
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VITA-VLA: EFFICIENTLY TEACHING VISION-
LANGUAGE MODELS TO ACT VIA ACTION EXPERT
DISTILLATION

Anonymous authors
Paper under double-blind review

(3) Ours

LLM

Hidden
States 𝐴௛௧

Hidden
States 𝐴௛௧

Action
Expert

Hidden
States 𝐴௛௧

Hidden
States 𝐴௛௧

LLM

Hidden States 𝐴௛௧Hidden States 𝐴௛௧
Action
Mapper
Action
Mapper

Robot StateAction Query Vision Language Info

Pretrained
Action Decoder

Pretrained
Action Decoder

Robot Action

Distillation

Finetuning

MLP Projector Text Tokenizer

Vision Encoder

Vision Language Info

put the moka
pot on stove

𝐴௛௧

Unfreeze

Freeze

Same Input

𝐴௛௧ Hidden States of 𝐴௧

𝐴௧ Action at t

𝑆௧ States at t

(1) Discretization-based Methods
e.g. OpenVLA, RT-2

(2) Diffusion-based Methods
e.g. π଴, GR00T

Action ExpertLLM

𝑆௧ Noised 𝐴௧

Denoised Robot Action

Vision Language Info

Just
Auxiliary Module

LLM

Action De-TokenizerAction De-Tokenizer

Robot Action

Vision Language Info

No
State Info

No
State Info

Distillation

Align
Action
Mapper
Action
Mapper

Action QueryAction Query Vision Language Info Robot State

Figure 1: Overview of mainstream VLA architectures. (1) Discretization-based methods map vi-
sion and language features into action tokens via LLM, but ignore robot state—an essential signal of
physical dynamics—making action prediction less effective. (2) Diffusion-based approaches extract
vision and language features with a VLM but pass them to a separate action expert for denoising,
reducing the VLM to a large feature extractor and limiting its overall capability in action model-
ing. (3) Our model distills knowledge from a small action model while largely preserving the VLM
structure. By integrating robot state through a lightweight encoder and introducing an action token
to fuse vision, language, and state, it enables the VLM to actively participate in action modeling
rather than only serving as a feature extractor, thereby better leveraging its modeling capabilities.

ABSTRACT

Vision-Language Action (VLA) models significantly advance robotic manipula-
tion by leveraging the strong perception capabilities of pretrained vision-language
models (VLMs). By integrating action modules into these pretrained models,
VLA methods exhibit improved generalization and robustness. However, train-
ing them end-to-end is costly, as modeling action distributions typically requires
massive datasets and heavy computation. In this work, we propose a simple yet
effective distillation-based framework that equips VLMs with action-execution
capability by transferring knowledge from pretrained small action models. Our
architecture retains the original VLM structure, adding only an action token and
a state encoder to incorporate physical inputs, as illustrated in Figure 1. To dis-
till action knowledge, we adopt a two-stage training strategy. First, we perform
lightweight alignment by mapping VLM hidden states into the action space of
the small action model, enabling effective reuse of its pretrained action decoder
and avoiding expensive end-to-end pretraining. This also facilitates better transfer
of action modeling capabilities to the VLM. Second, we selectively fine-tune the
language model, state encoder, and action modules, enabling the system to inte-
grate multimodal inputs with precise action generation. Specifically, the action
token provides the VLM with a direct handle for predicting future actions, while
the state encoder allows the model to incorporate robot dynamics not captured by

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

vision alone (see Figure 2). This design yields substantial efficiency gains over
training large VLA models from scratch. Compared with previous state-of-the-art
methods, our method achieves 97.3% average success rate on LIBERO (11.8%
improvement), 93.5% on LIBERO-LONG (24.5% improvement), 92.5% first task
success rate on CALVIN ABC-D (4.1% improvement). In real-world experiments
across five manipulation tasks, our method consistently outperforms the teacher
model Seer, achieving 82.0% average success rate (17% improvement). These
results demonstrate that action distillation effectively enables VLMs to generate
precise, executable actions while substantially reducing training costs.

1 INTRODUCTION
Traditional small action models typically have limited parameters, are trained in fixed environments,
and excel at executing simple predefined tasks (Wu et al., 2023; Black et al., 2023; Tian et al., 2024).
However, these models often struggle to generalize to dynamic or perturbed environments, which re-
stricts their effectiveness in real-world scenarios. In contrast, VLMs demonstrate remarkable visual
comprehension and instruction-following capabilities, exhibiting strong generalization performance
across a wide range of tasks. This motivates growing interest in combining VLMs with action mod-
els, leading to the development of various VLA models, such as the RT series (Brohan et al., 2022;
Zitkovich et al., 2023), OpenVLA (Kim et al., 2024), GR00T (Bjorck et al., 2025), π0 (Black et al.,
2024), Octo (Team et al., 2024), 3D-VLA (Zhen et al., 2024), and others (Cui et al., 2025; Zhao
et al., 2025; Qu et al., 2025). These models can be broadly categorized into two main approaches,
as illustrated in Figure 1. The first category, exemplified by OpenVLA and the RT series, adopts a
discretization-based approach. These models transform continuous actions into discrete tokens by
partitioning the action space into fixed intervals. Visual and language features are then mapped to
these action tokens via a Large Language Model (LLM), which are subsequently detokenized into
executable actions. The second category, represented by GR00T and π0, follows a diffusion-based
design. Vision-language features are first extracted by a pretrained VLM and then injected into the
action expert through attention mechanisms. The action expert then iteratively refines the noised
action representations conditioned on the current state, noised actions, and vision-language features,
to generate the final executable actions. While both categories have demonstrated promising per-
formance, they exhibit notable limitations. Discretization-based approaches often omit robot state
information—a crucial signal for modeling physical dynamics—which can hinder the accuracy of
action prediction. Meanwhile, diffusion-based methods typically leverage the VLM solely as a fea-
ture extractor, reducing it to a static encoder and underutilizing its potential for end-to-end action
modeling. Furthermore, despite being trained with extensive computational resources and large-
scale, high-quality data, they still lag behind smaller, task-specific models on embodied benchmarks
like CALVIN (Mees et al., 2022) and LIBERO (Liu et al., 2023a).
To address these limitations, we propose a new VLA architecture and a two-stage training framework
that equips pretrained VLMs with action-generation capability via knowledge distillation from small
action models(Figure 1 (3)). This approach removes the need for expensive end-to-end pretraining
on large embodied datasets and achieves strong performance across simulation benchmarks and
real-world experiment. Our method is built upon the VITA-1.5 architecture, which is based on the
well-known and widely-used LLaVA architecture (Liu et al., 2023b). We extend this backbone with
two components—a state encoder and an action token—so that it can fuse visual, language, and state
inputs to generate executable robot actions, as illustrated in Figure 2. To efficiently equip the VLM
with action capabilities, we introduce a simple yet effective two-stage training framework centered
on knowledge distillation, as illustrated in Figure 3. In the first stage, we perform lightweight
alignment by projecting the VLM’s hidden features into the action space of a pretrained small action
model. This alignment process explicitly distills the action-generation policy from the small action
model into the VLM. By doing so, we can reuse the action decoder of the small action model,
avoiding the need for costly end-to-end pretraining from scratch. In the second stage, we fine-
tune specific components of the system, including the language model, state encoder, and action
modules. This selective fine-tuning helps to better integrate multimodal signals, leading to accurate
action predictions. This two-stage approach not only enhances the VLM’s ability to model complex
robotic behaviors but also reduces training cost, while retaining strong generalization.

