
Under review as a conference paper at ICLR 2024

QFT: QUANTIZED FULL-PARAMETER TUNING OF
LLMS WITH AFFORDABLE RESOURCES

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) have showcased remarkable impacts across a
wide spectrum of natural language processing tasks. Fine-tuning these pre-trained
models on downstream datasets provides further significant performance gains,
but this process has been challenging due to its extraordinary resource require-
ments. To this end, existing efforts focus on parameter-efficient fine-tuning,
which, unfortunately, fail to capitalize on the powerful potential of full-parameter
fine-tuning. In this work, we propose QFT, a novel Quantized Full-parameter
Tuning framework for LLMs that enables memory-efficient fine-tuning without
harming performance. Our framework incorporates two novel ideas: (i) we adopt
the efficient Lion optimizer, which only keeps track of the momentum and has
consistent update magnitudes for each parameter, an inherent advantage for ro-
bust quantization; and (ii) we quantize all model states and store them as integer
values, and present a gradient flow and parameter update scheme for the quantized
weights. As a result, QFT reduces the model state memory to 21% of the stan-
dard solution while achieving comparable performance, e.g., tuning a LLaMA-7B
model requires only <30GB of memory, satisfied by a single A6000 GPU.

1 INTRODUCTION

Large Language Models (LLMs), with up to hundreds of billions of parameters, have left an indelible
mark on the landscape of natural language processing tasks, showcasing their remarkable impacts
across a diverse spectrum of applications and domains (Touvron et al., 2023a;b; Brown et al., 2020;
Zhang et al., 2022). Fine-tuning these pre-trained models on downstream datasets enhances their
ability to understand and perform specific tasks (Zhao et al., 2023). However, due to the enormous
number of parameters, the fine-tuning process requires unprecedented resources.

Parameter-efficient fine-tuning, involving the tuning of only selected parameters, is deemed a prac-
tical choice for low-resource situations (Ding et al., 2022; Hu et al., 2021; Li & Liang, 2021). Re-
grettably, owing to the limited representational capacity of the smaller parameter set, the outcomes
of this approach often fall short of expectations (Lv et al., 2023). Therefore, our emphasis is placed
on full-parameter fine-tuning, with a keen interest in investigating memory optimization strategies
to render it feasible on cost-effective resources.

We begin by examining the full spectrum of memory usage in full-parameter fine-tuning, which can
be categorized into three components: model states, activation, and other temporary or unusable
memory. Model states, which include the model parameters (weights), gradients, and optimizer
states (such as momentum and variances in Adam (Kingma & Ba, 2015)), are mandatory to store
and consequently consume the majority of the memory (Rajbhandari et al., 2020). For instance,
when employing the standard fp32 training settings with the Adam optimizer, the memory alloca-
tion for model parameters, gradients, momentum, and variances amounts to 4 times the number of
parameters. As a result, tuning a LLaMA-7B model necessitates a minimum of 100.4GB of RAM,
which presents a formidable challenge given the limitations of current GPU capacities.

In this work, we are motivated to reduce the memory usage of all model states through quantized
low-precision representations. First, instead of resorting to straightforward quantization, we expect
an optimizer that simplifies the computation to replace Adam. Fortunately, the Lion optimizer (Chen
et al., 2023) aligns almost perfectly with our expectations, as it only keeps track of the momentum
and naturally eliminates the memory usage of the variances. And more importantly, its update has

1

Under review as a conference paper at ICLR 2024

the same magnitude for each parameter, thus mitigating potential imbalances or inaccuracies in
weight updates introduced by limited representation precision. Afterwards, we develop lightweight
yet accurate quantizers for each model state, notably the dense-and-sparse quantizer (Kim et al.,
2023) for weight parameters, which are then stored in the quantized integer format. During com-
putation, these quantized representations are dequantized on-the-fly into the floating-point format to
dynamically perform high-precision arithmetic. Moreover, we present a novel gradient flow scheme
for the quantized weights to ensure proper error propagation and parameter updates in training.

More specifically, our contribution can be summarized as follows:

• We propose QFT, a novel Quantized Full-parameter Tuning framework for LLMs, which lever-
ages quantization to optimize memory usage in fine-tuning without sacrificing performance.
QFT can be seamlessly integrated into mainstream LLM training tools with minor modifications
to a few training units, and is well compatible with existing memory optimization methods.

• We analyze the simplicity and memory efficiency of the Lion optimizer and confidently rec-
ommend it as the best choice for quantized fine-tuning. On this basis, we proceed to quantize
all model states into the integer format, with each quantizer striking a balance between training
accuracy and throughput. We also present a gradient flow scheme for the quantized weights.

• We perform instruction tuning on the pre-trained LLaMA-2 models and extensively evaluate
performance on various benchmarks. The results demonstrate that our QFT, with memory usage
reduced to 21%, achieves comparable performance to standard floating-point training.

2 RELATED WORKS

Efficient Optimizer The primary optimizers employed for training transformer models are the
Adam family (Kingma & Ba, 2015; Loshchilov & Hutter, 2017). They maintain a rolling average
of the previous gradients to promote stable convergence in training. However, their optimizer states
(momentum and variances) imposes an extra memory overhead proportional to the number of model
parameters, and this becomes a significant burden as LLMs’ parameters increase. To overcome
the memory challenges of model states, there are various memory-efficient schemes. LOMO (Lv
et al., 2023) utilizes a vanilla SGD optimizer for training LLMs, which unfortunately fails to ensure
training performance due to the slow convergence and weak stability of SGD (Li et al., 2023).
Another imperfect solution is to utilize an Adafactor optimizer (Shazeer & Stern, 2018), which,
despite storing only aggregated information, is also beset by instability issues. In this work, we
adopt the Lion optimizer (Chen et al., 2023), relying on its advantage of only keeping track of the
momentum but achieving comparable convergence to Adam. More importantly, thanks to the sign
operation, its update has the same magnitude for each parameter, which gives it a great potential for
robust quantization of gradients and optimizer states.

