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ABSTRACT

The Transformer architecture has become widely adopted due to its demonstrated
success, attributed to the attention mechanism at its core. Despite these successes,
the attention mechanism of Transformers is associated with two well-known is-
sues: rank-collapse and gradient vanishing. In this paper, we present a theoret-
ical analysis that it is inherently difficult to address both issues simultaneously
in the conventional attention mechanism. To handle these issues, we introduce a
novel class of attention mechanism, referred to as generalized probabilistic atten-
tion mechanism (GPAM), and its dual-attention implementation within the Trans-
former architecture. Unlike conventional attention mechanisms, GPAM allows for
negative attention scores while preserving a fixed total sum. We provide theoret-
ical evidence that the proposed dual-attention GPAM (daGPAM) effectively mit-
igates both the rank-collapse and gradient vanishing issues which are difficult to
resolve simultaneously with the conventional attention mechanisms. Furthermore,
we empirically validate this theoretical evidence, demonstrating the superiority of
daGPAM compared to other alternative attention mechanisms that were proposed
to address the same issues. Additionally, we demonstrate the practical benefits
of GPAM in natural language processing tasks, such as language modeling and
neural machine translation.

1 INTRODUCTION

The Transformer model, as introduced by (Vaswani, 2017), has emerged as a pivotal architecture
driving the advancement of contemporary deep learning models across various domains, including
natural language processing (Brown et al., 2020), audio signal processing (Gulati et al., 2020), and
image processing (Dosovitskiy et al., 2021). Central to the Transformer’s success is the attention
mechanism, which facilitates the contextualization of input token representations. Based on the
similarities of query and key vectors, the attention mechanism mixes value vectors as follows (a
single scaled dot-product self-attention head (Vaswani, 2017)):

Y = PXV , (1)

Pij =
exp(Aij)∑T
k=1 exp(Aik)

, (2)

A =
(√

dqk

)−1

XQX
⊤
K , (3)

where XQ = XWQ, XK = XWK , and XV = XWV . X ∈ RT×d is input representations with
T sequence length and d dimensionality, and WQ,WK ∈ Rd×dqk , and WV ∈ Rd×dv are weight
matrices.

Despite its empirical success, the conventional attention mechanism, particularly the self-attention
mechanism, has been shown to exhibit two significant limitations. The first issue is the phenomenon
known as the rank-collapse problem (Dong et al., 2021), where output token representations become
similar to others, leading to a loss of rank as they progress through each layer. While a controlled
degree of rank-reduction can be beneficial for eliminating redundant information (Tishby & Za-
slavsky, 2015), excessive rank-reduction risks the loss of critical information. Previous studies have
extensively documented the self-attention layer’s tendency for intensive rank-reduction (Dong et al.,
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Figure 1: Examples of convex and
affine combinations Yc and Ya,
given X value representations.

Figure 2: Our proposed daGPAM structure in an example
of two multi-head self-attention in Transformer.

2021; Noci et al., 2022; 2024). The second issue is the gradient vanishing problem (Richter & Wat-
tenhofer, 2022; Wang et al., 2021). During the softmax-based normalization step, the gradient is
consistently less than 1 and saturates close to 0, thereby impeding upper attention layers’ sufficient
flow of gradients to the lower layers. Moreover, in this paper, we demonstrate that these two issues
are inherently challenging to address both simultaneously.

Previous approaches to addressing the rank-collapse problem in Transformers have primarily fo-
cused on preserving input token representations. One strategy amplifies the coefficient of the short-
cut branch in the residual connection (Noci et al., 2022), while another reduces the contextualization
effect by regularizing the attention matrix, P, to be similar to an identity matrix (He et al., 2023;
Noci et al., 2024). However, these methods can diminish the attention layer’s ability to capture
meaningful contextual information (Veit et al., 2016; Zhang et al., 2022). To address the gradient
vanishing problem, alternative attention mechanisms have been proposed to replace the conven-
tional softmax-based mechanism, Eqs.2 and 3 (Richter & Wattenhofer, 2022; Wang et al., 2021).
Despite their theoretical effects for improving gradient flow, these alternative mechanisms have not
demonstrated practical advantages in benchmark experiments.

In contrast to prior approaches, we posit that the underlying issues stem from the convex combi-
nation structure in the conventional attention mechanism. The normalized attention scores, Pij , as
defined in Eq.2, are non-negative and sum to 1 along the query axis, making the conventional atten-
tion mechanism a valid convex combination of input representations. Consequently, as illustrated
in Fig.1, the output representations, Yc, are constrained within the convex hull (yellow plane) of
the input value representations. This fundamental constraint limits the diversity of output represen-
tations, causing them to become more similar to one another than the input value representations,
thereby intensifying the rank-collapse problem.

This consideration naturally raised the question: how about making it an affine combination? The
affine combination is a generalization of the convex combination, allowing the normalized attention
scores to take negative values while still maintaining a total sum to be 1. As depicted in Fig.1,
the output representations, Ya, are no longer constrained to lie within the convex hull, but instead
within the affine hull (green plane), thereby removing the fundamental constraint that can lead to
rank-collapse. However, from a probabilistic perspective, the notion of negative normalized atten-
tion scores may seem unconventional, since negative probability is unfamiliar concept. Nevertheless,
the discussions by prominent physicists, such as P. Dirac (Dirac, 1942) and R. Feynman (Feynman,
1984), have concretized the concept of negative probability by generalizing the Kolmogorov’s prob-
ability conditions as follows:

Kolmogorov’s Probability Conditions.. (1) P (e) ≥ 0, and (2)
∑
e∈Ω

P (e) = 1 where P (e) ∈ R is

the probability measure of event e and Ω is event space.1

Generalized Probability Conditions (Székely, 2005). (1)
∑
e∈Ω

|P (e)| < ∞, and (2)
∑
e∈Ω

P (e) = 1

where P (e) ∈ R is the probability measure of event e and Ω is event space.

1For simplicity, we mention only the two main conditions.
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It is important to note that the first condition of generalized probability allows for the possibility of
negative probabilities. Building on this long-standing line of research, we introduce the attention
mechanism based on the affine (or scaled-affine) combination, which we refer to as the generalized
probabilistic attention mechanism (GPAM). As a generalized framework, GPAM encompasses the
conventional attention mechanism as a special case where all attention values are non-negative.

In this paper, we explore GPAM in the Transformer architecture, and as a cornerstone design of
GPAM, we propose a dual-attention design that facilitates GPAM with adding only a negligible
number of parameters. Specifically, we add an additional attention matrix computation to the orig-
inal scaled dot-product self-(or cross-) attention mechanism with a small additional weight matrix
which increases less than 1% of total parameters on average. Then, the resulting two attention matri-
ces are treated as positive and negative parts of the final attention score, respectively. By combining
these two attention scores with pre-defined or trainable scalar weights, we ensure that our proposed
dual-attention GPAM (daGPAM) a valid affine (or scaled-affine) combination. Fig.2 illustrates the
structure of this design. When we propose a GPAM method, we show theoretically that our method
is advantageous for mitigating not only the rank-collapse problem, but also the gradient vanishing
problem. Our empirical validations give evidences for the above theories in various aspects. In
addition, we experimentally demonstrate and explain the superiority of daGPAM compared to other
alternative attention mechanisms that was proposed to address the mentioned problems. Finally, we
demonstrate the benefits of daGPAM in benchmark experiments in tasks such as language modeling
(LM) and neural machine translation (NMT).

2 RELATED WORKS

2.1 RANK-COLLAPSE PROBLEM IN TRANSFORMER

Recent studies have analyzed the occurrence and practical risks of the rank-collapse problem in
Transformers (Dong et al., 2021; Yan et al., 2022; Noci et al., 2022; He et al., 2023; Noci et al.,
2024). The rank-collapse phenomenon refers to the tendency of token representations to become
increasingly similar to one another as they are processed through successive layers. The first theo-
retical exploration of this issue demonstrated that the pure attention layer, as described by Eqs.1∼3,
reduces the ‘residual’ at an exponential rate with increasing layer depth. The residual metric quan-
tifies how close token representations are to their mean point in terms of Euclidean distance, and is
formally defined as follows:

res(X) = X− 1x̄⊤ ∈ RT×d,where x̄ = argmin
x

∥X− 1x⊤∥. (4)

Then, the relationship of input/output residual is derived as follows:
Lemma 1 (Dong et al. (2021), Simplified). For any single scaled dot-product self-attention layer
with a term γ that depends on the attention entries, the composite norm of output residual is bounded
by

∥res(Y)∥1,∞ ≤ 4
√
2γ∥WQK∥1∥WV ∥1,∞√

dqk
∥res(X)∥31,∞, (5)

where WQK = WQW
⊤
K . In the region that holds 4

√
2γ∥WQK∥1∥WV ∥1,∞ <

√
dqk, the output

residual norm is diminished compared to the cubic rate of input residual norm.