We validate the effectiveness of our approach on both simulation benchmarks and real-world robotic
tasks. On the LIBERO benchmark, our two-stage training strategy achieves a 97.3% average suc-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

VITA 7B

Δ𝑇 = −0.3, 0.5,−0.4
Δ𝑅 = [−1°,−0°,−5°]

Action Mapper
3 layer MLP

Δ𝐺𝑟𝑖𝑝𝑝𝑒𝑟 = −1

Action Decoder
2 layer MLP

Linear

Linear

Action Module of Small Action Model

Put the moka
pot on the stove

Text
Tokenizer

Last Layer
Hidden_states

Action Token
Learnable query

Vision
Encoder

Arm pose Gripper status

Linear Linear

Linear

Figure 2: Model Architecture. Our model is build upon VITA1.5-7B (Fu et al., 2025), taking
images, instructions, action tokens, and state information as inputs to generate executable actions.
The visual and textual information is input into the VLM. The action token acts as a learnable query,
while the robot state is encoded into a single token using linear layers. An action mapper extracts the
hidden states of the action token from the final layer of the VLM, and transforms these to match the
dimensionality expected by the pretrained action decoder, and finally the action decoder generates
the corresponding actions with 7 degrees of freedom (DoF).

cess rate across all task suites, outperforming the previous state-of-the-art VLA method by 11.8%.
Notably, on the challenging LIBERO-LONG benchmark (Liu et al., 2023a), our method achieves a
93.5% success rate, surpassing the small action model Seer (Tian et al., 2024) by 5.8% and exceed-
ing the best previously reported VLA result by 24.5%. On the CALVIN ABC-D benchmark, our
method achieves the best performance among VLA-based approaches. Specifically, on the first task
of five-task sequence, it achieves a success rate of 92.5%, outperforming Seer (88.4%). We further
evaluate VITA-VLA in 200 real-world trials across five manipulation tasks spanning four canoni-
cal operations—Pick, Place, Close, and Stack—using the ALOHA robot. Our method consistently
outperforms Seer, achieving a 82.0% average success rate (17.0% improvement).

2 RELATED WORK

Small Action Models. Small action models in language-conditioned robot manipulation typically
adopt lightweight architectures with limited parameters, making them suitable for relatively simple
tasks. These models often use a pretrained CLIP (Radford et al., 2021) text encoder to process
language input and vision encoders such as CLIP or SigLIP (Zhai et al., 2023) to extract image
features. In addition, a dedicated state encoder processes the robot states, and the combined mul-
timodal inputs are passed to a high-capacity policy network to predict the corresponding actions.
RT-1 (Brohan et al., 2022) uses the Universal Sentence Encoder to process text and a pretrained
EfficientNet-B3 (Tan & Le, 2019) to encode images. The action information is discretized into 256
bins, and the image and text tokens are concatenated and fed into an 8-layer decoder-only Trans-
former, which generates action tokens end-to-end. Seer (Tian et al., 2024) uses MAE (He et al.,
2022) to process visual input, the CLIP text encoder for text processing, and an MLP to encode state
information. The action token is treated as a learnable query, which is decoded to generate action.
RDT-1b (Liu et al., 2024) employs T5 as the text tokenizer, SigLIP as the image encoder, and a Dif-
fusion Transformer as the core architecture. It generates actions through an iterative denoising pro-
cess. Although these models demonstrate strong performance on short instruction-following tasks,
they often struggle to generalize in complex or long-horizon tasks. This limitation arises primarily
from the restricted capacity of their text and vision encoders. To address this, our method adopts the
powerful VITA-1.5-7B (Fu et al., 2025) as backbone, a 7B-parameter VLM trained on large-scale,
diverse datasets. This foundation enables significantly improved instruction comprehension, visual
grounding, and long-horizon planning. This makes our approach more scalable, generalizable, and
robust for robotic manipulation across varied environments.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Large Vision-Language Action Models. Recent progress in VLMs (Liu et al., 2023b; Achiam
et al., 2023; Team et al., 2023; Bai et al., 2023) has advanced the development of VLA models for
robotic control. RT-2 (Zitkovich et al., 2023) is the first to convert actions into discrete tokens and
perform end-to-end autoregressive training using PaLM-E (12B) as the backbone. It is trained on
130k human-teleoperated demonstrations collected over 17 months. OpenVLA (Kim et al., 2024)
extends this approach with an open-source 7B LLaMA model, using SigLIP and DINOv2 as vi-
sion encoders and trained on 970k episodes from the Open X-Embodiment dataset. Different from
above, π0 (Black et al., 2024) formulates action generation as a denoising process. It combines
Gemma-2B as the VLM with a diffusion-based action expert, jointly trained over 68 dexterous tasks
from diverse robot embodiments. GR00T (Bjorck et al., 2025) uses Eagle-2 (1.34B) as the VLM
backbone and injects its vision-language features into a diffusion transformer via cross-attention,
generating actions conditioned on the current state and noised actions through denoising. The en-
tire model is trained on a dataset of 780k simulated trajectories. Despite their scale, these models
require large datasets, long training times, and significant computational resources. In contrast, our
approach provides a more efficient and scalable alternative. Instead of training a full VLA model
from scratch, we introduce a two-stage distillation framework. In the first stage, we explicitly align
the action representation spaces of a pretrained VLM and a small action model through lightweight
representation matching, updating only a small subset of parameters to reduce computational cost.
In the second stage, we directly attach the pretrained action decoder from the small action model to
the VLM, forming a new VLA system. We then fine-tune the language model, state encoder, and the
entire action module—including the action mapper and decoder—allowing the model to integrate
the advanced capabilities of the VLM with the low-level control precision of the small action model,
while remaining more efficient than training a VLA model from scratch.

