PhyGenBench , we design a retrieval prompt pr and a set of physics-related questions Q. The retrieval
prompt is used to locate the key frame, while the questions are used to verify whether the expected physical phenomena
are present in the identified frame. For example, when parsing the prompt ”an egg colliding with a stone,” we use GPT-4o
with the prompt: ”Propose 1-2 questions with answers based on the given prompt and physical laws. Include a retrieval
prompt for identifying the key frame, and ensure the question focuses on a single image.”. In Physics Order Verification:
This stage examines whether the sequence of physical events is correct, e.g., whether the egg hits the stone before breaking.
We evaluate this by checking the order correctness between key frames (Figure 3 (b)). For example, the frame showing
the egg hitting the stone should precede the frame showing the broken egg. Similarly, we prompt GPT-4o to generate a
retrieval prompt pr and three physics-related questions (q1, q2, q3). The retrieval prompt identifies the key frame, while
q1, q2, and q3 verify the order correctness from the first frame to the key frame, from the key frame to the last frame, and
from the first frame to the last frame, respectively. The GPT-4o prompt we use is: ”Provide the retrieval prompt and two
ideal descriptions based on the selected frame pairs (first-retrieval and last-retrieval) as well as a complete description of
the process.” In Overall Naturalness Evaluation: This stage evaluates the overall physical correctness of the dynamic
process. For each prompt-physical law pair, we require GPT-4o to generate four levels of descriptions reflecting increasing
correctness: Completely Fantastical, Clearly Unrealistic, Slightly Unrealistic, and Almost Realistic. The GPT-4o prompt
we use is: ”Evaluation Standards: Completely Fantastical: Entirely detached from reality, featuring elements of fantasy or
surrealism. Clearly Unrealistic: Contains significant and sustained violations of physical laws, such as implausibly large
objects or scenes. Slightly Unrealistic: Features minor or brief distortions, such as unnatural facial expressions or textures
that are difficult to notice. Almost Realistic: No noticeable distortions; fully consistent with reality.”

Quality Control. This process is primarily conducted through manual checks. Specifically, we perform detailed evaluations
during the benchmark construction process, including verifying the correctness of prompts and their associated physical laws,
assessing the semantic simplicity of prompts, and ensuring the accuracy of generated questions. Five senior undergraduate
students are recruited, with each question assigned to all five annotators for evaluation.

For each prompt, annotators first verify the correctness of the prompt and its corresponding physical law, cross-checking the
information using online resources and tools. Next, for semantic simplicity, we refine the benchmark by removing overly
complex prompts that current models cannot reasonably handle. Annotators also assess whether the T2V-generated videos
are semantically reasonable to ensure they support effective evaluation. Finally, for the questions generated in Section 3
used for scoring, annotators assess the physical correctness of each GPT-generated question. For the Overall Naturalness
Evaluation stage, the criteria require that each level of description shows progressive improvements in correctness and
distinguishability.

Through this process, we optimize the dataset quality based on annotator feedback, producing a high-quality dataset that
includes prompts, their corresponding physical laws, and the questions used for scoring during evaluation.

B.3. Difference between Videophy and Ours

VIDEOPHY (Bansal et al., 2024) comprises 688 curated simple prompts that focus on interactions between three types of
physical materials: solid-solid, solid-fluid, and fluid-fluid, but lack annotations of physical laws. The dataset is designed
to evaluate a model’s understanding of physical commonsense, featuring a limited range of physical phenomenons such
as rigid body interactions, fluid dynamics, and contact forces. We are better suited than Videophy for evaluating physical
commonsense due to two significant differences.

First As shown in Figure 2, PhyGenBench includes 160 carefully crafted prompts across 27 distinct physical laws, spanning
four fundamental domains, which comprehensively assess a model’s understanding of physical commonsense. While
Videophy primarily focuses on interactions between solid-fluid, solid-solid, and fluid-fluid, limiting its coverage and
overlooking common physical laws such as phase transitions and basic material properties. What’ more, Videophy lacks
annotations of physical laws making it hard for VLM model to evaluate. Second, as shown in Table 6, the average SA score
of PhyGenBench (0.80) significantly outperforms that of Videophy (0.63). This indicates that PhyGenBench prompts are
well-suited and easy for T2V models to generate high-quality, well-aligned videos, which benefits evaluation of physical
correctness. In contrast, as shown in Figure 5, We find that prompts from Videophy pose challenges for T2V models in
generating text-aligned and high-quality videos for two main reasons: 1. The prompts lack detail and specificity. For
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instance,“A tissue blots a tear from an eye” is overly simplistic (without augmentation). Modern T2V models, such as
CogVideo5B (Yang et al., 2024), are typically trained with longer and more descriptive captions, which enhance their ability
to comprehend and generate content based on prompts. 2. The scenes are often complex and unrealistic. For example, “The
wristwatch knob winds the inner spring tightly” describes a process involving intricate internal mechanisms that are not
visible externally. As a result, it is exceedingly difficult for T2V models to generate such scenes accurately.