Building on this lemma and extending it to multi-layer cases, prior research has argued for the
existence of the rank-collapse problem and empirically demonstrated that a substantial region of the
parameter space that falls into rank-collapse issue (Dong et al., 2021). For a complete description
of the lemma, please refer to Appendix A.1.1, and read the original paper for the proof. In addition
to the rank-collapse problem, related concepts such as attention collapse, over-smoothing, over-
correlation, and dimensional collapse have been identified in various domains, including vision
Transformers (Zhou et al., 2021; Tang et al., 2021; Gong et al., 2021; Wang et al., 2022), contrastive
learning (Jing et al., 2021; Hua et al., 2021), graph neural networks (Li et al., 2018; Jin et al., 2022;
Guo et al., 2023; Roth & Liebig, 2024), and general neural networks (Feng et al., 2022; Jacot, 2023).

Previous studies have attempted to address the rank-collapse problem through various strategies,
such as strengthening the shortcut branch (Tang et al., 2021; Noci et al., 2022), regularizing the at-
tention matrix to be similar to an identity matrix (He et al., 2023; Noci et al., 2024), and regularizing
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to preserve local information (Yan et al., 2022). However, these approaches may weaken the contex-
tualization effect of the attention layer. Alternative methods have proposed various sequence-wise
normalization techniques aimed at explicitly diversifying token representations (Hua et al., 2021;
Guo et al., 2023). However, these techniques may be unsuitable for short sentences and autore-
gressive architectures due to their reliance on inadequate statistic across sequences. In contrast to
these approaches, our GPAM develops the attention layer using a novel methodology grounded in
the principles of convex and affine combinations.

2.2 GRADIENT VANISHING PROBLEM IN TRANSFORMER

Several previous studies have identified the gradient vanishing problem within the Transformer ar-
chitecture (Zhang et al., 2019; Richter & Wattenhofer, 2022; Liu et al., 2020; Wang et al., 2021).
A primary contributor to this issue is the gradients of the softmax function, as represented in Eq.2,
which consistently yield gradient values less than 1. The following lemma derives these gradients.
Lemma 2 (Gradient Vanishing in Attention Mechanism). The gradient that the input unnormalized
attention score, Eq.3, receives through the normalized attention score, Eq.2, (without 1/

√
dqk) is

derived as follows:
∂Pij

∂Aij
= Pij(1−Pij),

∂Pik,k ̸=j

∂Aij
= −PikPij , (6)

The maximum magnitude of each gradient is 0.25 when Pij = 0.5 for the first, and Pij = 0.5 and
Pik = 0.5 for the last.

Previous research has demonstrated that there exists a significant saturation range of Aij values,
leading to the gradients in Eq.6 approaching close to 0 (Richter & Wattenhofer, 2022).

Previous studies have sought to address the gradient vanishing problem by proposing various forms
of unnormalized attention scores, including non-exponentiated raw scores (Richter & Wattenhofer,
2022) and scores transformed by periodic functions (Wang et al., 2021). Additionally, some ap-
proaches have eliminated the normalization step entirely to ensure that the gradient remains equal
to 1 (Richter & Wattenhofer, 2022). While these approaches are theoretically effective in mitigat-
ing the gradient vanishing issue, they have not demonstrated practical advantages in benchmark
experiments.

2.3 ALTERNATIVE ATTENTION MECHANISMS

Among the previous studies that have proposed alternative attention mechanisms comparable to our
GPAM (Wang et al., 2021; Richter & Wattenhofer, 2022; He et al., 2023; Noci et al., 2024), some
methods unintentionally permit negative attention scores, similar to our approach. Additionally,
there is prior research that intentionally incorporates negative attention scores within its framework
(Tay et al., 2019). However, most of these studies do not adhere to the generalized probability
conditions, specifically: (1) a finite range and (2) a total sum equal to 1 (or another fixed value). We
will discuss the significance of adhering to these conditions and demonstrate the practical advantages
through experiment results.

3 RELATIONSHIP OF RANK-COLLAPSE AND GRADIENT VANISHING

In this section, we analyze an inherent relationship between the rank-collapse and gradient vanishing
problems within the conventional attention mechanism. We conjecture that the maximum total norm
of gradients, defined as G(Pi) =

∑T
j=1 ∥

∂Pik

∂Aij
∥1, is attained when complete rank-collapse occurs.

We substantiate this conjecture through the following lemma.
Lemma 3 (Maximum Total Norm of Gradients). The total norm of gradients, G(Pi), is maximized
when Pi is the uniform distribution, that is Pi = [ 1T ,

1
T , · · · ,

1
T ] which is the case of complete

rank-collapse.

See Appendix A.1.2 for the proof. To mitigate the gradient vanishing problem, it is better to input
similar token representations to make a smooth normalized attention score distribution. However,
that remedy can make the rank-collapse problem severe. Therefore, mitigating both problems to-
gether is challenging.
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4 DUAL-ATTENTION STRUCTURE OF GENERALIZED PROBABILISTIC
ATTENTION MECHANISM

In this section, we explain our proposed dual-attention implementation of GPAM within the Trans-
former architecture, as illustrated in Fig.2. We further elucidate the dynamics of daGPAM with
respect to the output space and representations. Additionally, we present theoretical foundations
supporting the assertion that our daGPAM effectively addresses both the rank-collapse and gradient
vanishing problems simultaneously.

4.1 DUAL-ATTENTION GPAM (DAGPAM) STRUCTURE

Based on the original scaled dot-product attention mechanism (Vaswani, 2017), we add another
process of computing negative attention matrix while the original attention matrix is treated as the
positive attention matrix. During the computation of the negative attention matrix, we use different
query vectors, but transformed from the original query vectors. Subsequently, both the positive and
negative attention matrices are integrated to derive the final attention matrix, and it is multiplied to
the value representations to output the final representations. This process is formulated as follows
(we use ‘+’ notation to the parts of the original attention part):

Y = PGXV , (7)

PG = (1 + λ+)P+ − λ−P−, (8)

P+
ij =

exp(A+
ij)∑T

k=1 exp(A
+
ik)

, A+ =
(√

dqk

)−1

X+
Q

(
X+

K

)⊤
, (9)

P−
ij =

exp(A−
ij)∑T

k=1 exp(A
−
ik)

, A− =
(√

dqk

)−1 (
σ(X+

Q)W
−
Q

) (
X+

K

)⊤
, (10)

where X+
Q = XW+

Q, X+
K = XW+

K , and XV = XWV . For the new, negative parts, we only add
the non-linear activation, σ (we used ReLU throughout this work), and linear transformation with
weight matrix W−

Q ∈ Rdqk×dqk that has small number of parameters (note that d > dqk). λ+ and
λ− are pre-defined or trainable scalars that control the effect of positive and negative normalized
attention scores, respectively.

daGPAM exhibits several notable properties concerning its final normalized attention scores, de-
noted as PG. Specifically, the total sum of these scores is Σ = (1+ λ+ − λ−)2 and the range of the
scores is constrained such that −λ− ≤ PG

ij ≤ (1 + λ+). In the special case where λ+ = λ− = 0,
daGPAM becomes the conventional attention mechanism, Eqs.1∼3. In general, when λ+ = λ−,
therefore Σ = 1, daGPAM facilitates a valid affine combination. In the next section, we will further
elucidate the case where λ+ ̸= λ−, that facilitates scaled-affine combination whose affine hull is
simply translated.