Quantization for Memory Optimization Most existing quantization methods focus on inference
efficiency (Gholami et al., 2022; Dong et al., 2019; 2020; Kim et al., 2023; Li et al., 2022a;b; Li &
Gu, 2022; Jacob et al., 2018), and recently, quantization is also believed to have great potential for
optimizing training efficiency. Note that this research line is different from traditional quantization-
aware training (QAT) (Jacob et al., 2018; Liu et al., 2023). QAT inserts fake quantization nodes
on weights and activations in training, where parameter arithmetic and storage retains the floating-
point format, and thus training efficiency is not improved. As a comparison, quantization-based
memory optimization methods, which attempt to utilize low-precision units to store parameters,
can effectively reduce the memory budget in training, and thus have received increasing attention.
Bitsandbytes (Dettmers et al., 2021) introduces a block-wise quantization method to compress the
memory of optimizer states. QLoRA (Dettmers et al., 2023) uses quantized values to store frozen
pre-training weights, keeping only the adapters in the floating-point format. In this work, we pro-
pose a novel memory-efficient full-parameter fine-tuning framework for LLMs, in which all model
states are stored as quantized integer values, enabling comprehensive memory compression without
sacrificing fine-tuning performance.

Other Memory Optimization Methods Other prominent memory optimization methods include
offloading (Huang et al., 2020; Wang et al., 2018; Peng et al., 2020) and gradient checkpoint-
ing (Chen et al., 2016; Kumar et al., 2019; Jain et al., 2020; Kirisame et al., 2020). Activation

2

Under review as a conference paper at ICLR 2024

offloading offloads activation to external memory (e.g., CPU memory). It is worth noting that of-
floading comes at the cost of transferring data to another storage, which can increase execution time.
Gradient checkpointing is a technique that discards activations in the forward pass and recomputes
them in the backward pass as needed. This approach involves a trade-off between memory usage
and computation cost. In addition, there are also customized schemes proposed for training LLMs.
LOMO (Lv et al., 2023) fuses the gradient computation and the parameter update in one step. This
method can reduce the memory usage of gradient tensors to O(1); however, there is a potential
caveat as it is incompatible with gradient accumulation for scaling batch sizes, limiting it to unstable
training with small batch sizes. In contrast, our framework is orthogonal and well compatible with
all the above methods.

3 METHODOLOGY

3.1 LION OPTIMIZER

In a recent exploration of algorithm discovery through program search for neural network train-
ing, a novel optimization algorithm, Lion (EvoLved Sign Momentum), was conceived (Chen et al.,
2023). The method explores an expansive program space while implementing program selection and
simplification strategies. Lion stands out due to its simplicity and memory-efficiency, only track-
ing momentum, differing from adaptive optimizers by employing a consistent magnitude update
for each parameter using the sign operation. Comparative studies with established optimizers, like
Adam (Kingma & Ba, 2015) and Adafactor (Shazeer & Stern, 2018), underscored Lion’s efficacy,
leading to superior results in various domains, from image classification to language modeling. Par-
ticularly notable, Lion boosts the accuracy of Vision Transformers (ViT) on ImageNet, decreases
pre-training compute on JFT, and surpasses Adam in training diffusion models. However, its ad-
vantages grow with increased training batch sizes and necessitate a lower learning rate than Adam,
given the larger update norm resulting from the sign function.

Designing quantized fine-tuning algorithms involves working with limited-precision representations
of parameters, gradients and momentum. This can lead to several challenges, including increased
sensitivity to noise, potential accumulation of rounding errors, and other precision-related issues.
We find Lion more suitable for the task of quantized fine-tuning, due to the following reasons:

• Simplicity: Lion is simpler and more memory-efficient since it only keeps track of the momen-
tum. This reduced complexity might be beneficial when dealing with quantized values, where
added algorithmic intricacies can amplify quantization errors.

• Consistent Update Magnitudes: Unlike adaptive optimizers, Lion ensures that updates have
the same magnitude for each parameter, which is determined through the sign operation. In a
quantized setting, this consistency can mitigate potential imbalances or inaccuracies in weight
updates introduced by limited precision.

• Memory Efficiency: Memory usage is a common concern in quantized neural networks, es-
pecially when deploying on edge devices with constrained memory. Lion’s memory efficiency
(only tracking momentum) makes it a potentially better fit for such quantized settings than opti-
mizers like Adam, which track more state variables.

3.2 QUANTIZATION

The Lion optimizer simplifies the composition of model states, which consist only of model weights,
gradients, and optimizer momentum, resulting in a 25% reduction in memory usage compared to the
memory-intensive Adam optimizer. However, it is imperative to recognize that these model states
are still retained in the original floating-point format, a characteristic that can introduce redundant
representations and, consequently, contribute to memory inefficiency. In light of this consideration,
quantization, which involves the use of reduced-precision formats such as INT8 to represent neural
networks, emerges as a compelling avenue for further memory optimization.