Text Prompt

A tissue soaking up a teardrop.

Text Prompt

The wristwatch knob winds the 
inner spring tightly.

Text Prompt

A tissue blots a tear from an 
eye..

VchitectKling Cogvideo5b

Figure 5: Samples of videos generated by Kling, Vchitect, and Cogvideo5b in Videophy. All T2V models struggle to
achieve proper text alignment and produce high-quality videos, making it meaningless to evaluate physical correctness in
Videophy.

Table 6: Comparison of SA results for video generation between Videophy and PhyGenBench . We randomly select 64
prompts from both Videophy and PhyGenBench , use different T2V models to generate videos, and then ask annotators
to score based on our cretiera in Figure 11. The results show that PhyGenBench ’s SA scores significantly outperform
Videophy.

Model Size Videophy(↑) PhyGenBench (↑)

CogVideoX (Yang et al., 2024) 5B 0.48 0.78
Vchitect 2.0 2B 0.63 0.84
Kling - 0.77 0.89

Average - 0.63 0.80

C. PhyGenEval Details
C.1. Semantic alignment details

To reduce the complexity for VLM models to evaluate sementic correctness of generated videos between prompts, we adopt
a two-stage strategy. Initially, we employ GPT-4o to extract objects and actions from the original text prompt. Subsequently,
we employ GPT-4o to determine whether the extracted objects are present in the video and to verify the occurrence of
specified actions. For each video, GPT-4o first assesses the presence of the objects mentioned in the prompt (e.g., “egg”)
within the video frames. This evaluation is performed according to Question 1 (Q1), where GPT-4o assigns a score from 0 to
2 based on the completeness of object presence: a score of 2 is given if all the objects are present, 1 if some of the objects are
missing, and 0 if none of the objects appear in the video. After determining object presence, GPT-4o moves on to Question 2
(Q2) to check if the specified action (e.g., “pour out”) is performed in the video. It assigns a binary score (0 or 1) depending
on whether the action is present (1) or absent (0). Finally, these scores are combined to form the overall semantic alignment
score. we put more details about other metric baselines in Appendix D.1. In this process, we ensure that GPT-4o’s API is
configured without randomness, e.g., setting the temperature to 0, to guarantee the reproducibility of the results.
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C.2. Physical Commonsense alignment details

In this section, we use the same notation as in Section 4.2 and provide a more detailed description of the calculation and
design of the method. In this process, we ensure that GPT-4o’s API and the inference code of VLMs is configured
without randomness, e.g., setting the temperature to 0, to guarantee the reproducibility of the results.

Key Physical Phenomena Detection. We categorize the T2V prompts into monotonic processes (eg. “melting with
increasing temperature”) and non-monotonic processes (eg. “an egg hitting a rock”) based on the physical phenomena they
represent. For prompt with monotonic processes, we only consider using the “Last Frame” as the retrieval prompt, resulting
in a single question. We can directly calculate VLM(Imgj , Q), where the score for the corresponding video of this prompt
ranges from 0 to 1. For prompt with non-monotonic processes, we consider both the intermediate key frames and the Last
Frame, resulting in two questions. For the intermediate key frames, we calculate VLM(Imgj , Q)+VLM(Imgj , Pr), which
ranges from 0-2. Consequently, the score range for videos corresponding to this prompt is 0 to 3.

For specific calculatation, we need to calculate VLM(Ij , pr) and VLM(Ij , q), where Imgj is the j-th frame in the video.
For VLM(Ij , pr), the calculation involves assessing the matching degree between the key frame and the retrieval prompt,
which can be directly obtained using the original calculation method in (Lin et al., 2024). For VLM(Ij , q), we follow the
computation approach from ChronoMagicBench (Yuan et al., 2024), we derive VLM(Ij , q) by determining the ratio of
the VQAScore for the affirmative statement to the combined VQAScores for both the affirmative and negative statements.
We perform the calculations of VLM(Ij , pr) and VLM(Ij , q) for each key frame within the specified range to obtain the
physical correctness score for the problem.

