
Under review as a conference paper at ICLR 2024

BEYOND CONSERVATISM: DIFFUSION POLICIES IN
OFFLINE MULTI-AGENT REINFORCEMENT LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

We present a novel Diffusion Offline Multi-agent Model (DOM2) for offline
Multi-Agent Reinforcement Learning (MARL). Different from existing algo-
rithms that rely mainly on conservatism in policy design, DOM2 enhances policy
expressiveness and diversity based on diffusion model. Specifically, we incor-
porate a diffusion model into the policy network and propose a trajectory-based
data-augmentation scheme in training. These key ingredients make our algo-
rithm more robust to environment changes and achieve significant improvements
in performance, generalization and data-efficiency. Our extensive experimental
results demonstrate that DOM2 outperforms existing state-of-the-art methods in
all multi-agent particle and multi-agent MuJoCo environments, and generalizes
significantly better to shifted environments (in 28 out of 30 settings evaluated)
thanks to its high expressiveness and diversity. Moreover, DOM2 is ultra data
efficient and requires no more than 5% data for achieving the same performance
compared to existing algorithms (a 20⇥ improvement in data efficiency).

1 INTRODUCTION

Offline reinforcement learning (RL), commonly referred to as batch RL, aims to learn efficient poli-
cies exclusively from previously gathered data without interacting with the environment (Lange
et al., 2012; Levine et al., 2020). Since the agent has to sample the data from a fixed dataset, naive
offline RL approaches fail to learn policies for out-of-distribution actions or states (Wu et al., 2019;
Kumar et al., 2019), and the obtained Q-value estimation for these actions will be inaccurate with
unpredictable consequences. Recent progress in tackling the problem focuses on conservatism by
introducing regularization terms for policy and Q-value training (Fujimoto et al., 2019; Kumar et al.,
2020a; Fujimoto & Gu, 2021; Kostrikov et al., 2021a; Lee et al., 2022). These conservatism-based
offline RL algorithms have achieved significant progress in difficult offline multi-agent reinforce-
ment learning settings (MARL) (Jiang & Lu, 2021; Yang et al., 2021; Pan et al., 2022).

!
!!

!
!!

Figure 1: Standard environment (Left) and shifted en-
vironment dismissing 3 landmarks randomly (right).

Despite the potential benefits, existing
methods have limitations in several as-
pects. Firstly, the design of the policy
network and the corresponding regularizer
limits the expressiveness and diversity due
to conservatism. Consequently, the re-
sulting policy may be suboptimal and fail
to represent complex strategies, e.g., poli-
cies with multi-modal distribution over ac-
tions (Kumar et al., 2019; Wang et al.,
2022). Secondly, in multi-agent scenarios, the conservatism-based method is prone to getting
trapped in poor local optima. This occurs when each agent is incentivized to maximize its own
reward without efficient cooperation with other agents in existing algorithms (Yang et al., 2021; Pan
et al., 2022). To demonstrate this phenomenon, we conduct experiment on a simple MARL scenario
consisting of 3 agents and 6 landmarks (Figure 1), to highlight the importance of policy expressive-
ness and diversity in MARL. In this scenario, the agents are asked to cover 3 landmarks and are
rewarded based on their proximity to the nearest landmark while being penalized for collisions. We
first train the agents with 6 target landmarks and then randomly dismiss 3 of them in evaluation. Our
experiments demonstrate that existing methods (MA-CQL and OMAR (Pan et al., 2022)), which

1

Under review as a conference paper at ICLR 2024

constrain policies through regularization, limit the expressiveness of each agent and hinder the abil-
ity of the agents to cooperate with diversity. As a result, only limited solutions are found. Therefore,
in order to design robust algorithms with good generalization capabilities, it is crucial to develop
methods beyond conservatism for better performance and more efficient cooperation among agents.

Figure 2: Results in different environments. For
experimental details, see Appendix C.4.

To boost the policy expressiveness and diversity,
we propose a novel algorithm based on diffusion

for the offline multi-agent setting, called Diffu-
sion Offline Multi-Agent Model (DOM2). Diffu-
sion model has shown significant success in gen-
erating data with high quality and diversity (Ho
et al., 2020; Song et al., 2020b; Wang et al., 2022;
Croitoru et al., 2023). Our goal is to leverage this
advantage to promote expressiveness and diversity of the policy. Specifically, the policy for each
agent is built using the accelerated DPM-solver to sample actions (Lu et al., 2022). In order to train
an appropriate policy that performs well, we propose a trajectory-based data-augmentation method
to facilitate policy training by efficient data sampling. These techniques enable the policy to gen-
erate solutions with high quality and diversity, and overcome the limitations of conservatism-based
approaches. Figure 2 shows that in the 3-agent example, DOM2 can find a more diverse set of solu-
tions with high performance and generalization, compared to conservatism-based methods such as
MA-CQL and OMAR (Pan et al., 2022). Our contributions are summarized as follows.

• We propose a novel Diffusion Offline Multi-Agent Model (DOM2) algorithm to address the
limitations of conservatism-based methods. DOM2 is a decentralized training and execu-
tion framework consisting of three critical components: diffusion-based policy with an ac-
celerated solver (sampling within 10 steps), appropriate policy regularizer, and a trajectory-
based data augmentation method for enhancing learning.

• We conduct extensive numerical experiments on Multi-agent Particles Environments
(MPE) and Multi-agent MuJoCo (MAMuJoCo) HalfCheetah environments. Our results
show that DOM2 achieves significantly better performance improvement over state-of-the-
art methods in all tasks.

• We show that DOM2 possesses much better generalization abilities and outperforms exist-
ing methods in shifted environments, i.e., DOM2 achieves state-of-the-art performance in
17 out of 18 MPE shifted settings and 11 out of 12 MAMuJoCo shifted settings. Moreover,
DOM2 is ultra-data-efficient and achieves SOTA performance with 20⇥ times less data.