The field of quantization methods primarily emphasizes improving model inference efficiency, with
limited attention paid to reducing training overhead (Dettmers et al., 2021). Our approach stands
out through a comprehensive training memory compression, which is accomplished by quantizing
all model states within the Lion optimizer and storing them as integer values. This sets our approach

3

Under review as a conference paper at ICLR 2024

Weights

MatMul (FP32)

Quant

De‐quant

Input Weights

Add (FP32)

Update

Computation Update

Weights

MatMul (FP32)

De‐quant

Input Weights

Add (FP32)

Update

Computation Update

De‐quant

Quant

Traditional QAT QFT (ours)

FP32 FP32 INT8 INT8

FP32

FP32

FP32

FP32
FP32FP32

FP32
FP32

FP32

FP32

INT8

FP32
INT8

INT8

INT8

Figure 1: Comparison between our QFT and traditional QAT in the computation and update pro-
cedures of weights. QAT stores the weights in the floating-point format and adds fake quantization
nodes to the computation. Conversely, in our QFT, the weights are stored in the low-precision integer
format, which are de-quantized on-the-fly into the floating-point format for computation, resulting
in a significant reduction in memory usage.

Gradients Momentum Weights

outliers outliers

Figure 2: Illustration of the model state distributions when training a LLaMA-2-7B model. The
weight values are from the final down projection layer, and the gradient and momentum values
are fetched on the 200th training step. The gradients and momentum show a canonical centralized
distribution with few outliers, while the range of the weights increases by three orders of magnitude
and exhibits extreme outliers, posing a significant challenge to quantization.

apart from traditional QAT (Jacob et al., 2018). In our method, we initially store model parameters
as quantized integers, whereas traditional QAT introduces fake quantization nodes to floating-point
parameters. This distinction highlights the significance of our approach, as the latter method, with
the reliance on fake quantization nodes, do not inherently enhance training efficiency. To more
clearly demonstrate this difference, we present a comparison in Figure 1.

We first perform an in-depth examination of the numerical distributions of the model weights, gradi-
ents and optimizer momentum, as shown in Figure 2. This comprehensive analysis forms the basis
for designing appropriate quantization strategies. Remarkably, we prioritize lightweight quantizers
to minimize the impact of de-quantization on the training throughput. In the following, we describe
in detail the quantizers employed for different model states.

Uniform Quantizer for Gradients and Momentum The gradients and momentum values exhibit
a central distribution with few outliers that deviate from the central range, allowing us to confidently
utilize the uniform quantizer, which is regarded as the most fundamental quantization method. The
uniform quantizer includes two essential procedures: quantization and de-quantization, which are
defined as follows:

Quant : X(Z) = clip
(⌊

X

s

⌉
+ z, 0, 2b − 1

)
De-quant : X̂ = s

(
X(Z) − z

)
≈X (1)

where X is the floating-point vector, X(Z) is the quantized integer vector, ⌊·⌉ denotes the round
function, and b ∈ N is the quantization bit-width. s ∈ R+ and z ∈ Z are the quantization scale and
zero-point, respectively, and with fast computational considerations, they are directly determined by
the arithmetic lower and upper bounds of X as follows:

s =
max(X)−min(X)

2b − 1
, z =

⌊
−min(X)

s

⌉
(2)

4

Under review as a conference paper at ICLR 2024

Dense-and-Sparse Quantizer for Weights In contrast to gradients and momentum, whose prob-
ability distributions lend themselves well to quantization, the weights present a distinct challenge.
This challenge arises from their considerably broader range, which is approximately three orders of
magnitude larger than that of momentum, as well as the presence of pronounced outliers. This com-
bination of factors makes the accurate quantization of weights a particularly formidable task (Kim
et al., 2023; Frantar et al., 2022; Lin et al., 2023).

Upon revisiting the weight distribution, we uncover an intriguing pattern: if we set aside the extreme
outliers, the remaining parameters coalesce into a notably compact distribution. To elucidate, the
initial expansive range is predominantly influenced by these extreme outliers, with a striking statistic
that 99% of the values cluster within a mere 20% of the overall range. This revelation serves as
the catalyst for our approach, drawing inspiration from the dense-and-sparse quantizer presented
in (Kim et al., 2023). This method effectively ameliorates the issue of outliers by decomposing the
weights into two distinct matrices: one dense and the other sparse. Formally, the method is defined
as follows:

W = D + S s.t. D = W [Tmin ≤ w ≤ Tmax]

and S = W [w < Tmin or w > Tmax] (3)

where D is a dense matrix representing the centralized values, and S is a sparse matrix represent-
ing the outliers. Here, Tmin and Tmax are the thresholds for identifying outliers, which can be
determined by the percentage of the range. It’s important to highlight that the matrix decomposi-
tion process is numerically straightforward, ensuring a high level of computational efficiency with
minimal repercussions on training overhead.

Subsequently, the dense matrix adheres to the simple uniform quantizer as described in Equation 1,
while the sparse matrix retains its data in the floating-point format. Notably, given that the outliers
constitute a relatively minor fraction, such as 1%, the sparse matrix can capitalize on memory-
efficient storage techniques, like compressed sparse row (CSR) format, which can be instrumental
in substantially mitigating memory overhead.

3.3 OVERALL FRAMEWORK

In this section, we integrate the above efficient Lion optimizer and quantization methods and intro-
duce a memory-efficient fine-tuning framework for LLMs. We provide a comprehensive description
of each training phase, including forward propagation, backward propagation, and parameter update,
with particular emphasis on the quantized gradient flow and the quantized optimizer step.

