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ABSTRACT

Diffusion-based planners have shown great promise for autonomous driving due
to their ability to capture multi-modal driving behaviors. However, guiding these
models effectively in reactive, closed-loop environments remains a significant
challenge. Simple conditioning often fails to provide sufficient guidance in com-
plex and dynamic driving scenarios. Recent work attempts to use typical expert
driving behaviors (i.e., anchors) to guide diffusion models but relies on a truncated
schedule, which introduces theoretical inconsistencies and can compromise per-
formance. To address this, we introduce BridgeDrive, a novel anchor-guided dif-
fusion bridge policy for closed-loop trajectory planning. Our approach provides a
principled diffusion framework that effectively translates anchors into fine-grained
trajectory plans, appropriately responding to varying traffic conditions. Our plan-
ner is compatible with efficient ODE solvers, a critical factor for real-time au-
tonomous driving deployment. We achieve state-of-the-art performance on the
Bench2Drive benchmark, improving the success rate by 5% over prior arts.

1 INTRODUCTION

Closed-loop planning with reactive agents is a critical challenge in autonomous driving, which re-
quires effective interaction with complex and dynamic traffic environments (Jia et al. [2024). Dif-
fusion models has become a powerful paradigm for this task due to their ability to model complex,
multi-modal distributions and incorporate flexible guidance (Liao et al., 2025} Zheng et al., [2025b;
Yang et al} [2024; [Xing et al.| [2025)). A key challenge, however, is to determine which sources of
guidance information are most salient and how to integrate them effectively into these models to
produce plans that are not only plausible but also safe and reactive in real-world driving conditions.

A promising source for guidance is to leverage typical human expert driving behaviors, often repre-
sented as coarse anchor trajectories, as they provide a strong prior for safe and sensible maneuvers,
constraining the vast solution space. Recently, DiffusionDrive (Liao et al.| [2025) implements this
strategy by training a denoiser on a truncated diffusion schedule, starting from a noisy version of the
anchor rather than pure Gaussian noise. While achieving state-of-the-art empirical performance, this
approach introduces a theoretical inconsistency: its denoising process does not match the forward
diffusion process that it is trained on, which diverges from the core principle of diffusion models
and can lead to unpredictable behavior and compromised performance.

To address this, we introduce BridgeDrive, a principled diffusion framework that integrates anchor-
based guidance for autonomous driving planning using a theoretically sound diffusion bridge for-
mulation. Instead of heuristically truncating the diffusion process, we formally define the planning
task as learning a diffusion process that bridges the gap from a given coarse anchor trajectory to a
refined, context-aware final trajectory plan. This formulation ensures that the forward and denoising
processes are perfectly symmetric, allowing our model to learn a direct and robust transformation
from anchors to final trajectories. By adhering to the principles of diffusion, our method fully
leverages the expressive power of anchors for guidance while maintaining diffusion models’ ability
to represent diverse human-like driving behaviors. Furthermore, our approach is compatible with
efficient ODE-based samplers, enabling real-time performance crucial for on-road deployment. Em-
pirically, we achieve 72.27% success rate on the Bench2Drive closed-loop evaluation benchmark,
outperforming previous state-of-the-art method by a significant 5% margin.
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2 PRELIMINARIES

2.1 AUTONOMOUS DRIVING PLANNING AND EVALUATION

The planning task in autonomous driving can be formulated as predicting future trajectories of
the ego-vehicle based on raw sensor inputs. Conventionally, there are two trajectory representa-
tions (Renz et al., 2025): (1) Temporal speed waypoints = := z'°™ ¢ RNVwin*2_ represent equal
temporal-spaced (e.g., every 0.25 seconds) future coordinates of ego-vehicle, which inherently con-
tain speed control information. (2) Geometric path waypoints x = (22°, v) € RMwnx2 x R,
represent equal geometric-spaced (e.g., every 1 meter) future coordinate of ego-vehicle; for geomet-
ric path waypoints-based planning, the model needs to predict the speed v of ego-vehicle. In this
paper, we choose to use geometric path waypoints as our model output, which differs from Diffu-
sionDrive Liao et al.|(2025) where temporal speed waypoints are used. This design choice is based
on prior works (Chitta et al., 2023 |[Zimmerlin et al., 2024) and our ablation study in Section E}

Evaluation of autonomous driving can be broadly categorized into open-loop and closed-loop set-
tings. The closed-loop setting is more challenging and can better reflect a policy’s real-world plan-
ning capability, since the ego vehicle’s decisions affect its own future states and those of the sur-
rounding agents, creating a feedback loop that can amplify small prediction errors over time. To
minimize the sim-to-real gap, closed-loop evaluation requires high-fidelity simulators to capture
the interactions between the ego vehicle and its surrounding environment, which are typically both
computationally expensive and time-consuming. CARLA (Dosovitskiy et al.,[2017) has emerged as
the most widely used platform, with a series of benchmarks building on top of it, such as CARLA
Leaderboard, Longest6 (Chitta et al., 2023), and Bench2Drive (Jia et al.,2024). Interestingly, exist-
ing methods that achieve near-perfect results on open-loop datasets, such as NavSim (Dauner et al.,
2024) or nuScenes (Caesar et al.l 2019), still struggle to achieve comparable performance under
closed-loop evaluation (L1 et al., [2024b; |Liao et al., 2025} |Fu et al., 2025; |[Renz et al.| |2025). This
discrepancy emphasizes the inherent difficulty of closed-loop planning and highlights the need for
more robust methods to handle the complexities of dynamic, interactive traffic environments.