2 RELATED WORK

Due to space limitation, we discuss a set of most related work here. In Appendix A, we provide a
more comprehensive discussion of related results.

Offline RL and MARL: In offline RL, designing proper regularizers is a critical method to address
the distribution shift, e.g., BRAC (Wu et al., 2019), BEAR (Kumar et al., 2019), BCQ (Fujimoto
et al., 2019) and TD3+BC (Fujimoto & Gu, 2021) purposed novel policy regularizers, and CQL (Ku-
mar et al., 2020a), IQL (Kostrikov et al., 2021b) and TD3-CVAE (Rezaeifar et al., 2022) developed
new Q-value regularizers. Several recent work has achieved success in offline MARL, e.g., MA-
BCQ (Jiang & Lu, 2021), MA-ICQ (Yang et al., 2021) and OMAR (Pan et al., 2022).

Diffusion models: Being a powerful generative model, the diffusion model has demonstrated its
great strength in generation quality and diversity (Ho et al., 2020; Song et al., 2020b;a). Most ex-
isting results on diffusion has focused on accelerating sampling efficiently (Lu et al., 2022; Bao
et al., 2022). Recently, there have been works attempting to incorporate diffusion into offline RL
and offline MARL, including Diffusion-QL (Wang et al., 2022), SfBC (Chen et al., 2022) and
IDQL (Hansen-Estruch et al., 2023) in single-agent RL and MA-DIFF (Zhu et al., 2023) in MARL.

We note that most existing works focus on conservatism for algorithm design. Our algorithm goes
beyond this and focuses on introducing diffusion into offline MARL with the accelerated solver
under fully decentralized training and execution structure.

2

Under review as a conference paper at ICLR 2024

3 BACKGROUND

In this section, we introduce the offline multi-agent reinforcement learning problem and provide
preliminaries for the diffusion probabilistic model as the background for our proposed algorithm.

Offline Multi-Agent Reinforcement Learning. A fully cooperative multi-agent task can be mod-
eled as a decentralized partially observable Markov decision process (Dec-POMDP (Oliehoek &
Amato, 2016)) with n agents consisting of a tuple G = hI,S,O,A,⇧,P,R, n, �i. Here I is the
set of agents, S is the global state space, O = (O1, ...,On) is the set of observations with On being
the set of observation for agent n. A = (A1, ...,An) is the set of actions for the agents (An is the
set of actions for agent n), ⇧ = (⇧1, ...,⇧n) is the set of policies, and P is the function class of the
transition probability S⇥A⇥S

0
! [0, 1]. At each time step t, each agent chooses an action atj 2 Aj

based on the policy ⇡j 2 ⇧j and historical observation ot�1
j 2 Oj . The next state is determined by

the transition probability P 2 P . Each agent then receives a reward rtj 2 R : S ⇥ A ! R and a
private observation otj 2 Oi. The goal of the agents is to find the optimal policies ⇡ = (⇡1, ...,⇡n)
such that each agent can maximize the discounted return: E[

P1
t=0 �

trtj] (the joint discounted re-
turn is E[

Pn
j=1

P1
t=0 �

trtj]), where � is the discount factor. Offline reinforcement learning requires
that the data to train the agents is sampled from a given dataset D generated from some potentially
unknown behavior policy ⇡� (which can be arbitrary). This means that the procedure for training
agents is separated from the interaction with environments.

Conservative Q-Learning. For training the critic in offline RL, the conservative Q-Learning (CQL)
method (Kumar et al., 2020a) is to train the Q-value function Q�(o,a) parameterized by �, by
minimizing the temporal difference (TD) loss plus the conservative regularizer. Specifically, the
objective to optimize the Q-value for each agent j is given by:

L(�j) = E(oj ,aj)⇠Dj
[(rj + � min

k=1,2
Q

k
�j
(o0

j ,⇡j(o
0
j))�Q�j (oj ,aj))

2]

+ ⇣E(oj ,aj)⇠Dj
[log

X

ãj

exp(Q�j (oj , ãj))�Q�j (oj ,aj)].
(1)

The first term is the TD error to minimize the Bellman operator with the double Q-learning trick (Fu-
jimoto et al., 2019; Hasselt, 2010; Lillicrap et al., 2015), where Q�j

,⇡j denotes the target network
and o0

j is the next observation for agent j after taking action aj . The second term is a conservative
regularizer, where ãj is a random action uniformly sampled in the action space and ⇣ is a hyperpa-
rameter to balance two terms. The regularizer is to address the extrapolation error by encouraging
large Q-values and penalizing low Q-values for state-action pairs in the dataset.

d"! = $ % "!d% + ' % d(!

Forward SDE (data→noise)

d"! = $ % "! − '" % *#! log .! "! d% + ' % d(!

Reverse SDE (noise→data)/Action generation

Score function

Original data "$
RL data action /%,'

("
Noise ")

Noise action /%,'
(#

Noise ")
Noise action 0%,'

(#
Generated data "$

Generated action 0%,'
("

Figure 3: Diffusion probabilistic model as a
stochastic differential equation (SDE) (Song et al.,
2020b) and relationship with Offline MARL.

