
ProxyTune: Hyperparameter tuning through iteratively refined proxies

Agrin Hilmkil * 1 Wenbo Gong * 1 Nick Pawlowski 1 Cheng Zhang 1

Abstract
Tuning the hyperparameters of machine learning
algorithms against a target metric is an essential
way of ensuring good performance on tasks. How-
ever, in areas such as causal machine learning the
target metric may not be accessible due to the
lack of ground truths. In this work, we compare
two existing approaches and propose an exten-
sion, which iteratively refines proxies towards the
dataset, called ProxyTune. This allows construct-
ing previously unavailable metrics through prox-
ies, which enables the existing hyperparameter
tuning methods. We focus on the causal discov-
ery, where the ground truth graph is unavailable.
Our preliminary results on synthetic data show
the ineffectiveness of existing approaches and the
advantages of the iterative refinement.

1. Introduction
Hyperparameter Tuning (HT) in causal machine learning
(Rubin, 2005; Parikh et al., 2022; Peters et al., 2017; Zheng
et al., 2018) is hard due to the lack of ground-truth target
quantities, such as the true structures or average treatment
effects. Therefore, it is impossible to calculate the target
metric for different hyperparameters complicating the com-
parison of their respective performances, rendering the use
of classical HT methods such as Bayesian Optimization
(BO) (Frazier, 2018) as incompatible choice.

Despite the above difficulty, a common approach is to use an
alternative available metric that indirectly reflects the quality
of the target metric, called proxy metrics. HT is then applied
to maximize the proxy metric. Depending on the tasks,
different proxy metrics are preferred. Under the scope of this
investigation, we limit ourselves to causal discovery, where
we want to select model hyperparameters for better graph
metrics, specifically the F1 score of edge orientation (F1)
(Geffner et al., 2022; Annadani et al., 2024). One common
proxy metric for such task (Zheng et al., 2018; Geffner et al.,
2022; Lachapelle et al., 2019) is Log Likelihood (LL) of
the test dataset, which indicates how well the model fits
the data. In this paper, we will use ProxyMetric (PM) to
refer to the HT method that optimizes the proxy metric.
Unfortunately, from our empirical investigation (Figure 1

Figure 1. Correlation plot between test LL and F1 for a single
dataset. These plots are generated by randomly selecting 2000
from the total 10000 runs and sort them in a descending order
based on test LL. While the PM is correlated with the target metric
(F1), it is very noisy and can lead to selecting a suboptimal model.

and Section 4.2), LL does not serve as a perfect indicator for
F1. Alternative to PM, Parikh et al. (2022) recently proposed
a causal validation method, called Credence, where they
leveraged a deep generative model to create a synthetic
dataset, called proxy dataset, such that its corresponding
target metric can be evaluated. Then, this target metric of
proxy dataset can be used as the proxy metric for model
validation or HT.

However, Credence generates a single synthetic dataset, the
quality of which can also be affected by the hyperparameters
of the generative model. To mitigate this, we propose an
iterative refinement strategy, called ProxyTune, compared
to the 1-step Credence. ProxyTune uses previously selected
hyperparameters as the initialization of the next step, and
adds an acceptance stage to avoid deterioration of generation
quality. In this preliminary investigation, we compare the
above three approaches on the causal discovery task with
synthetic dataset. Due to the generality of these frameworks,
they can be applied to other target metrics as well, with the
only requirements being: (1) one can sample a dataset from
the generative model with access to the target metric of the
proxy dataset; and (2) one can evaluate the LL of the model
given a data set. For this paper, we choose DECI (Geffner
et al., 2022) as our candidate generative model.

We summarize our empirical findings as the following:

1



ProxyTune: Hyperparameter tuning through iteratively refined proxies

• The proxy metric LL alone does not provide a useful
signal for graph metrics like F1, and Credence typically
selects worse hyperparameters compared to PM.

• ProxyTune demonstrates improvements over the pre-
vious two approaches, indicating the potential advan-
tages of iterative refinements.

• LL is a good indicator for F1 together with ProxyTune,
despite its ineffectiveness if applied alone.

