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Figure 1: Overview of mainstream VLA architectures. (1) Discretization-based methods map vi-
sion and language features into action tokens via LLM, but ignore robot state—an essential signal of
physical dynamics—making action prediction less effective. (2) Diffusion-based approaches extract
vision and language features with a VLM but pass them to a separate action expert for denoising,
reducing the VLM to a large feature extractor and limiting its overall capability in action model-
ing. (3) Our model distills knowledge from a small action model while largely preserving the VLM
structure. By integrating robot state through a lightweight encoder and introducing an action token
to fuse vision, language, and state, it enables the VLM to actively participate in action modeling
rather than only serving as a feature extractor, thereby better leveraging its modeling capabilities.

ABSTRACT

Vision-Language Action (VLA) models significantly advance robotic manipula-
tion by leveraging the strong perception capabilities of pretrained vision-language
models (VLMs). By integrating action modules into these pretrained models,
VLA methods exhibit improved generalization and robustness. However, train-
ing them end-to-end is costly, as modeling action distributions typically requires
massive datasets and heavy computation. In this work, we propose a simple yet
effective distillation-based framework that equips VLMs with action-execution
capability by transferring knowledge from pretrained small action models. Our
architecture retains the original VLM structure, adding only an action token and
a state encoder to incorporate physical inputs, as illustrated in Figure 1. To dis-
till action knowledge, we adopt a two-stage training strategy. First, we perform
lightweight alignment by mapping VLM hidden states into the action space of
the small action model, enabling effective reuse of its pretrained action decoder
and avoiding expensive end-to-end pretraining. This also facilitates better transfer
of action modeling capabilities to the VLM. Second, we selectively fine-tune the
language model, state encoder, and action modules, enabling the system to inte-
grate multimodal inputs with precise action generation. Specifically, the action
token provides the VLM with a direct handle for predicting future actions, while
the state encoder allows the model to incorporate robot dynamics not captured by
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vision alone (see Figure 2). This design yields substantial efficiency gains over
training large VLA models from scratch. Compared with previous state-of-the-art
methods, our method achieves 97.3% average success rate on LIBERO (11.8%
improvement), 93.5% on LIBERO-LONG (24.5% improvement), 92.5% first task
success rate on CALVIN ABC-D (4.1% improvement). In real-world experiments
across five manipulation tasks, our method consistently outperforms the teacher
model Seer, achieving 82.0% average success rate (17% improvement). These
results demonstrate that action distillation effectively enables VLMs to generate
precise, executable actions while substantially reducing training costs.

1 INTRODUCTION

Traditional small action models typically have limited parameters, are trained in ﬁxed environments,
and excel at executing simple predefined tasks ( , ; , ).
However, these models often struggle to generalize to dynamic or perturbed env1ronments which re-
stricts their effectiveness in real-world scenarios. In contrast, VLMs demonstrate remarkable visual
comprehension and instruction-following capabilities exhibiting strong generalization performance
across a wide range of tasks. This motivates growing interest in combining VLMs with action mod—
els, leading to the development of various VLA models, such as the RT series ( s ;
, ), OpenVLA ( , ), GROOT ( , ), o ( ,
), Octo ( s ), 3D-VLA ( s ), and others ( , ;
, ; , ). These models can be broadly categorized into two main approaches,
as illustrated in Figure |. The first category, exemplified by OpenVLA and the RT series, adopts a
discretization-based approach. These models transform continuous actions into discrete tokens by
partitioning the action space into fixed intervals. Visual and language features are then mapped to
these action tokens via a Large Language Model (LLM), which are subsequently detokenized into
executable actions. The second category, represented by GROOT and 7y, follows a diffusion-based
design. Vision-language features are first extracted by a pretrained VLM and then injected into the
action expert through attention mechanisms. The action expert then iteratively refines the noised
action representations conditioned on the current state, noised actions, and vision-language features,
to generate the final executable actions. While both categories have demonstrated promising per-
formance, they exhibit notable limitations. Discretization-based approaches often omit robot state
information—a crucial signal for modeling physical dynamics—which can hinder the accuracy of
action prediction. Meanwhile, diffusion-based methods typically leverage the VLM solely as a fea-
ture extractor, reducing it to a static encoder and underutilizing its potential for end-to-end action
modeling. Furthermore, despite being trained with extensive computational resources and large-
scale, high-quality data, they still lag behind smaller, task-specific models on embodied benchmarks
like CALVIN ( , ) and LIBERO ( , ).