Physics Order Verification. For this stage, which we’ve primarily introduced in Section 4, we focus on key calcu-
lation points. The score calculation formula for q1 is Sbefore = maxi−2≤j≤i (VLM(I0, Ij , q1) + VLM(Ij , pr)). Here,
VLM(Ij , pr) determines if the retrieved key frame satisfies the retrieval prompt,as the physical phenomenon should occur
in the keyframe primarily located in Key Phenomena Detection, which is crucial for Key Sequence Verification (e.g.the
expected physical phenomenon of egg cracking should occur in the keyframe when the egg hits the stone, rather than other
frames when the egg is in the air or else). VLM(I0, Ij , q1) assesses the correctness of the Key Sequence order in the video.
Notably, we calculate VLM(Ij , pr) using VQAScore, yielding a decimal between 0 and 1, while VLM(I0, Ij , q1) employs
VLM (GPT-4V or LLaVA-Interleave) for question-answering, scoring 1 or 0 based on the model’s Yes or No response.

Overall Naturalness Evaluation. Here we mainly explain how to get the score of this part based on the evaluation results
under the two-stage strategy described in Section 4. Specifically, we ask the video-based VLM to select the most appropriate
option for the video according to the detailed scoring criteria generated by the LLM, and then we map the options to scores
(Completely Fantastical to Almost Realistic corresponds to 0-3 points)

Overall Score. We detail the discretization and calculation process of the scores here. In the stage of key phenomena
detection, we categorize the prompts into monotonic and non-monotonic processes based on the physical phenomena they
represent. For monotonic processes, the score range is 0-1, which we directly discretize by averaging into integer values
from 0-3. Specifically, for non-monotonic processes with a score range of 0-3, we discretize the scores to [1, 1.5, 2.25]. This
is because no points should be awarded if the physical phenomena are incorrect (VLM(Ij , pr) = 1 and VLM(Ij , q) = 0),
even with accurate retrieval. (e.g., The egg hits the stone and does not break)

In the stage of key sequence verification, we have three multi-image problems. One point is awarded for each correct answer,
resulting in a final integer score from 0-3. Similar to the stage, of key phenomena detection we need to consider both the
accuracy of key frame retrieval and the physical question answering. Therefore, we design the following: for Q1, when
maxi−2≤j≤i (VLM(I0, Ij , q1) + VLM(Ij , pr)) and VLM(Ij , pr) > 0.5, the question is considered correct. The process
for q2 is similar. For q3, it is marked correct when VLM(I0, Ii−2:i+2, I−1, q3).

In the stage of overall naturalness evaluation, as we require video-based direct option selection, choosing Completely
Fantastical, Clearly Unrealistic, Slightly Unrealistic, and Almost Realistic is scored as 0, 1, 2, and 3 points respectively.
Finally, we average all scores and round down to obtain the final score.

For the ensamble operation, in order to reduce the bias caused by using a single VLM at a certain stage, we ensemble the
results of PhyGenEval using open source models or closed source models. Specifically, we average the two results and
round them down.

16



PhyGenBench

D. Experiment
D.1. Experiments Setup

T2V model Implementation details. Open-Sora 1.2 (Zheng et al., 2024a) is an open-source project with the goal of
reproducing Sora. CogVideoX 2b (Yang et al., 2024) and CogVideoX 5b are large-scale diffusion transformer models
for text-to-video generation, incorporating a 3D Variational Autoencoder (VAE) for efficient video compression and an
expert transformer with Expert Adaptive LayerNorm to improve text-video alignment. LaVie (Wang et al., 2023) is a
cascaded video latent diffusion model. Vchitect2.0 (Wang et al., 2023), developed by the Shanghai AI Lab, is an advanced
video generation model featuring a Parallel Transformer architecture to scale up video diffusion models and empower
video creation. Hunyuan (Kong et al., 2024) is the largest open-source T2V model. Pyramid Flow is a T2V model with
autoregressive architecture. Sora (Sor, 2024), Pika1.0 (Pik, 2023), Gen-3 (gen, 2024), Kling (kli, 2024), Vidu (Vid, 2024),
and Hailuo (Hai, 2024) are the most popular closed-source models.