2.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015 Ho et al.l [2020; [Song et al., 2021azb}; Karras et al.,
2022) generate data xg ~ pg(zo) from pure Gaussian noise zr ~ p(zr) = N(z7|0,05,.1)
by reverting a forward diffusion process. Mathematically, the forward diffusion process, which

gradually corrupts data into noise, can be defined by a linear SDE (Song et al.|[2021b)):

day = f(t)z:dt + g(t)dwe, @0 ~ pa, e9)
where t € [0,7] denotes the diffusion timestep, f : [0,7] — R is the linear drift coefficient,
g : [0,T] — R is the diffusion coefficient function, and w; € R? is a standard Brownian motion.

It turns out that this linear SDE owns a Gaussian transition kernel q(z¢|x¢) = N (24|, 021),

where a; = exp (fg f(s)ds) and 07 = o? fg 9552)2 ds are the noise schedules (Kingma et al.,

2021). The forward SDE defines a series of marginals densities {q(2)}+c[o,7] along the diffusion
path, where ¢(z¢) = [ q(z¢|zo)pa(z0)dzo. Since q(xr) ~ p(x7) for sufficiently large 7', we can
generate data o ~ pg(zo) by transforming a noise sample z7 ~ p(xr) through a probability flow
ODE (PF-ODE) (Song et al.,[2021b)):
2

e poe— 29, logae) @
which shares identical marginal densities {q()}¢c[o,7] as the forward SDE. The score function
V., log q(x;) in Eq. (2) can be approximated by V, log q(x¢) ~ (cyxe(xs,t) — x4)/0? (Vincent,
2011)), where the denoiser x¢(z¢, t) is parameterized by a neural network and learned by minimizing
the mean squared denoising error (Karras et al.,[2022):

i By (1), (wo)a(ar o) [W(E) [0 (2, ) — 20 ]*] - 3)

For conditional generation, the denoiser x4 (¢, t, z) takes in an extra conditional variable z, which
corresponds to the conditional score function V., log q(z4|2) ~ (cuzg(4,t,2) — x;)/0?. Fur-
thermore, Ho & Salimans| (2021) propose to linearly interpolate between V., logq(x¢|z) and
V., log q(x+) with a hyperparameter to adjust the guidance strength of the conditional information.
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Figure 1: Visualization of the denoising process of BridgeDrive (t = T' — 0 from left to right),
with the leftmost figure being anchor 1 and the rightmost being the planned trajectory xy. In each
figure, the blue solid line depicts the denoised trajectory of the selected anchor at a specific timestep
t, the red solid line depicts an example of the denoised trajectory of an un-selected anchor, and the
rest scattered dots of other colors depict the denoised trajectories of other anchors at the timestep ¢.

2.3 DIFFUSIONDRIVE WITH TRUNCATED DIFFUSION

DiffusionDrive (Liao et all [2025) is a diffusion planner based on temporal speed waypoints, which
leverages a truncated diffusion schedule and a fixed set of K-means clustered anchor trajectories
Yy = {yi}iv;“f‘“" that represent typical human driving behaviors. The truncated forward diffusion
process adds a small amount of noise to each anchor until ¢ = Ty, < T to obtain a set of noisy
anchors {y%m } ﬁV:"‘"f“"‘. The truncated denoising process starts from noisy anchors at ¢ = Tiyne. Given

conditional information z (e.g., sensor inputs and target point), a neural network xg ({yi}fvzlh, t,z)
is trained to predict the best anchor and output a denoised trajectory from the noisy version of the
best anchor. The denoised trajectory is then used to compute the score function for denoising.

However, as discussed in the previous section, the learned denoising process of diffusion models
must revert the forward diffusion process. Although DiffusionDrive demonstrates strong empiri-
cal performance, it utilizes a truncated diffusion schedule where the forward diffusion process adds
noise to anchor trajectories and the denoising process attempts to recover the ground-truth trajecto-
ries. This design choice creates an asymmetry between its forward and denoising processes, framing
the model’s task as regressing from noisy anchors to ground-truth trajectories, rather than as a rever-
sal of the forward diffusion process.

3 BRIDGEDRIVE: DIFFUSION BRIDGE POLICY FOR TRAJECTORY PLANNING

To ensure the symmetry between the forward and backward processes of anchor-based diffusion
planners, we propose a novel diffusion bridge policy, BridgeDrive, which provides a principled
diffusion framework that leverages the powerful inductive biases of anchor-based guidance, while
ensuring that the symmetry between the forward and denoising processes is maintained.

3.1 ANCHOR CONSTRUCTION FOR GEOMETRIC PATH WAYPOINTS

Anchors Y = {yz}f\éf‘“ are pre-defined, high-priority trajectories that represent typical human
expert driving behaviors. They form a discrete set of atomic building blocks that planners use to
construct solutions, which can dramatically reduce planning complexity, enforce safety constraints,
improve robustness to dynamic environments, and align planning with task objectives
[2020; [Chen et al, 2024} [Li et al.| [2024b). Our anchor definition is slightly different from|Liao et al]
since our model outputs geometric path waypoints as discussed in Section Specifically,
each anchor is formulated afl|y = (2§, v,) € RMn*2 x R, where 2§ € R represents a
series of coordinates of future path, Npiy i the geometric prediction horizon, and v, denotes the

anchor speed. Each anchor trajectory x5 ° is defined as a K -means clustering center of the training

"The subscript in x,, v, indicates that the trajectory and its speed belongs to an anchor, which differs from
an ordinary trajectory x and its speed v. The superscript index 4 in y* is omitted for notation simplicity.
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set, and the anchor speed v,, is defined as the average speed of the trajectories in the training set that
belong to this anchor. All values are normalized to the ego-vehicle coordinate system.