To address these limitations, we propose a new VLA architecture and a two-stage training framework
that equips pretrained VLMs with action-generation capability via knowledge distillation from small
action models(Figure | (3)). This approach removes the need for expensive end-to-end pretraining
on large embodied datasets and achieves strong performance across simulation benchmarks and
real-world experiment. Our method is built upon the VITA-1.5 architecture, which is based on the
well-known and widely-used LLaVA architecture ( s ). We extend this backbone with
two components—a state encoder and an action token—so that it can fuse visual, language, and state
inputs to generate executable robot actions, as illustrated in Figure 2. To efficiently equip the VLM
with action capabilities, we introduce a simple yet effective two-stage training framework centered
on knowledge distillation, as illustrated in Figure 3. In the first stage, we perform lightweight
alignment by projecting the VLM’s hidden features into the action space of a pretrained small action
model. This alignment process explicitly distills the action-generation policy from the small action
model into the VLM. By doing so, we can reuse the action decoder of the small action model,
avoiding the need for costly end-to-end pretraining from scratch. In the second stage, we fine-
tune specific components of the system, including the language model, state encoder, and action
modules. This selective fine-tuning helps to better integrate multimodal signals, leading to accurate
action predictions. This two-stage approach not only enhances the VLM’s ability to model complex
robotic behaviors but also reduces training cost, while retaining strong generalization.

We validate the effectiveness of our approach on both simulation benchmarks and real-world robotic
tasks. On the LIBERO benchmark, our two-stage training strategy achieves a 97.3% average suc-
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Figure 2: Model Architecture. Our model is build upon VITA1.5-7B ( , ), taking

images, instructions, action tokens, and state information as inputs to generate executable actions.
The visual and textual information is input into the VLM. The action token acts as a learnable query,
while the robot state is encoded into a single token using linear layers. An action mapper extracts the
hidden states of the action token from the final layer of the VLM, and transforms these to match the
dimensionality expected by the pretrained action decoder, and finally the action decoder generates
the corresponding actions with 7 degrees of freedom (DoF).

cess rate across all task suites, outperforming the previous state-of-the-art VLA method by 11.8%.
Notably, on the challenging LIBERO-LONG benchmark ( , ), our method achieves a
93.5% success rate, surpassing the small action model Seer ( , ) by 5.8% and exceed-
ing the best previously reported VLA result by 24.5%. On the CALVIN ABC-D benchmark, our
method achieves the best performance among VLA-based approaches. Specifically, on the first task
of five-task sequence, it achieves a success rate of 92.5%, outperforming Seer (88.4%). We further
evaluate VITA-VLA in 200 real-world trials across five manipulation tasks spanning four canoni-
cal operations—Pick, Place, Close, and Stack—using the ALOHA robot. Our method consistently
outperforms Seer, achieving a 82.0% average success rate (17.0% improvement).

2 RELATED WORK

Small Action Models. Small action models in language-conditioned robot manipulation typically
adopt lightweight architectures with limited parameters, making them suitable for relatively simple
tasks. These models often use a pretrained CLIP ( , ) text encoder to process
language input and vision encoders such as CLIP or SigLIP ( , ) to extract image
features. In addition, a dedicated state encoder processes the robot states, and the combined mul-
timodal inputs are passed to a high-capacity policy network to predict the corresponding actions.
RT-1 ( , ) uses the Universal Sentence Encoder to process text and a pretrained
EfficientNet-B3 ( , ) to encode images. The action information is discretized into 256
bins, and the image and text tokens are concatenated and fed into an 8-layer decoder-only Trans-
former, which generates action tokens end-to-end. Seer ( s ) uses MAE ( R

) to process visual input, the CLIP text encoder for text processing, and an MLP to encode state
information. The action token is treated as a learnable query, which is decoded to generate action.
RDT-1b ( , ) employs T3 as the text tokenizer, SigLIP as the image encoder, and a Dif-
fusion Transformer as the core architecture. It generates actions through an iterative denoising pro-
cess. Although these models demonstrate strong performance on short instruction-following tasks,
they often struggle to generalize in complex or long-horizon tasks. This limitation arises primarily
from the restricted capacity of their text and vision encoders. To address this, our method adopts the
powerful VITA-1.5-7B ( , ) as backbone, a 7B-parameter VLM trained on large-scale,
diverse datasets. This foundation enables significantly improved instruction comprehension, visual
grounding, and long-horizon planning. This makes our approach more scalable, generalizable, and
robust for robotic manipulation across varied environments.
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Large VlSlOIl Language Action Models. Recent progress in VLMs ( ,

; s ) has advanced the development of VLA models for
r0b0t1c control. RT-2 ( s ) is the first to convert actions into discrete tokens and
perform end-to-end autoregressive training using PaLM-E (12B) as the backbone. It is trained on
130k human-teleoperated demonstrations collected over 17 months. OpenVLA ( )
extends this approach with an open-source 7B LLaMA model, using SigLIP and DINOV2 as vi-
sion encoders and trained on 970k episodes from the Open X-Embodiment dataset. Different from
above, g ( , ) formulates action generation as a denoising process. It combines
Gemma-2B as the VLM with a diffusion-based action expert, jointly trained over 68 dexterous tasks
from diverse robot embodiments. GROOT ( , ) uses Eagle-2 (1.34B) as the VLM
backbone and injects its vision-language features into a diffusion transformer via cross-attention,
generating actions conditioned on the current state and noised actions through denoising. The en-
tire model is trained on a dataset of 780k simulated trajectories. Despite their scale, these models
require large datasets, long training times, and significant computational resources. In contrast, our
approach provides a more efficient and scalable alternative. Instead of training a full VLA model
from scratch, we introduce a two-stage distillation framework. In the first stage, we explicitly align
the action representation spaces of a pretrained VLM and a small action model through lightweight
representation matching, updating only a small subset of parameters to reduce computational cost.
In the second stage, we directly attach the pretrained action decoder from the small action model to
the VLM, forming a new VLA system. We then fine-tune the language model, state encoder, and the
entire action module—including the action mapper and decoder—allowing the model to integrate
the advanced capabilities of the VLM with the low-level control precision of the small action model,
while remaining more efficient than training a VLA model from scratch.