2. Related Work
HT serves an important step towards improving the perfor-
mance, especially when one cares about the metrics that
cannot be directly evaluated in practice, such as most tasks
related to causal modeling and structure learning. Mach-
lanski et al. (2023) run extensive empirical trials using semi-
synthetic datasets and draws the conclusion that careful HT
and proxy metric selection have a larger effect than choos-
ing any particular model. Furthermore, they show that the
available proxy metrics do not robustly reflect the true target
metric across datasets. To resolve the above issue, there
are some existing research designed specifically for a given
problem. Alaa & Van Der Schaar (2019) develop an eval-
uation method that uses an additional plug-in estimator to
approximate a specific target metric called conditional aver-
age treatment effect (CATE). Saito & Yasui (2020) similarly
use a plug-in estimator to rank the causal inference mod-
els. Biza et al. (2020) on the other hand, propose scoring
structure learning methods through the average predictive
performance of regressors on each variable given its Markov
blanket. We note that this is similar to the predictive perfor-
mance metric like LL. The work most similar to ProxyTune
is Credence (Parikh et al., 2022), which evaluates the per-
formance of causal inference methods using synthetic data
generated from a separate deep generative model fitted to the
target dataset. However, its original formulation is designed
specifically for causal inference tasks without iterative re-
finement. On the other hand, ProxyTune, by design, can be
applied to both many tasks through an iterative refinement
manner without external generative models.

3. ProxyTune
3.1. Problem setup

The goal of causal discovery is to infer the underlying causal
structures between variables from the observational dataset
D. Specifically, we investigated different approaches of HT
in terms of finding good hyperparameters η and its corre-
sponding modelM to maximize the target graph metric µ,
such as F1.

3.2. Candidate 1: ProxyMetric

The PM procedure can be described as: (1) for an initialized
hyperparameter η̃0, we train a model M̃0 on D; (2) propose
another η̃i. We repeat the above steps, until a total budget N
is consumed. Then, we evaluate all {M̃i}Ni=0 on the proxy
metric (e.g. test LL) and pick the best one. We use random
sampling to propose the new candidate hyperparameter to
avoid the effects from other factors, but it can easily be
generalized to use BO.

3.3. Candidate 2: Credence

Instead of directly optimizing the proxy metric, Credence
incorporates a generative model to produce a proxy dataset
with access to its target metric, which mimics the true data
D. Specifically, the procedures are: (1) apply method PM
to pick the best model π0 based on test LL with half the
budget N

2 ; (2) generate a proxy dataset D̃1 from π0, note
that now we have the access to the graph underlying D̃1; (3)
perform a hyperparameter search with budget N

2 but under
proxy data D̃1 and target metric µ of its graph.

3.4. Candidate 3: ProxyTune

Our proposed method ProxyTune, can be seen as a general-
ization of Credence with iterative refinement. The intuition
is that when the proxy dataset is close to the ground truth,
the hyperparameters selected by maximizing the target met-
ric of proxy are transferable to the ground truth data.

ProxyTune is illustrated in Algorithm 1. It starts from ini-
tial hyperparameters η0 from a distribution H and a trained
model π0 with ground truth data D. For each ProxyTune it-
eration t = 1, . . . , T , we will first create a proxy dataset D̃t

using the previously accepted model πt−1. Then, a search
procedure will be performed to find a set of K candidate
hyperparameters {η̃ti}Ki=1 based on ranking the target metric
on proxy data D̃t (refer to Section 3.4.3). Then, it is fol-
lowed by an acceptance test to select one hyperparameter
among {η̃ti}Ki=1 and its corresponding trained model πt with
true data D (see Section 3.4.2). If no one is selected, it will
return to the previously accepted model πt ← πt−1. After
finishing all iterations, the final model selected among all
the accepted ones will be chosen based on the test likelihood
l of true test data Dtest. Since the proxy data are generated
from a proxy, previously unavailable metrics (e.g. F1) can
be computed and provide useful signals for search hyperpa-
rameters.