4.2 DYNAMICS OF DUAL-ATTENTION GPAM

In this section, we explain the dynamic how the output space and representations of daGPAM are
influenced by the combination of λ+ and λ−. We begin by explaining the dynamic of the output
space. Based on the formulations in the previous section, the final output representations can be
derived and expressed as follows: Y = Σ(P̂GXV ) = ΣŶ where P̂G

ij = PG
ij/Σ. It is important

to note that Ŷ represents a valid affine combination of XV since the total sum of P̂G is equal to 1.
Consequently, the possible outcomes for Y can be interpreted as Σ-scaled versions of the outcomes
from Ŷ which reside within the affine hull defined by XV . This concept is visually represented
in Fig.3, where each colored plane illustrates the translated affine hull corresponding to different
combinations of λs. It is noteworthy that the degree of translation is contingent upon Σ rather than
the specific values of λs, so in this example, only λ− was adjusted. Constraining the output to lie
within affine hull (or translated) is critical for effective information processing. The translated affine
hull represents a lower-dimensional hyperplane, which is a condensed subset of the d-dimensional

2For simplicity, we utilize the Σ symbol to represent
∑T

j=1 P
G
ij .

5
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Figure 3: Different output space and representations according to λ combinations. λ− varies while
λ+ is fixed to 1.

space determined by the processed representations from lower layers. This constraint enhances the
influence of lower layers on the information processing of upper layers, thereby improving overall
model efficacy.

Secondly, we examine the dynamic of output representations in relation to λs. Utilizing the def-
initions established in Eqs.7 and 8, we can express Y in an alternative form as follows: Y =
(1+λ+)(P+XV )−λ−(P−XV ) = (1+λ+)Y+−λ−Y−. Here, Y+ represents the output of con-
ventional attention mechanism, and both Y+ and Y− are derived from convex combination of XV ,
as depicted in the third (orange) hyperplane of Fig.3. We can further reformulate this as follows:
Y = ΣY+ + λ−(Y+ −Y−) = ΣY+ + λ−∆. A crucial characteristic of ∆ is that it represents a
direct movement on the hyperplane from the original point Y+, and it is manipulated by λ−, while
the original point Y+ is manipulated by Σ. Consequently, when λ− is large to make Σ less than 1,
daGPAM scales-down the original point while amplifying the movement on the hyperplane, result-
ing in an increase in the relative diversity of output representations compared to their average norm.
This dynamic is illustrated in Fig.3 with empirically computed cosine similarity, θ, based on our toy
experiment setting3. It shows that the cosine similarity decreases with only changing λ− to make a
small Σ.

4.3 THEORETIC ADVANTAGES OF DUAL-ATTENTION GPAM

In this section, we discuss the theoretical advantages of daGPAM in addressing the issues of rank-
collapse and gradient vanishing. First, to enhance our theoretical understanding of the rank-collapse
problem, we derive the input/output relationship of the residual, Eq.4, based on daGPAM structure.
The results of this derivation is presented in the following lemma.
Lemma 4 (Dual-Attention GPAM residual Bound, Simplified). For any single daGPAM self-
attention layer with for a term γ that depends on the attention entries, the composite norm of output
residual is bounded by

∥res(Y)∥1,∞ ≤ Borg +
4
√
2γ
(∣∣∣λ+∥W+

QK∥1 − λ−∥W−
QK∥1

∣∣∣) ∥WV ∥1,∞√
dqk

∥res(X)∥31,∞, (11)

where W+
QK = W+

Q(W
+
K)⊤ and W−

QK = (W+
QW

−
Q)(W

+
K)⊤. Borg is the upper bound derived

by Lemma 1. Because the second term is positive, this upper bound is always greater than the
original.

The complete lemma and its proof are provided in Appendix A.1.3. Based on this lemma, we ar-
gue that daGPAM can have greater or equal residual bound compared to the conventional attention
mechanism, which suggests a higher likelihood that the average distance between output representa-
tions is either maintained or not reduced compared to the average distance of input representations.

Secondly, we derive the gradients of daGPAM. Due to the complexity of this derivation, throughout
this derivation, we consider the simple case that approximates the negative unnormalized attention

3We implemented daGPAM, Eqs.7∼10, with X and the weight matrices which are randomly initialized by
standard Gaussian distribution. Then, we computed the average cosine similarity of each output representations
Y with each λ combination over 100 times repeatedly.
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score is simply the positive score with -1 multiplication, that is A+ = −A− with approximating σ
to identity activation and W−

Q ≈ −I where I is identity matrix with size dqk. . The result of this
derivation is as follows (we simply denote A+ as A for comparison between the original lemma 2):

Lemma 5 (Dual-Attention GPAM Gradients). The gradient that the input unnormalized attention
score, A, receives through the normalized attention score, PG (without 1/

√
dqk) is derived as

follows:

∂PG
ij

∂Aij
= gorgj + λ+P+

ij(1−P+
ij) + λ−P−

ij(1−P−
ij), (12)

∂PG
ik,k ̸=j

∂Aij
= gorgk + λ+(−P+

ikP
+
ij) + λ−(−P−

ikP
−
ij), (13)

where gorgj and gorgk are the derived gradient of the conventional attention mechanism, Eq.6, re-
spectively.

The proof of this lemma is provided in Appendix A.1.4. Because the last two additional terms have
the same sign of the original, daGPAM always flow greater gradients than the conventional attention
mechanism. Therefore, daGPAM can mitigate the rank-collapse and gradient vanishing problems
together.

5 EMPIRICAL VALIDATIONS

To evaluate the effectiveness of daGPAM in addressing the rank-collapse problem relative to the
conventional attention mechanism, we conducted rank-collapse analyses at initialization (faithful-
ness test) (Poole et al., 2016; Schoenholz et al., 2016; Yang & Schoenholz, 2017; Hayou et al.,
2019; Noci et al., 2024) and after the training phase. To assess the impact on the gradient vanish-
ing problem, we monitored the gradient norm history of the query weights, specifically ∥ ∂L

∂WQ
∥2,

throughout the training process. Finally, to argue the importance of preserving generalized proba-
bility conditions, as discussed in Section 2.3, we compare daGPAM with other several alternative
attention mechanisms in preliminary experiments.

All empirical analyses were conducted within the framework of our preliminary experimental set-
tings, specifically utilizing the Penn Treebank dataset (PTB, 1M total number of tokens (Marcus
et al., 1993)), for a world-level LM task using a 15-layered decoder-only Transformer model. We
employed open-source resource4 for data-related processes, including preprocessing and tokeniza-
tion. Detailed configurations regarding the model architecture and optimization processes are pre-
sented in Table 4 in Appendix A.2. We replaced only the conventional attention layers, self-attention
layer, with daGPAM. We explored various configurations, including different combinations of con-
stant λs and trainable λ methods.

5.1 RANK-COLLAPSE ANALYSES

For the two rank-collapse analyses, we measured the amount of diversity based on the output rep-
resentations of self-attention layer (output of multi-head attention layer) for all layers (15, in this
experiment). We used two different metrics to measure the diversity.

• Average relative norm of ‘residual’ (Dong et al., 2021) : res(Y) = 1
T

∑T
i=1

∥Yi−ȳ∥2

∥Yi∥2
.

• Average cosine similarity (Noci et al., 2022): cos(Y) = 1
T 2

∑T
i=1

∑T
j=1

Yi·Yj

∥Yi∥2∥Yi∥2
.

Higher or lower values of res(Y) or cos(Y), respectively, mean less collapsed representations Y.

The left two columns of Fig.4 present the results of the two rank-collapse analyses. In the analysis
at initialization, as known, the rank-collapse phenomenon becomes more pronounced in the upper
layers. However, except for the case with (λ+ = 1.0, λ− = 0.5), daGPAM models exhibited a less
intensive tendency toward rank-collapse. Notably, this mitigation becomes more effective when Σ is

4https://github.com/kimiyoung/transformer-xl/
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Figure 4: The results of rank-collapse analyses (left two graphs) and gradient histories during train-
ing (right two graphs). Horizontal axis of rank-collapse analyses indicate layer index, while those
of gradient histories indicate training iterations.

Table 1: PTB experiment results of various attention mechanisms. Symbol ‘*’ means that the initial
numbers are trainable. ‘X’ means the model does not follow that condition, that is unbounded
infinite range or non-fixed total sum of normalized attention scores.