3 METHOD
3.1 PROBLEM FORMULATION

We consider a robotic manipulation task formulated as a Markov Decision Process. Given a dataset
D = {(z4,l;,8i,a;)}, of N demonstrations, each tuple consists of visual observation x; € X,
language instruction [; € £, robot state s; € S C R%=7 (6 degrees of freedom (DoF) arm state and
1 dimension gripper width), and a corresponding action a; € A C R%=7 (comprising ai™ for the
6-DoF arm action and 1 dimension a§"" for the gripper width). Our objective is to learn a policy

T : X X LXS — A,
that predicts executable actions & = 7y (x, , s) conditioned on multimodal inputs.

We further assume access to a pretrained small action model Texper : X X £ X S — A that has been
trained on the same dataset D, which demonstrates strong performance on robotic manipulation
tasks. Our goal is to distill the action modeling capability of Texpert into a vision-language model fy,
creating a unified VLA model that combines the visual-linguistic understanding and generalizability
of VLMs with the precise action prediction of specialized action models.

3.2 OVERALL ARCHITECTURE

The overall architecture of our model is illustrated in Figure 2. Our architecture extends the pre-
trained VITA-1.5-7B model with minimal modifications to enable action prediction while preserv-
ing its vision-language capabilities. The backbone consists of three primary components: a vision
encoder (InternViT-300M), a connector (3-layer MLP), and a language model (Qwen-2.5-7B). This
backbone has been fine-tuned on large-scale open-source data covering a wide range of scenarios,
demonstrating strong capabilities in image understanding and complex instruction following.

State Input. To incorporate robot state information, we initially explore concatenating raw state
values as text tokens, but this approach fails because numerical values are poorly represented in
the VLM’s token vocabulary and the model struggles to interpret these values accurately. Thus, we
design a dedicated state encoder. Specifically, the 6-DoF arm state and the 2-dimensional gripper
state (one-hot encoding of the 1 dimension gripper width) are first encoded separately by two linear
layers. Their outputs are then concatenated and passed through an additional linear layer, which
projects the combined representation into the same dimension as the text tokens. This design allows
the model to effectively integrate and attend to structured state information.

Action Token. We define a learnable action token that acts as a query during training and inference.
This token is appended to the input sequence and is responsible for attending to the multimodal
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Figure 3: Training Strategy. Our training strategy comprises two stages. In the alignment stage, we
train the action mapper, action tokens, and state encoder to bridge the gap between the action output
spaces of the VLM and the small action model, updating only 30 million parameters while achieving
improved fine-tuning outcomes. In the fine-tuning stage, we then perform end-to-end optimization
of the entire model to further enhance overall performance.

context to produce action representations. To predict three future steps, the same token is repeated
three times. Since consecutive actions are highly correlated and usually differ minimally, a single
shared token is sufficient to capture temporal continuity. We also observed that assigning indepen-
dent action tokens to each step does not yield additional benefits in our setting.

Input. Each training sample comprises 13 time steps. This setting follows the small action model,
which is trained on 13-step trajectories, ensuring consistent temporal structure during alignment.
At each step, the model receives a structured multimodal sequence: image tokens from two views
(static and wrist cameras), text tokens (instruction), one state token, and three action tokens. Each
image (200 x 200) is encoded into 49 visual tokens, yielding n = 98 image tokens per step. Let m
be the number of instruction tokens; the complete per-step input is:

[img,]...[img,] [text;] ... [text,,] [state] [act;] [acts] [acts]. (D

Formally, we denote the complete set of inputs as = (image tokens), ¢ (text tokens), s (state token),
and a4 (action token). The model 7 jointly processes {x,t, s,a,} and the action embeddings are
obtained by extracting the final-layer hidden states of a,:

ap = 7Tlast(aq | x,t, 3) ()

Action Mapper, Decoder and Output. We employ a lightweight three-layer MLP as the action
mapper M to project ay, into the input space expected by the pretrained action decoder. The first
layer transforms the feature dimension of a;, to match the action space. The other two layers keep the
same size and introduce sufficient nonlinearity. This architecture strikes a balance between model
expressiveness and computational efficiency. The mapped features are then fed into the pretrained
action decoder D, which is a fixed two-layer MLP reused from the small action model. After the
first-stage alignment, the output space of the action mapper becomes well aligned with the decoder’s
expected input space, enabling effective integration. Together, the action mapper and decoder gen-
erate the final executable action & = D(M (ay,)).