2



ProxyTune: Hyperparameter tuning through iteratively refined proxies

Algorithm 1 ProxyTune
function INIT HPARAMS(D,Dtest,C, H) ▷ Initialize hyperparameters with dataset D, Dtest, total computation budget C
and hyperparameter distribution H. See Section 3.4.1
function FIT(η , D) ▷ Fit a model with hyperparameters η on dataset D.
function TEST(π , Dtest) ▷ Evaluate the test likelihood with proxy π

function ACCEPT(D, Dtest, {η̃ti}Ki=1, πt−1) ▷ Acceptance procedure, see Section 3.4.2.
function SAMPLE(π) ▷ Sample dataset from proxy π , see Section 3.4.4
function SCORE(D, π) ▷ Score the proxy π on dataset D, e.g. F1.
function SEARCH(D̃ , K, H, C) ▷ Tuning steps with SCORE, K candidates and hyperparameter distribution H under
computation budget C. See Section 3.4.3

procedure ProxyTune(D, Dtest, T , H , C × (T + 1)) ▷ Target train and test dataset D, Dtest, number of ProxyTune
iterations T , hyperparameter distribution H and total budget (T + 1)× C.

η0 ← INIT HPARAMS(D, Dtest, C, H) ▷ Initialize hyperparameters
π0 ← FIT(η0, D) ▷ Fit the initial model

for t← 1, · · · , T do
D̃t ← SAMPLE(πt−1) ▷ Sample proxy dataset from previously accepted proxy
{η̃ti}Ki=1 ← SEARCH(D̃t, K, H, C) ▷ Search for candidate hyperparameter sets.
if t=1 then ▷ Always accept at first iteration

πt ← FIT(D, η̃t1)
ℓt ← TEST(π̂i,Dtest) ▷ Evaluate the test LL

else
πt, ℓt ← ACCEPT(D, Dtest, {η̃ti}Ki=1, π

t−1) ▷ Accept one and return test likelihood
return πi where i = argmaxj ℓ

j ▷ Final model selection based on maximizing test likelihood

3.4.1. INITIALIZATION

Algorithm 2 Initialize hyperparameters
procedure INIT HPARAMS(D, Dtest, C, H)

for i = 1, . . . , C do
η̃i ∼ H ▷ Sample a hyperparameter from H
π̂i ← FIT(D, η̃i)
ℓi ← TEST(π̂i,Dtest) ▷ Evaluate the test

likelihood
return π̂j with j = argmaxj ℓj ▷ Return the model

with maximized likelihood

The purpose of the hyperparameter intialization, denoted
INIT HPARAMS in Algorithm 1 is to provide a good starting
point for the following ProxyTune iteration. There are sev-
eral possible choices. For example, one can manually set the
hyperparameters or start with a hyperparameter search using
a manual proxy model when a prior model or knowledge
exists for the problem. In this paper, however, we perform
the initialization by HT using a proxy metric, the test LL.
The detailed agorithm is shown in Algorithm 2.

Algorithm 3 Acceptance step

procedure ACCEPT(D, D̃, {η̃i}Ki=1, π
t−1)

for i = 1, . . . ,K do
π̂i ← FIT(D, η̃i) ▷ Model training with true data

and candidate hyperparameters
ℓi ← TEST(Dtest, π̂i) ▷ Evaluate the test LL

Sort {π̂i}Ki=1 in descending order by {ℓi}Ki=1

for i = 1, . . . ,K do
if Accept π̂i with probability Equation (1) then

return π̂i and ℓi

return πt−1 and corresponding test likelihood.

3.4.2. ACCEPTANCE TESTING

Since the key assumption of ProxyTune is based on the
similarity between proxy data and ground-truth data, there
is no guarantee to that all of candidate hyperparameters
{η̃i}Ki=1 will result in models with reasonable generation
quality. Thus, we propose an additional acceptance step to
select suitable hyperparameters ηt and their corresponding
model trained with D for generating the next proxy dataset
D̃t+1.

For the acceptance step, we first train each model with the

3



ProxyTune: Hyperparameter tuning through iteratively refined proxies

true dataset D for the top K candidate hyperparameters
{η̃ti}Ki=1 (assuming they have been ranked by target metric
of the proxy), which results in K candidate proxies {π̂t

i}Ki=1.
For each candidate model, we compute p(Dtest | π̂t

i) as the
generation quality measure since LL is a good indicator for
model fitting. Other generation quality measures can also
be easily adapted to ProxyTune. Then, those proxies will
be sorted in a descending order based on LL and the corre-
sponding acceptance probability will be computed in this
order. We propose the following for acceptance probability:

si = min

((
p(Dtest | π̂t

i)

p(Dtest | πt−1)

) 1
β

, 1

)
, (1)

where si is the acceptance probability of π̂t
i , 0 < β ≤ 1 is

the temperature that controls the sensitivity to the likelihood
ratio; πt−1 is the previously accepted proxy. When β → 0,
the acceptance is greedy and si is closed to 0 or 1, implying
that the candidate is only accepted with higher LL than πt−1.
The detailed algorithm is in Algorithm 3.

