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ABSTRACT

Diffusion-based planners have shown great promise for autonomous driving due
to their ability to capture multi-modal driving behaviors. However, guiding these
models effectively in reactive, closed-loop environments remains a significant
challenge. Simple conditioning often fails to provide sufficient guidance in com-
plex and dynamic driving scenarios. Recent work attempts to use typical expert
driving behaviors (i.e., anchors) to guide diffusion models but relies on a truncated
schedule, which introduces theoretical inconsistencies and can compromise per-
formance. To address this, we introduce BridgeDrive, a novel anchor-guided dif-
fusion bridge policy for closed-loop trajectory planning. Our approach provides a
principled diffusion framework that effectively translates anchors into fine-grained
trajectory plans, appropriately responding to varying traffic conditions. Our plan-
ner is compatible with efficient ODE solvers, a critical factor for real-time au-
tonomous driving deployment. We achieve state-of-the-art performance on the
Bench2Drive benchmark, improving the success rate by 7.72% over prior arts.

1 INTRODUCTION

Closed-loop planning with reactive agents is a critical challenge in autonomous driving, which re-
quires effective interaction with complex and dynamic traffic environments (Jia et al., 2024). Diffu-
sion models have become a powerful paradigm for this task due to their ability to model complex,
multi-modal distributions and incorporate flexible guidance (Liao et al., 2025; Zheng et al., 2025b;
Yang et al., 2024; Xing et al., 2025). A key challenge, however, is to determine which sources of
guidance information are most salient and how to integrate them effectively into these models to
produce plans that are not only plausible but also safe and reactive in real-world driving conditions.

A promising source for guidance is to leverage typical human expert driving behaviors, often repre-
sented as coarse anchor trajectories, as they provide a strong prior for safe and sensible maneuvers,
constraining the vast solution space. Recently, DiffusionDrive (Liao et al., 2025) implements this
strategy by training a denoiser on a truncated diffusion schedule, starting from a noisy version of the
anchor rather than pure Gaussian noise. While achieving state-of-the-art empirical performance, this
approach introduces a theoretical inconsistency: its denoising process does not match the forward
diffusion process that it is trained on, which diverges from the core principle of diffusion models
and can lead to unpredictable behaviors and compromised performance.

To address this, we introduce BridgeDrive, a principled diffusion framework that integrates anchor-
based guidance for autonomous driving planning using a theoretically sound diffusion bridge for-
mulation. Instead of heuristically truncating the diffusion process, we formally define the planning
task as learning a diffusion process that bridges the gap from a given coarse anchor trajectory to a
refined, context-aware final trajectory plan. This formulation ensures that the forward and denoising
processes are perfectly symmetric, allowing our model to learn a direct and robust transformation
from anchors to final trajectories. By adhering to the principles of diffusion, our method fully
leverages the expressive power of anchors for guidance while maintaining diffusion models’ ability
to represent diverse human-like driving behaviors. Furthermore, our approach is compatible with
efficient ODE-based samplers, enabling real-time performance crucial for on-road deployment. Em-
pirically, we achieve 74.99% success rate on the Bench2Drive closed-loop evaluation benchmark,
outperforming previous state-of-the-art method by a significant 7.72% margin.
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2 PRELIMINARIES

2.1 AUTONOMOUS DRIVING PLANNING AND EVALUATION

The planning task in autonomous driving can be formulated as predicting future trajectories of
the ego-vehicle based on raw sensor inputs. Conventionally, there are two trajectory representa-
tions (Renz et al., 2025): (1) Temporal speed waypoints x := xtemp ∈ RNpoint×2, represent equal
temporal-spaced (e.g., every 0.25 seconds) future coordinates of ego-vehicle, which inherently con-
tain speed control information. (2) Geometric path waypoints x := (xgeo, v) ∈ RNpoint×2 × R,
represent equal geometric-spaced (e.g., every 1 meter) future coordinate of ego-vehicle; for geomet-
ric path waypoints-based planning, the model needs to predict the speed v of ego-vehicle. In this
paper, we choose to use geometric path waypoints as our model output, which differs from Diffu-
sionDrive Liao et al. (2025) where temporal speed waypoints are used. This design choice is based
on prior works (Chitta et al., 2023; Zimmerlin et al., 2024) and our ablation study in Section 4.