Evaluation Metrics details. We compare our proposed PhyGenEval with some evaluation metrics from previous methods
like VideoPhy (Bansal et al., 2024) and VideoScore (He et al., 2024b). VideoPhy fine-tunes a VLM with the VIDEOPHY
dataset proposed by themselves, which includes human feed back about the semantic alignment and dynamic motion
correctness about videos. VideoScore is trained on the VIDEOFEEDBACK dataset proposed by themselves, Initialized
from the Mantis model. VideoScore provides automatic assessments of video quality based on human scoring criteria. To
compare with PhyGenEval on SA and PCA, We only choose the text alignment and fact consistency criteria. Specifically,
for the semantic alignment evaluation, we compare the Grid-LLaVA method proposed by T2V-CompBench, which extends
the LLaVA (Liu et al., 2024a) model to handle multi-frame inputs by sampling 6 frames uniformly from a video to create an
image grid. For the physical commonsense alignment evaluation, we also compare with DEVIL (Liao et al., 2024), which
uses Gemini 1.5 Pro (Reid et al., 2024) to assess the overall naturalness of videos and applies the same scoring standard
prompt to all videos.

Furthermore, to evaluate the effectiveness of our PhyGenEval designs, we conduct a large amount of ablation studies and
pue more details in Appendix D.4.

Human evaluation details. Here, we provide a detailed explanation of the human evaluation described in Section 5.
Specifically, we require annotators to score based on the standards outlined in Figure 11, covering both semantic alignment
and physical commonsense alignment. For example, as for the video shown in Figure 11, The egg bounces off the rock like
a rubber ball, completely violating physical laws like dynamics, the annotator gives a score of 0 for physical commonsense
alignment. However, since the video fully includes the egg, the rock, and the collision action, the annotator gives a score of
3 for semantic alignment.

D.2. Quantitative Evaluation

Comparison result about semantic alignment. Here we design a new baseline PhyGenEval (Grid-LLaVA) to illustrate
the superiority of the method, which uses the two-stage strategy proposed in PhyGenEval from Appendix C.1, but replaces
the VLM with Grid-LLaVA proposed in T2V-CompBench (Sun et al., 2024). As shown in Table 8, PhyGenEval achieves the
highest correlation scores across all categories, demonstrating its effectiveness as a human-aligned semantic commonsense
correctness evaluator for PhyGenBench . Compared to other methods, PhyGenEval consistently outperforms previous
baselines like VideoPhy, VideoScore, and Grid-LLaVA. Specifically, PhyGenEval obtains an overall Kendall’s τ of 0.53
and a Spearman’s ρ of 0.56, surpassing the Grid-LLaVA (τ : 0.35, ρ: 0.39). The results clearly show that our PhyGenEval
design provides a more accurate and reliable semantic commonsense evaluation in PhyGenBench .

Quantitative result about semantic alignment. As shown in Table 9 , nearly all models achieve relatively high SA scores,
whether evaluated by machines or humans. This suggests that the scenarios in PhyGenBench are relatively straightforward,
making it easier to assess physical commonsense. Among all the models, Kling achieved the highest SA score, with a
human evaluation score of 0.89, reflecting its strong instruction understanding and video generation capabilities.

D.3. Qualitative Evaluation.

The different video cases for 4 physical commonsense categories are illustrated in Figure 6. Our main observations are as
follows: In mechanics, the models struggle to generate simple physically accurate phenomenons. As shown in Figure 6,

17



PhyGenBench

Table 7: Details about evaluation models. The table shows duration, FPS, and resolution for each model.

Model Duration (s) FPS Resolution

Open-Sora 1.2 (Zheng et al., 2024a) 4 24 1280 × 720
CogVideoX 2b 6 8 720 × 480
CogVideoX 5b 6 8 640 × 360
Lavie 4 8 512 × 320
Vchitect2.0 5 8 768 × 432
Hunyuan 5 24 1280 × 720
Pyramid Flow(flux) 24 8 640 × 384
Pyramid Flow(sd3) 24 8 640 × 384

Pika (Pik, 2023) 3 24 1280 × 720
Gen-3 (gen, 2024) 11 24 1280 × 768
Kling (kli, 2024) 5 30 1280 × 720
Vidu (Vid, 2024) 5 30 1280 × 720
Hailuo (Hai, 2024) 5 30 1280 × 720
Sora (Sor, 2024) 5 30 1280 × 720

Table 8: SA correlation results with proposed PhyGenEval in video generation. A higher score indicates better
performance for a category. Bold stands for the best score,