Acceptance During the acceptance, we will compute si
and decide if the candidate is accepted or not one at a time.
If no candidate is accepted after top K candidates, there are
two possible choices: (1) single-batch (SB): we stop the ac-
ceptance and πt = πt−1, ηt = ηt−1; (2) loop-batch (LB):
we move onto the next batch of candidates {η̃ti}2Ki=K+1 and
repeat the above until one is accepted. If still no candidate is
selected, we set πt = πt−1, ηt = ηt−1. Note that the com-
putational cost of LB is stochastic and cannot be precisely
controlled. Algorithm 3 illustrates the detailed acceptance
test with SB.

SB is computationally cheaper compared to LB, but has
the possibility of missing potentially good candidates. Es-
pecially when the proxy data is poorly generated, the top
candidates may have poor p(Dtest | π̂t

i), and SB will not
accept any new model in the following steps. On the other
hand, LB will loop over all the candidates to pick a model
with better LL, which has a better chance to escape from
this sub-optimality. Thus, we will use LB as the default
choice.

3.4.3. SEARCH

The tuning step is equivalent to HT on the proxy, where
the access to the data generating process allows tuning on
previously inaccessible metrics. In this work we mainly
rely on random search to avoid the effectiveness of other
factors for better ablation and allows a greater degree of
parallelization. But other choices, like BO, can be adapted
in practice.

Specifically, based on a fixed computational budget C, we
will randomly sample C hyperparameters {η̃i}

C
i=1 from

some fixed distribution H . For each hyperparameter, we fit

Algorithm 4 Search the candidate hyperparameters η̃

procedure SEARCH(D̃, K, H, C)
for i = 1 . . . , C do

η̃i ∼ H

π̂i ← FIT(D̃, η̃i) ▷ Model training with proxy
data and candidate hyperparameters

µi ← SCORE(D̃, π̂i) ▷ Score the trained model
with target metric

{η̃i}Ki=1 ← pick top K candidate hyperparameters
based on µi

return {η̃i}Ki=1

a candidate π̂i = FIT(η̃i, D̃). Then, we can SCORE each π̂i

and rank them in a descending order, indicating the qual-
ity of each candidate. Algorithm 4 describes the detailed
algorithm.

3.4.4. ProxyTune FOR CAUSAL DISCOVERY

Here we describe the details of how ProxyTune can be used
to select hyperparameters for Causal Discovery. We limit
our considerations to generative models that learn the full
structural equation model (SEM), such as DECI (Geffner
et al., 2022).

With a model π , one can generate a proxy dataset D̃t, al-
lowing the access to the corresponding causal graph. In the
following, we will take additive noise model (ANM) as an
example and describe how the proxy data can be generated.

Let x = (x1, . . . , xD) be a collection of random variables.
SEMs (Pearl, 2009) describe the causal relationships be-
tween the individual variables xi. Given a causal graph G on
nodes {1, . . . , D}, the SEM for xi is xi = Fi

(
xpa(i;G), zi

)
,

where zi is an exogenous noise variable that is independent
of all other variables, pa(i;G) is the set of parents of node
i in G, and Fi specifies the functional relationship. ANMs
(Hoyer et al., 2008; Peters et al., 2014; Geffner et al., 2022)
are defined as:

Fi

(
xpa(i;G), zi

)
= fi

(
xpa(i;G)

)
+ zi

or x = fG(x) + z in vector form.
(2)

By fixing the noise vector z, the vector form describes a
fixed point equation. Therefore, one can sample a data
point by (1) sampling a noise vector z; and (2) solving the
fixed point equation by iteratively plugging the x back into
fG(·) + z. Since the causal graph G is a DAG, this update
equation will converge to a stable fixed point at most D
steps. We can repeat the above steps to generate the entire
proxy dataset D̃ .