3.3 TRAINING STRATEGY

To equip our VLA model with action execution capabilities, we introduce a two-stage training strat-
egy. The core idea is to transfer the action modeling abilities from a small action model to the VLA
through alignment. In the first stage, we employ lightweight alignment to bridge the gap between
the action representation spaces of the VLA and the small action model, enabling the reuse of the
pretrained action decoder from the small action model. In the second stage, end-to-end fine-tuning is
conducted to further enhance the VLA model’s action modeling capabilities. This approach reduces
training resources while maintaining high performance in action generation.

STAGE 1: ALIGNMENT

The first stage, illustrated on the left side of Figure 3, aims to align the hidden action representations
between the VLA model and the small action model. Except for the learnable action query, both
models receive identical inputs, including the images, text instruction, and robot state. Since both
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models follow an autoregressive architecture, we extract the last-layer hidden states corresponding
to the action tokens from each model for alignment. Due to the difference in feature dimensions, we
use an action mapper to transform the dimension of the VL A’s action token hidden states into that
of the small action model. We then compute a mean squared error (MSE) loss between the mapped
VLA hidden states and the corresponding hidden states from the small action model:

2

; 3)

2

N

1 VLA, Small, i

Latign = ) HM(% Y —ap
i1

where M (-) denotes the action mapper, N is the number of action tokens, aXLA is the VLA model’s
last-layer hidden state of the action token, and a3™! is the corresponding hidden state of the small
action model. In this stage, only the state encoder, action tokens, and action mapper are trained,
comprising a total of approximately 30 million parameters. This lightweight configuration enables

efficient and fast alignment while preparing the model for the subsequent end-to-end fine-tuning.

STAGE 2: END-TO-END FINE-TUNING

After the alignment stage, the VLA model is better positioned for end-to-end fine-tuning. We con-
tinue using the same data as in Stage 1—comprising action tokens, images, text instructions, and
robot states, as illustrated on the right side of Figure 3. These inputs are processed by the VLA
model to produce the last-layer hidden states corresponding to the action tokens.

As in Stage 1, we apply the pretrained action mapper to project hidden states into the action space
of the small action model. We reuse the pretrained action decoder and linear projection heads from
the small action model to generate executable actions. The decoder is a two-layer MLP, followed by
linear layers for predicting 6-DoF arm actions and binary gripper actions. Arm actions are super-
vised with mean absolute error (MAE) loss, and gripper actions with binary cross-entropy (BCE)
loss. The total loss is their weighted sum: Lol = Larm + A - Lgripper Where:

* Lam = 7 ZtT:l lai™ — a3™||, is the MAE loss for the 6-DoF arm action, computed

across all predicted time steps 7. Here, ™ € RS denotes the predicted continuous arm
action, and ai™ € R® denotes the ground truth.

o Lotipper = —% 31—, {afﬁp log(a¥™®) + (1 — af™) log(1 — &fﬂp)] is the BCE loss for the

gripper action, where a8 ¢ [0,1] denotes the predicted probability of the gripper being
closed, and a§'"" € {0, 1} denotes the ground truth label.

e )\ = (.01 is a scaling factor set according to the observed loss magnitudes, ensuring that
the gripper loss and arm loss contribute comparably during training.

This combined loss guides the model to learn accurate continuous arm actions and reliable binary
gripper actions, maintaining balance between the two goals. In this stage, we fine-tune the LLM,
state encoder, learnable action queries, action mapper, and action decoder, enabling end-to-end in-
tegration of multimodal information for accurate action prediction.

Choice of MSE and MAE. We adopt different loss functions in the two stages to suit their distinct
goals. During alignment, MSE penalizes large deviations between VLM and small model hidden
states, making it suitable for representation matching. In fine-tuning, the objective shifts to pre-
dicting continuous control signals. We use MAE for 6-DoF arm actions, as it yields more stable
optimization and is less sensitive to outliers. This combination balances representation alignment
with reliable low-level action supervision.

4 EXPERIMENTS

To validate the effectiveness of our model architecture and training strategy, we conduct simulation
experiments on the CALVIN ABC-D and LIBERO benchmarks, as well as real-world experiments
using a robotic arm platform. Our evaluation aims to address the following three questions: 1)
Can this architecture perform well across various environments and tasks? 2) Does the proposed
distillation process lead to measurable performance gains? 3) Can the model be effectively deployed
on real-world robotic platforms?
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Table 1: CALVIN ABC-D results. We report the success rates computed over 1000 rollouts for
each task, along with the average number of completed tasks required to solve five instructions
consecutively (denoted as Avg. Len.). The results for small action models without a VLM are
displayed in the first three rows. The remaining rows represent VLA models that include a VLM.
The best result in each category is highlighted in bold.

*: SAM is Small Action Model. ¥ indicates results reproduced by us.