Metric Mechanics Optics Thermal Material Overall

τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

VideoPhy (Bansal et al., 2024) 0.20 0.25 0.03 0.03 0.20 0.24 0.18 0.22 0.13 0.17
VideoScore (He et al., 2024b) 0.14 0.16 −0.13 −0.14 0.23 0.02 0.02 0.02 0.05 0.05
Grid-LLaVA (Sun et al., 2024) 0.39 0.43 0.45 0.49 0.30 0.33 0.22 0.26 0.35 0.39
PhyGenEval (Grid-LLaVA) 0.35 0.38 0.46 0.48 0.41 0.44 0.42 0.45 0.42 0.44
PhyGenEval 0.48 0.52 0.64 0.67 0.46 0.49 0.47 0.50 0.53 0.56

all models fail to depict the glass ball sinking in water. As for (b), instead showing it floating on the surface, OpenSora
and Gen-3 even produce videos where the ball is suspended. Additionally, the models do not capture special physical
phenomenonss, such as the state of water in zero gravity, as seen in (a). In optics, the models perform relatively better. (c)
and (d) show the models handling reflections of balloons in water and colorful bubbles, though OpenSora and CogVideoX
still produce reflections with noticeable distortions in (d). In thermal, the models fail to generate accurate videos of phase
transitions. For the melting phenomenon in (e), most models show incorrect results, with CogVideoX even producing a
video where the ice cream increases in size. Similar errors appear in the sublimation process in (f), with only Gen-3 showing
partial understanding. Regarding material properties, (g) shows all models failing to recognize that an egg should break
when hitting a rock, with Kling displaying the egg bouncing like a rubber ball. For simple chemical reactions, such as the
black bread experiment in (h), none of the models demonstrate an accurate understanding of the expected reaction.

D.4. Ablation study

The Component in PhyGenEval on physical commonsense alignment evaluation. We conduct a series of ablation
studies to demonstrate the necessity of our method design by examining its correlation with human evaluation results, similar
to those described in Section 5. Specifically, we compare: 1) ) The effect of the various stages of PhyGenEval , as proposed
in Section 4.2; 2) Performance differences when using various VLMs and their ensembles in PhyGenEval , as outlined in
Section 4.2. 3) The larger open models in PhyGenEval. Notice that PhyGenEval for physical commnonsense alignment
evaluation consists of three stages: key phenomena Detection, key sequence verification, and overall naturalness evaluation.
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Table 9: SA evaluation results with proposed PhyGenEval in video generation. Both machine and human evaluations
indicate that most models achieve good semantic scores on PhyGenBench . This suggests that the scenarios in PhyGenBench
are simple enough to clearly reflect physical phenomena. The scores are normalized to a range of 0-1.

Model Size Mechanics(↑) Optics(↑) Thermal(↑) Material(↑) Average(↑)

CogVideoX (Yang et al., 2024) 2B 0.63 0.67 0.61 0.63 0.64
CogVideoX (Yang et al., 2024) 5B 0.78 0.88 0.78 0.64 0.78
Open-Sora V1.2 (Zheng et al., 2024a) 1.1B 0.73 0.85 0.82 0.73 0.79
Lavie (Wang et al., 2023) 860M 0.47 0.63 0.73 0.53 0.58
Vchitect 2.0 (Wang et al., 2023) 2B 0.92 0.89 0.77 0.74 0.84
Hunyuan (Kong et al., 2024) 13B 0.75 0.83 0.81 0.75 0.79
Pyramid Flow (flux) (Jin et al., 2024) 2B 0.71 0.83 0.75 0.63 0.68
Pyramid Flow (sd3) (Jin et al., 2024) 2B 0.71 0.82 0.83 0.56 0.75

Pika (Pik, 2023) - 0.63 0.81 0.73 0.69 0.72
Gen-3 (gen, 2024) - 0.84 0.93 0.82 0.78 0.85
Kling (kli, 2024) - 0.88 0.91 0.87 0.74 0.85
Sora (Sor, 2024) - 0.85 0.83 0.86 0.77 0.84
Vidu (Vid, 2024) - 0.88 1.00 0.92 0.88 0.92
Hailuo (Hai, 2024) - 0.94 0.98 0.86 0.79 0.87

Text Prompt

A cup of oil is slowly
poured out in the space
station, releasing the liquid
into the surrounding area.

Open-Sora V1.2 CogVideox 5b Gen-3Kling

Text Prompt

A balloon is floating over a
serene and mirror-like
ocean.

Text Prompt

A solid glass ball is gently
placed on the surface of a
bathtub filled with water.

Text Prompt

A large number of soap
bubbles are floating in the
air under the sunlight.

Text Prompt

A timelapse captures the
gradual transformation of
ice cream as the
temperature rises
significantly above 100 ˚C.