4



ProxyTune: Hyperparameter tuning through iteratively refined proxies

Hyperparameter Description Distribution
λs Sparsity penalty coefficient controlling graph sparsity U [0, 1000]
λfr Learning rate for the functional relationships U [10−5, 10−1]
λnoise Learning rate for the noise distributions U [10−8, 10−3]
λadjacency Learning rate for the variational graph distribution U [10−5, 10−1]

Table 1. Search space H for ProxyTune. Here, U represents a uniform distribution over the specified ranges. For detailed implication of
each hyperparameter, please refer to (Geffner et al., 2022).

4. Experiment
In this section, we investigate the effectiveness of the three
proposed HT methods. Specifically, we want to study two
questions: (1) Is LL a good proxy metric for causal discov-
ery? (2) Does iterative refinement (i.e. ProxyTune) provide
improvements under a fixed computation budget N? We
refer to Section 4.2 and Section 4.3, respectively. In sum-
mary, we show that (1) test LL is a reasonable but not perfect
proxy metric for causal discovery, since it can select a model
with poor F1 score; (2) a reasonable number of refinement
steps will improve F1. Longer or shorter runs will harm
performances.

4.1. Experiment Setup

Synthetic data Generation For ground truth dataset gen-
eration, we choose a commonly used benchmark genera-
tion mechanism for causal discovery (Zheng et al., 2018;
Geffner et al., 2022; Lachapelle et al., 2019; Zheng et al.,
2020). First, we sample a ground-truth directed acyclic
graph (DAG) G from Erdős-Rényi (ER) graph distribution
with 16 nodes and 64 expected edges. Then, we sample the
structural equations xi = fi

(
xpa(i;G)

)
+ zi where xpa(i;G)

are the parents of node xi given graph G; zi ∼ N (0, 1)
and fi is a multi-layer perceptron (MLP) with randomly
sampled weights. We sample 5000 data points for both D
and Dtest. We sample 6 datasets with different seeds.

ER graph generation Specifically, the edge probabilities
are independent to each other and equal to V

(D,2) , where
(D, 2) is the the number of combinations of 2 variables
among D variables; and V is the number of expected edges.
Then, we sample an adjacency matrix G with the above edge
probabilities, where Gi,j = 1 represents the edge i → j.
Since G does not guarantee a DAG, we post-process it by
(1) randomly permutating the nodes (i.e. equivalent to the
permutation of the corresponding rows and columns); and
(2) take the lower triangular part of G to ensure DAGness.

Sampling the generation mechanism Based on the sam-
pled graph G, one can easily infer the topological order of
variables. For simplicity, we assume d = 1, . . . , D have
been arranged in this order. Then, we generate the dataset

Figure 2. Bootstrapped estimates of the proxy and target metrics
for HT with 500 to 10 000 trials. Each line shows the expected
value of the winning trial as selected by the PM, while the filled
areas show the standard deviation.

based on the following equation:

Fi

(
xpa(i;G), zi

)
= fi

(
xpa(i;G)

)
+ zi (3)

where zi ∼ N(0, I) and fi is a two-layer neural network
with 100 hidden randomly sampled units and sigmoid ac-
tivation. The weights for each layer are obtained by (1)
sampling according to a uniform distribution between 0.5
and 2; (2) randomly negating half of the weights. We repeat
the above procedure for each fi to obtain the generation
mechanism.

Model and target metrics We adopt DECI (Geffner et al.,
2022) as our candidate model1. Since there are many
choices for hyperparameters, we limit ourselves to the im-
portant parameters that affect the final performance in this
preliminary study. Table 1 specifies the choice of hyper-
parameters and their corresponding search space. Each
candidate hyperparameter is randomly sampled from the
uniform distribution (U ) over the specified ranges.

4.2. Insufficiency of proxy metric

First, we investigate the effectiveness of LL as the proxy
metric for causal discovery. Figure 2 plots the bootstrap per-
formance of PM with different budgets on a single dataset.

1https://github.com/microsoft/causica

5



ProxyTune: Hyperparameter tuning through iteratively refined proxies

0 2 4 6 8
ProxyTune steps

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
Or

ie
nt

at
io

n 
F1

Isotrial results with max 2000 compute budget

Dataset
0
1
2
3
4
5
Better
True
False

Figure 3. Each point represents the F1 of the model selected by
ProxyTune with corresponding total tuning steps. Step 0 indicates
the PM performance and step 1 represents the Credence (Parikh
et al., 2022). We select step 7 as the best proxy tune steps number
of ProxyTune. The solid line represents ProxyTune at step 7 is
the best among all methods, and dashed line indicates the worse
performance than method (1).