Evaluation of autonomous driving can be broadly categorized into open-loop and closed-loop set-
tings. The closed-loop setting is more challenging and can better reflect a policy’s real-world plan-
ning capability, since the ego vehicle’s decisions affect its own future states and those of the sur-
rounding agents, creating a feedback loop that can amplify small prediction errors over time. To
minimize the sim-to-real gap, closed-loop evaluation requires high-fidelity simulators to capture
the interactions between the ego vehicle and its surrounding environment, which are typically both
computationally expensive and time-consuming. CARLA (Dosovitskiy et al., 2017) has emerged as
the most widely used platform, with a series of benchmarks building on top of it, such as CARLA
Leaderboard, Longest6 (Chitta et al., 2023), and Bench2Drive (Jia et al., 2024). Interestingly, exist-
ing methods that achieve near-perfect results on open-loop datasets, such as NavSim (Dauner et al.,
2024) or nuScenes (Caesar et al., 2019), still struggle to achieve comparable performance under
closed-loop evaluation (Li et al., 2024b; Liao et al., 2025; Fu et al., 2025; Renz et al., 2025). This
discrepancy emphasizes the inherent difficulty of closed-loop planning and highlights the need for
more robust methods to handle the complexities of dynamic, interactive traffic environments.

2.2 DIFFUSION MODELS

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021a;b; Karras et al.,
2022) generate data x0 ∼ pd(x0) from pure Gaussian noise xT ∼ p(xT ) := N (xT |0, σ2

maxI)
by reverting a forward diffusion process. Mathematically, the forward diffusion process, which
gradually corrupts data into noise, can be defined by a linear SDE (Song et al., 2021b):

dxt = f(t)xtdt+ g(t)dwt, x0 ∼ pd, (1)
where t ∈ [0, T ] denotes the diffusion timestep, f : [0, T ] → R is the linear drift coefficient,
g : [0, T ] → R+ is the diffusion coefficient function, and wt ∈ Rd is a standard Brownian motion.
It turns out that this linear SDE owns a Gaussian transition kernel q(xt|x0) = N (xt|αtx0, σ

2
t I),

where αt = exp
(∫ t

0
f(s)ds

)
and σ2

t = α2
t

∫ t

0
g(s)2

α2
s

ds are the noise schedules (Kingma et al.,
2021). The forward SDE defines a series of marginals densities {q(xt)}t∈[0,T ] along the diffusion
path, where q(xt) =

∫
q(xt|x0)pd(x0)dx0. Since q(xT ) ≈ p(xT ) for sufficiently large T , we can

generate data x0 ∼ pd(x0) by transforming a noise sample xT ∼ p(xT ) through a probability flow
ODE (PF-ODE) (Song et al., 2021b):

dxt

dt
= f(t)xt −

g(t)2

2
∇xt

log q(xt), (2)

which shares identical marginal densities {q(xt)}t∈[0,T ] as the forward SDE. The score function
∇xt

log q(xt) in Eq. (2) can be approximated by ∇xt
log q(xt) ≈ (αtxθ(xt, t) − xt)/σ

2
t (Vincent,

2011), where the denoiser xθ(xt, t) is parameterized by a neural network and learned by minimizing
the mean squared denoising error (Karras et al., 2022):

min
θ

Ep(t)pd(x0)q(xt|x0)

[
w(t)∥xθ(xt, t)− x0∥2

]
. (3)

For conditional generation, the denoiser xθ(xt, t, z) takes in an extra conditional variable z, which
corresponds to the conditional score function ∇xt

log q(xt|z) ≈ (αtxθ(xt, t, z) − xt)/σ
2
t . Fur-

thermore, Ho & Salimans (2021) propose to linearly interpolate between ∇xt
log q(xt|z) and

∇xt log q(xt) with a hyperparameter to adjust the guidance strength of the conditional information.
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Figure 1: Visualization of the denoising process of BridgeDrive (t = T → 0 from left to right),
with the leftmost figure being anchor xT and the rightmost being the planned trajectory x0. In each
figure, the blue solid line depicts the denoised trajectory of the selected anchor at a specific timestep
t, the red solid line depicts an example of the denoised trajectory of an un-selected anchor, and the
rest scattered dots of other colors depict the denoised trajectories of other anchors at the timestep t.
The red trajectory illustrates a failed case when a catastrophically wrong anchor is selected.