Algorithm 1 Gradient Flow of Quantized Weights

Tl : saved tensors in forward pass of layer l
go : gradient of the current layer’s output

Sg ← stack()
for l = L,L− 1, · · · , 1 do

Il, W
(Z)
l ← Tl

Wl ← dequant(W (Z)
l)

calculate gradients of Il and Wl

gi← matmul(go, Wl)
gw ← matmul(gTo , Il)

g
(Z)
w ← quant(gw) ▷ store as INT8
push(Sg, g

(Z)
w) ▷ collect gradient

assign go of layer (l-1)
go← gi

end for

Algorithm 2 Quantized Lion Optimizer

β1, β2, λ, η, f : optimizer parameters
ml : optimizer momentum of layer l

for l = 1, 2, · · · , L do
g
(Z)
w ← pop(Sg) ▷ retrieve gradient
gw ← dequant(g(Z)w)

ml ← dequant(m(Z)
l)

Wl ← dequant(W (Z)
l)

update model parameters
∆← β1ml + (1− β1)gw
Wl ←Wl − η(sign(∆) + λWl)
update EMA of gw
ml ← β2ml + (1− β2)gw
m

(Z)
l ← quant(ml) ▷ store as INT8

W
(Z)
l ← quant(Wl) ▷ store as INT8

end for

5

Under review as a conference paper at ICLR 2024

Quantized Forward Propagation Within our framework, we initially represent weights as quan-
tized integer values to optimize memory utilization. During the execution of forward propagation,
we de-quantize these low-precision weights into the floating-point format on-the-fly, thereby en-
abling high-precision arithmetic operations. For more clarity, we visualize this critical process in
Figure 1.

Quantized Backward Propagation In the backward propagation phase, the final task loss is prop-
agated forward from the last layer in a sequential manner, and throughout this process, the gradient
of each parameter is computed. It’s worth noting that these gradients need to be kept in memory,
as they serve as essential information for guiding subsequent updates to the parameters. However,
in mainstream deep learning frameworks like PyTorch, only parameters in the floating-point format
can possess the gradient property, while those in the integer format cannot. Consequently, we cannot
compute and store the gradients using the automatic differentiation functionality (i.e., AutoGrad) in
such cases. To this end, we design the gradient flow of integer weights, as presented in Algorithm
1. As in forward propagation, we begin by de-quantizing the weights into the floating-point format.
Subsequently, leveraging the gradient of the output, we apply the chain rule to compute the gradi-
ents of both the input and the weights. Beyond the computational aspect, preserving the gradients of
the weights presents its own set of formidable challenges. To address this, we introduce a gradient
retention scheme centered around the maintenance of a global stack. In this scheme, the gradient of
each layer is sequentially pushed to the stack, following the backward flow of information during
the backward propagation.

Quantized Parameter Update Ultimately, the parameter update are executed in accordance with
the Lion optimizer procedures, with the notable difference that the gradients and momentum are
stored in the integer format. The quantized optimizer step is outlined in Algorithm 2. Initially,
we pop the elements from the global stack to access and retrieve the gradients. It is essential to
emphasize the exceptional computational efficiency of this popping process, as its computational
complexity consistently remains at O(1), independent of the stack length. This efficiency arises
from a distinct pattern: in the backward propagation phase, the gradients are sequentially pushed
into the stack, beginning from the last layer. Conversely, in the optimizer step, the gradients are
popped in a sequential manner, commencing from the first layer. This strategic arrangement ensures
that the gradient of the current layer always occupies the last position in the stack, fully capitalizing
on the first-in-last-out property inherent to stack data structures.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Models and Benchmarks We conduct adequate evaluation of the proposed QFT by fine-tuning
the advanced pre-trained model, LLaMA-2 (Touvron et al., 2023b), including the 7b and 13b ver-
sions. The few-shot performance of fine-tuned models is comprehensively evaluated on a vari-
ety of standard benchmarks, including ARC (Clark et al., 2018), HellaSwag (Zellers et al., 2019),
MMLU (Hendrycks et al., 2020), and TruthfulQA (Lin et al., 2021). All results are obtained using
the Language Model Evaluation Harness tool (Gao et al., 2021). In addition, we also use MT-
Bench (Zheng et al., 2023) with GPT-4 scores to evaluate the conversational abilities of the models.

Dataset Preparation In our experiment, we utilized a dataset comprising 94.1K shareGPT en-
tries (HuggingFace, 2023b; shareGPT, 2023), which encompass user interactions with chatGPT.
We adopted the data cleaning procedures from Fastchat (Chiang et al., 2023), converting HTML
to markdown, eliminating non-English conversations, and segmenting extended dialogues into se-
quences capped at a length of 2048.

Baseline Methods We evaluate QFT in terms of both training memory and performance. For
training memory, QFT is compared to floating-point Adam (Kingma & Ba, 2015), Lion (Chen et al.,
2023), as well as bitsandbytes with quantized optimizer states (Dettmers et al., 2021). For the per-
formance of instruction tuning, we take Vicuna (Chiang et al., 2023), which performs full-parameter
fine-tuning in the floating-point format, as the baseline method. For a fair comparison, we reproduce
its results using the same dataset as QFT.

6

Under review as a conference paper at ICLR 2024

Table 1: Memory usage (in GB) when fine-tuning the LLaMA-2-7b model using different methods.
We report the full spectrum of memory profiles, as well as the total allocated memory and peak
allocated memory. For model states, the Lion optimizer in floating-point format provides a 25%
memory reduction, and further, our QFT introduces quantization that reduces the memory to 21%
of the Adam optimizer, allowing for fine-tuning within 30GB of RAM.

Method Weights Gradients
Optimizer States

Activation Total Peak
Weight Copies Momentum Variances

Adam 25.1 25.1 - 25.1 25.1 3.75 104 129
Adam-mixed 12.6 12.6 25.1 25.1 25.1 3.75 104 123
bitsandbytes 12.6 12.6 25.1 6.31 6.31 3.75 66.6 86.6

Lion 25.1 25.1 - 25.1 - 3.75 79.1 101
QFT 7.42 7.06 - 7.06 - 3.75 25.3 28.9

Training Details During training, we apply channel-wise quantization for all quantizers of model
states. The threshold T in the dense-and-sparse quantizer is obtained from 1% of the distribution
range (please see Appendix A.1 for details). The training parameters are set to align with Vicuna’s
settings: the global batch size is 128, the learning rate is 2e-5, and the total number of epochs is 3.