For each budget, we bootstrap the performance by selecting
among 10000 training runs on D. We repeat the bootstrap-
ping 1000 times to estimate the performance mean and
variance. As expected both LL and F1 increase monotoni-
cally w.r.t. the trial budget. However, we observed a large
variation of F1 even with N = 10000 budgets. Specifically,
performance with budget N = 3000 overlaps significantly
with N = 10000. This indicates that despite LL showing
overall positive correlations, HT with it does not guarantee
the best hyperparameters and may result in a poor model. To
demonstrate this more clearly, we plot the trend of F1 w.r.t.
test LL for this dataset in Figure 1. We can see that large
oscillations are present, which explains the large variance
in Figure 2.

4.3. Isotrial experiments

Next, we investigate the effectiveness of the three methods
under a fixed total compute budget. We call these isotrial
experiments. The aim of the experiment is to demonstrate
the advantages of iterative refinement under a fixed budget.

First, we fix a total budget N and total ProxyTune step T .
We will then compute the per-step budget ⌊NT ⌋ for HT on
the proxy dataset and for the acceptance step. One thing
worth noting is that the actual per-step consumption of Prox-
yTune is stochastic due to the LB setup. Therefore, for a fair
comparison, we set N = 1000 for ProxyTune with T > 0
(i.e. Credence and ProxyTune) and N = 2000 for PM. This
is because the worst-case per-step cost is 2⌊NT ⌋ for Proxy-
Tune (i.e. half for HT and half for acceptance). Therefore,
we need to halve the total budget so that the worst-case
cost is equivalent to PM (N = 2000). But the actual con-
sumption of ProxyTune is usually much cheaper. We use a

temperature of β = 0.001 for greedy acceptance.

Then we run ProxyTune with a total of T ProxyTune steps
and select the final winner based on test LL as Algorithm 1.
In the end, we extract the corresponding F1, and plot a single
point in Figure 3, sitting at the position with T ProxyTune
steps. We repeat the above process for T = 0, 1, 3, 5, 7, 9
with different datasets. The best ProxyTune step number
is chosen as T = 7, which achieves a great compromise
between distributing budgets to longer iterative refinements
or thorough per-step HT search.

From Figure 3, we can clearly observe the effectiveness
of iterative refinement. Firstly, we observe a trend such
that after step T = 3, running longer iterative refinements
seems to improve the F1 until step T = 7. This suggests
a compromise between distributing the budget to longer
iterative refinements or more thorough per-step proxy HT.
With longer steps T , less budget is consumed for the per-
step HT, resulting in poor hyperparameter candidates. On
the other hand, if one uses fewer iterative steps, an excellent
hyperparameter for the proxy dataset can be selected. But
the quality of the generation may be poor due to the lack of
iterative refinements. We can see that ProxyTune achieves
the best performance among three methods in 4 out of 6
datasets, suggesting that ProxyTune is a promising method
for HT. In contrast, Credence underperforms the other two
methods for most datasets.

We also plot the trend of LL and F1 of a single ProxyTune
run with T = 9 in Figure 4. We can see that ProxyTune
provides a regularization effect which increases the correla-
tion between LL and F1Specifically, the model corresponds
to highest test LL typically has the best F1. This suggests
LL is a good selection metric together with ProxyTune, but
should not be used alone.

5. Conclusion
In this work, we examined three HT methods, ProxyMetric,
Credence and ProxyTune, on their effectiveness for causal
discovery tasks. In particular, we propose ProxyTune, which
extends Credence with iterative refinements. We experimen-
tally demonstrate the difficulty in relying on proxy metrics
such as the LL in causal discovery. Finally, we show pre-
liminary results on how ProxyTune performs on synthetic
datasets, providing a promising signal on its effectiveness.
Despite this, some difficulties remain. In particular, future
work is needed to demonstrate its superiority in the case of
comprehensive synthetic and real datasets with diverse tasks
as well as expand the application of ProxyTune to further
tasks without access to groundtruth metrics.