Model # Param. Finite Range of P Fixed Sum Σ PTB (PPL)
Baseline Transformer 29.2M [0, 1] 1 108.26
NON (Richter & Wattenhofer, 2022) 29.2M X X 168.97
NAP (Richter & Wattenhofer, 2022) 29.2M X 0* 258.85
CoDA (Tay et al., 2019) 29.2M [-1, 1] X 133.11
Sin-Softmax (Wang et al., 2021) 29.2M [0, 1] 1 123.04
ValueSkipInit (He et al., 2023) 29.2M [0, 2]* 2* 108.40
Shaped (Noci et al., 2024) 29.2M [- 1

T , 2- 1
T ] 1 109.06

daGPAM (λ+ = 1.0, λ− = 1.0) 29.6M [-1, 2] 1 109.01
daGPAM (Trainable λs) 29.6M [-1, 2]* 1* 106.38

smaller, such as in the case of (λ+ = 1.0, λ− = 2.0), where Σ = 0 showed the greatest reduction in
rank-collapse. In the analysis after training phase, all daGPAM models demonstrated a less intensive
tendency for rank-reduction compared to the baseline. These empirical findings are consistent with
Lemma 4 and the discussions in Section 4.2. Additionally, we provide further analyses addressing
other aspects beyond the scope of the above experiments, including the effect of varying λ+, a rank-
collapse analysis based on the output of the multi-layer perceptron (MLP) layer (i.e., the final output
of the Transformer layer), and an examination of the actual influence of the attention layer compared
to the shortcut branch. These additional results can be found in Appendix A.3.

5.2 GRADIENT HISTORY DURING TRAINING

In addition to addressing the rank-collapse issue, we tracked the gradient norm history of the query
weight matrix to verify our claim regarding the gradient vanishing problem (Lemma 5). The right
two columns of Fig.4 illustrate the gradient norms of query weights across layers 5, 8, 11, and 14. In
each case, the query weights in daGPAM model exhibited larger gradients compared to the baseline,
supporting the predictions in Lemma 5. Furthermore, the observation that higher layers receive
stronger gradients might align with Lemma 3. As described in the lemma, significant rank-collapse
leads to the maximum gradient flow through the softmax operation. Combining with the analysis
result of higher layers’ more collapsed output representations (Section 5.1), we guess the lemma
could explain why upper layers receive greater gradients than lower layers.
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Table 2: Experiments on wikitext103 and Enwiki8 LM tasks. ‘daGPAM (Const)’ and ‘daGPAM
(Train)’ mean daGPAM models with pre-defined constant λs and trainable λs, respectively.

Model Wikitext103 Enwiki8
8L 16L 24L 6L 12L

TransformerXL 25.96 23.58 22.90 1.1570 1.0544
daGPAM (Const) 25.39 23.09 22.52 1.1534 1.0473
daGPAM (Train) 25.33 23.20 22.57 1.1532 1.0528

5.3 COMPARISON BETWEEN OTHER ALTERNATIVE ATTENTION MECHANISMS

In this section, we compare the performance of daGPAM with other alternative attention mecha-
nisms discussed in Section 2.3. We specifically focus on analyzing each mechanism’s adherence
to the generalized probability conditions and its corresponding performance, in order to highlight
the significance of adhering these conditions. For a fair comparison, we re-implemented all alterna-
tive attention mechanisms and applied them to the Transformer baseline, replacing the conventional
attention mechanism in the same manner as with daGPAM.

Table 1 presents the results of various attention mechanisms trained on the PTB LM task, evaluated
using perplexity (PPL). Our daGPAM models resulted in approximately 1% increases in parame-
ters. Each model is labeled to indicate whether it adheres to the generalized probability conditions,
specifically finite range and a fixed total sum of normalized attention scores. The models which
do not adhere to the conditions exhibit significant performance degradation. Conversely, with the
exception of ‘Sin-Softmax,’ most models that adhered to both conditions performed similarly to the
baseline Transformer. Although the ‘ValueSkipInit’ and ‘Shaped’ models did not degrade perfor-
mance, they also failed to provide improvements, because these methods regularize the attention
matrix to be similar to the identity matrix, thereby weakening the contextualization effect. In con-
trast, daGPAM enhances the attention mechanism itself, leading to improved performance in the
‘daGPAM (Trainable λs)’ model.

6 PRACTICAL BENEFITS IN BENCHMARK EXPERIMENTS

In this section, we compare the performance of our models on several benchmark tasks. We con-
ducted LM experiments on the Wikitext103 (word-level LM) and Enwiki8 (character-level LM)
datasets. We followed the same data-related processes based on the same open-source of the PTB
dataset used in our preliminary experiment. For the baseline model, we re-implemented Trans-
formerXL (Dai, 2019), heavily following the public code5. This model is larger than the standard
Transformer and is optimized for long-context sentences. We followed the original congifurations of
model and optimization, except for modifications in the number of layers and the hyperparameters
related to daGPAM approach. For further details on the basic configurations, refer to (Dai, 2019).

Second, we performed NMT experiments on the IWSLT14 English-German dataset (160K training
pairs) and the WMT14 English-German dataset (3.9M training pairs) (Heo et al., 2024). The data
preprocessing steps, including tokenization and subword byte-pair encoding, were carried out using
the Fairseq toolkit (Ott et al., 2019). For the baseline models, we re-implemented PreLN (Xiong
et al., 2020) and Admin (Liu et al., 2020) encoder-decoder Transformer architectures, which are
widely used NMT baselines nowadays. The basic model configurations and optimization settings are
provided in Table 4 of Appendix A.2. Throughout our experiments with daGPAM models (including
models in LM task) using constant λ values, we empirically determined the optimal combination of
λs, which are reported in Tables 5 and 6 in Appendix A.2.

6.1 LANGUAGE MODELING

For the evaluation of LM experiments, we utilized PPL for the Wikitext103 (word-level) task and
bits per character (BPC) for the Enwiki8 (character-level) task. The experiments were conducted by
varying the number of layers in the TransformerXL model. For the TransformerXL baseline models,

5https://github.com/kimiyoung/transformer-xl/

9
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Table 3: Experiments on IWSLT14 and WMT14 NMT tasks. ‘daGPAM (Const)’ and ‘daGPAM
(Train)’ were individually applied to the two architectures, respectively: PreLN (at the first row) and
Admin (at the second row)

Model IWSLT14 WMT14
En-to-De De-to-En En-to-De De-to-En

PreLN 28.54 33.90 26.40 31.26
daGPAM (Const) 29.25 34.43 26.73 31.43
daGPAM (Train) 29.11 34.11 27.19 31.45
Admin 28.32 33.48 26.27 30.61
daGPAM (Const) 28.60 33.62 26.76 31.20
daGPAM (Train) 28.43 33.23 26.79 31.10

the number of parameters are (130.6M / 151.1M / 171.6M) and (10.3M / 41.1M) for Wikitext103
(8L / 16L / 24L) and Enwiki8 (6L / 12L), respectively. In comparison, the number of parameters for
daGPAM models are (130.7M / 151.3M / 172.0M) and (10.4M / 41.4M) for the tasks, respectively.
On average, our approach increased only 0.43% of total parameters.

Table 2 demonstrates the results of LM experiments. It shows that daGPAM models consistently im-
prove performance across different layered model architectures. Specifically, our best-performing
models improve approximately 0.5 PPL on the Wikitext103 task and 0.0055 BPC on the Enwiki8
task in average. Additionally, we conducted an analysis of the impact of different λ combinations
within daGPAM model, with results detailed in Appendix A.3.4. Notably, we found that configu-
rations where Σ is close to 0.5 yielded the optimal performance in the Wikitext103 LM task. Also,
the average Σ calculated from the trained λ values in the ‘daGPAM (Train)’ (8L) is 0.3948, with
λ+ = 0.3303 and λ− = 0.9355.

6.2 NEURAL MACHINE TRANSLATION

For the evaluation of NMT experiments, we utilized case-sensitive SacreBLEU (Post, 2018). For the
baseline models, the number of parameters are 64.67M and 153.84M for the IWSLT14 and WMT14
tasks, respectively. In comparison, the number of parameters for daGPAM models are 65.26M and
155.02M parameters, which is around 0.84% addition in average. Table 3 presents the results of the
NMT experiments. Similar to the results of the LM experiments, daGPAM models consistently out-
performed the baseline models. Specifically, our best-performing models demonstrated, in average,
0.42 BLEU point improvement for the IWSLT14 task and 0.52 BLEU points for the WMT14 task.

7 CONCLUSION

In this paper, we proposed a novel class of attention mechanism, generalized probabilistic attention
mechanism (GPAM), which allows the negative attention score during the information processing.
Also, we proposed one specific type of GPAM, dual-attention GPAM (daGPAM). While showing
that the rank-collapse and gradient vanishing problems in the conventional attention mechanism is
in trade-off relationship, we showed that daGPAM could mitigate both problems. Our empirical
validations provide strong evidences supporting our theories and understanding of this approach.
Additionally, our benchmark experiments demonstrate meaningful performance improvements with
only a minimal increase in the number of parameters.