Diffusion Probabilistic Model. We present a
high-level introduction to the Diffusion Prob-
abilistic Model (DPM) (Sohl-Dickstein et al.,
2015; Song et al., 2020b; Ho et al., 2020) (de-
tailed introduction is in Appendix B). DPM
is a deep generative model that learns the un-
known data distribution x0 ⇠ q0(x0) from the
dataset. DPM has a predefined forward noising
process characterized by a stochastic differen-
tial equation (SDE) dxt = f(t)xtdt+g(t)dwt

(Equation (5) in Song et al. (2020b)) and a trainable reverse denoising process characterized
by the SDE dxt = [f(t)xt � g2(t)rxt log qt(xt)]dt + g(t)dwt (Equation (6) in Song et al.
(2020b)) shown in Figure 3. Here wt,wt are standard Brownian motions, f(t), g(t) are pre-
defined functions such that q0t(xt|x0) = N (xt;↵tx0,�2

t I) for some constant ↵t,�t > 0 and
qT (xT) ⇡ N (xT ;0, �̃2I) is almost a Gaussian distribution for constant �̃ > 0. However,
there exists an unknown term rxt log qt(xt), which is called the score function (Song et al.,
2020a). In order to generate data close to the distribution q0(x0) by the reverse SDE, DPM de-
fines a score-based model ✏✓(xt, t) to learn the score function and optimize parameter ✓ such that
✓⇤ = argmin✓Ex0⇠q0(x0),✏⇠N (0,I),t⇠U(0,T)[k✏�✏✓(↵tx0+�t✏, t)k22] (U(0, T) is the uniform dis-
tribution in [0, T], same later). With the learned score function, we can sample data by discretizing
the reverse SDE. To enable faster sampling, DPM-solver (Lu et al., 2022) provides an efficiently

3

Under review as a conference paper at ICLR 2024

faster sampling method and the first-order iterative equation (Equation (3.7) in Lu et al. (2022)) to
denoise is given by xti =

↵ti
↵ti�1

xti�1 � �ti(
↵ti�ti�1

↵ti�1�ti
� 1)✏✓(xti�1 , ti�1).

In Figure 3, we highlight a crucial message that we can efficiently incorporate the procedure of data
generation into offline MARL as the action generator. Intuitively, we can utilize the fixed dataset
to learn an action generator by noising the sampled actions in the dataset, and then denoising it
inversely. The procedure assembles data generation in the diffusion model. However, it is important
to note that there is a critical difference between the objectives of diffusion and RL. Specifically,
in diffusion model, the goal is to generate data with a distribution close to the distribution of the
training dataset, whereas in offline MARL, one hopes to find actions (policies) that maximize the
joint discounted return. This difference influences the design of the action generator. Properly
handling it is the key in our design, which will be detailed below in Section 4.

4 PROPOSED METHOD

In this section, we present the DOM2 algorithm shown in Figure 4. In the following, we first discuss
how we generate the actions with diffusion in Section 4.1. Next, we show how to design appropriate
objective functions in policy learning in Section 4.2. We then present the data augmentation method
in Section 4.3. Finally, we present the whole procedure of DOM2 in Section 4.4.

Agent 1 Agent n

Environment

!!,# !!,$

"!,#
%! "!,$

%!

!!&#,# !!&#,$

…

…

…
… …

!!,'
DENOISE"!,'

%" "!,'
%"#$ DENOISE"!,'

%$ "!,'
%!

"!,'
%%

!!,' $(&
%%

"!,'
%% "!,'

%%#$+

…
NOISE

Figure 4: Diagram of the DOM2 algorithm. Each agent generates actions with diffusion.

4.1 DIFFUSION IN OFFLINE MARL

We first present the diffusion component in DOM2, which generates actions by denoising a Gaussian
noise iteratively (shown on the right side of Figure 4). Denote the timestep indices in an episode
by {t}Tt=1, the diffusion step indices by ⌧ 2 [⌧0, ⌧N], and the agent by {j}nj=1. Below, to facilitate
understanding, we introduce the diffusion idea in continuous time, based on Song et al. (2020b); Lu
et al. (2022). We then present our algorithm design by specifying the discrete DPM-solver-based
steps (Lu et al., 2022) and discretizing diffusion timesteps, i.e., from [⌧0, ⌧N] to {⌧i}Ni=0.

(Noising) Noising the action in diffusion is modeled as a forward process from ⌧0 to ⌧N . Specifically,
we start with the collected action data at ⌧0, denoted by b⌧0t,j ⇠ ⇡�j (·|ot,j), which is collected
from the behavior policy ⇡�j (·|ot,j). We then perform a set of noising operations on intermediate
data {b⌧t,j}⌧2[⌧0,⌧N], and eventually generate b⌧Nt,j , which (ideally) is close to Gaussian noise at ⌧N .
This forward process satisfies that for 8⌧ 2 [⌧0, ⌧N], the transition probability q⌧0⌧ (b

⌧
t,j |b

⌧0
t,j) =

N (b⌧t,j ;↵⌧b
⌧0
t,j ,�

2
⌧I) (Lu et al., 2022). The selection of the noise schedules ↵⌧ ,�⌧ enables that

q⌧N (b⌧Nt,j |ot,j) ⇡ N (b⌧Nt,j ;0, �̃
2I) for some �̃ > 0, which is almost a Gaussian noise. According to

Song et al. (2020b); Kingma et al. (2021), there exists a corresponding reverse process of SDE from
⌧N to ⌧0 (based on Equation (2.4) in Lu et al. (2022)) considering ot,j as conditions:

da⌧
t,j = [f(⌧)a⌧

t,j � g2(⌧)rb⌧
t,j
q⌧ (b

⌧
t,j |ot,j)

| {z }
Neural Network ✏✓j

]d⌧ + g(⌧)dw⌧ ,a
⌧N
t,j ⇠ q⌧N (b⌧Nt,j |ot,j), (2)

where f(⌧) = d log↵⌧

d⌧ , g2(⌧) = d�2
⌧

d⌧ � 2d log↵⌧

d⌧ �2
⌧ and wt is a standard Brownion motion, and a⌧0

t,j
is the generated action for agent j at time t. To fully determine the reverse process of SDE described
by Equation 2, we need the access to the scaled conditional score function ��⌧rb⌧

t,j
q⌧ (b⌧t,j |ot,j) at

4

Under review as a conference paper at ICLR 2024

each ⌧ . We use a neural network ✏✓j (b
⌧
t,j ,ot,j , ⌧) to represent it and the architecture is the multiple-

layered residual network, which is shown in Figure 8 that resembles U-Net (Ho et al., 2020; Chen
et al., 2022). The objective of optimizing the parameter ✓j is (based on Lu et al. (2022)):