3 METHOD

3.1 PROBLEM FORMULATION

We consider a robotic manipulation task formulated as a Markov Decision Process. Given a dataset
D = {(xi, li, si, ai)}Ni=1 of N demonstrations, each tuple consists of visual observation xi ∈ X ,
language instruction li ∈ L, robot state si ∈ S ⊆ Rds=7 (6 degrees of freedom (DoF) arm state and
1 dimension gripper width), and a corresponding action ai ∈ A ⊆ Rda=7 (comprising aarm

i for the
6-DoF arm action and 1 dimension agrip

i for the gripper width). Our objective is to learn a policy

πθ : X × L× S → A,

that predicts executable actions â = πθ(x, l, s) conditioned on multimodal inputs.

We further assume access to a pretrained small action model πexpert : X ×L×S → A that has been
trained on the same dataset D, which demonstrates strong performance on robotic manipulation
tasks. Our goal is to distill the action modeling capability of πexpert into a vision-language model fϕ,
creating a unified VLA model that combines the visual-linguistic understanding and generalizability
of VLMs with the precise action prediction of specialized action models.

3.2 OVERALL ARCHITECTURE

The overall architecture of our model is illustrated in Figure 2. Our architecture extends the pre-
trained VITA-1.5-7B model with minimal modifications to enable action prediction while preserv-
ing its vision-language capabilities. The backbone consists of three primary components: a vision
encoder (InternViT-300M), a connector (3-layer MLP), and a language model (Qwen-2.5-7B). This
backbone has been fine-tuned on large-scale open-source data covering a wide range of scenarios,
demonstrating strong capabilities in image understanding and complex instruction following.
State Input. To incorporate robot state information, we initially explore concatenating raw state
values as text tokens, but this approach fails because numerical values are poorly represented in
the VLM’s token vocabulary and the model struggles to interpret these values accurately. Thus, we
design a dedicated state encoder. Specifically, the 6-DoF arm state and the 2-dimensional gripper
state (one-hot encoding of the 1 dimension gripper width) are first encoded separately by two linear
layers. Their outputs are then concatenated and passed through an additional linear layer, which
projects the combined representation into the same dimension as the text tokens. This design allows
the model to effectively integrate and attend to structured state information.
Action Token. We define a learnable action token that acts as a query during training and inference.
This token is appended to the input sequence and is responsible for attending to the multimodal

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

VITA 7B Seer

Alignment Finetuning

VITA 7B

Input Image Language Robot StateAction tokenLanguageInput ImageAction token Action tokenSame InputRobot State

Only LLM

Unfreeze

Freeze

Action
Decoder

Linear

Linear

Last Layer
Hidden_states

Action
Mapper

MAE loss

Arm
Action

Gripper
Action

Cross Entropy loss

Last Layer
Hidden_statesMSE lossLast Layer

Hidden_states
Action
Mapper

Figure 3: Training Strategy. Our training strategy comprises two stages. In the alignment stage, we
train the action mapper, action tokens, and state encoder to bridge the gap between the action output
spaces of the VLM and the small action model, updating only 30 million parameters while achieving
improved fine-tuning outcomes. In the fine-tuning stage, we then perform end-to-end optimization
of the entire model to further enhance overall performance.

context to produce action representations. To predict three future steps, the same token is repeated
three times. Since consecutive actions are highly correlated and usually differ minimally, a single
shared token is sufficient to capture temporal continuity. We also observed that assigning indepen-
dent action tokens to each step does not yield additional benefits in our setting.
Input. Each training sample comprises 13 time steps. This setting follows the small action model,
which is trained on 13-step trajectories, ensuring consistent temporal structure during alignment.
At each step, the model receives a structured multimodal sequence: image tokens from two views
(static and wrist cameras), text tokens (instruction), one state token, and three action tokens. Each
image (200× 200) is encoded into 49 visual tokens, yielding n = 98 image tokens per step. Let m
be the number of instruction tokens; the complete per-step input is:

[img1] . . . [imgn] [text1] . . . [textm] [state] [act1] [act2] [act3]. (1)
Formally, we denote the complete set of inputs as x (image tokens), t (text tokens), s (state token),
and aq (action token). The model π jointly processes {x, t, s, aq} and the action embeddings are
obtained by extracting the final-layer hidden states of aq:

ah = πlast(aq | x, t, s). (2)

Action Mapper, Decoder and Output. We employ a lightweight three-layer MLP as the action
mapper M to project ah into the input space expected by the pretrained action decoder. The first
layer transforms the feature dimension of ah to match the action space. The other two layers keep the
same size and introduce sufficient nonlinearity. This architecture strikes a balance between model
expressiveness and computational efficiency. The mapped features are then fed into the pretrained
action decoder D, which is a fixed two-layer MLP reused from the small action model. After the
first-stage alignment, the output space of the action mapper becomes well aligned with the decoder’s
expected input space, enabling effective integration. Together, the action mapper and decoder gen-
erate the final executable action â = D(M(ah)).