Text Prompt

A timelapse captures the
transformation of dry ice as
it is exposed to a significantly
increasing temperature at
room temperature.

Text Prompt

A timelapse captures the
reaction as concentrated
sulfuric acid is poured onto
a piece of bread.

Text Prompt

A delicate, fragile egg is
hurled with significant force
towards a rugged, solid rock
surface, where it collides
upon impact

（a）

（b）

（c）

（d）

（e）

（f）

（g）

（h）

Figure 6: Qualitative comparisons of four categories. Current models perform relatively well in generating optical
phenomenons but are weaker in mechanics, thermal, and material properties.

And We denote them as PhyGenEval -S, PhyGenEval -M, and PhyGenEval -V based on the VLM they used.

1) PhyGenEval for physical commnonsense alignment evaluation consists of three stages. We investigate the contribution
of each stage to the final performance. Table 11 presents results using one or two stages (employing ensemble strategies
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Table 10: Retrieval success rates for some different models.

Model Force (↑) Light (↑) Heat (↑) Material (↑) Overall (↑)

Cogvideo 5B 0.7618 0.9013 0.8046 0.7815 0.8193
Gen3 0.8353 0.9077 0.8627 0.8114 0.8577
Pika 0.7829 0.8777 0.7825 0.7736 0.8107
Lavie 0.7064 0.8328 0.7537 0.7219 0.7596
Vchitect2 0.8078 0.9034 0.8317 0.7668 0.8327
Keling 0.8375 0.9018 0.8319 0.7978 0.8470
Opensora 0.8166 0.8755 0.8528 0.7707 0.8310
Cogvideo 2B 0.7924 0.8255 0.7886 0.7719 0.7971

when multiple VLMs are applicable). We find that optimal performance is achieved only when all three stages are used
concurrently, demonstrating the rationale behind PhyGenEval ’s design.

2) Given potential biases in single models and the costs associated with closed-source models, we offer two PhyGenEval
computation methods: using GPT-4o or alternative open-source models (LLaVA-Interleave (Li et al., 2024) and InternVideo2
(Wang et al., 2024)). Table 12 shows that even using only small scale open-source models achieves a high correlation
coefficient of 0.66. Notably, ensembling both methods yields the best results. Considering PhyGenBench ’s relatively small
size, we find this computational cost acceptable. Therefore we recommend users ensemble these methods.

3) We explore the performance of larger open-source models. Specifically, we replace GPT-4o used in the Physics Order
Verification stage of PhyGenEval with InternVL2-Pro (78B), denoted as PhyGenEval (Open-L). Additionally, when we use
smaller open-source model like llava-next-interleave 7B, we denote it as PhyGenEval (Open-S). We denote the original
PhyGenEval with closed-source model like GPT-4o as PhyGenEval (Closed)

Results show that compared to smaller open-source models, the overall alignment coefficient with larger open-source models
improves from 0.66 to 0.72, indicating that the method remains reproducible even when using exclusively open-source
models. We believe that as open-source models continue to advance, they can achieve even better performance within
PhyGenEval on PhyGenBench .

The robustness of retrieval operations in PhyGenEval In PhyGenEval ’s Key Physical Phenomena Detection and
Physics Order Verification, retrieval operations are required to detect key physical phenomena and their order in videos. Since
retrieval may not always capture the target frames, we incorporate a regularization term V LM(Ij , pr) into the calculations
of Skey and Sorder. VQAScore is used to evaluate the scores of retrieved frames and retrieval prompts, improving the
robustness of retrieval operations. (Note: when the retrieval prompt is ”Last Frame” or ”Middle Frame,” the default value is
set to 1.)

Additionally, since PhyGenBench is intentionally designed with simple and common scenarios, retrieval operations achieve
a relatively high success rate. We report the average V LM(Ij , Pr) scores for different models in Table 10, showing that
even Lavie achieves a retrieval score above 0.75, indicating generally high retrieval accuracy.

The Component in PhyGenEval on semantic alignment evaluation. we also perform necessary ablation experiments
to validate the necessity of our SA evaluation design. Specifically, we compare: 1) VLM Model Selection: We leverage
GPT-4o (Achiam et al., 2023) as a more robust VLM model for SA evaluation. 2) Effectiveness of our two-stage evaluation
method proposed in Appendix C.1

1) As shown in Table 8, using GPT-4o in PhyGenEval is much better than using LLaVA, which achieve a higher Kendall’s
τ of 0.53 compared to 0.42, and a higher Spearman’s ρ of 0.56 versus 0.44. This indicates a stronger alignment between
GPT-4o’s evaluations and human annotations compared to open-source vlm models like Grid-LLaVA (Sun et al., 2024),
justifying its selection as the preferred VLM model in the SA evaluation design. Since PhyGenBench includes a limited
number of prompts, we believe that the cost of using GPT-4o is acceptable relative to the improvement in performance.