Lbc(✓j) = E(ot,j ,a
⌧0
t,j)⇠Dj ,✏⇠N (0,I),⌧2U({⌧i}N

i=0)
[k✏� ✏✓j (↵⌧a

⌧0
t,j + �⌧✏,ot,j , ⌧)k

2
2]. (3)

(Denoising) After training the neural network ✏✓j , we can then generate the actions by solving the
diffusion SDE in Equation 2 (plugging in �✏✓j (a

⌧
t,j ,ot,j , ⌧)/�⌧ to replace the true score function

rb⌧
t,j

log q⌧ (b⌧t,j |ot,j)). Here we evolve the reverse process of SDE from a⌧N
t,j ⇠ N (a⌧N

t,j ;0, I), a
Gaussian noise, and we take a⌧0

t,j as the final action. To facilitate faster sampling, we discretize the
reverse process of SDE in [⌧0, ⌧N] into N + 1 diffusion timesteps {⌧i}Ni=0 (the partition details are
shown in Appendix B) and adopt the first-order DPM-solver-based method (Equation (3.7) in Lu
et al. (2022)) to iteratively denoise from a⌧N

t,j ⇠ N (a⌧N
t,j ;0, I) to a⌧0

t,j for i = N, ..., 1 written as:

a⌧i�1

t,j =
↵⌧i�1

↵⌧i

a⌧i
t,j � �⌧i

✓
↵⌧i�⌧i�1

↵⌧i�1�⌧i

� 1

◆
✏✓j (a

⌧i
t,j ,ot,j , ⌧i) for i = N, ...1, (4)

and such iterative denoising steps are corresponding to the diagram in the right side of Figure 4.

4.2 POLICY IMPROVEMENT

Notice that only optimizing ✓j by Equation 3 is not sufficient in offline MARL, because the gener-
ated actions will only be close to the behavior policy under diffusion. To achieve policy improve-
ment, we follow Wang et al. (2022) to involve the Q-value and use the following loss function:

L(✓j) = Lbc(✓j) + Lq(✓j) = Lbc(✓j)� ⌘̃E(oj ,aj)⇠Dj ,a
⌧0
j ⇠⇡✓j

[Q�j (oj ,a
⌧0
j)]. (5)

The second term Lq(✓j) is called Q-loss (Wang et al., 2022) for policy improvement , where
a⌧0
j is generated by Equation 4, �j is the network parameter of Q-value function for agent j,

⌘̃ = ⌘
E(sj ,aj)⇠D [Q�j

(oj ,aj)]
and ⌘ is a hyperparameter. This Q-value is normalized to control the

scale of Q-value functions (Fujimoto & Gu, 2021) and ⌘ is used to balance the weights. The com-
bination of two terms ensures that the policy can preferentially sample actions with high values.
The reason is that the policy trained by optimizing Equation 5 can generate actions with different
distributions compared to the behavior policy, and the policy prefers to sample actions with higher
Q-values (corresponding to better performance). To train efficient Q-values for policy improvement,
we optimize Equation 1 as the objective (Kumar et al., 2020a).

4.3 DATA AUGMENTATION

Algorithm 1 Data Augmentation

1: Input: Dataset D with trajectories {Ti}Li=1.
2: D

0
 D

3: for every rth 2 R do

4: D
0
 D

0 + {Ti 2 D|Return(Ti) � rth}.
5: end for

6: Return: Augmented dataset D0.

In DOM2, in addition to the novel policy design
with its training objectives, we also introduce a
data-augmentation method to scale up the size of
the dataset (shown in Algorithm 1). Specifically,
we replicate trajectories Ti 2 D with high return
values (i.e., with the return value, denoted by
Return(Ti), higher than threshold values) in the
dataset. Specifically, we define a set of threshold
values R = {rth,1, ..., rth,K}. Then, we compare
the reward of each trajectory with every threshold value and replicate the trajectory once whenever
its return is higher than the compared threshold (Line 4), such that trajectories with higher returns
can replicate more times. Doing so allows us to create more data efficiently and improve the perfor-
mance of the policy by increasing the probability of sampling trajectories with better performance
in the dataset. We emphasize that our method is different from the data augmented works, where
the objective is to use a diffusion model as a data generator for downstream tasks, e.g., Trabucco
et al. (2023); Lu et al. (2023b). Our method is designed to enhance the offline dataset for facilitating
diffusion-based policy and Q-value training in offline MARL.

4.4 THE DOM2 ALGORITHM

The resulting DOM2 algorithm is presented in Algorithm 2. Line 1 is the initialization step. Line
2 is the data-augmentation step. Line 5 is the sampling procedure for the preparation of the mini-
batch data from the augmented dataset to train the agents. Lines 6 and 7 are the update of actor and

5

Under review as a conference paper at ICLR 2024

critic parameters, i.e., the policy and the Q-value. Line 8 is the soft update procedure for the target
networks. Our algorithm provides a systematic way to integrate diffusion into RL algorithm with
appropriate regularizers and how to train the diffusion policy in a decentralized multi-agent setting.