6



ProxyTune: Hyperparameter tuning through iteratively refined proxies

1 2 3 4 5 6 7 8 9
ProxyTune steps

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

or
ie

nt
at

io
n 

f1

Step-wise F1 score

8
9
10
11
12
13

1 2 3 4 5 6 7 8 9
ProxyTune steps

27.5

27.0

26.5

26.0

25.5

25.0

24.5

te
st

 li
ke

lih
oo

d

Step-wise Likelihood

Figure 4. The step-wise plot of ProxyTune across different datasets. Note that these plots are different from the isotrial plots (Figure 3).
Here, each line is generated by examining the step-wise trend with T = 9. (Left) It plots the step-wise F1 score. (Right) It plots the
corresponding step-wise test likelihood.

References
Alaa, A. and Van Der Schaar, M. Validating causal

inference models via influence functions. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 191–201. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
alaa19a.html.

Annadani, Y., Pawlowski, N., Jennings, J., Bauer, S., Zhang,
C., and Gong, W. Bayesdag: Gradient-based posterior
inference for causal discovery. Advances in Neural Infor-
mation Processing Systems, 36, 2024.

Biza, K., Tsamardinos, I., and Triantafillou, S. Tun-
ing causal discovery algorithms. In Jaeger, M.
and Nielsen, T. D. (eds.), Proceedings of the 10th
International Conference on Probabilistic Graphical
Models, volume 138 of Proceedings of Machine
Learning Research, pp. 17–28. PMLR, 23–25 Sep
2020. URL https://proceedings.mlr.press/
v138/biza20a.html.

Frazier, P. I. A tutorial on bayesian optimization. arXiv
preprint arXiv:1807.02811, 2018.

Geffner, T., Antoran, J., Foster, A., Gong, W., Ma, C., Kici-
man, E., Sharma, A., Lamb, A., Kukla, M., Pawlowski,
N., et al. Deep end-to-end causal inference. arXiv preprint
arXiv:2202.02195, 2022.

Hoyer, P., Janzing, D., Mooij, J. M., Peters, J., and
Schölkopf, B. Nonlinear causal discovery with additive
noise models. Advances in neural information processing
systems, 21, 2008.

Lachapelle, S., Brouillard, P., Deleu, T., and Lacoste-Julien,
S. Gradient-based neural dag learning. arXiv preprint
arXiv:1906.02226, 2019.

Machlanski, D., Samothrakis, S., and Clarke, P. Hyper-
parameter tuning and model evaluation in causal effect
estimation. arXiv preprint arXiv:2303.01412, 2023.

Parikh, H., Varjao, C., Xu, L., and Tchetgen, E. T. Validating
causal inference methods. In International Conference
on Machine Learning, pp. 17346–17358. PMLR, 2022.

Pearl, J. Causality. Cambridge university press, 2009.

Peters, J., Mooij, J. M., Janzing, D., and Schölkopf, B.
Causal discovery with continuous additive noise models.
Journal of Machine Learning Research, 15(58):2009–
2053, 2014. URL http://jmlr.org/papers/
v15/peters14a.html.

Peters, J., Janzing, D., and Schölkopf, B. Elements of causal
inference: foundations and learning algorithms. The MIT
Press, 2017.

Rubin, D. B. Causal inference using potential outcomes:
Design, modeling, decisions. Journal of the American
Statistical Association, 100(469):322–331, 2005.

Saito, Y. and Yasui, S. Counterfactual cross-validation:
Stable model selection procedure for causal inference
models. In III, H. D. and Singh, A. (eds.), Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, volume 119 of Proceedings of Machine
Learning Research, pp. 8398–8407. PMLR, 13–18 Jul
2020. URL https://proceedings.mlr.press/
v119/saito20a.html.

7

https://proceedings.mlr.press/v97/alaa19a.html
https://proceedings.mlr.press/v97/alaa19a.html
https://proceedings.mlr.press/v138/biza20a.html
https://proceedings.mlr.press/v138/biza20a.html
http://jmlr.org/papers/v15/peters14a.html
http://jmlr.org/papers/v15/peters14a.html
https://proceedings.mlr.press/v119/saito20a.html
https://proceedings.mlr.press/v119/saito20a.html


ProxyTune: Hyperparameter tuning through iteratively refined proxies

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing, E. P.
Dags with no tears: Continuous optimization for structure
learning. Advances in neural information processing
systems, 31, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing,
E. Learning sparse nonparametric dags. In International
Conference on Artificial Intelligence and Statistics, pp.
3414–3425. Pmlr, 2020.

8