8 FUTURE WORKS

Although we proposed only one structure of GPAM (daGPAM), GPAM does not have to be lim-
ited to the structure. Actually, the operation of daGPAM increases computational cost due to the
added scaled dot-product attention process of negative part. In future, we aim to develop a more
efficient structure than daGPAM while preserving the feature of GPAM. Also, beyond the standard
Transformer architecture discussed here, GPAM can be applied to other architectures, such as graph
neural networks and vision Transformer, as they are also known to experience the rank-collapse
problem.
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A APPENDIX

A.1 PROOFS OF LEMMAS

A.1.1 FULL DESCRIPTION OF LEMMA 1

In this section, we describe the complete version of the simplified lemma 1. For the proof of this
lemma, see (Dong et al., 2021).

Lemma 6 (Dong et al. (2021)). For any single scaled dot-product self-attention layer that holds
|Eij − Eij′ | ≤ 1.256 for any (i, j, j

′
) where E = res(X)

WQK√
dqk

res(X)⊤, and with γ that satisfies√∑T
i=1 max

j,j′
|Eij −Eij′ | ≤ γ

√
max
j,j′

∑T
i=1 |Eij −Eij′ |, the composite norm of residual of its

output is bounded by

∥res(Y)∥1,∞ ≤ 4
√
2γ∥WQK∥1∥WV ∥1,∞√

dqk
∥res(X)∥31,∞, (14)

where WQK = WQW
⊤
K . In the region that holds 4

√
2γ∥WQK∥1∥WV ∥1,∞ <

√
dqk, the output

residual norm is diminished compared to the cubic rate of input residual norm.

A.1.2 PROOF OF LEMMA 3

In this section, we prove our proposed Lemma 3 which was introduced as follows:

Lemma 7 (Maximum Total Norm of Gradients). The total norm of gradients, G(Pi), is maximized
when Pi is uniform distribution, that is Pi = [ 1T ,

1
T , · · · ,

1
T ] which is the case of complete rank-

collapse.
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Proof. Based on Eq.6, G(Pi) is derived as follows:

G(Pi) =

T∑
j=1

T∑
k=1

∣∣∣∣∂Pik

∂Aij

∣∣∣∣ = T∑
j=1

 T∑
k=1,k ̸=j

| −PikPij |+Pij(1−Pij)

 ,

=

T∑
j=1

(
T∑

k=1

PikPij +Pij(1− 2Pij)

)
,

=

T∑
j=1

Pij

T∑
k=1

Pik +

T∑
j=1

Pij − 2

T∑
j=1

(Pij)
2,

= 2− 2

T∑
j=1

(Pij)
2. (15)

Then, our goal is to find the input probability distribution, Pi, that maximizes Eq.15, with constraint∑T
k=1 Pik = 1. We use Lagrange’s multiplier method to optimize this constrained maximization

problem. With Lagrange coefficient, ζ, we derive the new objective to maximize: L(Pi, ζ) = 2 −
2
∑T

j=1(Pij)
2 − ζ(

∑T
k=1 Pik − 1). The Jacobian of L(Pi, ζ) with respect to (Pi, ζ) is formulated

as follows:

JL =
[

∂L
∂Pi1

· · · ∂L
∂PiT

∂L
∂ζ

]
=
[
(−4Pi1 − ζ) · · · (−4PiT − ζ) (−

∑T
k=1 Pik + 1)

]
.

With setting the Jacobian to zero, the solutions are Pij = − ζ
4 and ζ = − 4

T . Thus, an optimal value
of G(Pi) is achieved when P∗

i = [ 1T ,
1
T , · · · ,

1
T ].

To verify this point is the maximum, we compare G(P∗
i ) with the total magnitude given slightly

noised probabilities, Pϵx,y

i whose x-th probability is 1
T + ϵ, and y-th probability is 1

T − ϵ, where
x, y < T and 0 < ϵ < 1

T . The two values are obtained as follows:

G(P∗
i ) = 2− 2

T∑
j=1

(
1

T

)2

= 2− 2
1

T
,

G(P
ϵx,y

i ) = 2− 2

 T∑
j=1,j ̸=x,y

(
1

T

)2

+

(
1

T
+ ϵ

)2

+

(
1

T
− ϵ

)2
 ,

= 2− 2

 T∑
j=1

(
1

T

)2

+ 2ϵ2

 ,

= 2− 2
1

T
− 4ϵ2 < G(P∗

i ).

We can get the same result with any different combination of x and y. Analogously, adding (and
subtracting) multiple ϵi outputs lower than the optimal value. Therefore, G(P∗

i ) is the maximum.

A.1.3 FULL DESCRIPTION AND PROOF OF LEMMA 4

Lemma 8 (Dual-Attention GPAM residual Bound, Completed). Based on the constraints
of Lemma 6 that are similarly applied to both positive/negative attention parts and jointly√∑T

i=1 max
j,j′

|E+
ij −E+

ij′
|max

j,j′
|E−

ij −E−
ij′

| ≤
√
2γ
√

max
j1,j

′
1,j2,j

′
2

∑T
i=1 |E

+
ij1

−E+

ij
′
1

||E−
ij2

−E−
ij

′
2

|,
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the output residual’s composite norm of any single daGPAM self-attention layer is bounded by

∥res(Y)∥1,∞ ≤
4
√
2γ
(
∥W+

QK∥1 +
∣∣∣λ+∥W+

QK∥1 − λ−∥W−
QK∥1

∣∣∣) ∥WV ∥1,∞√
dqk

∥res(X)∥31,∞,

= Borg +
4
√
2γ
(∣∣∣λ+∥W+

QK∥1 − λ−∥W−
QK∥1

∣∣∣) ∥WV ∥1,∞√
dqk

∥res(X)∥31,∞, (16)

where W+
QK = W+

Q(W
+
K)⊤ and W−

QK = (W+
QW

−
Q)(W

+
K)⊤ with assumption that the non-

linear ReLU activation σ is identity. Borg is the upper bound derived by Lemma 6. Since the second
term is positive, this upper bound is always greater than the original.

Proof. In this proof, we follow the derivations in (Dong et al., 2021), except the triangle inequality
for the Frobenius norm formulation in the middle.

By the technique described in Sec.A.4.2, the positive and negative unnormalized attention matrices,
Eqs.9 and 10, are approximated as follows:

A+ ≈ 1√
dqk

(
RW+

QKR⊤ + 1x̄⊤W+
QKR⊤

)
,

A− ≈ 1√
dqk

(
RW−

QKR⊤ + 1x̄⊤W−
QKR⊤

)
,

where W+
QK = W+

Q(W
+
K)⊤ and W−

QK = (W+
QW

−
Q)(W

+
K)⊤ with assumption that the non-

linear ReLU activation σ is identity, and R = res(X) = X− 1x̄⊤. Then, the positive and negative
normalized attention score matrices are formulated as follows:

P+ = softmax
(
E+ + 1(r+)⊤

)
,

P− = softmax
(
E− + 1(r−)⊤

)
,

where E+ = 1√
dqk

RW+
QKR⊤, E− = 1√

dqk

RW−
QKR⊤, r+ = 1√

dqk

R(W+
QK)⊤x̄, and r− =

1√
dqk

R(W−
QK)⊤x̄.