Algorithm 2 Diffusion Offline Multi-agent Model (DOM2) Algorithm

1: Input: Initialize Q-networks Q1
�j
, Q2

�j
, policy network ⇡j with random parameters �1

j ,�
2
j ,✓j ,

target networks with �
1
j �1

j ,�
2
j �2

j ,✓j ✓j for each agent j = 1, . . . , N and dataset
D. // Initialization

2: Run D
0 = Augmentation(D) to generate an augmented dataset D0. // Data Augmentation

3: for training step t = 1 to T do

4: for agent j = 1 to n do

5: Sample a random minibatch of S samples(oj ,aj , rj ,o0
j) from dataset D0. // Sampling

6: Update critics �1
j ,�

2
j to minimize Equation 1. // Update Critic

7: Update the actor ✓j to minimize Equation 5. // Update Actor with Diffusion
8: Update target networks: �

k
j ⇢�k

j + (1� ⇢)�
k
j ,(k = 1, 2),✓j ⇢✓j + (1� ⇢)✓j .

9: end for

10: end for

Some comparisons with the recent diffusion-based methods for action generation are in place. First
of all, we use the diffusion policy in the multi-agent setting. Then, different from Diffuser (Janner
et al., 2022), our method generates actions independently among different timesteps, while Diffuser
generates a sequence of actions as a trajectory in the episode using a combination of diffusion model
and the transformer architecture, so the actions are dependent among different timesteps. Compared
to the DDPM-based diffusion policy (Wang et al., 2022), we use the first-order DPM-Solver (Lu
et al., 2022) and the multi-layer residual network as the noise network (Chen et al., 2022) for better
and faster action sampling, while the DDPM-based diffusion policy (Wang et al., 2022) uses the
multi-layer perceptron (MLP) to learn score functions. In contrast to SfBC (Chen et al., 2022), we
use the conservative Q-value for policy improvement to learn the score functions, while SfBC only
uses the BC loss in the procedure. Unlike MA-DIFF (Zhu et al., 2023) that uses an attention-based
diffusion model in centralized training and centralized or decentralized execution, our method is
decentralized in both the training and execution procedure. Below, we will demonstrate, with exten-
sive experiments, that our DOM2 method achieves superior performance, significant generalization,
and data efficiency compared to the state-of-the-art offline MARL algorithms.

5 EXPERIMENTS

We evaluate our method in different multi-agent environments and datasets. We focus on three
primary metrics, performance (how is DOM2 compared to other SOTA baselines), generalization
(can DOM2 generalize well if the environment configurations change), and data efficiency (is our
algorithm applicable with small datasets and low-quality datasets).

5.1 EXPERIMENT SETUP

Environments: We conduct experiments in two widely-used multi-agent tasks including the multi-
agent particle environments (MPE) (Lowe et al., 2017) and high-dimensional and challenging multi-
agent MuJoCo (MAMuJoCo) tasks (Peng et al., 2021). In MPE, agents known as physical particles
need to cooperate with each other to solve the tasks. The MAMuJoCo is an extension for MuJoCo
locomotion tasks to enable the robot to run with the cooperation of agents. We use the Predator-prey,
World, Cooperative navigation in MPE and 2-agent HalfCheetah in MAMuJoCo as the experimental
environments. The details are shown in Appendix C.1. To demonstrate the generalization capability
of our DOM2 algorithm, we conduct experiments in both standard environments and shifted envi-
ronments. Compared to the standard environments, the features of the environments are changed
randomly to increase the difficulty for the agent to finish the task, which will be shown later.

Datasets: We construct 6 different datasets following Fu et al. (2020) to represent different qualities
of behavior policies: random, random-medium, medium-replay, medium, medium-expert and expert
dataset. The construction details are shown in Appendix C.3

Baseline: We compare the DOM2 algorithm with the following state-of-the-art baseline offline
MARL algorithms: MA-CQL (Jiang & Lu, 2021), OMAR (Pan et al., 2022), MA-SfBC as the

6

Under review as a conference paper at ICLR 2024

extension of the single agent diffusion-based policy SfBC (Chen et al., 2022) and MA-DIFF (Zhu
et al., 2023). Our methods are all built on the independent TD3 with decentralized actors and critics.
Each algorithm is executed for 5 random seeds and the mean performance and the standard deviation
are presented. A detailed description of hyperparameters, neural network structures, and setup can
be found in Appendix C.2.

5.2 MULTI-AGENT PARTICLE ENVIRONMENT

Performace. Table 1 shows the mean episode returns (same for Table 2 to 4 below) of the algo-
rithms under different datasets. We see that in all settings, DOM2 significantly outperforms MA-
CQL, OMAR, and MA-SfBC. We also observe that DOM2 has smaller deviations in most settings
compared to other algorithms, demonstrating that DOM2 is more stable in different environments.

Table 1: Performance comparison of DOM2 with MA-CQL, OMAR, and MA-SfBC.