4.2 MEMORY PROFILE

We start by discussing the memory usage using different methods, and the results of fine-tuning
the LLaMA-2-7b model are reported in Table 1. In the training that employs the Adam optimizer
with standard settings, it becomes evident that the memory consumption becomes significantly sub-
stantial. Specifically, the model weights, gradients, momentum, and variances each occupy a con-
siderable 25.1GB of RAM, which is 4 times the model parameters, resulting in a horrible resource
burden. Remarkably, this memory issue persists when employing the Adam optimizer with mixed
precision settings. Despite the fact that the numerical precision of both weights and gradients ex-
periences a 50% reduction during the forward and backward computations, the necessity to uphold
full-precision weight copies within the optimizer states remains paramount. This stringent require-
ment is essential to guarantee the stability of parameter updates, as discussed in detail in Appendix
A.2, and thus the goal of conserving memory remains unattainable.

The Lion optimizer simplifies the optimizer states by only keeping track of the momentum, result-
ing in a noteworthy reduction in memory usage, 25% less than that of the Adam optimizer. Hence,
it takes up 25% less memory than the Adam optimizer. Notably, the model states still retain the
floating-point format, and this redundant representation offers additional opportunities for optimiza-
tion. To this end, bitsandbytes employs quantization methods to convert the momentum and vari-
ances into the integer format, resulting in an impressive memory savings of 37 GB. Nevertheless,
the retention of floating-point weights and gradients remains a hurdle, preventing complete memory
conservation and continuing to strain the training resources.

Our QFT, built on top of the Lion optimizer, employs a comprehensive quantization scheme encom-
passing all model states, including weights, gradients, and optimizer momentum. These parame-
ters can be efficiently stored in the low-precision integer format. This allows the GPU to allocate
only 21.5GB of RAM to store these parameters, marking a remarkable reduction to a mere 21%
in comparison to the memory requirements of the Adam optimizer. During the practical training
process, when taking into account factors such as activation, as well as several caches and memory
fragments, the peak allocated memory remains comfortably below 30GB, allowing us to fine-tune
within budget-friendly computing resources.

4.3 PERFORMANCE EVALUATION

In this section, we conduct a comprehensive evaluation of the instruction fine-tuning performance in
both conventional and advanced manners, which are in turn compared and analyzed in detail below.
In addition, we also provide a qualitative analysis of the model’s language generation capabilities in
Appendix A.3.

7

Under review as a conference paper at ICLR 2024

Table 2: Few-shot performance of different models on various standard benchmarks. Here, the
number of shots is aligned to Open LLM Leaderboard (HuggingFace, 2023a). We take the pre-
trained LLaMA-2 model as the baseline and compare the instruction tuning results of our QFT and
Vicuna. Our QFT, with less resource consumption, encouragingly provides substantial improvement
over pre-trained models and rivals the outcomes of full-precision tuning.

Model ARC-c
(25-shot)

HellaSwag
(10-shot)

MMLU
(5-shot)

TruthfulQA-mc
(0-shot) Average

LLaMA-2-7B 53.1 78.6 46.9 38.8 54.4
Vicuna-7B* 53.6 77.3 49.4 51.5 58.0

LLaMA-2-7B-QFT 52.9 76.7 48.8 51.1 57.4

LLaMA-2-13B 59.4 82.1 55.8 37.4 58.7
Vicuna-13B* 57.0 81.2 55.8 50.9 61.2

LLaMA-2-13B-QFT 56.2 81.0 55.9 48.6 60.4

Few-Shot Evaluation We perform few-shot performance evaluations across a range of well-
established benchmarks to assess the effectiveness of QFT. The obtained results, pertaining to var-
ious model configurations, are comprehensively presented in Table 2. To maintain consistency, we
opt to employ the same evaluation metrics as those employed in Open LLM Leaderboard (Hugging-
Face, 2023a) and ensure alignment with key experimental settings, such as the number of shots.
As we can see, when fine-tuning a LLaMA-2-7B model, it becomes evident that QFT introduces
a remarkable enhancement in performance. Specifically, QFT substantially elevates the average
performance score, catapulting it from an initial value of 54.4 to a significantly improved 57.4. Im-
pressively, this achievement positions QFT within a mere 0.6 points of the Vicuna model, which has
undergone full-precision tuning. Regarding specific individual metrics, such as 5-shot MMLU, we
observe an improvement in results from 46.9 to 48.8, highlighting the model’s enhanced problem-
solving capability.

Furthermore, it is imperative to provide a clarification regarding the observed slight decline in the
10-shot HellaSwag results across both fine-tuning settings. This diminution can be attributed, in part,
to the influence exerted by the fine-tuning dataset and, in part, to the inherent limitations of a single
benchmark evaluation, which may introduce a certain degree of one-sidedness or even inaccuracies
into the assessment process (Liao et al., 2021). Consequently, it becomes increasingly evident that
the central focus should shift to a careful comparison between the performance of Vicuna and QFT
rather than dwelling extensively on the improvement of the pre-trained model itself, and it is indeed
reassuring to note that QFT consistently demonstrates the ability to achieve results comparable to
those achieved by the Vicuna model.

Table 3: MT-Bench scores using GPT-4 of different
models. They can reflect the conversational abilities of
these models. Our QFT significantly outperforms the
pre-trained LLaMA-2 model, and achieves comparable
results to the Vicuna model tuned in full precision.