Following the technique described in Sec.A.4.3, each normalized attention matrix is lower and upper
bounded as follows:

(
I− 2D+

)
1softmax(r+)⊤ ≤ P+ ≤

(
I+ 2D+

)
1softmax(r+)⊤,(

I− 2D−)1softmax(r−)⊤ ≤ P− ≤
(
I+ 2D−)1softmax(r−)⊤,

where D is a diagonal matrix whose i-th diagonal element is Dii = max
j,j′

|Eij −Eij′ |. Based on the

design of daGPAM, Eq.8, PG = (1+ λ+)P+ − λ−P−, its lower and upper bound is formulated as
follows:

(1 + λ+)
(
I− 2D+

)
1softmax(r+)⊤ − λ− (I− 2D−)1softmax(r−)⊤

≤PG ≤
(1 + λ+)

(
I+ 2D+

)
1softmax(r+)⊤ − λ− (I+ 2D−)1softmax(r−)⊤.
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Now, the output of the single daGPAM self-attention layer, Y = PGXV = PGXWV , is derived
as follows:

Y = PGXWV ,

= PG(1x̄⊤ +R)WV ,

= PG1x̄⊤WV +PGRWV ,

= 1x̄⊤WV +PGRWV ,

≤ 1x̄⊤WV + [(1 + λ+)
(
I+ 2D+

)
1softmax(r+)⊤

− λ− (I+ 2D−)1softmax(r−)⊤]RWV ,

=
(
1x̄⊤ + (1 + λ+)1softmax(r+)⊤R− λ−1softmax(r−)⊤R

)
WV

+ 2
(
(1 + λ+)D+1softmax(r+)⊤ − λ−D−1softmax(r−)⊤

)
RWV ,

Y − 1(r′)⊤ ≤ 2
(
(1 + λ+)D+1softmax(r+)⊤ − λ−D−1softmax(r−)⊤

)
RWV ,

where r′ = W⊤
V

(
x̄+ (1 + λ+)R⊤softmax(r+)− λ−R⊤softmax(r−)

)
. Analogously, the

lower bound of (Y − 1(r′)⊤) is given by

Y − 1(r′)⊤ ≥ −2
(
(1 + λ+)D+1softmax(r+)⊤ − λ−D−1softmax(r−)⊤

)
RWV .

Following the definition of (Dong et al., 2021), we can see (Y− 1(r′)⊤) is an appropriate approxi-
mation of res(Y) = R

′
with assuming r′ ≈ argminx̄′ ∥Y − 1x̄′⊤∥.

Based on the triangle inequality, the upper bound of the Frobenius norm of R
′
, that is ∥R′∥F , is

obtained by

∥R
′
∥F ≤ 2

∥∥((1 + λ+)D+1softmax(r+)⊤ − λ−D−1softmax(r−)⊤
)∥∥

F
∥R∥F ∥WV ∥F ,

= 2
√

(1 + λ+)2∥D+1softmax(r+)⊤∥2F + (λ−)2∥D−1softmax(r−)⊤∥2F

+2⟨(1 + λ+)D+1softmax(r+)⊤,−λ−D−1softmax(r−)⊤⟩F
√

∥R∥2F
√
∥WV ∥2F

≤ 2
√

(1 + λ+)2∥D+1∥1∥D+1∥∞ + (λ−)2∥D−1∥1∥D−1∥∞
−2(1 + λ+)λ−⟨D+1softmax(r+)⊤,D−1softmax(r−)⊤⟩F ∥R∥1,∞∥WV ∥1,∞,

(17)

where ∥ · ∥1,∞ =
√
∥ · ∥1∥ · ∥∞ ≥

√
∥ · ∥2F by the Schatten norm inequality. The last inequality is

obtained by the upper bounds described in Sec. A.4.4. ⟨·, ·⟩F is the Frobenius inner product.

Based on the derived upper bound described in Sec.A.4.5, we derive following inequalities:

∥D+1∥1∥D+1∥∞ ≤ 8γ2∥E+∥21,
∥D−1∥1∥D−1∥∞ ≤ 8γ2∥E−∥21,

where γ jointly holds the two initial conditions
√∑T

i=1 max
j,j′

|E+
ij −E+

ij′
| ≤

γ
√
max
j,j′

∑T
i=1 |E

+
ij −E+

ij′
| and

√∑T
i=1 max

j,j′
|E−

ij −E−
ij′

| ≤ γ
√
max
j,j′

∑T
i=1 |E

−
ij −E−

ij′
|.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

The Frobenius inner product term in the inequality is further derived as follows:

⟨D+1softmax(r+)⊤,D−1softmax(r−)⊤⟩F =

T∑
i

T∑
j

D+
iisoftmax(r+)jD

−
iisoftmax(r−)j ,

=

(
T∑
i

D+
iiD

−
ii

) T∑
j

softmax(r+)jsoftmax(r−)j

 ,

≤

(
T∑
i

D+
iiD

−
ii

)1

T∑
j

softmax(r−)j

 ,

=

T∑
i

D+
iiD

−
ii ,

=

T∑
i

max
j,j′

|E+
ij −E+

ij′
|max

j,j′
|E−

ij −E−
ij′

|,

≤ 2γ2 max
j1,j

′
1,j2,j

′
2

T∑
i

|E+
ij1

−E+

ij
′
1

||E−
ij2

−E−
ij

′
2

|,

≤ 8γ2 max
j1,j2

T∑
i

|E+
ij1

||E−
ij2

|,

≤ 8γ2

(
max

j

T∑
i

|E+
ij |

)(
max

j

T∑
i

|E−
ij |

)
,

= 8γ2∥E+∥1∥E−∥1.

The inequality from 5-th to 6-th line is based on the initial condition of this lemma. The techniques
used for the latter inequalities are similar to the techniques used in Sec. A.4.5.

Incorporating above derivations to Eq.17, ∥R′∥F is obtained by

∥R
′
∥F ≤ 4

√
2γ

(√
(1 + λ+)2∥E+∥21 − 2(1 + λ+)λ−∥E+∥1∥E−∥1 + (λ−)2∥E−∥21

)
∥R∥1,∞∥WV ∥1,∞,

= 4
√
2γ
(∣∣((1 + λ+)∥E+∥1 − λ−∥E−∥1)

∣∣) ∥R∥1,∞∥WV ∥1,∞,

(18)

By substituting E+ and E− with their original form, respectively, we achieve the result of Lemma
as follows:

∥R
′
∥F ≤ 4

√
2γ

(∣∣∣∣∣(1 + λ+)∥ 1√
dqk

RW+
QKR⊤∥1 − λ−∥ 1√

dqk
RW−

QKR⊤∥1

∣∣∣∣∣
)
∥R∥1,∞∥WV ∥1,∞,

≤ 4
√
2γ√
dqk

(∣∣∣(1 + λ+)∥R∥1∥W+
QK∥1∥R⊤∥1 − λ−∥R∥1∥W−

QK∥1∥R⊤∥1
∣∣∣) ∥R∥1,∞∥WV ∥1,∞,

=
4
√
2γ√
dqk

(∣∣∣(1 + λ+)∥R∥1∥W+
QK∥1∥R∥∞ − λ−∥R∥1∥W−

QK∥1∥R∥∞
∣∣∣) ∥R∥1,∞∥WV ∥1,∞,

=
4
√
2γ√
dqk

(∣∣∣(1 + λ+)∥W+
QK∥1 − λ−∥W−

QK∥1
∣∣∣) ∥R∥31,∞∥WV ∥1,∞,

≤ 4
√
2γ√
dqk

(
∥W+

QK∥1 +
∣∣∣λ+∥W+

QK∥1 − λ−∥W−
QK∥1

∣∣∣) ∥R∥31,∞∥WV ∥1,∞.
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A.1.4 PROOF OF LEMMA 5

In this section, we prove our proposed Lemma 5 which was introduced as follows:
Lemma 9 (Dual-Attention GPAM Gradients). The gradient that the input unnormalized attention
score, A, receives through the normalized attention score, PG (without 1/

√
dqk) is derived as

follows:

∂PG
ij

∂Aij
= (1 + λ+)P+

ij(1−P+
ij) + λ−P−

ij(1−P−
ij),

= gorgj + λ+P+
ij(1−P+

ij) + λ−P−
ij(1−P−

ij), (19)

∂PG
ik,k ̸=j

∂Aij
= (1 + λ+)(−P+

ikP
+
ij) + λ−(−P−

ikP
−
ij),

= gorgk + λ+(−P+
ikP

+
ij) + λ−(−P−

ikP
−
ij), (20)

where gorgj and gorgk are the derived gradient of the conventional attention mechanism, Eq.6, re-
spectively.

Proof. Basically, the final gradients are simply formulated as follows:

∂PG
ij

∂Aij
= (1 + λ+)

∂P+
ij

∂Aij
− λ− ∂P−

ij

∂Aij
,

∂PG
ik,k ̸=j

∂Aij
= (1 + λ+)

∂P+
ik,k ̸=j

∂Aij
− λ− ∂P−

ik,k ̸=j

∂Aij
.