Predator Prey MA-CQL OMAR MA-SfBC DOM2

Random 1.0±7.6 14.3±9.5 3.5±2.5 208.7±57.3

Random Medium 1.7±13.0 67.7±30.8 12.0±10.7 133.0±39.9

Medium Replay 35.0±21.6 86.8±43.7 26.1±10.0 150.5±23.9

Medium 101.0±42.5 116.9± 45.2 127.0±50.9 155.8±48.1

Medium Expert 113.2±36.7 128.3±35.2 152.3±41.2 184.4±25.3

Expert 140.9±33.3 202.8±27.1 256.0±26.9 259.1±22.8

World MA-CQL OMAR MA-SfBC DOM2

Random -3.8±3.0 0.0±3.3 -1.8±1.9 40.0±14.3

Random Medium -6.6±1.1 28.7±10.4 4.0±5.5 42.7±9.3

Medium Replay 15.9±14.2 21.1±15.6 9.1±5.9 65.9±10.6

Medium 44.3±14.1 45.6±16.0 54.2±22.7 84.5±23.4

Medium Expert 51.4±25.6 71.5±28.2 60.6±22.9 89.4±16.5

Expert 57.7±20.5 84.8±21.0 97.3±19.1 99.5±17.1

Cooperative Navigation MA-CQL OMAR MA-SfBC DOM2

Random 206.0±17.5 211.3±20.3 179.8±15.7 337.8±26.0

Random Medium 226.5±22.1 272.6±39.4 178.8±17.9 359.7±28.5

Medium Replay 229.7±55.9 260.7±37.7 196.1±11.1 324.1±38.6

Medium 275.4±29.5 348.7±51.7 276.3±8.8 358.9±25.2

Medium Expert 333.3±50.1 450.3±39.0 299.8±16.8 532.9±54.7

Expert 478.9±29.1 564.6±8.6 553.0±41.1 628.6±17.2

Generalization. In MPE, we design the shifted environment by changing the speed of agents.
Specifically, we change the speed of agents by randomly choosing in the region vj 2 [vmin, 1.0]
in each episode for evaluation (the default speed of any agent j is all vj = 1.0 in the standard
environment). Here vmin = 0.4, 0.5, 0.3 in the predator-prey, world, and cooperative navigation,
respectively. The values are set to be the minimum speed to guarantee that the agents can all catch the
adversary using the slowest speed with an appropriate policy. We train the policy using the dataset
generated in the standard environment and evaluate it in the shifted environments to examine the
generalization of the policy. The results are shown in the table 2. We can see that DOM2 significantly
outperforms the compared algorithms in nearly all settings, and achieves the best performance in 17
out of 18 settings. Only in one setting, the performance is slightly below OMAR.

Data Efficiency. In addition to the above performance and generalization, DOM2 also possesses
superior data efficiency. To demonstrate this, we train the algorithms using only a small percentage
of the samples (fewer full trajectories) in the given dataset (a full dataset contains 106 samples).
The results are shown in Figure 5 (a)-(c). The averaged normalized score is calculated by averaging
the normalized score in 5 different datasets except the medium-replay (the benchmark of the nor-
malized scores is shown in Appendix C.1). DOM2 exhibits a remarkably better performance in all
MPE tasks, i.e., using a data volume that is 20⇥ times smaller, it still achieves state-of-the-art per-
formance. Moreover, we compare our algorithm with other diffusion-based algorithms, including
MA-SfBC (Chen et al., 2022) and MA-DIFF (Zhu et al., 2023) in Figure 5 (d) as the average nor-
malized score among the MPE tasks. DOM2 also significantly outperforms existing algorithms in

7

Under review as a conference paper at ICLR 2024

Table 2: Performance comparison in shifted environments.

Predator Prey MA-CQL OMAR MA-SfBC DOM2

Random 1.8±5.7 10.4±3.6 9.3±15.4 120.7±100.2

Random Medium 4.0±7.4 41.4±20.9 22.2±34.8 66.2±88.8

Medium Replay 35.6±24.1 60.0±24.9 11.9±18.1 104.2±132.5

Medium 80.3±51.0 81.1±51.4 83.5±97.2 95.7±79.9

Medium Expert 69.5±44.7 78.6±59.2 84.0±86.6 127.9±121.8

Expert 100.0±37.1 151.7±41.3 171.6±133.6 208.7±160.9

World MA-CQL OMAR MA-SfBC DOM2

Random -2.7±3.2 1.1±3.4 -1.9±4.6 35.6±23.1

Random Medium -6.0±7.7 28.7±7.4 0.0±5.0 30.3±34.2

Medium Replay 8.1±6.2 20.1±14.5 4.6±9.2 51.5±21.3

Medium 33.3±11.6 32.0±15.1 35.6±15.4 57.5±28.2

Medium Expert 40.9±15.3 44.6±18.5 39.3±25.7 79.9±39.7

Expert 51.1±11.0 71.1±15.2 82.0±33.3 91.8±34.9

Cooperative Navigation MA-CQL OMAR MA-SfBC DOM2

Random 235.6±19.5 251.0±36.8 175.5±38.1 265.6±57.3

Random Medium 251.0±36.8 266.1±23.6 174.3±50.0 304.5±45.6

Medium Replay 224.2±30.2 271.3±33.6 191.9±54.6 302.1±78.2

Medium 256.5±15.2 295.6±46.0 285.6±68.2 295.2±80.0
Medium Expert 279.9±21.8 373.9±31.8 277.9±57.8 439.6±89.8

Expert 376.1±25.2 410.6±35.6 410.6±83.0 444.0±99.0

low-quality dataset, i.e., 10⇥ performance improvement, indicating that DOM2 is highly effective
in learning from offline datasets. This unique feature is extremely useful in making good utiliza-
tion of offline data, especially in applications where data collection can be costly, e.g., robotics and
autonomous driving (Chi et al., 2023; Urain et al., 2023).

Figure 5: Algorithm performance on data-efficiency. (a)-(c) show the algorithm performance under
different numbers of samples. One can see that DOM2 only requires 5% data to achieve the same
performance as other baselines. (d) shows the algorithm performance under different data qualities.

5.3 SCALABILITY IN MULTI-AGENT MUJOCO ENVIRONMENT

We now turn to a more complex continuous control task: HalfCheetah-v2 environment in a multi-
agent setting (extension of the single-agent task (Peng et al., 2021)). Details are in Appendix C.1.

Table 3: Performance comparison of DOM2 with MA-CQL, OMAR, and MA-SfBC.

HalfCheetah-v2 MA-CQL OMAR MA-SfBC DOM2

Random -0.1±0.2 -0.9±0.1 -388.9±29.2 799.8±143.9

Random Medium -0.1±0.1 219.5±369.1 -383.1±18.4 875.0±155.5

Medium Replay 1216.6±514.6 1674.8±201.5 -128.3±71.3 2564.3±216.9

Medium 963.4±316.6 2797.0±445.7 1386.8±248.8 2851.2±145.5

Medium Expert 1989.8±685.6 2900.2±403.2 1392.3±190.3 2919.6±252.8

Expert 2722.8±1022.6 2963.8±410.5 2386.6±440.3 3676.6±248.1

8

Under review as a conference paper at ICLR 2024

Performance. Table 3 shows the performance of DOM2 in the multi-agent HalfCheetah-v2 envi-
ronments. We see that DOM2 outperforms other compared algorithms and achieves state-of-the-art
performances in all the algorithms and datasets.
Table 4: Performance comparison in shifted environments. We use the abbreviation ”R” for Ran-
dom environments and ”E” for Extreme environments.