Task completed in a row

Method ‘ Category ‘ VLM ‘

‘ ‘ ‘ 1 2 3 4 5 ‘ Avg. Len. 1
Susie 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 SAM" 85.4 71.2 59.6 49.7 40.1 3.06
Seer-Large’ 88.4 80.9 74.8 69.6 62.1 3.76
3D-VLA BLIP2-4B 447 16.3 8.1 1.6 0.0 0.71
OpenVLA Prismatic-7B 62.8 18.3 5.8 1.8 1.0 0.90
Roboflamingo Flamingo-3B 82.4 61.9 46.6 33.1 235 2.48
Ours(only-ft) VITA1.5-7B 86.0 73.2 60.4 49.4 39.8 3.08
Ours (two-stage) VITA1.5-7B 92.5 771 61.0 49.2 38.2 3.18

4.1 BENCHMARKS, BASELINES AND EXPERIMENT DETAILS

Benchmarks. We evaluate our model on two robotic manipulation benchmarks: CALVIN and
LIBERO. CALVIN is a simulated benchmark comprising 34 tasks and 1,000 language instructions
across four environments (A-D), each with different desk colors and object layouts. Following
the ABC-D setting, models are trained on environments A, B, and C, and tested on the unseen
environment D to assess generalization. LIBERO is a comprehensive lifelong learning benchmark
with four task suites—Spatial, Object, Goal, and LONG—each suite contains 10 long-horizon tasks,
evaluating different aspects of generalization in robotic manipulation.

Baselines. We compare our method with a diverse set of representative VLA baselines. For

LIBERO, we include large-scale pretrained generalist models (OpenVLA ( , ),
Octo ( , )) as well as architectures with enhanced grounding or reasoning capa-
bilities, such as Spatial VLA (spatial information) ( , ), CoT-VLA (visual chain-of-
thought) ( , ), and mg-Fast (flow-based method) ( , ). For CALVIN
ABC-D, we evaluate both small action models—Susie (diffusion-based subgoal planning) (

, ) and GR-1 (video pretraining) ( , )—and VLA-based methods including
Roboflamingo ( s ), 3D-VLA ( , ), and OpenVLA. Seer ( , )

is used in both benchmarks and also serves as the distillation teacher.

Experiment Details. Our experiments involve three distinct training settings: 1) Two-stage: a
two-stage training strategy, where the model is first aligned and then fine-tuned. 2) Only-finetune:
no alignment stage is performed. Instead, we directly attach the pretrained action module from the
small action model to our VLM, and then perform only the fine-tuning procedure from the two-stage
protocol to train the combined model. 3) Freeze-vlm: directly integrate the pretrained action token,
state encoder, and action module weights (from the first strategy) into the VLM, but do not update the
VLM parameters during training, to test whether a strong VLA could be achieved without tuning the
VLM. In all experiments, we use only language-conditioned data, corresponding to 58% of the full
training set in CALVIN ABC-D. Additional hyperparameter settings are provided in Appendix

4.2 MAIN RESULTS

Zero-Shot Generalization to Unseen Environments. Table | presents the results on the CALVIN
ABC-D benchmark. Our model achieves the highest performance among existing VLA models
when trained on environments A, B, and C and evaluated in the unseen environment D, demonstrat-
ing strong generalization capability to unseen scenes. Although our model achieves a higher success
rate than Seer-Large on Task 1 (92.5% vs. 88.4%), it yields a lower average task success length. We
attribute this to the model’s sensitivity to environmental changes during task transitions, which may
lead the VLM to misinterpret context or lose consistency across subtasks. This highlights a potential
area for improving temporal robustness in long-horizon manipulation.

Long-Horizon Planning and Complex Instruction Execution. As shown in Table 3, our model
achieves a 5.8% improvement in average success rate on the LIBERO-LONG benchmark compared
to the Seer-Large model. We attribute this gain to the integration of a VLM, which improves the
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Table 2: LIBERO results of different VLA models. We present the success rates of various VLA
models. To ensure fair comparison, we report the average success rates over 500 episodes, following
the evaluation protocol used in CoT-VLA ( , ). The best result in each category is
highlighted in bold. Our model achieves state-of-the-art performance across all tasks, demonstrating
exceptional long-horizon execution capabilities. Notably, it raises the average success rate to 97.3%,
in the LIBERO-LONG task, it improves the previous state-of-the-art by 24.5%.

Method \ SPATIAL  OBJECT GOAL LONG Average
Octo 78.9% 85.7% 84.6% 51.1% 75.1%
OpenVLA 84.9% 88.4% 79.2% 53.7% 76.5%
Spatial VLA 88.2% 89.9% 78.6% 55.5% 78.1%
CoT-VLA 87.5% 91.6% 87.6% 69.0% 81.1%
7o-FAST 96.4% 96.8% 88.6% 60.2% 85.5%
Ours(two-stage) 98.0 % 99.8 % 97.9 % 93.5% 97.3%

Table 3: LIBERO-LONG results across different tasks. For each task, we report the average
success rate over 20 rollouts, following the evaluation protocol used in Seer ( s .
The metric “Avg.Success” denotes the average success rate across all ten tasks. The best results
are highlighted in bold. Our model achieves the best performance on LIBERO-LONG. It demon-
strates a 5.8% improvement over Seer-Large and a 1% improvement over the only-finetune strategy,
showecasing its proficiency in executing tasks that require long-horizon planning. Detailed task in-
formation is provided in Appendix

Method S Avg. Task | Task2 Task3 Task4 Task5 Task6 Task7 Task8 Task9 Task 10
uccess T

MPI 773 666 866 966 950 833 833 566 866 400 783

OpenVLA 54.0 350 950 650 450 400 800  60.0 450  20.0 55.0

Seer-large 87.7 917 900 983 1000 917 933 850 883 617 717

Ours(only-ft) 92.5 917 1000 983 983 983 900 900 917 867 80.0

Ours(two-stage) 93.5 100.0 100.0 100.0 100.0  100.0 95.0 95.0 80.0 75.0 90.0

model’s ability to understand and execute complex instructions and to more effectively process mul-
timodal (language, visual, states) inputs. Furthermore, as shown in Table 2, our model outperforms
all other VLA models on the LIBERO benchmark. Specifically, compared with the previous best
success rate of 69.0%, our model improves by 24.5% on LIBERO-LONG and achieves an overall
average success rate increase of 11.8% across all tasks.