Algorithm 1 BridgeDrive Training (ours) Algorithm 2 DiffusionDrive Training
1: Initialize 0 # denoiser parameter  1: Initialize 6 # denoiser parameter
2: repeat 2: repeat
3 x7y7szd(x7yaz) 3 xay7Zdi($7y?Z>
4: # x: GT traj, y: anchor, 2: guidance  4: # x: GT traj, y: anchor, z: guidance
5: t ~ p(t) #t€[0,7] 5 t ~ Pyrunc(t) #1¢ € [0, Tiunc)
6: e ~N(0,1) # random noise  6: e~N(0,1) # random noise
7: xy = apy + byx + cpe # noisy trajectory 7 Yp = Yy + o€ # noisy anchor
8: Update 6 with the gradient 8: Update € with the gradient

w(t)Vellze(we,t,y, 2) — x| w(t)Vollzo (i, t, 2) — |

9: until convergence 9: until convergence

10: return 6 10: return 6

3.2 A GENERATIVE PARADIGM FOR ANCHOR-GUIDED DIFFUSION POLICY

To incorporate anchors into diffusion models in a principled way, we propose to factorize the joint
distribution of the ground-truth trajectory x, anchor y, and guidance information z as

pa(z,y,2) = pa(zly, 2)pa(y|2)pa(2). 4)

This factorization defines a two-step generative process. First, for a driving scene z ~ pg(z), we
sample an anchor y ~ pg(y|z) given the scene information in z (e.g., BEV, agent/map queries, and
a target point). Then, the planned trajectory x ~ p4(x|y, z) is generated according to the guidance
of the chosen anchor 7 and scene information z.

We propose to parameterize the conditional planning distribution p,4(x|y, z) with a conditional diffu-
sion bridge model py(x¢|xT, z), which constructs a diffusion bridge (Zhou et al., 2024} Zheng et al.,
2025a) between the ground-truth trajectory xg := x and anchor x7 = y (Doob & Doob) |1984):

dr, = f(t)zdt + g(1)* V., log g(@r|ze) + g(t)dws, o ~ pa, o1 =Y, )

where ¢ € [0, 7] denotes the diffusion timestep, the definitions of f(t), g(t) follow those in Eq. (T,
and V,, log g(zr|zt) = V., log q(zt|zo, 1) — V4, log g(xt|x0). It turns out that Eq. (5)) also owns
an analytical Gaussian transition kernel for any given trajectory zy and anchor z:

q(z¢|zo, o7) = N(xt|agzr + bixo, 1), (6)
ay = apyifar, bo=a(1—77), ¢ =0i(l=17), (7

where a; = exp (fg f(s)ds), o = af fg %ds, and v, = 229 (Zheng et al., 2025a)), which

QLo
defines a diffusion bridge =; = asxr + bixo + ci€; that interpolates between xy and xp with
added Gaussian noise c;¢;. [Zhou et al.|(2024) show that there exists a PF-ODE that shares identical
marginal densities {q(x)}+c[o,7] as the forward diffusion bridge SDE in Eq. :

o 10— glep (TELE) 9 o garay)). ®
t 2

which allows us to translate an anchor z7 to a planned trajectory z given the driving scene z.
To simulate this PF-ODE, we need to approximate the score function V,, log ¢(x:|xr, z) for the
conditional diffusion bridge model. In the next section, we will introduce our training and planning
algorithms for this diffusion bridge policy.

3.3 TRAINING AND PLANNING ALGORITHMS

In our diffusion bridge planner, each diffusion bridge is constructed between a ground-truth trajec-
tory g := x and the nearest anchor x7 = y € ) to it. During training, we fit a neural network
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Algorithm 3 BridgeDrive Planning

1: z ~ pq(z) # sample a driving scene
20 zp = hy(z,)) # choose which anchor to use
3. fori=N,--- ,1do # discretize timesteps into T :=ty < --- < t; <ty =0
4: .i‘0|ti = xg(xs,, i, 7, 2) # compute the denoised mean trajectory
5: 8¢, = (ag, 27 + by, Tope, — xti)/cfi # compute the score function
6: di, = f(ti)xs, — g(t;)? (§ti/2 — Vg, log q(wﬂxti)) # compute the derivative dx; /dt
7: x¢,_, = ODESolverStep(x+,,dy,, ti, ti—1) # simulate the diffusion bridge PF-ODE
8: end for

9: return zy

denoiser x¢ (2, t, 27, 2) to predict the denoising mean 2, ~ E[xo |z, 27, 2] given noisy trajectory
2y ~ q(x¢|xo, x7) at timestep ¢, the nearest anchor 1 = y to xg, and the conditional information z
for the driving scene. This denoiser is trained by minimizing the mean squared denoising error:

mgn Ep(t)pd(wo,wT,z)q(wt|z0,a:T) [’LU(t)HI’g(:L‘t, t,xr, Z) - :C0||2] . 9

Our training algorithm is summarized in Algorithm[I} Notice that our forward and reverse diffusion
paths both result in the end point zo = z since ag = ¢g = 0 and by = 1, ensuring that the denoiser
is trained to reverse the forward diffusion process. On the other hand, in DiffusionDrive (Liao
et al., [ 2025) (Algorithm , for all o; and oy, the noisy anchor y; deviates from z, failing to adhere
to the symmetry requirement of diffusion models. Also, the training procedure of BridgeDrive is
simulation-free, which allows us to efficiently train the denoiser without simulating the forward SDE
in Eq. (§) or the PF-ODE in Eq. (8). In addition, since the ground-truth trajectory z is not available
for computing the nearest anchor y at inference time, we also train a classifier hy(z,)) to predict
the nearest anchor y to z( given z with the cross entropy loss.