HalfCheetah-v2-R MA-CQL OMAR MA-SfBC DOM2

Random -0.1±0.3 -1.0±0.3 -315.8±25.7 581.8±621.0

Random Medium -0.2±0.3 90.8±176.2 -327.0±21.0 1245.8±315.9

Medium Replay 1279.6±305.4 1648.0±132.6 -171.4±43.7 2290.8±128.5

Medium 1111.7±585.9 2650.0±201.5 1367.6±203.9 2788.5±112.9

Medium Expert 1291.5±408.3 2616.6±368.8 1442.1±218.9 2731.7±268.1

Expert 2678.2±900.9 2295.0±357.2 2397.4±670.3 3178.7±370.5

HalfCheetah-v2-E MA-CQL OMAR MA-SfBC DOM2

Random -0.1±0.1 -1.0±0.3 -309.8±23.0 372.9±449.7

Random Medium -0.1±0.2 129.8±374.6 -329.2±43.6 482.0±468.6

Medium Replay 1290.4±230.8 1549.9±311.4 -169.8±50.5 1904.2±201.8

Medium 1108.1±944.0 2197.4±95.2 1355.0±195.7 2232.4±215.1

Medium Expert 1127.1±565.2 2196.9±186.9 1393.7±347.7 2219.0±170.7

Expert 2117.0±524.0 1615.7±707.6 2757.2±200.6 2641.3±382.9

Generalization. As in the MPE case, we also evaluate the generalization capability of DOM2 in this
setting. Specifically, we design shifted environments following the scheme in Packer et al. (2018),
i.e., we set up Random (R) and Extreme (E) environments by changing the environment parameters
(details are shown in Appendix C.1). The performance of the algorithms is shown in Table 4.
The results show that DOM2 significantly outperforms other algorithms in nearly all settings, and
achieves the best performance in 11 out of 12 settings.

5.4 ABLATION STUDY

We conduct an ablation study for DOM2, to evaluate the importance of each component in DOM2
algorithm (diffusion, regularization and data augmentation). Specifically, we compare DOM2 to
four modified DOM2 algorithms, each with one different component removed or replaced. The
results are shown in Figure 6. We see that removing or replacing any component in DOM2 hurts the
performance across all the environments. We also investigate the sensitivity to key hyperparameters
in Appendix C.5 due to the space limitation.

Figure 6: Impact of different algorithm components. We compare DOM2 (purple) with DOM2 w/o
policy improvement (orange), DOM2 w/o diffusion loss (red), DOM2 w/o data augmentation (light-
blue) and DOM2 using a MLP-based (Multi-Layer Perceptron) noise network in diffusion (green).
The results show that every component of DOM2 contributes to its performance improvement.

6 CONCLUSION

We propose DOM2, a novel offline MARL algorithm, which contains three key components, i.e.,
a diffusion mechanism for enhancing policy expressiveness and diversity, an appropriate regular-
izer, and a data-augmentation method. Through extensive experiments on multi-agent particle and
multi-agent MuJoCo environments, we show that DOM2 significantly outperforms state-of-the-art
benchmarks. Moreover, DOM2 possesses superior generalization capability and ultra-high data ef-
ficiency, i.e., achieving the same performance as benchmarks with 20+ times less data.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Johannes Ackermann, Volker Gabler, Takayuki Osa, and Masashi Sugiyama. Reducing over-
estimation bias in multi-agent domains using double centralized critics. arXiv preprint

arXiv:1910.01465, 2019.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? arXiv preprint

arXiv:2211.15657, 2022.

Fan Bao, Chongxuan Li, Jun Zhu, and Bo Zhang. Analytic-dpm: an analytic estimate of the optimal
reverse variance in diffusion probabilistic models. arXiv preprint arXiv:2201.06503, 2022.

Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. arXiv preprint arXiv:2209.14548, 2022.

Minshuo Chen, Kaixuan Huang, Tuo Zhao, and Mengdi Wang. Score approximation, estima-
tion and distribution recovery of diffusion models on low-dimensional data. arXiv preprint

arXiv:2302.07194, 2023.

Cheng Chi, Siyuan Feng, Yilun Du, Zhenjia Xu, Eric Cousineau, Benjamin Burchfiel, and Shu-
ran Song. Diffusion policy: Visuomotor policy learning via action diffusion. arXiv preprint

arXiv:2303.04137, 2023.

Florinel-Alin Croitoru, Vlad Hondru, Radu Tudor Ionescu, and Mubarak Shah. Diffusion models in
vision: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Christian Schroeder de Witt, Tarun Gupta, Denys Makoviichuk, Viktor Makoviychuk, Philip HS
Torr, Mingfei Sun, and Shimon Whiteson. Is independent learning all you need in the starcraft
multi-agent challenge? arXiv preprint arXiv:2011.09533, 2020.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Scott Fujimoto and Shixiang Shane Gu. A minimalist approach to offline reinforcement learning.
Advances in neural information processing systems, 34:20132–20145, 2021.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International conference on machine learning, pp. 2052–2062. PMLR, 2019.

Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey Levine.
Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint

arXiv:2304.10573, 2023.