Effectiveness of the Two-Stage Training Strategy. As shown in Tables | and 3, the two-stage
trained model consistently outperforms the only-finetune baseline, achieving a 6.5% increase in task
1 success rate on the CALVIN ABC-D benchmark and a 1% improvement in the average success
rate on the LIBERO-LONG benchmark. These results clearly demonstrate the effectiveness of the
proposed two-stage training framework, further confirming that aligning the action representation
spaces prior to fine-tuning leads to superior performance in robotic manipulation tasks.

Direct Integration of Action Module Weights with Frozen VLM. In this approach, we directly
incorporate the pretrained action token, state encoder, and action module weights obtained from the
two-stage training pipeline into the original VLM, while keeping the VLM parameters frozen dur-
ing end-to-end fine-tuning. This setup aims to assess whether a robust VLA model can be achieved
solely by adapting the action module, without updating the VLM. Evaluation on the CALVIN ABC-
D benchmark reveals a first-task success rate of only 45.3%, indicating that freezing the VLM
component significantly constrains overall performance. These results highlight the necessity of
fine-tuning the VLM to equip it with action-execution capabilities.

4.3 REAL-WORLD EVALUATION

Real World Settings. We design five real-world tasks to comprehensively evaluate the model’s
capabilities, covering four canonical robotic operations: Pick, Place, Close, and Stack. Our real-
world experiments are conducted on the ALOHA platform, where the arm is precisely controlled by
six joint angles and the gripper is controlled through its opening width. To enable a fair evaluation,
we manually collect 500 high-quality demonstration trajectories (100 per task) across a wide range
of scenarios. Both the Seer model and the proposed model are trained on this dataset, with the latter
employing two distinct training strategies for systematic comparison. For evaluation, we report the
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Figure 4: Real-world Tasks. To evaluate the model in real-world settings, we formulate five tasks
that span four canonical operations: Pick, Place, Close, and Stack.

task success rate averaged over 40 independent real-world roll-out trials, providing a robust measure
of performance. The natural language instructions for the five real-world tasks are as follows: (1)
close the drawer, (2) stack the orange cup on top of the green cup, (3) stack the red block on top of
the yellow block, (4) pick up the sponge and put it into the basket, and (5) pick up the red block and
put it into the basket. The corresponding real-world scenarios are illustrated in Figure

Detailed Results. The detailed experimental results are summarized in Table 4. Our two-stage
model achieves the best performance across all tasks, surpassing both the Seer model and the fine-
tuned baseline, which demonstrates the effectiveness of our strategy in real-world settings. For
relatively short and simple tasks such as Close Drawer, all three models achieve comparable and sat-
isfactory performance. However, in longer-horizon tasks such as Pick and Place, our model exhibits
clear advantages. In particular, in the Pick Place Block task, accurate prediction of the gripper’s
opening width is crucial for successful execution, and our model demonstrates superior precision
compared with the baselines. For more complex tasks such as Stack Cups and Stack Blocks, success
requires both predicting fine-grained gripper widths and accurately identifying the correct opening
positions to achieve stable stacking. These tasks further demand real-time perception of positional
changes and a stronger understanding of visual information, where our VLA model significantly
outperforms the Seer model. Additional implementation details are provided in Appendix A.2, and
the real-world deployment results are presented in Appendix

Table 4: Real-world Results. We report the average success rate of each task over 40 rollouts. Our
model achieves the best results across all tasks.

Method ‘ Success Rate (%) 1

Close Stack Stack Pick Place  Pick Place Avg.

Drawer Cups Blocks Sponge block Score

Seer 87.5 325 60.0 75.0 70.0 65.0
Ours (only-ft) 95.0 52.5 75.0 85.0 87.5 79.0
Ours(two-stage) 97.5 52.5 80.0 87.5 92.5 82.0

5 CONCLUSION

In this work, we propose a simple yet effective VLA model architecture and validate its effectiveness.
By combining a pretrained VLM with a small action model, we enable the VLM to acquire action-
execution capabilities through lightweight training while largely preserving its original structure. To
train our model efficiently, we further introduce a two-stage distillation framework for transferring
action-generation capabilities from small action models to the VLA model. The first stage aligns
action representation spaces via lightweight representation matching, substantially reducing training
complexity. The second stage selectively fine-tunes the language model, state encoder, and action
modules, allowing the VLA to integrate the advanced ability of large-scale VLMs with the precise
action-generation ability of small action model. Experimental results show competitive performance
on CALVIN ABC-D and state-of-the-art results on LIBERO. Moreover, real-world robotic experi-
ments confirm the practical applicability of our approach.