Similar to standard diffusion models, the trained denoiser x¢(x¢,t, z7, z) can be used to approxi-
mate the conditional score function for our conditional diffusion bridge model (Zheng et al., 2025a):
ax + byxg (e, t, 07, 2) — X4

V:Et logq(mt|xT72) ~ 02 . (10)
t

Our planning algorithm is summarized in Algorithm [3] and depicted in Fig. 2] Specifically, for a
given driving scene z, we first use the classifier h4(z, ) to choose an anchor y € ), which is the
starting point zp = y of the denoising process in our diffusion bridge planner. Then, we iteratively
compute the denoised mean trajectory &|; using our denoiser x4 (2, t, 27, 2), calculate the score
function 5, using Eq. (I0), and simulate the PF-ODE in Eq. (8) with the score §; using a numerical
ODE solver. Although image diffusion models use higher-order ODE solvers (Karras et al., 2022
Lu et al.}|2022) to accelerate sampling, we find that first-order methods, such as the DDIM sampler
(Song et al.,|2021a)), are sufficient for the planning task with minimal number of function evaluations.
Fig.[I| visualizes the denoising process of BridgeDrive for an example driving scenario.

3.4 MODEL ARCHITECTURE

Our model consists of three major components: perception module, denoiser, and classifier. Imple-
mentation and training details are provided in Appendix

Perception Module. The perception module extract useful features from lidar, front camera image,
and target point for the downstream diffusion planner. We use a pre-trained perception backbone
from TransFuser++ (Jaeger et al) [2023) to obtain BEV segmentation, bounding boxes of traffic
participants, general traffic information (e.g., stop signs and traffic lights), and fused features from
the inputs. The output of the perception module is denoted as z and will be used as the conditional
guidance information in the denoiser module z¢ (x4, t, 21, 2).

Denoiser. The architecture of the denoiser xg(x¢,t, zr, 2) is illustrated in the light blue box in
Fig. 2] For a noisy trajectory x; at timestep ¢ and its corresponding anchor z7 = y, we first interact
them with BEV via deformable spatial cross-attention modules. Subsequently, cross-attention with
fused features from lidar, front camera, and target point is applied. The resulting feature vectors



Under review as a conference paper at ICLR 2026

~~
e
>
L e W .
N - g | Denoiser
< : xg(X¢, t, X7, 2
< Anchor E = o i : = o (%t ™7)
$ —> trajectory — w g — O & M B
& x = g< S E | 3
2 m 5 g | g
o = | o
Nanch R, S e T
iyNanchor = .
Anchors {y }i=1 T BEV lidar, front camera image, -g 5 De_nmse‘d
target point fused feature EB_’ é — § ——> trajectory
l ppm— l’ —————— \ U, S N R < ) Xoje
‘ . E | £
. . ] : =
BridgeDrive Nois = = ! w < |
2 Y ] =l - v e ! Z
PF-ODE —— > trajectory I b=y l—— ° = _— s
Solver xe s | SE X core
] S § S | function
‘ \ o E S 8

Timestep t

Gi/mesteps xT

Figure 2: Diagram for the planning procedure of BridgeDrive in Algorithm The model architec-
ture of the neural network denoiser ¢ (z¢, t, z7, z) is detailed in the light blue box.

are further processed by feed-forward networks (FFN5s), and their concatenation is modulated by the
timestep ¢. Finally, an MLP network is employed to predict the denoised mean trajectory Zgj;.

Anchor Classifier. The classifier h,(z,)) employs cross BEV attention module and cross feature
attention module between z and all anchors )/, followed by an FFN which outputs the probability
that each anchor y* € ) should be used for trajectory generation. We select the anchor y with the
highest probability as the input z7 to the denoiser xg (x4, t,xT = y, 2). Note that the classifier only
needs to be run once prior to the iterative denoising process.

4 EXPERIMENTS

4.1 BENCHMARK, DATASET AND BASELINES

Benchmark. In this paper, we focus on closed-loop evaluation since it simulates dynamic traffic
conditions which can better reflect a policy’s real-world planning capability. Bench2Drive (Jia et al.,
2024) is a widely used closed-loop evaluation benchmark (Jaeger et al., 2023} Jia et al.| 2025} [Fu
et al.l [2025; Renz et al.,[2025)), which contains 220 routes for evaluation under the CARLA Leader-
board 2.0 protocol for end-to-end autonomous driving. Each route is around 150 meters in length
and contains a specific driving scenario, which allows for a detailed assessment of autonomous
driving systems’ proficiency in different driving skills.

Dataset. While Bench2Drive provides an official training set, empirical studies (Zimmerlin et al.,
2024; Renz et al., 2025; [Fu et al., [2025) showed that official dataset collected by (Li et al., [2024a)
leads to suboptimal performance. Therefore, data augmentation and cleansing scheme are applied
to enhance the performance. For example, ORION (Fu et al., [2025) generated Visual Question An-
swering (VQA) to enhance their Vision-Language-Action (VLA) models’ capability, such as scene
description, behavior description, meta-driving decision and reasoning, and recall of essential histor-
ical information. |Chitta et al.|(2023) and [Zimmerlin et al.| (2024) use PDM-lite (Beilwenger, 2024;
Sima et al.,[2025)), an open source rule-based expert to collect ground-truth trajectories for imitation
learning. SimLingo (Renz et al.,|2025) generates additional driving data and applies intricate filtra-
tion on training routes of |Chitta et al.|(2023) and the official CARLA LB 2.0 routes. We use the
datasets proposed by (Zimmerlin et al.,|2024). The dataset actively filters for critical change frames
and refines expert behavior, thereby focusing on high-quality decision-making moments while re-
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Table 1: Comparison of BridgeDrive to previous baselines on Bench2Drive. Our method shows
SOTA performance on both Driving Score (DS) and Success Rate (SR). Notably, by using a princi-
pled diffusion bridge model, our method achieves significant improvements over previous diffusion
baselines (including those with prior knowledge from VLA), demonstrating the effectiveness of the
diffusion module in the autonomous driving task when following our paradigm as discussed in Sec-
tion A potential avenue to further improve our method is to integrate prior knowledge from
VLA, which is left as future work.