3.3 TRAINING STRATEGY

To equip our VLA model with action execution capabilities, we introduce a two-stage training strat-
egy. The core idea is to transfer the action modeling abilities from a small action model to the VLA
through alignment. In the first stage, we employ lightweight alignment to bridge the gap between
the action representation spaces of the VLA and the small action model, enabling the reuse of the
pretrained action decoder from the small action model. In the second stage, end-to-end fine-tuning is
conducted to further enhance the VLA model’s action modeling capabilities. This approach reduces
training resources while maintaining high performance in action generation.

STAGE 1: ALIGNMENT

The first stage, illustrated on the left side of Figure 3, aims to align the hidden action representations
between the VLA model and the small action model. Except for the learnable action query, both
models receive identical inputs, including the images, text instruction, and robot state. Since both

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

models follow an autoregressive architecture, we extract the last-layer hidden states corresponding
to the action tokens from each model for alignment. Due to the difference in feature dimensions, we
use an action mapper to transform the dimension of the VLA’s action token hidden states into that
of the small action model. We then compute a mean squared error (MSE) loss between the mapped
VLA hidden states and the corresponding hidden states from the small action model:

Lalign =
1

N

N∑
i=1

∥∥∥M(aVLA,i
h)− aSmall,i

h

∥∥∥2
2
, (3)

where M(·) denotes the action mapper, N is the number of action tokens, aVLA
h is the VLA model’s

last-layer hidden state of the action token, and aSmall
h is the corresponding hidden state of the small

action model. In this stage, only the state encoder, action tokens, and action mapper are trained,
comprising a total of approximately 30 million parameters. This lightweight configuration enables
efficient and fast alignment while preparing the model for the subsequent end-to-end fine-tuning.

STAGE 2: END-TO-END FINE-TUNING

After the alignment stage, the VLA model is better positioned for end-to-end fine-tuning. We con-
tinue using the same data as in Stage 1—comprising action tokens, images, text instructions, and
robot states, as illustrated on the right side of Figure 3. These inputs are processed by the VLA
model to produce the last-layer hidden states corresponding to the action tokens.

As in Stage 1, we apply the pretrained action mapper to project hidden states into the action space
of the small action model. We reuse the pretrained action decoder and linear projection heads from
the small action model to generate executable actions. The decoder is a two-layer MLP, followed by
linear layers for predicting 6-DoF arm actions and binary gripper actions. Arm actions are super-
vised with mean absolute error (MAE) loss, and gripper actions with binary cross-entropy (BCE)
loss. The total loss is their weighted sum: Ltotal = Larm + λ · Lgripper where:

• Larm = 1
T

∑T
t=1 ∥âarm

t − aarm
t ∥1 is the MAE loss for the 6-DoF arm action, computed

across all predicted time steps T . Here, âarm
t ∈ R6 denotes the predicted continuous arm

action, and aarm
t ∈ R6 denotes the ground truth.

• Lgripper = − 1
T

∑T
t=1

[
agrip
t log(âgrip

t) + (1− agrip
t) log(1− âgrip

t)
]

is the BCE loss for the

gripper action, where âgrip
t ∈ [0, 1] denotes the predicted probability of the gripper being

closed, and agrip
t ∈ {0, 1} denotes the ground truth label.

• λ = 0.01 is a scaling factor set according to the observed loss magnitudes, ensuring that
the gripper loss and arm loss contribute comparably during training.

This combined loss guides the model to learn accurate continuous arm actions and reliable binary
gripper actions, maintaining balance between the two goals. In this stage, we fine-tune the LLM,
state encoder, learnable action queries, action mapper, and action decoder, enabling end-to-end in-
tegration of multimodal information for accurate action prediction.

Choice of MSE and MAE. We adopt different loss functions in the two stages to suit their distinct
goals. During alignment, MSE penalizes large deviations between VLM and small model hidden
states, making it suitable for representation matching. In fine-tuning, the objective shifts to pre-
dicting continuous control signals. We use MAE for 6-DoF arm actions, as it yields more stable
optimization and is less sensitive to outliers. This combination balances representation alignment
with reliable low-level action supervision.

4 EXPERIMENTS

To validate the effectiveness of our model architecture and training strategy, we conduct simulation
experiments on the CALVIN ABC-D and LIBERO benchmarks, as well as real-world experiments
using a robotic arm platform. Our evaluation aims to address the following three questions: 1)
Can this architecture perform well across various environments and tasks? 2) Does the proposed
distillation process lead to measurable performance gains? 3) Can the model be effectively deployed
on real-world robotic platforms?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: CALVIN ABC-D results. We report the success rates computed over 1000 rollouts for
each task, along with the average number of completed tasks required to solve five instructions
consecutively (denoted as Avg. Len.). The results for small action models without a VLM are
displayed in the first three rows. The remaining rows represent VLA models that include a VLM.
The best result in each category is highlighted in bold.
*: SAM is Small Action Model. † indicates results reproduced by us.