Limitation and Future Work. Despite its simplicity and effectiveness, VITA-VLA depends on
pretrained models, which constrains its application in domains lacking appropriate action experts.
Additionally, it exhibits slower inference compared to small models. Future efforts will aim to
alleviate these limitations by enhancing efficiency and reducing reliance on pretrained models.



Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release our source code and tutorials at

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Johan Bjorck, Fernando Castafieda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. GrOOt nl: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models.
arXiv preprint arXiv:2310.10639, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi_0 : A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
Wangi Zhou, Yang Liu, Bofang Jia, et al. Openhelix: A short survey, empirical analysis, and
open-source dual-system vla model for robotic manipulation. arXiv preprint arXiv:2505.03912,
2025.

Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
interaction. arXiv preprint arXiv:2501.01957, 2025.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000-16009, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776-44791, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892-34916, 2023b.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang

Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

10


https://anonymous.4open.science/r/VLA-Model-C16E
https://anonymous.4open.science/r/VLA-Model-C16E

Under review as a conference paper at ICLR 2026

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327-7334, 2022.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqgi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.

8748-8763. PmLR, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105-6114. PMLR, 2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-
dictive inverse dynamics models are scalable learners for robotic manipulation. arXiv preprint
arXiv:2412.15109, 2024.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
manipulation. arXiv preprint arXiv:2312.13139, 2023.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975-11986, 2023.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 1702-1713, 2025.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165-2183. PMLR, 2023.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Hyperparameters. In our training process, we employ DeepSpeed’s ZeRO-2 stage to
efficiently train our model. This approach optimizes memory usage and accelerates training, mak-
ing it suitable for handling large-scale datasets. The specific training hyperparameters used in our
experiments are detailed in Table 5.

Model Hyperparameters. Since we conduct experiments on different datasets, we use different
pretrained Seer models for alignment. This leads to variations in the hyperparameters of our model
across datasets, as shown in Table 6.

11



Under review as a conference paper at ICLR 2026

Table 5: Training Hyperparameters

Hyperparameters Alignment Finetuning
batch size 8 4
gradient accumulation steps 4 4
learning rate le-4 le-4
optimizer AdamW AdamW
learning rate schedule cosine decay  cosine decay
warmup epochs 1 2
training epochs 3 2
arm loss ratio - 1.0
gripper loss ratio - 0.01
CALVIN max history length 10 10
LIBERO max history length 7 7

future action prediction

Table 6: Model Hyperparameters

In dim Out dim
Action token - 3584
Arm action encoder(Linear) 6-DoF 3584
Gripper action encoder(Linear) 2 3584
State projector(Linear) 7168 3584
Action mapper(3 layer MLP) 3584 1024(CALVIN)/384(LIBERO)

Action decoder(2 layer MLP) 1024(CALVIN)/384(LIBERO) 512(CALVIN)/192(LIBERO)
Arm action decoder(Linear)  512(CALVIN)/192(LIBERO) 6-DoF(CALVIN)/1(LIBERO)
LLM(28 layer) 3584 3584
Vision encoder 200 x 200 49 x 3584

Image Resolution. The image resolutions for the CALVIN datasets are 200 x 200 and 84 x 84,
while the resolution for LIBERO is 128 x 128. To unify resolution across datasets, we resize all
images to 200 x 200, resulting in 49 tokens per image. Since most training data for the VLM are
224 % 224 images, we also resize images to 224 x 224 for comparison. However, due to the originally
low resolution of the images, upscaling to 224 x 224 causes the VLM to struggle even with basic
image understanding tasks. After training, performance with 224 x 224 input is actually worse than
with the 200 x 200 setting.

Action Mapper Architecture. We use the action mapper to transform the hidden states of the
action tokens into the dimensionality expected by the pretrained action decoder. The action mapper
can adopt different architectures, such as MLPs, transformer-based architectures, decoder-only, or
encoder-only architectures. We compare MLP and decoder-based implementations and find the
performance difference to be negligible. Since the MLP is simpler and aligns with Occam’s razor,
we adopt the MLP as our action mapper.

12
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A.2 REAL ROBOT EXPERIMENT SETTINGS

Our real-world robotic platform is illustrated in -
Fig. 5. The setup consists of two cameras: a base- .
mounted Intel RealSense D4351 RGB-D camera i
with a resolution of 1280x720, and a gripper- i

mounted Dabai DCW depth camera with a resolu- 4 \ I fi Camera .
. . 1 . ntel RealSense D435i
tion of 640x480, providing complementary view-
points for perception. The robot itself is a PiPer
arm with six actuated joints, controlled in radians,
equipped with a Songling parallel gripper whose
opening width is directly commanded for grasp-
ing. This combination allows both global scene
observation and fine-grained local perception at
the end-effector, facilitating precise manipulation.
Demonstration data were collected via teleopera-
tion, and the same hardware was used for infer-
ence. The platform is powered by a workstation
with a single GPU, on which our model runs at
approximately 0.15s per inference step (about 6—
7 Hz). For comparison, the Seer model achieves
about 0.05s per inference (roughly 20 Hz), high-
lighting a trade-off between inference speed and
action accuracy.