Method Expert VLA Diffusion DS SR(%)
DiffusionDrive™ (Liao et al.:2025) PDM-Lite b ¢ v 77.68 52.72
TCP-traj* (Wu et al.,[2022) Think2Drive X X 59.90 30.00
UniAD-Base (Hu et al.,[2023) Think2Drive X X 45.81 16.36
VAD (Jiang et al., [2023) Think2Drive } 4 X 42.35 15.00
DriveTransformer (Jia et al.;2025) Think2Drive b 4 b 4 63.46 35.01
ORION (Fu et al., |[2025) Think2Drive v X 77.74 54.62
ORION diffusion (Fu et al., [2025) Think2Drive 4 v 71.97 46.54
SimLingo (Renz et al.}|2025) PDM-Lite v X 85.07 67.27
TransFuser++ (Zimmerlin et al.,[2024) PDM-Lite X X 84.21 67.27
BridgeDrive (ours) i PDM-Lite X v 86.87(+18) 72.27(:5.0)

ducing its size, which improves training efficiency and strengthens the model’s learning in crucial
driving scenarios. For more details please refer to Appendix [D.1]

Baselines. We compare against the following baselines. TCP-traj (Wu et al., |2022) is a monocular
camera-based method that jointly learns planning and direct control with a situation-based fusion.
UniAD (Hu et al, 2023)) is a unified end-to-end framework that integrates full-stack driving tasks
through query-based interfaces. VAD (Jiang et al., [2023) is an end-to-end vectorized paradigm that
models driving scenes with vectorized representations. DriveTransformer (Jia et al.,|2025) employs
task parallelism, sparse representation, and streaming to enable efficient cross-task knowledge trans-
fer and temporal fusion. ORION (Fu et al., 2025)) integrates a QT-Former for history aggregation,
a reasoning large language model (LLM), and a VAE for planning. Simlingo (Renz et al.| 2025)
leverages VLA and achieves current SOTA performance on Bench2Drive. TransFuser++ (Chitta
et al., 2023) (Zimmerlin et al., 2024) (Jaeger et al.l [2023) ranks second in the 2024 CARLA chal-
lenge and first on the Bench2Drive test routes. In addition, we adapt DiffusionDrive to Bench2Drive
benchmark (denoted as DiffusionDrive*™P). Adaptation details are provided in Appendix

4.2 MAIN RESULTS

Evaluation results on Bench2Drive benchmark are demonstrated in Table [[l For all models that
exceeded previous SOTA result, we performed experiments with three random seeds to ensure re-
producibility. The performance of our work significantly exceeds that of all previous work. In
particular, our BridgeDrive outperform the SimLingo (Renz et al., [2025)), the latest SOTA, by +1.8
and +5% in driving score and success rate, respectively. Moreover, BridgeDrive exhibits outstanding
multi-ability capability, especially in Merging (+4.75), Overtaking (+1.12), and Traffic Sign (+6.50),
resulting in overall improvement by +2.9 than SOTA, as shown in Table[d]in the Appendix. However,
BridgeDrive demonstrates suboptimal performance in the Comfortness and Give Way metrics, sug-
gesting a tendency toward frequent or poorly timed braking. This outcome may imply that our model
prioritizes safety considerations, potentially at the expense of passenger comfort. Furthermore, the
inference speed of BridgeDrive is suitable for real-time deployment, as detailed in Table[3]

4.3 ABLATION STUDY AND QUALITATIVE ANALYSIS

The primer focus of this paper is on the design and study of diffusion models for trajectory planning;
therefore, we prioritize the most vital aspects that could influence the performance, namely 1) what
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Figure 3: A consecutive four frames of a sample Bench2Drive scene. Overtaking maneuver per-
formed by BridgeDrive®™P. The ego car exhibited deficiencies in overtaking maneuver coordina-
tion and speed control, which directly led to a collision with the white vehicle. For video demon-
stration, please refer to supplementary materials.
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Figure 4: On the same scene as in Fig. [3] overtaking maneuver performed by BridgeDrive#®®. The
ego vehicle adapts its planning to overtake a sequence of parked cars. For video demonstration,
please refer to supplementary materials.

kind of trajectory representation is more compatible with diffusion model; 2) how our diffusion
bridge policy with anchor guidance differs from other diffusion planners;

Effectiveness of the representation of geometric path waypoints. To account for the influence of
different representations of the trajectory, namely the temporal speed waypoints vs. geometric path
waypoints, we implement these two configurations for each version of diffusion models, denoted as
temp and geo, respectively. It should be noted that, for DiffusionDrive®®°, all modules remain iden-
tical to those of our method except for the diffusion part to ensure a fair comparison. The results are
compared in Table[2] It can be seen that the representation of geometric path waypoints outperforms
their temporal counterpart, with an improvement of +5.46%, +9.09%, +12.37% in the success rate
for DiffusionDrive, Full Diffusion, BridgeDrive, respectively. We argue the main reasons for this
are as follows. 1) Temporal waypoints encode speed control information in the spacing between
subsequent waypoints. Such an encoding is ambiguous and difficult to generalize. For example, for
overtaking maneuvers with different speeds, geometric waypoints only require a model to learn the
similar geometric pattern of driving path plus a varying speed scalar. In comparison, the general-
ization of temporal waypoints require a model to stretch spacing between waypoints to account for
different speeds. 2) Geometric waypoints are more compliant with route topology and is therefore
less likely to violate route lane constrain; similar arguments are also provided in (Jaeger et al.}[2023).