We use the results of the derived gradients in Lemma 2 for the partial gradients of positive parts,
∂P+

ij

∂Aij
and

∂P+
ik,k ̸=j

∂Aij
. The partial gradients of negative parts are derived as follows (W is the same as

W−
Q that we simplified as negative identity matrix):

∂P−
ij

∂Aij
= Wjj

eWjjA
+
ij∑n

t=1 e
WttA

+
it

− eWjjA
+
ij

(
∑n

t=1 e
WttA

+
it)2

(
n∑

z=1

Wzje
WzzA

+
iz

)
,

= WjjP
−
ij −P−

ij

(
n∑

z=1

WzjP
−
iz

)
,

= WjjP
−
ij(1−P−

ij),

= −P−
ij(1−P−

ij),

∂P−
ik,k ̸=j

∂Aij
= Wkj

eWkjA
+
ij∑n

t=1 e
WttA

+
it

− eWkjA
+
ij

(
∑n

t=1 e
WttA

+
it)2

(
n∑

z=1

Wzje
WzzA

+
iz

)
,

= WkjP
−
ik −P−

ik

(
n∑

z=1

WzjP
−
iz

)
,

= Wjj(−P−
ikP

−
ij),

= −(−P−
ikP

−
ij),

During derivations, we used the simplification that Wij = 0 if i ̸= j and Wii = −1. Finally, the

lemma is proved by substituting
∂P+

ij

∂Aij
,
∂P+

ik,k ̸=j

∂Aij
,

∂P−
ij

∂Aij
, and

∂P−
ik,k ̸=j

∂Aij
, from the above formulations

with the newly derived formulations.

A.2 EXPERIMENTAL SETTINGS

In this section, we describe the experimental settings of our experiments. Except the benchmark LM
experiments (Section 6.1), we used the described model and optimization configurations in Table 4
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Table 4: Model and optimizer configurations used for our experiments. We tried to use the same
notations with (Vaswani, 2017), except the number of layers (# of Layers) and multi-head attention’s
heads (# of Heads) for clarity. ‘RAdam’ means rectified Adam (Liu et al., 2019). ‘ISRS’ indicates
inverse square root learning rate schedule (Ott et al., 2019) and ‘# of Tokens’ indicates the number
of tokens in a mini-batch at every iteration.

Config. PTB IWSLT14 WMT14
Transformer PreLN Admin PreLN Admin

dmodel 256 512 512 512 512
dff 2100 1024 1024 2048 2048
dqk 64 64 64 64 64
Pdrop 0.3 0.3 0.3 0.1 0.1
ϵls 0.1 0.1 0.1 0.1 0.1

# of Layers 15 6 6 6 6
# of Head 4 4 4 8 8
Optimizer RAdam RAdam RAdam RAdam RAdam

Learning Rate 0.00025 0.0005 0.0005 0.001 0.001
Scheduler ISRS None ISRS None ISRS

# of Tokens 4K 4K 4K 25K 25K
Patience 50 50 50 50 50

Table 5: Empirically found optimal λ combination for our daGPAM model with constant λs in LM
experiments.

Model Wikitext103 Enwiki8
8L 16L 24L 6L 12L

(λ+, λ−) (1.0, 1.5) (1.5, 2.0) (1.0, 1.0) (1.0, 1.5) (1.0, 1.0)

for preliminary experiments (Section 5) and the benchmark NMT experiments (Section 6.2). For the
experiments of benchmark LM experiments (Section 6.1), we followed the same experiment settings
as the original work (Dai, 2019), except the different number of layers and other things related to
our proposed daGPAM. For the settings of the optimal λ combinations that we used for daGPAM
(constant λ setting) models, we demonstrated them in Tables5 and 6.

During training of all experiments, we saved the best checkpoint based on validations. Especially,
for NMT experiments, IWSLT14 and WMT14, we used checkpoint ensemble technique (Ott et al.,
2019) with 10 latest checkpoints at each validation. Except the benchmark LM experiments, we
early stopped the training whenever the model does not over the previous best performance ‘Pa-
tience’ times. For the experiments of benchmark LM experiments, we ran experiments with the
original work’s default training iteration settings.

We utilized single GTX1080Ti GPU for all of the preliminary experiments (Section 5). The PTB
LM experiments took 12 hours in average. For all of our benchmark experiments (Section 6), we
utilized single RTX3090 GPU. The TransformerXL-based LM experiments took averagely 20 and
240 hours for Wikitext-103 and Enwiki8 tasks, respectively. The NMT experiments took 75 and 120
hours in average for IWSLT14 and WMT14 tasks, respectively.

Table 6: Empirically found optimal λ combination for our daGPAM model with constant λs in NMT
experiments.

Model IWSLT14 En-to-De IWSLT14 De-to-En WMT14 En-to-De WMT14 De-to-En
PreLN Admin PreLN Admin PreLN Admin PreLN Admin

(λ+, λ−) (1.5, 1.5) (2.0, 1.5) (1.0, 1.5) (2.0, 1.5) (1.0, 1.0) (1.0, 1.0) (1.5, 1.5) (1.0, 1.0)
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Figure 5: Results of faithfulness test (rank-collapse analysis at initialization) varying λ+ with fixing
λ− to 1.

Figure 6: Results of rank-collapse analysis after training with MLP layer’s output representations.

A.3 ADDITIONAL EXPERIMENT RESULTS

A.3.1 FAITHFULNESS TEST WITH VARYING λ+

In addition to the rank-collapse analysis at initialization that is conducted with varying λ− while
fixing λ+ to 1 (Fig.4 in Section 5.1), we conducted the same analysis with varying λ+ while fixing
λ− to 1. As demonstrated in Fig.5, daGPAM models achieved less intensive rank-reduciton tendency
than the baseline. Similar to the phenomenon explained in Section 5.1, daGPAM model that has Σ
smaller than 1 shows much less intensive tendency. For example, the (λ+ = 0.5, λ− = 1.0)
configuration shows the least intensive tendency, and this tendency is quite similar to the tendency
of (λ+ = 1.0, λ− = 1.5) configuration in Fig.4.

A.3.2 RANK-COLLAPSE ANALYSIS OF MLP LAYER’S OUTPUT REPRESENTATIONS

In addition to the rank-collapse analysis after training based on attention layer’s output represen-
tations (Fig.4 in Section 5.1), we conducted the same analysis based on the MLP layer’s output
representations which are the final outputs of each Transformer block. As demonstrated in Fig.6,
daGPAM models show mitigated rank-collapse phenomenon compared to the baseline, similar to
the resulting phenomenon of attention layers’ outputs.
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Figure 7: Cosine similarity results between the representations produced by the attention layer
and the subsequent residual connection, relative to the initial representations. This cosine similarity
serves as an indicator of the impact of the attention layer in comparison to the shortcut branch within
the residual connection.

Figure 8: PPL results of daGPAM models (based on 8-layered TransformerXL) with various con-
stant λs were trained on Wikitext103 LM task. The darker the color is, the better PPL is. The
baseline model’s PPL result is 25.96.

A.3.3 INFLUENCE OF ATTENTION LAYERS

To assure that our proposed model develops the attention layer rather than enhancing the shortcut
branch like some previous works (Noci et al., 2022), we measured the cosine similarity between
residual connection’s output representations and the initial representations (word embedding vec-
tors). This cosine similarity means the influence of attention layer within the residual connection.
As demonstrated in Fig.7, we found that daGPAM models usually achieve less cosine similarity
which means the attention layers output representations are more diverse compared to the base-
line’s. Based on this analysis, we believe that daGPAM actually affects the attention layer rather
than enhancing shortcut branch.

A.3.4 WIKITEXT103 LM EXPERIMENTS WITH VARIOUS λS

To provide profound understanding on the effects of λs in practice, we conducted more Wikitext103
LM experiments of daGPAM models based on 8-layered TransformerXL architecture with varying
each λ from 0.5 to 3.0 with 0.5 interval. Note that the total sum of normalized attention score is Σ =
(1+λ+−λ−). We discovered that, at each value of λ+, increasing λ− improves performance until it
makes Σ lower than -2.0. Usually, the best performance was achieved when Σ is 0.5. Interestingly,
we found that, when Σ is 0.0, performance instantly drops. We understand the 0.0 Σ can overly
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Figure 9: Correlation graphs between (residual, cosine similarity) in Fig.4 and PPL performances
on Wikitext103 in Fig.8. The leftmost graph includes baseline model while the other 6 graphs
include only daGPAM models. The four decimal place numbers displayed on each graph represent
correlations.

amplify the direct movement on the hyperplane, ∆, while eliminate the effect original point Y+ as
we explained in Section 4.2. This may cause too diverse output representations. Empirically, we
found that the cases when Σ is close to 0.5, usually be the optimal setting for daGPAM models.