Method Category VLM Task completed in a row

1 2 3 4 5 Avg. Len. ↑

Susie
SAM*

- 87.0 69.0 49.0 38.0 26.0 2.69
GR-1 - 85.4 71.2 59.6 49.7 40.1 3.06

Seer-Large† - 88.4 80.9 74.8 69.6 62.1 3.76

3D-VLA

VLA

BLIP2-4B 44.7 16.3 8.1 1.6 0.0 0.71
OpenVLA Prismatic-7B 62.8 18.3 5.8 1.8 1.0 0.90

Roboflamingo Flamingo-3B 82.4 61.9 46.6 33.1 23.5 2.48
Ours(only-ft) VITA1.5-7B 86.0 73.2 60.4 49.4 39.8 3.08

Ours (two-stage) VITA1.5-7B 92.5 77.1 61.0 49.2 38.2 3.18

4.1 BENCHMARKS, BASELINES AND EXPERIMENT DETAILS

Benchmarks. We evaluate our model on two robotic manipulation benchmarks: CALVIN and
LIBERO. CALVIN is a simulated benchmark comprising 34 tasks and 1,000 language instructions
across four environments (A–D), each with different desk colors and object layouts. Following
the ABC-D setting, models are trained on environments A, B, and C, and tested on the unseen
environment D to assess generalization. LIBERO is a comprehensive lifelong learning benchmark
with four task suites—Spatial, Object, Goal, and LONG—each suite contains 10 long-horizon tasks,
evaluating different aspects of generalization in robotic manipulation.

Baselines. We compare our method with a diverse set of representative VLA baselines. For
LIBERO, we include large-scale pretrained generalist models (OpenVLA (Kim et al., 2024),
Octo (Team et al., 2024)) as well as architectures with enhanced grounding or reasoning capa-
bilities, such as SpatialVLA (spatial information) (Qu et al., 2025), CoT-VLA (visual chain-of-
thought) (Zhao et al., 2025), and π0-Fast (flow-based method) (Black et al., 2024). For CALVIN
ABC-D, we evaluate both small action models—Susie (diffusion-based subgoal planning) (Black
et al., 2023) and GR-1 (video pretraining) (Wu et al., 2023)—and VLA-based methods including
Roboflamingo (Li et al., 2023), 3D-VLA (Zhen et al., 2024), and OpenVLA. Seer (Tian et al., 2024)
is used in both benchmarks and also serves as the distillation teacher.

Experiment Details. Our experiments involve three distinct training settings: 1) Two-stage: a
two-stage training strategy, where the model is first aligned and then fine-tuned. 2) Only-finetune:
no alignment stage is performed. Instead, we directly attach the pretrained action module from the
small action model to our VLM, and then perform only the fine-tuning procedure from the two-stage
protocol to train the combined model. 3) Freeze-vlm: directly integrate the pretrained action token,
state encoder, and action module weights (from the first strategy) into the VLM, but do not update the
VLM parameters during training, to test whether a strong VLA could be achieved without tuning the
VLM. In all experiments, we use only language-conditioned data, corresponding to 58% of the full
training set in CALVIN ABC-D. Additional hyperparameter settings are provided in Appendix A.1.

4.2 MAIN RESULTS

Zero-Shot Generalization to Unseen Environments. Table 1 presents the results on the CALVIN
ABC-D benchmark. Our model achieves the highest performance among existing VLA models
when trained on environments A, B, and C and evaluated in the unseen environment D, demonstrat-
ing strong generalization capability to unseen scenes. Although our model achieves a higher success
rate than Seer-Large on Task 1 (92.5% vs. 88.4%), it yields a lower average task success length. We
attribute this to the model’s sensitivity to environmental changes during task transitions, which may
lead the VLM to misinterpret context or lose consistency across subtasks. This highlights a potential
area for improving temporal robustness in long-horizon manipulation.
Long-Horizon Planning and Complex Instruction Execution. As shown in Table 3, our model
achieves a 5.8% improvement in average success rate on the LIBERO-LONG benchmark compared
to the Seer-Large model. We attribute this gain to the integration of a VLM, which improves the

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: LIBERO results of different VLA models. We present the success rates of various VLA
models. To ensure fair comparison, we report the average success rates over 500 episodes, following
the evaluation protocol used in CoT-VLA (Zhao et al., 2025). The best result in each category is
highlighted in bold. Our model achieves state-of-the-art performance across all tasks, demonstrating
exceptional long-horizon execution capabilities. Notably, it raises the average success rate to 97.3%,
in the LIBERO-LONG task, it improves the previous state-of-the-art by 24.5%.

Method SPATIAL OBJECT GOAL LONG Average

Octo 78.9% 85.7% 84.6% 51.1% 75.1%
OpenVLA 84.9% 88.4% 79.2% 53.7% 76.5%

SpatialVLA 88.2% 89.9% 78.6% 55.5% 78.1%
CoT-VLA 87.5% 91.6% 87.6% 69.0% 81.1%
π0-FAST 96.4% 96.8% 88.6% 60.2% 85.5%

Ours(two-stage) 98.0 % 99.8 % 97.9 % 93.5% 97.3%

Table 3: LIBERO-LONG results across different tasks. For each task, we report the average
success rate over 20 rollouts, following the evaluation protocol used in Seer (Tian et al., 2024).
The metric “Avg.Success” denotes the average success rate across all ten tasks. The best results
are highlighted in bold. Our model achieves the best performance on LIBERO-LONG. It demon-
strates a 5.8% improvement over Seer-Large and a 1% improvement over the only-finetune strategy,
showcasing its proficiency in executing tasks that require long-horizon planning. Detailed task in-
formation is provided in Appendix A.3.

Method Avg.
Success ↑ Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Task 9 Task 10