The advantage of the denoising diffusion bridge model. As illustrated in Table 2] benefiting
from the multi-modality of diffusion models, both Full Diffusion®*® and BridgeDrive&*° outperform
DiffusionDrive®®® by a large margin. In addition, compared with full diffusion, BridgeDrive further
leverages anchor information to guide its diffusion process. This is of particular importance when
facing ambiguous situations. An example is visualized in Fig.[5]and Fig.[f] In this case, the target
point for lane change is given in a short distance ahead of the ego vehicle. Due to inherent inertial of
the ego car, it is unlikely for full diffusion to change lane. Therefore, the ego car kept traveling in a
straight path and missed the target point; subsequently, the ego car was unable to make a sharp turn
to the left lane and hit the road barrier. In comparison, BridgeDrive, under the strong guidance of
the anchor, was able to strictly follow the target point and entered the correct lane at the road fork.
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Figure 5: The Full Diffusion model in a consecutive four frames of a sample Bench2Drive scene. It
failed to adhere to the target time window for lane-changing maneuvers, which consequently led to
a collision with the road barrier. For video demonstration, please refer to supplementary materials.
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Figure 6: BridgeDrive in the same scene as in Fig. |5 The BridgeDrive model achieved timely
lane changing due to anchor guidance and successfully navigated through the road fork. For video
demonstration, please refer to supplementary materials.

Table 2: Ablation study for the effects of temporal and geometric path waypoints for DiffusionDrive,
full diffusion, and BridgeDrive. All methods use identical modules except for the diffusion part. Our
BridgeDrive®® achieves SOTA DS and SR, prioritizing safety over Comfortness.

Configuration Principled  Anchor DS SR(%) Efficiency Comfortness
DiffusionDrive'™? b 4 v 77.68 52.72 248.18 24.56
DiffusionDrive®®® b 4 v 80.79 58.18 245.34 15.49
Full Diffusion'*"™ v b 4 79.75 58.18 246.31 24.42
Full Diffusion®* v b 4 83.85 67.27 238.90 21.40
BridgeDrive' ™™ v v 81.97 59.90 243.88 22.61
BridgeDrive®®® v 4 86.86 £ 088 7227 £137 238.74 £250 17.70 £0.80

5 CONCLUSIONS AND FUTURE WORK

We presented BridgeDrive—an autonomous driving solution based on diffusion bridge policy. Our
method provides a principled bridge diffusion framework incorporating anchor guidance and outper-
formed prior work by 5% in success rate. Extensive experiments validated that BridgeDrive yielded
significant performance improvements in closed-loop planning tasks.

Limitations and future work. (1) While some existing methods only relies on camera input (e.g.,
Renz et al.| (2025))), BridgeDrive also requires lidar input. Future work is expected to investigate
BridgeDrive’s capability in the absence of lidar. (2) Although the inference speed of BridgeDrive
is suitable for real-time deployment, further acceleration can be achieved by distilling our model
into a one-step model without sacrificing the generation quality (Xie et al., [2024). (3) Despite
BridgeDrive’s extraordinary capacity to learn complex planning tasks, it still struggles to handle the
out-of-distribution scenario, as illustrated in Appendix [C.3} This limitation could be overcome by
incorporating prior knowledge from VLA and post-training with reinforcement learning.
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REPRODUCIBILITY STATEMENT

For all models that exceeded previous SOTA result, we performed experiments with three random
seeds to ensure reproducibility. Code will be made available upon publication of this work.
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Table 3: Comprehensive comparison between BridgeDrive and Baselines. BridgeDrive prioritizes
safety over Comfortness.

Method Expert Key technique DS SR(%) Effi. Comfort.
DiffusionDrive™®  PDM.-Lite Diffusion 77.68 52.72 248.18 24.56
TCP-traj* Think2Drive ~ CNN, MLP, GRU  59.90 30.00 76.54 18.08
UniAD-Base Think2Drive  Transformer 45.81 16.36 129.21 43.58
VAD Think2Drive  Transformer 42.35 15.00 15794 46.01
DriveTransformer ~ Think2Drive  Transformer 63.46 35.01 100.64  20.78
ORION Think2Drive ~ VLA+VAE 77.74 54.62 15148 17.38
ORION diffusion Think2Drive ~ VLA+Diffusion 71.97 46.54 NA NA
SimLingo PDM-Lite VLA 85.07 67.27 259.23  33.67
TransFuser++ PDM-Lite Transformer 84.21 67.27 NA NA
BridgeDrive (ours) PDM-Lite Diffusion 86.87(+1.8) 7227 +5.00 238.74 17.70

A DECLARATION

We used large language models (LLMs) to polish writing for part of this paper.

B RELATED WORK

End-to-end autonomous driving. Traditional motion planning pipelines often decompose the task
into separate stages—perception, prediction, and planning—which inevitably introduce latency and
information degradation across modules (Sadat et al.,[2020). To overcome these limitations, recent
studies have shifted toward planning-centric, end-to-end autonomous driving frameworks. End-to-
end autonomous driving aims to map raw sensory inputs directly to trajectory predictions or control
commands, enabling holistic system optimization that mitigates error propagation across modules
(Wu et al., 2022; Zhang et al.| 2021). UniAD (Hu et al., [2023)) shows the feasibility of end-to-
end autonomous driving by unifying multiple perception tasks to benefit planning. Building on
this, VAD (Jiang et al. 2023) introduces compact vectorized scene representations to boost effi-
ciency. VADV2 (Chen et al., [2024) proposes a probabilistic planning framework that models the
distribution over possible actions and samples one for vehicle control. SimLingo (Renz et al., [2025)
and GPTDriverV2 (Xu et al.}|2025) incorporate vision-language understanding and language-action
alignment, aiming to enhance closed-loop driving performance.