Model MT-Bench Score (GPT-4)

GPT-3.5 7.94

LLaMA-2-7B 3.83
Vicuna-7B* 6.08

LLaMA-2-7B-QFT 5.95

LLaMA-2-13B 4.69
Vicuna-13B* 6.46

LLaMA-2-13B-QFT 6.27

MT-Bench Score Besides the conven-
tional benchmarks described above, there
is a more advanced benchmark, MT-
Bench, to evaluate the conversational abil-
ities of LLMs. MT-bench consists of a
series of challenging multi-round open-
ended questions that match the character-
istics and preferences of human conversa-
tions, and uses GPT-4 as a judge to auto-
matically score the responses. The score
results are reported in Table 3. As an il-
lustrative example, we provide a detailed
discussion of the 7B models. Initially, the
LLaMA-2 model, in its pre-trained state,
yields a rather modest score of 3.83, in-
dicating a considerable limitation in its
problem-solving ability. For the Vicuna
model tuned in full precision, the score un-
dergoes a substantial augmentation, surg-

8

Under review as a conference paper at ICLR 2024

GPT-3.5-turbo

LLaMA-2-7B

Vicuna-7B*

LLaMA-2-7B-QFT

(a) 7B models

GPT-3.5-turbo

LLaMA-2-13B

Vicuna-13B*

LLaMA-2-13B-QFT

(b) 13B models

Figure 3: Radar charts of each capability in MT-Bench of different models. Compared to the pre-
trained LLaMA-2 model, our QFT yields across-the-board improvements in all metrics. Compared
to the Vicuna model tuned in full precision, our QFT achieves similar results and even surpasses it
in some abilities, such as the Math metrics in the 7B model setting.

ing to an impressive 6.08. Notably, the QFT also mirrors this impressive improvement, boosting
model performance to levels comparable to the Vicuna model.

To facilitate a more visual comparison, we provide radar charts that encompass eight capacity indica-
tors, as illustrated in Figure 3. These radar charts clearly shows that QFT provides a comprehensive
and transformative improvement across all measured metrics compared to the baseline performance
of the pre-trained LLaMA-2 model. In comparison to the Vicuna model tuned in full precision, QFT
achieves comparable results and even outperforms it in certain aspects, e.g., in the 7B model setting,
QFT exhibits superior performance in the Math metrics.

5 CONCLUSIONS AND BROADER IMPACTS

In this paper, we propose a Quantized Full-parameter Tuning (QFT) framework for LLMs, which
leverages quantization techniques to comprehensively optimize training memory to enable fine-
tuning on affordable resources. We employ the memory-efficient Lion optimizer, which provides
significant advantages for robust quantized fine-tuning. Upon this, we develop customized quantiz-
ers to store all model states in the integer format, significantly reducing the memory usage. QFT
incorporates these two innovations and designs a novel gradient flow scheme to accommodate them.
We perform instruction tuning on the pre-trained LLaMA-2 models to verify the effectiveness of
QFT, and the results demonstrate that QFT can reduce memory usage to 21% while achieving com-
parable performance to standard floating-point training.

QFT can be easily integrated into mainstream LLM training tools and offers great compatibility with
other memory optimization methods, demonstrating remarkable adaptability and utility in real-world
applications. Additionally, it has the potential to produce broader impacts:

• Quantized Training from Scratch: The parameters to be updated and optimizer configura-
tions in the full-parameter tuning are consistent with the pre-training process, thus QFT can be
migrated to be applied to training-from-scratch cases.

• Lower-Precision Optimizer Momentum: Recent research has explored the compression of
optimizer states to 4-bits (Li et al., 2023). It holds promise to explore the combination of QFT
with this approach for even more substantial memory reduction.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear
memory cost. arXiv preprint arXiv:1604.06174, 2016.

X Chen, C Liang, D Huang, E Real, K Wang, Y Liu, H Pham, X Dong, T Luong, CJ Hsieh, et al.
Symbolic discovery of optimization algorithms. arxiv 2023. arXiv preprint arXiv:2302.06675,
2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In International Conference on Learning Representations, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. arXiv preprint arXiv:2305.14314, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Delta tuning: A comprehensive study of parameter
efficient methods for pre-trained language models. arXiv preprint arXiv:2203.06904, 2022.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302, 2019.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. Advances in neural
information processing systems, 33:18518–18529, 2020.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric
Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot lan-
guage model evaluation, September 2021. URL https://doi.org/10.5281/zenodo.
5371628.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond the gpu
memory limit via smart swapping. In Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 1341–1355,
2020.

10

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628

Under review as a conference paper at ICLR 2024

HuggingFace. Open llm leaderboard, 2023a. URL https://huggingface.co/spaces/
HuggingFaceH4/open_llm_leaderboard.

HuggingFace. Sharegpt data, 2023b. URL https://huggingface.co/datasets/
anon8231489123/ShareGPT_Vicuna_unfiltered?doi=true.

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704–2713, 2018.

Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez, Kurt
Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor rematerial-
ization. Proceedings of Machine Learning and Systems, 2:497–511, 2020.

Sehoon Kim, Coleman Hooper, Amir Gholami, Zhen Dong, Xiuyu Li, Sheng Shen, Michael W
Mahoney, and Kurt Keutzer. Squeezellm: Dense-and-sparse quantization. arXiv preprint
arXiv:2306.07629, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In International
Conference on Learning Representations, 2015.

Marisa Kirisame, Steven Lyubomirsky, Altan Haan, Jennifer Brennan, Mike He, Jared Roesch,
Tianqi Chen, and Zachary Tatlock. Dynamic tensor rematerialization. arXiv preprint
arXiv:2006.09616, 2020.