2) To validate the effectiveness of the two-stage strategy, we compare it with the method in T2V-CompBench (Sun et al.,
2024), which directly uses Grid-LLaVA to apply the same scoring standard prompt for semantic alignment evaluation across
all videos. For fairness, we also use Grid-LLaVA but implement the two-stage strategy proposed in Appendix C.1. As shown
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Table 11: Comparison of PCA correlation results using each stage in PhyGenEval

Metric Mechanics Optics Thermal Material Overall

τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

PhyGenEval -S 0.50 0.54 0.43 0.45 0.50 0.54 0.72 0.77 0.56 0.61
PhyGenEval -M 0.46 0.49 0.49 0.53 0.55 0.59 0.53 0.57 0.55 0.60
PhyGenEval -V 0.26 0.30 0.44 0.47 0.33 0.35 0.48 0.52 0.42 0.46
PhyGenEval -SM 0.58 0.61 0.47 0.50 0.58 0.62 0.66 0.70 0.60 0.64
PhyGenEval -SV 0.56 0.59 0.41 0.43 0.58 0.60 0.70 0.74 0.59 0.62
PhyGenEval -MV 0.50 0.53 0.50 0.53 0.53 0.57 0.60 0.64 0.57 0.61
PhyGenEval 0.72 0.75 0.76 0.77 0.73 0.75 0.81 0.84 0.78 0.81

Table 12: Comparison of PCA correlation results using different models such as GPT-4o or open-sourced models in
PhyGenEval

Metric Mechanics Optics Thermal Material Overall

τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑) τ (↑) ρ(↑)

PhyGenEval (Open-S) 0.54 0.57 0.59 0.62 0.55 0.58 0.65 0.69 0.62 0.66
PhyGenEval (Open-L) 0.58 0.62 0.63 0.65 0.62 0.64 0.70 0.73 0.67 0.72
PhyGenEval (Closed) 0.72 0.75 0.76 0.77 0.73 0.75 0.81 0.84 0.78 0.81

in Table 8, PhyGenEval -Grid-LLaVA outperforms Grid-LLaVA, achieving a higher Kendall’s τ score of 0.42 compared to
0.35, and a higher Spearman’s ρ score of 0.44 versus 0.39. This result demonstrates the effectiveness of our Two Stage
Evaluation Method. By decomposing the evaluation into object detection and action detection, we effectively reduces the
complexity of the task for VLMs in evaluating the sementic correctness of videos.
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Figure 7: Visualization of some PhyGenEval error cases.

Use real videos as reference We agreed that using real videos as references might have provided more reference
information. However, considering several difficulties:

1. It is challenging to collect real videos for each prompt.

2. Physical processes are diverse, making it difficult to collect unique real videos.
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3. Due to differences in frame rates and other factors, video-to-video comparison is also challenging and might require
training separate models.

Here, we adopted an alternative approach to incorporate real videos into the PhyGenEval framework.

Specifically, we extracted fifty Video-Caption pairs from WISA (Wang et al., 2025), belonging to mechanics, optics, and
thermodynamics categories (WISA did not include physical property categories). We parsed the corresponding video
captions into prompt and question formats as in PhyGenBench, and used PhysGenEval for evaluation. The results showed
that real videos achieved extremely high scores under PhyGenEval, demonstrating the robustness of the framework.

Mechanics (17 samples) Optics (17) Thermal (16)

Score 0.93 0.95 0.93

We also tested the performance of open-source models on these 50 prompts, using machine scores and machine scores /
machine scores of real videos (the latter serving as reference scores after error elimination), obtaining the following table:

Mechanics Optics Thermal Avg

CogVideoX2B 0.36(0.37) 0.44(0.49) 0.33(0.41) 0.39(0.39)
CogVideoX5B 0.36(0.36) 0.52(0.57) 0.47(0.53) 0.46(0.50)
Opensora V1.2 0.36(0.38) 0.49(0.52) 0.39(0.39) 0.43(0.45)
Lavie 0.23(0.27) 0.42(0.45) 0.36(0.40) 0.36(0.38)
Vchitect 2.0 0.41(0.43) 0.52(0.57) 0.42(0.44) 0.47(0.50)
Hunyuan 0.46(0.49) 0.53(0.55) 0.39(0.40) 0.48(0.51)
Pyramid Flow (Flux) 0.33(0.37) 0.50(0.54) 0.44(0.50) 0.44(0.48)
Pyramid Flow (Sd3) 0.43(0.54) 0.46(0.52) 0.33(0.40) 0.42(0.49)

The Spearman coefficient of model rankings calculated by these two methods is 0.90, indicating that the current evaluation
framework can achieve robust results.