Deterministic planners. Some end-to-end autonomous driving planners relies on models such as
multilayer perceptrons (MLPs) or variational autoencoders (VAEs). Transfuser (Chitta et al., [2023)
and its extension Transfuser++ (Jaeger et al. 2023) exemplify this line of work by fusing multi-
modal sensor inputs—such as camera images and LiDAR point clouds—through transformer-based
encoders and decoding them into trajectory outputs via compact MLP heads. These models highlight
the importance of effective sensor fusion in improving closed-loop driving performance. ORION (Fu
et al., 2025)) adopts a VAE-based latent planning architecture, which enables the model to capture
multi-modal trajectory distributions while maintaining computational efficiency. These methods
demonstrate how MLP and VAE-style architectures can serve as efficient baselines for end-to-end
planning, though they often face limitations in modeling the full multi-modality of human driving
behaviors compared to generative paradigms such as diffusion or flow-based models.

Diffusion-based planners. Diffusion policies provide a generative paradigm which can model
the multi-modal nature of human driving behaviors with enhanced guidance control. Diffusion-ES
(Yang et al.| [2024) exhibits zero-shot instruction-following ability in planning. Diffusion-Planner
(Zheng et al., 2025b)) uses joint prediction modeling to achieve safe and adaptive planning. GoalFlow
(Xing et all |2025) leverages flow matching to produce diverse goal-conditioned trajectories and
further uses a trajectory scorer to efficiently select trajectory using the goal point as a reference.
DiffusionDrive (Liao et al., 2025) points out the issue of mode collapse, wherein the generated
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Table 4: Multi-Ability evaluation results. BridgeDrive outperforms all baselines in all categories
except for Give Way.

Method Ability (%)

Merg. Overtak. Emer. Brake = Give Way Traf. Sign Mean
DiffusionDrive"™™  50.63 26.67 68.33 50.00 76.32 54.38
TCP-traj* 8.89 24.29 51.67 40.00 46.28 34.22
UniAD-Base 14.10 17.78 21.67 10.00 14.21 15.55
VAD 8.11 24.44 18.64 20.00 19.15 18.07
DriveTransformer ~ 17.57 35.00 48.36 40.00 52.10 38.60
ORION 25.00 71.11 78.33 30.00 69.15 54.72
SimLingo 54.01 57.04 88.33 53.33 82.45 67.03
TransFuser++ 58.75 57.77 83.33 40.00 82.11 64.39

BridgeDrive (ours)  63.50 (+4.75)  58.89 (+1.12)  88.34 (+0.01)  50.00 (233  88.95 (+6.50)  69.93 (+2.9)

Table 5: Inference wall-clock time comparison. The full diffusion model is approximately half the
size of BridgeDrive, as it does not have cross-attention modules for anchors. BridgeDrive achieves
reasonable inference speed even without any additional optimization, indicating its suitability for
real-time deployment.

Configuration Inference speed per frame  #Diffusion timesteps
DiffusionDrive'*™? 0.05 sec 2
DiffusionDrive®* 0.05 sec 2
Full Diffusion'*™ 0.05 sec 100
Full Diffusion®* 0.05 sec 100

BridgeDrive'*™ 0.10 sec 20

BridgeDrive®® 0.10 sec 20

trajectories lack diversity, as different random noise inputs tend to converge to similar trajectories
during the denoising process, proposing truncated diffusion policy that begins the denoising process
from an anchored gaussian distribution instead of a standard Gaussian distribution to avoid mode
collapse. TransDiffuser (Jiang et al., |2025) emphasizes another underlying bottleneck that leads to
mode collapse in generated trajectories: The under-utilization of the encoded multi-modal condi-
tional information. Therefore, it implements multi-modal representation decorrelation optimization
mechanism during the denoising process, which aims to better exploit the multi-modal representa-
tion space to guide more diverse feasible planning trajectories from the continuous action space.

C ADDITIONAL RESULTS AND VISUALIZATION

C.1 COMPARISON WITH EXISTING WORKS

A comprehensive evaluation on Bench2Drive metrics is provided in Tables [3] and ]  Our
method shows SOTA performance on both Driving Score (DS) and Success Rate (SR). Moreover,
BridgeDrive exhibits outstanding multi-ability capability, especially in Merging (+4.75), Overtaking
(+1.12), and Traffic Sign (+6.50), resulting in overall improvement by +2.9 than SOTA. However,
BridgeDrive demonstrates suboptimal performance in the Comfortness and Give Way metrics, sug-
gesting a tendency toward frequent or poorly timed braking. This outcome may imply that our
model prioritizes safety considerations, potentially at the expense of passenger comfort. This limi-
tation should be addressed in the future work.

14
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Figure 7: BridgeDrive cannot handle imperfect timing of lane-changing, which resulted from cumu-
lative errors. Such an situation is out of distribution of training data.

C.2 INFERENCE SPEED

Inference wall-clock time comparison is detailed in Table [5] Note that the full diffusion model
is slightly faster than BridgeDrive since it is approximately half the size of BridgeDrive. This is
because full diffusion does not use anchors and thus omit all anchor-related cross-attention mod-
ules. BridgeDrive achieves reasonable inference speed even without any additional optimization,
indicating its suitability for real-time deployment.