Ravi Kumar, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua Wang. Efficient rematerialization
for deep networks. Advances in Neural Information Processing Systems, 32, 2019.

Bingrui Li, Jianfei Chen, and Jun Zhu. Memory efficient optimizers with 4-bit states. arXiv preprint
arXiv:2309.01507, 2023.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Zhikai Li and Qingyi Gu. I-vit: integer-only quantization for efficient vision transformer inference.
arXiv preprint arXiv:2207.01405, 2022.

Zhikai Li, Liping Ma, Mengjuan Chen, Junrui Xiao, and Qingyi Gu. Patch similarity aware data-free
quantization for vision transformers. In European Conference on Computer Vision, pp. 154–170.
Springer, 2022a.

Zhikai Li, Junrui Xiao, Lianwei Yang, and Qingyi Gu. Repq-vit: Scale reparameterization for post-
training quantization of vision transformers. arXiv preprint arXiv:2212.08254, 2022b.

Thomas Liao, Rohan Taori, Inioluwa Deborah Raji, and Ludwig Schmidt. Are we learning yet? a
meta review of evaluation failures across machine learning. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. arXiv preprint arXiv:2109.07958, 2021.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

11

https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered?doi=true
https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered?doi=true

Under review as a conference paper at ICLR 2024

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. arXiv preprint arXiv:2306.09782,
2023.

Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong, Fan Yang, and Xuehai
Qian. Capuchin: Tensor-based gpu memory management for deep learning. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. 891–905, 2020.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

shareGPT. Sharegpt, 2023. URL https://sharegpt.com/.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In International Conference on Machine Learning, pp. 4596–4604. PMLR, 2018.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,
and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural
networks. In Proceedings of the 23rd ACM SIGPLAN symposium on principles and practice of
parallel programming, pp. 41–53, 2018.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with mt-bench and
chatbot arena. arXiv preprint arXiv:2306.05685, 2023.

12

https://sharegpt.com/

Under review as a conference paper at ICLR 2024

A APPENDIX

A.1 DISCUSSION ON OUTLIER THRESHOLDS OF WEIGHT QUANTIZER

In this section, we discuss the selection and updating strategies for outlier thresholds in dense-and-
sparse quantizers. We first report the memory and accuracy of dense-and-sparse quantizers using
different percentage thresholds, and the results are shown in Table 4. The accuracy, i.e., the degree
of distributional approximation of the quantizers, is evaluated by L2 distance between de-quantized
weights Ŵ and full-precision weights W , where the quantized weights are from the final down
projection layer.

Table 4: Comparison of memory (in GB) and accuracy of dense-and-sparse quantizers using dif-
ferent percentage thresholds for weights. Here, accuracy is measured by L2 distance between de-
quantized Ŵ and full-precision W .

Percentile 0 0.45% 1.0% 3.0% 5.0%

Memory 7.06 7.23 7.42 8.23 9.16
L2 Distance 436 0.846 0.619 0.566 0.479

The benefits of employing matrix decomposition in dense-and-sparse quantizers are readily evident
from the results. When the percentile is set to 0, the quantizer no longer filters out the outliers
and degenerates into a standard uniform quantizer, resulting in intolerable quantization errors. A
noteworthy value suggested in SqueezeLLM (Kim et al., 2023) is 0.45%. However, it’s essential to
acknowledge that this tight bound is primarily designed for inference scenarios. To accommodate
potential fluctuations during training, some level of relaxation in the thresholds is necessary. To this
end, we assess the relaxed constraints at percentiles of 1.0%, 3.0%, and 5.0%. The findings reveal
that, although the 3% and 5% percentiles yield a slight boost in accuracy, they also incur higher
memory usage. Consequently, we advocate for the 1% percentile as a more favorable choice for
achieving a balance between memory conservation and accuracy.

We also explore the update frequency of the thresholds. In order to maintain a high training through-
put, we adopt a strategy of lazy updates, meaning that the thresholds set in the first iteration are
reused in subsequent iterations. This approach is viable due to the smooth numerical updates of the
weights during the fine-tuning process across neighboring iterations. Additionally, to our surprise,
we discover that the initial thresholds remain effective for an entire epoch. As a result, we only
update the thresholds once at the beginning of each epoch.

A.2 DISCUSSION ON TRAINING STABILITY

In this section, we delve into the essentiality of maintaining full-precision weight copies in mixed-
precision training and provide a comprehensive illustration of the benefits of QFT through a compar-
ative analysis. In mixed-precision training, both forward and backward propagation involve weights
and gradients in the FP16 format. However, during parameter updates within the optimizer, the
weights are involved in calculations using the FP32 format. This approach is employed to circum-
vent potential data overflow issues that may arise in the FP16 format (Micikevicius et al., 2017),
given its limited representation range. Consequently, maintaining full-precision weight copies be-
comes indispensable to ensure the stability of the training process.

Conversely, QFT effectively addresses the aforementioned issue without necessitating extra storage
for weight copies. Specifically, unlike the rudimentary numerical truncation encountered in the FP16
format, the quantization procedure in QFT maps FP32 format values as a cohesive unit to a set of
evenly distributed integer values, as illustrated in Equation 1. Consequently, when performing the
calculations, these integer values are dynamically de-quantized into the FP32 format, without any
potential risk of data overflow.

13

Under review as a conference paper at ICLR 2024

A.3 QUALITATIVE ANALYSIS OF CONVERSATIONAL ABILITIES

In the experimental section, we demonstrate the effectiveness of QFT through quantitative evalua-
tions of LLMs’ performance on a variety of benchmarks. Despite the large number of benchmarks,
the results of the machine evaluations are not considered to be comprehensive, and in some cases,
their reliability may be subject to scrutiny, e.g., the ”shortcut” issue. Consequently, in the follow-
ing, we intuitively show and compare examples generated by LLMs, aiming to further verify the
conversational abilities through qualitative analysis.