Hado Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in

Neural Information Processing Systems, 33:6840–6851, 2020.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Jiechuan Jiang and Zongqing Lu. Offline decentralized multi-agent reinforcement learning. arXiv

preprint arXiv:2108.01832, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Ad-

vances in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Ilya Kostrikov, Rob Fergus, Jonathan Tompson, and Ofir Nachum. Offline reinforcement learning
with fisher divergence critic regularization. In International Conference on Machine Learning,
pp. 5774–5783. PMLR, 2021a.

10

Under review as a conference paper at ICLR 2024

Ilya Kostrikov, Ashvin Nair, and Sergey Levine. Offline reinforcement learning with implicit q-
learning. arXiv preprint arXiv:2110.06169, 2021b.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy q-
learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191,
2020a.

Saurabh Kumar, Aviral Kumar, Sergey Levine, and Chelsea Finn. One solution is not all you need:
Few-shot extrapolation via structured maxent rl. Advances in Neural Information Processing

Systems, 33:8198–8210, 2020b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In Reinforce-

ment learning, pp. 45–73. Springer, 2012.

Seunghyun Lee, Younggyo Seo, Kimin Lee, Pieter Abbeel, and Jinwoo Shin. Offline-to-online
reinforcement learning via balanced replay and pessimistic q-ensemble. In Conference on Robot

Learning, pp. 1702–1712. PMLR, 2022.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tuto-
rial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv

preprint arXiv:1509.02971, 2015.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient with
state distribution correction. arXiv preprint arXiv:1904.08473, 2019.

Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel, and Igor Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. Advances in neural informa-

tion processing systems, 30, 2017.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint

arXiv:2206.00927, 2022.

Cheng Lu, Huayu Chen, Jianfei Chen, Hang Su, Chongxuan Li, and Jun Zhu. Contrastive energy
prediction for exact energy-guided diffusion sampling in offline reinforcement learning. arXiv

preprint arXiv:2304.12824, 2023a.

Cong Lu, Philip J Ball, and Jack Parker-Holder. Synthetic experience replay. arXiv preprint

arXiv:2303.06614, 2023b.

Laëtitia Matignon, Laurent Jeanpierre, and Abdel-Illah Mouaddib. Coordinated multi-robot ex-
ploration under communication constraints using decentralized markov decision processes. In
Twenty-sixth AAAI conference on artificial intelligence, 2012.

Ofir Nachum, Bo Dai, Ilya Kostrikov, Yinlam Chow, Lihong Li, and Dale Schuurmans. Algaedice:
Policy gradient from arbitrary experience. arXiv preprint arXiv:1912.02074, 2019.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online rein-
forcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Frans A Oliehoek and Christopher Amato. A concise introduction to decentralized POMDPs.
Springer, 2016.

11

Under review as a conference paper at ICLR 2024

Frans A Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value func-
tions for decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun, and Dawn Song.
Assessing generalization in deep reinforcement learning. arXiv preprint arXiv:1810.12282, 2018.

Ling Pan, Longbo Huang, Tengyu Ma, and Huazhe Xu. Plan better amid conservatism: Offline
multi-agent reinforcement learning with actor rectification. In International Conference on Ma-

chine Learning, pp. 17221–17237. PMLR, 2022.

Bei Peng, Tabish Rashid, Christian Schroeder de Witt, Pierre-Alexandre Kamienny, Philip Torr,
Wendelin Böhmer, and Shimon Whiteson. Facmac: Factored multi-agent centralised policy gra-
dients. Advances in Neural Information Processing Systems, 34:12208–12221, 2021.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and
Shimon Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In International conference on machine learning, pp. 4295–4304. PMLR, 2018.

Shideh Rezaeifar, Robert Dadashi, Nino Vieillard, Léonard Hussenot, Olivier Bachem, Olivier
Pietquin, and Matthieu Geist. Offline reinforcement learning as anti-exploration. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 36, pp. 8106–8114, 2022.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in Neural Informa-

tion Processing Systems, 35:36479–36494, 2022.

Noah Y Siegel, Jost Tobias Springenberg, Felix Berkenkamp, Abbas Abdolmaleki, Michael Ne-
unert, Thomas Lampe, Roland Hafner, Nicolas Heess, and Martin Riedmiller. Keep doing
what worked: Behavioral modelling priors for offline reinforcement learning. arXiv preprint

arXiv:2002.08396, 2020.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learn-

ing, pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv

preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in Neural Information Processing Systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint

arXiv:2011.13456, 2020b.

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296, 2017.

Adith Swaminathan and Thorsten Joachims. Batch learning from logged bandit feedback through
counterfactual risk minimization. The Journal of Machine Learning Research, 16(1):1731–1755,
2015.

Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Korjus, Juhan Aru, Jaan
Aru, and Raul Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PloS one, 12(4):e0172395, 2017.

12

Under review as a conference paper at ICLR 2024

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmen-
tation with diffusion models. arXiv preprint arXiv:2302.07944, 2023.

Julen Urain, Niklas Funk, Jan Peters, and Georgia Chalvatzaki. Se (3)-diffusionfields: Learning
smooth cost functions for joint grasp and motion optimization through diffusion. In 2023 IEEE

International Conference on Robotics and Automation (ICRA), pp. 5923–5930. IEEE, 2023.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with
denoising diffusion gans. arXiv preprint arXiv:2112.07804, 2021.

Yiqin Yang, Xiaoteng Ma, Chenghao Li, Zewu Zheng, Qiyuan Zhang, Gao Huang, Jun Yang, and
Qianchuan Zhao. Believe what you see: Implicit constraint approach for offline multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 34:10299–10312,
2021.

Chao Yu, Akash Velu, Eugene Vinitsky, Yu Wang, Alexandre Bayen, and Yi Wu. The surprising
effectiveness of ppo in cooperative, multi-agent games. arXiv preprint arXiv:2103.01955, 2021.

Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano Ermon,
and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. arXiv preprint

arXiv:2305.17330, 2023.

13