C.3 CASE STUDY FOR AN OUT-OF-DISTRIBUTION SCENARIO

Despite the extraordinary modeling capacity of BridgeDrive, it cannot generalize to out-of-
distribution scenarios, which is very common in closed-loop evaluation. For instance, the overtaking
maneuver shall be aborted if oncoming vehicles are present in the adjacent lane. However, there are
almost no such data in the training set. The reason is that training data are collected by a rule-based
expert with privileged information (i.e., the expert has direct access to the ground truth of other traf-
fic participants’ location and dynamics). This expert has long-term planning capability and will only
perform an overtaking maneuver when there is sufficient longitudinal space in adjacent lanes. Such
an ideal timing is not always feasible in closed-loop evaluation due to cumulative difference between
predicted and ground-truth speed. An example of imperfect timing for lane changing is provided in
Fig.[7] This limitation may be overcome by integrating scene understanding prior knowledge from
VLA into BridgeDrive or posting-training with reinforcement learning, which is left for future work.

D EXPERIMENT DETAILS

D.1 DATASETS FILTERING AND AUGMENTATION

Zimmerlin et al.| (2024) proposed a data filtering method to reduce redundancy in training datasets.
The method involves keeping frames where significant changes occur compared to the previous
frame. Specifically, a frame is retained if either of the following conditions is met.

* The target speed changes by more than 0.1 m/s.

* The angle to any predicted geometric path waypoints changes by more than 0.5°.

From the remaining frames, 14% are randomly selected and kept. This strategy results in a 50%
reduction in the dataset size.

Additionally, the authors adjust the expert’s driving style by modifying behaviors, such as the timing
of braking when approaching pedestrians. This adjustment ensures the expert’s actions are more
interpretable and provide clearer learning signals for the model. Furthermore, the paper removes
class weights for target speed values, particularly for over-represented classes like braking, to avoid
biasing the model towards more frequent behaviors. This ensures the model learns from frames
critical for driving tasks, rather than focusing on frequent but less important ones.
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Table 6: Comparison among the major modules in the model architectures of DiffusionDrive,
DiffusionDrive'*™P, DiffusionDrive$*®, and BridgeDrive.

Module DiffusionDrive DiffusionDrive'*™ DiffusionDrive®® BridgeDrive
Perception  Transfuser Transfuser++ Transfuser++ Transfuser++
Classifier Transfuser Transfuser++ Transfuser++ BridgeDrive
Denoiser DiffusionDrive DiffusionDrive DiffusionDrive BridgeDrive

Output Temporal waypoints ~ Temporal waypoints ~ Geometric waypoints ~ Geometric waypoints

D.2 ADAPTATION OF DIFFUIONDRIVE TO BENCH2DRIVE BENCHMARK

We denote adapted version of DiffusionDrive as DiffusionDrive'®™. We explain our adaption from
4 aspects.

Perception module. The original DiffusionDrive was built on the backbone of Transfuser |Chitta
et al.| (2023), whereas our BridgeDrive is based on Transfuser++ (Jaeger et al., [2023)). To ensure
a competitive baseline for fair comparison, for the adaptation of DiffusionDrive, we use the per-
ception module from Transfuser++, which is proven to achieve SOTA on Bench2Drive benchmark
(Z1immerlin et al., 2024]).

Denoiser. We keep the model architecture of the denoiser identical to its original design as it is
unique to each model under comparison.

Classifier. The classifier in DiffusionDrive consists of cross-attention modules to process the per-
ception features. We keep its architecture in line with the perception module.

Output. The output trajectory representation of DiffusionDrive™™P is temporal waypoints, which
is kept the same as DiffusionDrive. The analysis of the impact of output representation is provided
in Section where DiffusionDrive®™P’s geometric waypoints counterpart DiffusionDrive&® is
implemented and evaluated.

An overview comparing the architectures of the major modules across DiffusionDrive,
DiffusionDrive™™?, and BridgeDrive is provided in Table @ The rest of the implementation and
training details of DiffusionDrive™™P are kept the same as BridgeDrive for a fair comparison.

D.3 IMPLEMENTATION AND TRAINING DETAILS

As mentioned in Section [3.4] our model consists of three modules. For perception module, we
keep the original design as described in Jaeger et al.|(2023)) and (Zimmerlin et al.| 2024)). Once the
perception module is pre-trained, it is frozen during the training phase of the denoiser and classifier
modules. The joint loss for the denoiser and classifier is defined as:

Loverall = wdiffusionLdiffusion + wclassiﬁcalionLclassiﬁcation7 (1 1)

where Lygission 1S as defined in Eq. @]} and Lcjassification 1S the cross-entropy loss. By default, both
Wiiffusion ANd Welassification are set to 1. For these modules, we use the AdamW optimizer (Loshchilov
& Hutter| |2017a) with a cosine annealing learning schedule (Loshchilov & Hutter, [2017b) for op-
timization. The learning rate is set as Irg = 3 x 1074, Ty = 10, Ty, = 2. In line with Diffu-
sionDrive, we use Nypchor = 20 anchors in BridgeDrive. Our models are trained for 10 epochs on a
single H20 GPU, which takes around 10 hours.

For diffusion schedule, we employ the variance preserving (VP) schedule from |[Karras et al.| (2022).
Specifically, we first define s(t) = 1/Vefat?/2+Bmint and o(t) = VePat®/2+Bmint — 1, We then
set the diffusion coefficients in the forward diffusion bridge SDE Eq. (3) to f(¢) = $(¢)/s(t) and

g(t) = \/2s(t)?a(t)o(t). We choose B4 = 2.0 and S, = 0.1 following|Zheng et al.| (2025a).
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