MPI 77.3 66.6 86.6 96.6 95.0 83.3 83.3 56.6 86.6 40.0 78.3
OpenVLA 54.0 35.0 95.0 65.0 45.0 40.0 80.0 60.0 45.0 20.0 55.0
Seer-large 87.7 91.7 90.0 98.3 100.0 91.7 93.3 85.0 88.3 61.7 71.7
Ours(only-ft) 92.5 91.7 100.0 98.3 98.3 98.3 90.0 90.0 91.7 86.7 80.0
Ours(two-stage) 93.5 100.0 100.0 100.0 100.0 100.0 95.0 95.0 80.0 75.0 90.0

model’s ability to understand and execute complex instructions and to more effectively process mul-
timodal (language, visual, states) inputs. Furthermore, as shown in Table 2, our model outperforms
all other VLA models on the LIBERO benchmark. Specifically, compared with the previous best
success rate of 69.0%, our model improves by 24.5% on LIBERO-LONG and achieves an overall
average success rate increase of 11.8% across all tasks.
Effectiveness of the Two-Stage Training Strategy. As shown in Tables 1 and 3, the two-stage
trained model consistently outperforms the only-finetune baseline, achieving a 6.5% increase in task
1 success rate on the CALVIN ABC-D benchmark and a 1% improvement in the average success
rate on the LIBERO-LONG benchmark. These results clearly demonstrate the effectiveness of the
proposed two-stage training framework, further confirming that aligning the action representation
spaces prior to fine-tuning leads to superior performance in robotic manipulation tasks.
Direct Integration of Action Module Weights with Frozen VLM. In this approach, we directly
incorporate the pretrained action token, state encoder, and action module weights obtained from the
two-stage training pipeline into the original VLM, while keeping the VLM parameters frozen dur-
ing end-to-end fine-tuning. This setup aims to assess whether a robust VLA model can be achieved
solely by adapting the action module, without updating the VLM. Evaluation on the CALVIN ABC-
D benchmark reveals a first-task success rate of only 45.3%, indicating that freezing the VLM
component significantly constrains overall performance. These results highlight the necessity of
fine-tuning the VLM to equip it with action-execution capabilities.

4.3 REAL-WORLD EVALUATION

Real World Settings. We design five real-world tasks to comprehensively evaluate the model’s
capabilities, covering four canonical robotic operations: Pick, Place, Close, and Stack. Our real-
world experiments are conducted on the ALOHA platform, where the arm is precisely controlled by
six joint angles and the gripper is controlled through its opening width. To enable a fair evaluation,
we manually collect 500 high-quality demonstration trajectories (100 per task) across a wide range
of scenarios. Both the Seer model and the proposed model are trained on this dataset, with the latter
employing two distinct training strategies for systematic comparison. For evaluation, we report the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Close Drawer Stack Cups Stack Blocks Pick Place Sponge Pick Place Block

Figure 4: Real-world Tasks. To evaluate the model in real-world settings, we formulate five tasks
that span four canonical operations: Pick, Place, Close, and Stack.

task success rate averaged over 40 independent real-world roll-out trials, providing a robust measure
of performance. The natural language instructions for the five real-world tasks are as follows: (1)
close the drawer, (2) stack the orange cup on top of the green cup, (3) stack the red block on top of
the yellow block, (4) pick up the sponge and put it into the basket, and (5) pick up the red block and
put it into the basket. The corresponding real-world scenarios are illustrated in Figure 5.

Detailed Results. The detailed experimental results are summarized in Table 4. Our two-stage
model achieves the best performance across all tasks, surpassing both the Seer model and the fine-
tuned baseline, which demonstrates the effectiveness of our strategy in real-world settings. For
relatively short and simple tasks such as Close Drawer, all three models achieve comparable and sat-
isfactory performance. However, in longer-horizon tasks such as Pick and Place, our model exhibits
clear advantages. In particular, in the Pick Place Block task, accurate prediction of the gripper’s
opening width is crucial for successful execution, and our model demonstrates superior precision
compared with the baselines. For more complex tasks such as Stack Cups and Stack Blocks, success
requires both predicting fine-grained gripper widths and accurately identifying the correct opening
positions to achieve stable stacking. These tasks further demand real-time perception of positional
changes and a stronger understanding of visual information, where our VLA model significantly
outperforms the Seer model. Additional implementation details are provided in Appendix A.2, and
the real-world deployment results are presented in Appendix A.4.

Table 4: Real-world Results. We report the average success rate of each task over 40 rollouts. Our
model achieves the best results across all tasks.

Method Success Rate (%) ↑
Close

Drawer
Stack
Cups

Stack
Blocks

Pick Place
Sponge

Pick Place
block

Avg.
Score

Seer 87.5 32.5 60.0 75.0 70.0 65.0
Ours (only-ft) 95.0 52.5 75.0 85.0 87.5 79.0

Ours(two-stage) 97.5 52.5 80.0 87.5 92.5 82.0

5 CONCLUSION

In this work, we propose a simple yet effective VLA model architecture and validate its effectiveness.
By combining a pretrained VLM with a small action model, we enable the VLM to acquire action-
execution capabilities through lightweight training while largely preserving its original structure. To
train our model efficiently, we further introduce a two-stage distillation framework for transferring
action-generation capabilities from small action models to the VLA model. The first stage aligns
action representation spaces via lightweight representation matching, substantially reducing training
complexity. The second stage selectively fine-tunes the language model, state encoder, and action
modules, allowing the VLA to integrate the advanced ability of large-scale VLMs with the precise
action-generation ability of small action model. Experimental results show competitive performance
on CALVIN ABC-D and state-of-the-art results on LIBERO. Moreover, real-world robotic experi-
ments confirm the practical applicability of our approach.

Limitation and Future Work. Despite its simplicity and effectiveness, VITA-VLA depends on
pretrained models, which constrains its application in domains lacking appropriate action experts.
Additionally, it exhibits slower inference compared to small models. Future efforts will aim to
alleviate these limitations by enhancing efficiency and reducing reliance on pretrained models.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we release our source code and tutorials at https://anonymous.
4open.science/r/VLA-Model-C16E.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding, Linxi Fan,
Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, et al. Gr00t n1: An open foundation model
for generalist humanoid robots. arXiv preprint arXiv:2503.14734, 2025.

Kevin Black, Mitsuhiko Nakamoto, Pranav Atreya, Homer Walke, Chelsea Finn, Aviral Kumar, and
Sergey Levine. Zero-shot robotic manipulation with pretrained image-editing diffusion models.
arXiv preprint arXiv:2310.10639, 2023.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. pi 0 : A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Can Cui, Pengxiang Ding, Wenxuan Song, Shuanghao Bai, Xinyang Tong, Zirui Ge, Runze Suo,
Wanqi Zhou, Yang Liu, Bofang Jia, et al. Openhelix: A short survey, empirical analysis, and
open-source dual-system vla model for robotic manipulation. arXiv preprint arXiv:2505.03912,
2025.