[Writing Ability]

Question: Write a captivating movie review for a recently released science fiction film, discussing
its plot, characters, and special effects.

Vicuna-7B*: ”The Last Voyage” is a thrilling science fiction film that follows a group of astronauts
on a mission to explore a distant planet. When they arrive, they discover that the planet is inhabited
by a mysterious alien race. As they try to communicate with the aliens and gather data, they realize
that their mission may be more dangerous than they ever imagined. With stunning special effects
and a gripping plot, ”The Last Voyage” is a must-see for science fiction fans.

LLaMA-2-7B-QFT: ”Intergalactic Intrigue” is a thrilling science fiction film that takes viewers on
a journey through the stars. The film follows a group of space explorers as they embark on a mission
to uncover the secrets of an ancient alien civilization. The film’s special effects are top-notch, with
stunning visuals that transport viewers to a world of wonder and discovery. The characters are
well-developed and likable, with each member of the crew bringing their own unique skills and
personalities to the table.

[Roleplay Ability]

Question: As a superhero, how would you explain your origin story to a curious child?

Vicuna-7B*: I was just like any other kid, until one day I was exposed to a strange chemical that
gave me incredible powers. I learned to control the elements and use them to protect the innocent.
I became known as the Elemental Guardian, and I’ve been fighting crime and saving the day ever
since.

LLaMA-2-7B-QFT: I was just like any other kid, playing in the park and having fun. But one day,
I was hit by a strange ray that gave me superpowers. I could fly, turn invisible, and even control
the weather! I decided to use my powers to help people and fight crime. That’s how I became the
superhero you know and love!

[Common-sense Ability]

Question: In a world where automation is becoming increasingly prevalent, is it more important to
prioritize job creation or technological progress?

Vicuna-7B*: Job creation is essential for a thriving economy, as it provides individuals with employ-
ment opportunities and a source of income. While technological progress is important for driving
innovation and improving efficiency, it is crucial to balance technological advancements with the
creation of new jobs. This can be achieved by investing in education and training programs that help
workers develop the skills necessary to adapt to new technologies and by promoting policies that
support small businesses and entrepreneurship. By prioritizing both job creation and technological
progress, we can ensure a more stable and prosperous future for all.

LLaMA-2-7B-QFT: In the short term, job creation is a critical concern for policymakers and busi-
nesses. The unemployment rate remains high, and many people are struggling to find work. How-
ever, in the long term, technological progress is essential for driving economic growth and improving
the standard of living for everyone. Automation has the potential to increase productivity and effi-
ciency, which can lead to higher wages and better working conditions for employees. However, it
can also lead to job displacement, particularly in industries where automation is most prevalent.

[Fermi Ability]

Question: How many snowflakes fall during a typical winter? Try to explain your answer. Your
explanation should take the reader through your reasoning step-by-step.

14

Under review as a conference paper at ICLR 2024

Vicuna-7B*: It is difficult to determine the average number of snowflakes that fall during a typical
winter, as it can vary greatly depending on location, climate, and other factors. However, it is
estimated that on average, a single snowflake can have up to 100,000 ice crystals per flake. Over the
course of a typical winter, this could result in billions of snowflakes falling from the sky.

LLaMA-2-7B-QFT: To answer this question, we need to consider the average snowfall for a typical
winter in a given location. In the United States, for example, snowfall tends to be heaviest in the
northern states, where the average snowfall for a typical winter is around 60 inches. In the southern
states, snowfall is much less common and the average snowfall for a typical winter is around 10
inches.

[Counterfactual Ability]

Question: What if the Internet had been invented during the Renaissance period?

Vicuna-7B*: The Renaissance would have been a much different time period if the internet had
been invented. The flow of information would have been much faster and more efficient, leading to
a greater exchange of ideas and innovations. The world would have been connected in ways never
before seen, allowing for the rapid spread of new ideas and technologies.

LLaMA-2-7B-QFT: The Renaissance was characterized by a renewed interest in classical learning
and the arts, and the Internet would have provided a way for people to access and share this knowl-
edge. It would have also facilitated the exchange of ideas and the development of new technologies,
leading to even greater advancements in the fields of science, medicine, and engineering.

[Generic Ability]

Question: Can you explain the basics of quantum computing?

Vicuna-7B*: Quantum computing is a type of computing that uses quantum bits (qubits) to perform
calculations, unlike traditional computers that use binary.

LLaMA-2-7B-QFT: Quantum computing is a type of computing that uses quantum-mechanical
phenomena, such as superposition and entanglement, to perform operations on data. These phenom-
ena allow quantum computers to perform certain calculations much faster than classical computers.

[Knowledge Ability]

Question: Explain the process of natural selection and how it contributes to the evolution and adap-
tation of species.

Vicuna-7B*: Natural selection is the process by which species adapt to their environment through
the survival and reproduction of individuals with favorable traits. Over time, these favorable traits
become more common in the population, leading to the evolution of new species.

LLaMA-2-7B-QFT: Natural selection is a process where species that are better adapted to their
environment tend to survive and reproduce more than those that are less adapted. This leads to the
survival of the fittest and the gradual evolution of species over time.

15

	Introduction
	Related Works
	Methodology
	Lion Optimizer
	Quantization
	Overall Framework

	Experiments
	Experimental Setup
	Memory Profile
	Performance Evaluation

	Conclusions and Broader Impacts
	Appendix
	Discussion on Outlier Thresholds of Weight Quantizer
	Discussion on Training Stability
	Qualitative Analysis of Conversational Abilities