E. Discussion
Error case analysis. As shown in Figure 7, we visualize some error cases where both PhyGenEval and competing methods
like DEVIL fail to correctly identify the physical realism of the videos. These error cases are often caused by confusing but
iconic physical phenomena in the videos that do not align with the correct progression of physical processes (e.g., in the
erroneous case of the ”burnt bread” experiment, black coloration appears but does not align with the expected phenomenon),
leading to misjudgments. However, even in these cases, PhyGenEval remains closer to human ratings compared to other
methods.

The Impact of Scaling on Physical Commonsense in Video Generation. Scaling laws have been extensively validated
in video generation models (Kaplan et al., 2020). We investigate their efficacy in addressing the challenges of physical
commonsense presented in PhyGenBench . As shown in Table 2, CogVideo 5B demonstrates improvements over CogVideo
2B, albeit with limited progress in the Mechanics category. Our qualitative analysis, illustrated in Figure 8, reveals significant
advancements in static scenes with CogVideo 5B. It accurately captures complex phenomena such as colorful bubbles
resulting from interference and diffraction, and oxidation-induced rusting of iron. In thermal, despite imperfections,
CogVideo 5B generates more realistic boiling simulations compared to its predecessor. However, both models struggle with
simple motion dynamics, exemplified by their inability to accurately depict a bouncing football. We posit that while scaling
up enhances the model’s capacity to generate videos that align with physical commonsense for individual objects, it may
be insufficient for physical phenomenons involving dynamic physical laws. Addressing these challenges likely requires
extensive training on carefully curated synthetic data, as suggested by (Liu et al., 2024b). This approach could potentially
bridge the gap in the model’s grasp of fundamental physical laws.

The robustness of low-quality videos. Although we deliberately select simple scenarios when constructing PhyGenBench
to make it easier for models to generate videos that align with prompts while exposing physical errors, certain T2V models
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Figure 8: The qualitative comparison of CogVideoX 2B and CogVideoX 5B. The result shows that simply scaling up can
solve some issues, but dynamic physical phenomenons involving the design of motion patterns remain challenging.

may still perform poorly on specific prompts. In this regard, PhyGenEval demonstrates a degree of robustness. We select
100 low-quality videos and calculated their average PCA Score, which is 0.14, significantly lower than the average PCA
Score in Table 2. Figure 9 provides visualizations of some low-quality videos, most of which fail to meet the prompt
requirements, resulting in very low physical scores.

The effect of fine-tuningect of fine-tuning. WISA fine-tunes CogVideo using real text-video pairs and tests it on
PhyGenBench. The results show that the score increases from 0.41 to 0.43. Although there is some improvement, it is not
significant. Therefore, it is still necessary to design fine-tuning methods that explicitly incorporate physical laws, or to use
more powerful video generation model backbones.
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Figure 9: Visualization of some low quality videos and their PCA score.
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Table 13: Resource consumption of models used in PhyGenEval.

Model Batch Size Resources Times Memory Utilization Per GPU

GPT-4o(stage2) 8 USD 1.4 5min -
GPT-4o(stage3) 8 USD 3.1 5min -
LLaVA-Next-Interleave-7B 1 1 x A100-80GB 2min 20408MiB
VQAScore 3 1 x A100-80GB 10min 72726MiB
InternVideo 1 1 x A100-80GB 1min 7766MiB

F. Computaional Resources
Although our method involves different stages, it remains straightforward. Table 13 provides a summary of the resource
consumption, showing that the entire evaluation process can be completed quickly and at low cost.
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Figure 10: The qualitative comparison of effects before and after using rewritten prompts. The results indicate that rewriting
prompts addresses only a few basic issues (such as flame color reactions), while the majority of problems remain unsolved.
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Figure 11: Detailed diagram of the human evaluation process. We ask the annotators to score the semantic alignment and
physical commonsense alignment of the video according to the scoring criteria in the figure.
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