Chaoyou Fu, Haojia Lin, Xiong Wang, Yi-Fan Zhang, Yunhang Shen, Xiaoyu Liu, Haoyu Cao,
Zuwei Long, Heting Gao, Ke Li, et al. Vita-1.5: Towards gpt-4o level real-time vision and speech
interaction. arXiv preprint arXiv:2501.01957, 2025.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 16000–16009, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023a.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023b.

Songming Liu, Lingxuan Wu, Bangguo Li, Hengkai Tan, Huayu Chen, Zhengyi Wang, Ke Xu, Hang
Su, and Jun Zhu. Rdt-1b: a diffusion foundation model for bimanual manipulation. arXiv preprint
arXiv:2410.07864, 2024.

10

https://anonymous.4open.science/r/VLA-Model-C16E
https://anonymous.4open.science/r/VLA-Model-C16E

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Oier Mees, Lukas Hermann, Erick Rosete-Beas, and Wolfram Burgard. Calvin: A benchmark for
language-conditioned policy learning for long-horizon robot manipulation tasks. IEEE Robotics
and Automation Letters, 7(3):7327–7334, 2022.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, et al. Spatialvla: Exploring spatial representations for visual-
language-action model. arXiv preprint arXiv:2501.15830, 2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
works. In International conference on machine learning, pp. 6105–6114. PMLR, 2019.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui Yu, Radu Soricut,
Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican, et al. Gemini: a family of highly
capable multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Yang Tian, Sizhe Yang, Jia Zeng, Ping Wang, Dahua Lin, Hao Dong, and Jiangmiao Pang. Pre-
dictive inverse dynamics models are scalable learners for robotic manipulation. arXiv preprint
arXiv:2412.15109, 2024.

Hongtao Wu, Ya Jing, Chilam Cheang, Guangzeng Chen, Jiafeng Xu, Xinghang Li, Minghuan Liu,
Hang Li, and Tao Kong. Unleashing large-scale video generative pre-training for visual robot
manipulation. arXiv preprint arXiv:2312.13139, 2023.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training. In Proceedings of the IEEE/CVF international conference on computer vision,
pp. 11975–11986, 2023.

Qingqing Zhao, Yao Lu, Moo Jin Kim, Zipeng Fu, Zhuoyang Zhang, Yecheng Wu, Zhaoshuo Li,
Qianli Ma, Song Han, Chelsea Finn, et al. Cot-vla: Visual chain-of-thought reasoning for vision-
language-action models. In Proceedings of the Computer Vision and Pattern Recognition Confer-
ence, pp. 1702–1713, 2025.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong, and
Chuang Gan. 3d-vla: A 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

Brianna Zitkovich, Tianhe Yu, Sichun Xu, Peng Xu, Ted Xiao, Fei Xia, Jialin Wu, Paul Wohlhart,
Stefan Welker, Ayzaan Wahid, et al. Rt-2: Vision-language-action models transfer web knowledge
to robotic control. In Conference on Robot Learning, pp. 2165–2183. PMLR, 2023.

A APPENDIX

A.1 IMPLEMENTATION DETAILS

Training Hyperparameters. In our training process, we employ DeepSpeed’s ZeRO-2 stage to
efficiently train our model. This approach optimizes memory usage and accelerates training, mak-
ing it suitable for handling large-scale datasets. The specific training hyperparameters used in our
experiments are detailed in Table 5.

Model Hyperparameters. Since we conduct experiments on different datasets, we use different
pretrained Seer models for alignment. This leads to variations in the hyperparameters of our model
across datasets, as shown in Table 6.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Table 5: Training Hyperparameters

Hyperparameters Alignment Finetuning

batch size 8 4

gradient accumulation steps 4 4

learning rate 1e-4 1e-4

optimizer AdamW AdamW

learning rate schedule cosine decay cosine decay

warmup epochs 1 2

training epochs 3 2

arm loss ratio - 1.0

gripper loss ratio - 0.01

CALVIN max history length 10 10

LIBERO max history length 7 7

future action prediction 3 3

Table 6: Model Hyperparameters

In dim Out dim

Action token - 3584

Arm action encoder(Linear) 6-DoF 3584

Gripper action encoder(Linear) 2 3584

State projector(Linear) 7168 3584

Action mapper(3 layer MLP) 3584 1024(CALVIN)/384(LIBERO)

Action decoder(2 layer MLP) 1024(CALVIN)/384(LIBERO) 512(CALVIN)/192(LIBERO)

Arm action decoder(Linear) 512(CALVIN)/192(LIBERO) 6-DoF(CALVIN)/1(LIBERO)

LLM(28 layer) 3584 3584

Vision encoder 200× 200 49× 3584

Image Resolution. The image resolutions for the CALVIN datasets are 200 × 200 and 84 × 84,
while the resolution for LIBERO is 128 × 128. To unify resolution across datasets, we resize all
images to 200 × 200, resulting in 49 tokens per image. Since most training data for the VLM are
224×224 images, we also resize images to 224×224 for comparison. However, due to the originally
low resolution of the images, upscaling to 224 × 224 causes the VLM to struggle even with basic
image understanding tasks. After training, performance with 224× 224 input is actually worse than
with the 200× 200 setting.

Action Mapper Architecture. We use the action mapper to transform the hidden states of the
action tokens into the dimensionality expected by the pretrained action decoder. The action mapper
can adopt different architectures, such as MLPs, transformer-based architectures, decoder-only, or
encoder-only architectures. We compare MLP and decoder-based implementations and find the
performance difference to be negligible. Since the MLP is simpler and aligns with Occam’s razor,
we adopt the MLP as our action mapper.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 REAL ROBOT EXPERIMENT SETTINGS

Gripper Camera
Dabai DCW

Base Camera
Intel RealSense D435i

PiPer Arm

Songling Gripper

Figure 5: Real robot setup. The platform con-
sists of a PiPer robotic arm with a Songling
gripper, equipped with two complementary
cameras: an Intel RealSense D435i base cam-
era (1280×720) and a Dabai DCW gripper-
mounted depth camera (640×480).