A.3.5 CORRELATION BETWEEN RANK-COLLAPSE AND PERFORMANCE

To obtain profound understanding of the effect of mitigating rank-collapse problem in practice,
we analyzed the correlation between the measured amount of rank-collapse (the second column of
Fig.4) and the downstream performances of Wikitext103 results (various λ−s with fixed λ+ = 1.0 in
Fig.8 and the result of ‘daGPAM(Train)’ in Table2). We assumed that the tendency for rank-collapse
dependent on the setting of λs as shown in Fig.4 would similarly appear in the Wikitext103 experi-
ments. We note that daGPAM models mitigate not only rank-collapse, but also gradient vanishing,
so we excluded the sample of baseline model and analyzed the correlations of daGPAM models
to focus pure relationship of mitigating rank-collapse problem and downstream performance. The
6 graphs on the right side of Fig.9 show the computed correlations and graphs. We employed the
measured rank-collapse amounts of lower layer 1, middle layer 8, and higher layer 15. We found
that most rank-collapse amount measurements are highly correlated with downstream performance.
While the residual of layer 15 shows almost no correlation, this is primarily due to the trainable λ
setting, which differs from other constant λ settings.

A.4 TECHNICAL LEMMAS FROM (DONG ET AL., 2021)

A.4.1 PROPERTIES OF MATRIX NORM

In this section, we describe the formulation and properties of matrix norm which are frequently
used in our proof derivations. We note that L-1 and L-∞ norms of a T × d matrix, M, which are
formulated as follow:

∥M∥1 = max
1≤i≤d

 T∑
j=1

|Mji|

 ,

∥M∥∞ = max
1≤i≤T

 d∑
j=1

|Mij |

 .

Noticeably, ∥M∥1 = ∥M⊤∥∞. If there is a matrix N which is multiplicative with M, then
∥MN∥ ≤ ∥M∥∥N∥. This property holds for L-1 and L-∞ norms.
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A.4.2 SIMPLIFICATION OF UNNORMALIZED ATTENTION MATRIX

Given the definition of the unnormalized attention matrix A, Eq.3, A is related to the residual, Eq.4,
as follows:

A =
1√
dqk

(R+ 1x̄⊤)WQK(R+ 1x̄⊤)⊤

=
1√
dqk

(
RWQKR⊤ +RWQK x̄1⊤ + 1x̄⊤WQKR⊤ + 1x̄⊤WQK x̄1⊤) ,

where WQK = WQW
⊤
K and R = res(X) = X − 1x̄⊤. By following the shift invariance

property of the softmax function (Cordonnier et al., 2020) which means a constant term added to
every element of a row is negligible, we approximate A as follows:

Ã ≈ 1√
dqk

(
RWQKR⊤ + 1x̄⊤WQKR⊤) .

Note that every eliminated (by the approximation) terms has the form, c1⊤, so that we can ex-
press A = Ã + c

′
1⊤ where the vector, c

′
, is the summation of every eliminated terms without the

common factor, 1⊤. Then, the output of the softmax function with A as input is softmax(A) =

softmax(Ã + c
′
1⊤) = softmax(Ã). Therefore, we can safely use the approximated unnormal-

ized attention matrix instead of the original during the attention mechanism.

A.4.3 BOUNDS OF NORMALIZED ATTENTION MATRIX

With incorporating the approximation of the unnormalized attention matrix to the definition of the
normalized attention matrix, Eq.2 (without considerations of positive and negative signs), we can
formulate the normalized attention matrix as follows:

P = softmax(
1√
dqk

A) = softmax
(
1r⊤ +E

)
,

where E = 1√
dqk

RWQKR⊤ and r = 1√
dqk

R(WQK)⊤x̄.

The (i, j)-th element of P is derived as follow:

Pij =
exp

(
(1r⊤)ij +Eij

)∑T
t=1 exp ((1r

⊤)it +Eit)
=

exp
(
(1r⊤)ij

)
exp (Eij)∑T

t=1 exp ((1r
⊤)it) exp (Eit)

.

This value is upper bounded when we replace exp(Eit) in the denominator with min
j′

exp(Eij′ ).

Likewise, it is lower bounded when we replace the same term with max
j′

exp(Eij′ ). Based on these

ideas, we can bound the (i, j)-th element of P as follows:

exp(Eij)

max
j′

exp(Eij′ )
P̃ij ≤ Pij ≤

exp(Eij)

min
j′

exp(Eij′ )
P̃ij ,

(
min
j′

exp(Eij −Eij′ )

)
P̃ij ≤ Pij ≤

(
max
j′

exp(Eij −Eij′ )

)
P̃ij ,

where P̃ij =
exp((1r⊤)ij)∑T
t=1 exp((1r⊤)it)

= softmax(1r⊤)ij = (1softmax(r)⊤)ij . Given the fact that

exp(x) is approximated by 1+x+ 1
2!x

2+ 1
3!x

3+ . . . with Taylor series near to x = 0 and it is upper
bounded exp(x) ≤ 1 + 2x where the condition |x| ≤ 1.256 holds, we know that max

j′
exp(Eij −

Eij′ ) is upper bounded by 1 + 2max
j′

(Eij − Eij′ ) with the condition that |Eij − Eij′ | ≤ 1.256.

Analogously, min
j′

exp(Eij−Eij′ ) is lower bounded by 1−2min
j′

(Eij−Eij′ ). Therefore, the lower
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and upper bounds of (i, j)-th element of P are derived as follows:(
1− 2min

j′
(Eij −Eij′ )

)
P̃ij ≤ Pij ≤

(
1 + 2max

j′
(Eij −Eij′ )

)
P̃ij ,(

1 + 2max
j′

(Eij′ −Eij)

)
P̃ij ≤ Pij ≤

(
1 + 2max

j′
(Eij −Eij′ )

)
P̃ij . (21)

Note that the negative sign of lower bound of the first inequality goes inside of the min operation
while changing it to max operation. Finally, the matrix level inequality is formulated as follows:

(I− 2D) P̃ ≤ P ≤ (I+ 2D) P̃,

where I is identity matrix. D is a diagonal matrix whose i-th diagonal element is Dii = max
j,j′

|Eij −

Eij′ |. We note that the last inequality is even larger/smaller bounds than those of Eq.21 because it
takes the maximum value across j and j

′
simultaneously.

A.4.4 UPPER BOUNDS OF L-1 AND L-∞ NORMS OF THE MATRIX FORMED
(Z1softmax(r)⊤)

By following the property of matrix norm (Sec.A.4.1), the L1 norm of the matrix can be upper
bounded as follows:

∥Z1softmax(r)⊤∥1 ≤ ∥Z1∥1∥softmax(r)⊤∥1,
= ∥Z1∥1,

based on the facts that ∥softmax(r)⊤∥1 =
∑T

i=1 |softmax(r)i| = 1. Similarly, the upper bound
of L-∞ norm is as follows:

∥Z1softmax(r)⊤∥∞ ≤ ∥Z1∥∞∥softmax(r)⊤∥∞,

≤ ∥Z1∥∞,

based on the fact that ∥softmax(r)⊤∥∞ = max
i

|softmax(r)i| ≤ 1.

A.4.5 UPPER BOUND OF ∥D1∥1∥D1∥∞

About the L-1 and L-∞ norms of D1, we follow the same definition of Sec.A.4.3 for the matrix D
whose diagonal element is Dii = max

j,j′
|Eij−Eij′ |. Based on the initial condition of Lemma 6 which

is related to γ:
√∑T

i=1 max
j,j′

|Eij −Eij′ | ≤ γ
√
max
j,j′

∑T
i=1 |Eij −Eij′ |. Then, the multiplication

of L-1 and L-∞ norms is derived and upper bounded as follows:

∥D1∥1∥D1∥∞ = max
i,j,j′

|Eij −Eij′ |
T∑

i=1

max
j,j′

|Eij −Eij′ |,

≤ 2max
i,j

|Eij |
T∑

i=1

max
j,j′

|Eij −Eij′ |,

≤ 2∥E∥1
T∑

i=1

max
j,j′

|Eij −Eij′ |,

≤ 2γ2∥E∥1

(
max
j,j′

T∑
i=1

|Eij −Eij′ |

)
,

≤ 2γ2∥E∥1

(
2max

j

T∑
i=1

|Eij |

)
,

= 8γ2∥E∥1∥E∥1 = 8γ2∥E∥21,
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