" Gripper Camera
~ Dabai DCW

Songling Gripper

4

\,

=&  PiPer Arm

Figure 5: Real robot setup. The platform con-
sists of a PiPer robotic arm with a Songling
gripper, equipped with two complementary
cameras: an Intel RealSense D435i base cam-
era (1280x720) and a Dabai DCW gripper-
mounted depth camera (640x480).

A.3 DETAILED
RESULTS OF LIBERO EXPERIMENTS

We evaluate on all ten tasks from the LIBERO-
LONG benchmark, the result is like Table
taskl: Put soup and box in basket, task2: Put box
and butter in basket, task3: Turn on stove and put
pot, task4: Put bowl in drawer and close it, task5:
Put mugs on left and right plates, task6: Pick book
and place it in back, task7: Put mug on plate and put pudding to right, task8: Put soup and sauce in
basket, task9: Put both pots on stove, and task10: Put mug in microwave and close it.

We evaluate our model on the LIBERO benchmark. To present the results more clearly and intu-
itively, we sample evaluation data and visualize the process on LIBERO, as illustrated in Figure

We also report the success rates for different tasks across various benchmarks, as shown in Table
The results show that our model performs consistently well across all tasks, demonstrating its effec-
tiveness in handling long-horizon and complex tasks.

A.4 REAL-WORLD DEPLOYMENT

We further validate our method by deploying the model on the Aloha robotic arm in real-world sce-
narios. Specifically, we evaluate it across five distinct manipulation tasks, which can be categorized
into four fundamental operation types—pick, place, stack, and close—all of which require stable
and precise action outputs for successful completion. As shown in Fig. 7, our model achieves high
success rates and stable performance on all tasks, demonstrating strong generalization ability and
robustness when transferred from simulation to reality.

THE USE OF LLMS

We use the GPT-40 model to assist with grammar correction and language refinement during the
writing of this paper. We thank the developers of GPT-40 for providing such a helpful tool.
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pick up the book and place it in the back compartment of the caddy
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put both moka pots on the stove

put the white mug on the plate and put the chocolate pudding to the right of the plate
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put the yellow and white mug in the microwave and close it
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turn on the stove and put the moka pot on it

Figure 6: LIBERO-10 Visualization.
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Table 7: Task Success Rates of LIBERO Benchmarks

(a) LIBERO-Spatial

Task ID Task Name Accuracy (%)
0 Pick_black_bowl_between_plate_and_ramekin_place_on_plate 100.0
1 Pick_black_bowl_next_to_ramekin_place_on_plate 100.0
2 Pick_black_bowl_from_table_center_place_on_plate 100.0
3 Pick_black_bowl_on_cookie_box_place_on_plate 100.0
4 Pick_black_bowl_in_top_drawer_of_wooden_cabinet_place_on_plate 100.0
5 Pick_black_bowl_on_ramekin_place_on_plate 96.0
6 Pick_black_bowl_next_to_cookie_box_place_on_plate 100.0
7 Pick_black _bowl_on_stove_place_on_plate 100.0
8 Pick_black_bowl_next_to_plate_place_on_plate 94.0
9 Pick_black_bowl_on_wooden_cabinet_place_on_plate 90.0

(b) LIBERO-Goal

Task ID Task Name Accuracy (%)
0 Pick_up_the_alphabet_soup_and_place_it_in_the_basket 100.0
1 Pick_up_the_cream_cheese_and_place._it_in_the_basket 100.0
2 Pick_up_the_salad_dressing_and_place_it_in_the_basket 100.0
3 Pick_up_the_bbq_sauce_and_place_it_in_the_basket 100.0
4 Pick_up_the_ketchup_and_place._it_in_the_basket 100.0
5 Pick_up_the_tomato_sauce_and_place_it_in_the_basket 100.0
6 Pick_up_the_butter_and_place_it_in_the_basket 100.0
7 Pick_up_the_milk_and_place_it_in_the_basket 100.0
8 Pick_up_the_chocolate_pudding_and_place_it_in_the_basket 97.9
9 Pick_up_the_orange_juice_and_place_it_in_the_basket 100.0

(c) LIBERO-Object

Task ID Task Name Accuracy (%)
0 open_the_middle_drawer_of the_cabinet 100.0
1 put_the_bowl_on_the_stove 100.0
2 put_the_wine_bottle_on_top_of_the_cabinet 87.5
3 open_the_top_drawer_and_put_the_bowl_inside 100.0
4 put_the_bowl_on_top_of_the_cabinet 100.0
5 push_the_plate_to_the_front_of_the_stove 97.9
6 put_the_cream_cheese_in_the_bowl 100.0
7 turn_on_the_stove 100.0
8 put_the_bowl_on_the_plate 95.8
9 put_the_wine_bottle_on_the _rack 97.9
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Figure 7: Five real-world tasks on the Aloha robotic arm.
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