Our real-world robotic platform is illustrated in
Fig. 5. The setup consists of two cameras: a base-
mounted Intel RealSense D435i RGB-D camera
with a resolution of 1280×720, and a gripper-
mounted Dabai DCW depth camera with a resolu-
tion of 640×480, providing complementary view-
points for perception. The robot itself is a PiPer
arm with six actuated joints, controlled in radians,
equipped with a Songling parallel gripper whose
opening width is directly commanded for grasp-
ing. This combination allows both global scene
observation and fine-grained local perception at
the end-effector, facilitating precise manipulation.
Demonstration data were collected via teleopera-
tion, and the same hardware was used for infer-
ence. The platform is powered by a workstation
with a single GPU, on which our model runs at
approximately 0.15s per inference step (about 6–
7 Hz). For comparison, the Seer model achieves
about 0.05s per inference (roughly 20 Hz), high-
lighting a trade-off between inference speed and
action accuracy.

A.3 DETAILED
RESULTS OF LIBERO EXPERIMENTS

We evaluate on all ten tasks from the LIBERO-
LONG benchmark, the result is like Table 3:
task1: Put soup and box in basket, task2: Put box
and butter in basket, task3: Turn on stove and put
pot, task4: Put bowl in drawer and close it, task5:
Put mugs on left and right plates, task6: Pick book
and place it in back, task7: Put mug on plate and put pudding to right, task8: Put soup and sauce in
basket, task9: Put both pots on stove, and task10: Put mug in microwave and close it.

We evaluate our model on the LIBERO benchmark. To present the results more clearly and intu-
itively, we sample evaluation data and visualize the process on LIBERO, as illustrated in Figure 6.

We also report the success rates for different tasks across various benchmarks, as shown in Table 7.
The results show that our model performs consistently well across all tasks, demonstrating its effec-
tiveness in handling long-horizon and complex tasks.

A.4 REAL-WORLD DEPLOYMENT

We further validate our method by deploying the model on the Aloha robotic arm in real-world sce-
narios. Specifically, we evaluate it across five distinct manipulation tasks, which can be categorized
into four fundamental operation types—pick, place, stack, and close—all of which require stable
and precise action outputs for successful completion. As shown in Fig. 7, our model achieves high
success rates and stable performance on all tasks, demonstrating strong generalization ability and
robustness when transferred from simulation to reality.

THE USE OF LLMS

We use the GPT-4o model to assist with grammar correction and language refinement during the
writing of this paper. We thank the developers of GPT-4o for providing such a helpful tool.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

pick up the book and place it in the back compartment of the caddy

put both moka pots on the stove

put both the alphabet soup and the cream cheese box in the basket

put both the alphabet soup and the tomato sauce in the basket

put both the cream cheese box and the butter in the basket

put the black bowl in the bottom drawer of the cabinet and close it

put the white mug on the left plate and put the yellow and white mug on the right plate

put the white mug on the plate and put the chocolate pudding to the right of the plate

put the yellow and white mug in the microwave and close it

turn on the stove and put the moka pot on it

Figure 6: LIBERO-10 Visualization.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 7: Task Success Rates of LIBERO Benchmarks

(a) LIBERO-Spatial

Task ID Task Name Accuracy (%)

0 Pick black bowl between plate and ramekin place on plate 100.0

1 Pick black bowl next to ramekin place on plate 100.0

2 Pick black bowl from table center place on plate 100.0

3 Pick black bowl on cookie box place on plate 100.0

4 Pick black bowl in top drawer of wooden cabinet place on plate 100.0

5 Pick black bowl on ramekin place on plate 96.0

6 Pick black bowl next to cookie box place on plate 100.0

7 Pick black bowl on stove place on plate 100.0

8 Pick black bowl next to plate place on plate 94.0

9 Pick black bowl on wooden cabinet place on plate 90.0

(b) LIBERO-Goal

Task ID Task Name Accuracy (%)

0 Pick up the alphabet soup and place it in the basket 100.0

1 Pick up the cream cheese and place it in the basket 100.0

2 Pick up the salad dressing and place it in the basket 100.0

3 Pick up the bbq sauce and place it in the basket 100.0

4 Pick up the ketchup and place it in the basket 100.0

5 Pick up the tomato sauce and place it in the basket 100.0

6 Pick up the butter and place it in the basket 100.0

7 Pick up the milk and place it in the basket 100.0

8 Pick up the chocolate pudding and place it in the basket 97.9

9 Pick up the orange juice and place it in the basket 100.0

(c) LIBERO-Object

Task ID Task Name Accuracy (%)

0 open the middle drawer of the cabinet 100.0

1 put the bowl on the stove 100.0

2 put the wine bottle on top of the cabinet 87.5

3 open the top drawer and put the bowl inside 100.0

4 put the bowl on top of the cabinet 100.0

5 push the plate to the front of the stove 97.9

6 put the cream cheese in the bowl 100.0

7 turn on the stove 100.0

8 put the bowl on the plate 95.8

9 put the wine bottle on the rack 97.9

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

close the drawer

stack the orange cup on top of the green cup

stack the red block on top of the yellow block

pick up the red block and put it into the basket

pick up the sponge and put it into the basket

Figure 7: Five real-world tasks on the Aloha robotic arm.

16

	INTRODUCTION
	RELATED WORK
	Method
	Problem Formulation
	Overall Architecture
	Training Strategy

	Experiments
	Benchmarks, Baselines and Experiment details
	Main Results
	Real-World Evaluation

	Conclusion
	Appendix
	Implementation Details
	Real Robot Experiment Settings
	Detailed Results of LIBERO Experiments
	Real-World Deployment