2.3 DIFFUSIONDRIVE WITH TRUNCATED DIFFUSION

DiffusionDrive (Liao et al., 2025) is a diffusion planner based on temporal speed waypoints, which
leverages a truncated diffusion schedule and a fixed set of K-means clustered anchor trajectories
Y = {yi}Nanchor

i=1 that represent typical human driving behaviors. The truncated forward diffusion
process adds a small amount of noise to each anchor until t = Ttrunc ≪ T to obtain a set of noisy
anchors {yiTtrunc

}Nanchor
i=1 . The truncated denoising process starts from noisy anchors at t = Ttrunc. Given

conditional information z (e.g., sensor inputs and target point), a neural network xθ({yit}
Nanchor
i=1 , t, z)

is trained to predict the best anchor and output a denoised trajectory from the noisy version of the
best anchor. The denoised trajectory is then used to compute the score function for denoising.

However, as discussed in the previous section, the learned denoising process of diffusion models
must revert the forward diffusion process. Although DiffusionDrive demonstrates strong empiri-
cal performance, it utilizes a truncated diffusion schedule where the forward diffusion process adds
noise to anchor trajectories and the denoising process attempts to recover the ground-truth trajecto-
ries. This design choice creates an asymmetry between its forward and denoising processes, framing
the model’s task as regressing from noisy anchors to ground-truth trajectories, rather than as a rever-
sal of the forward diffusion process.

3 BRIDGEDRIVE: DIFFUSION BRIDGE POLICY FOR TRAJECTORY PLANNING

To ensure the symmetry between the forward and backward processes of anchor-based diffusion
planners, we propose a novel diffusion bridge policy, BridgeDrive, which provides a principled
diffusion framework that leverages the powerful inductive biases of anchor-based guidance, while
ensuring that the symmetry between the forward and denoising processes is maintained.

3.1 ANCHOR CONSTRUCTION FOR GEOMETRIC PATH WAYPOINTS

Anchors Y = {yi}Nanchor
i=1 are pre-defined, high-priority trajectories that represent typical human

expert driving behaviors. They form a discrete set of atomic building blocks that planners use to
construct solutions, which can dramatically reduce planning complexity, enforce safety constraints,
improve robustness to dynamic environments, and align planning with task objectives (Chai et al.,
2020; Chen et al., 2024; Li et al., 2024b). Our anchor definition is slightly different from Liao et al.
(2025) since our model outputs geometric path waypoints as discussed in Section 2.1. Specifically,
each anchor is formulated as1 y := (xgeo

y , vy) ∈ RNpoint×2 × R, where xgeo
y ∈ RNpoint×2 represents a

series of coordinates of future path, Npoint is the geometric prediction horizon, and vy denotes the

1The subscript in xy, vy indicates that the trajectory and its speed belongs to an anchor, which differs from
an ordinary trajectory x and its speed v. The superscript index i in yi is omitted for notation simplicity.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

anchor speed. Each anchor trajectory xgeo
y is defined as a K-means clustering center of the training

set, and the anchor speed vy is defined as the average speed of the trajectories in the training set that
belong to this anchor. All values are normalized to the ego-vehicle coordinate system.

Algorithm 1 BridgeDrive Training (ours)

1: Initialize θ # denoiser parameter
2: repeat
3: x, y, z ∼ pd(x, y, z)
4: # x: GT traj, y: anchor, z: guidance
5: t ∼ p(t) # t ∈ [0, T ]
6: ϵ ∼ N (0, I) # random noise
7: xt = aty + btx+ ctϵ # noisy trajectory
8: Update θ with the gradient

w(t)∇θ∥xθ(xt, t, y, z)− x∥2

9: until convergence
10: return θ

Algorithm 2 DiffusionDrive Training

1: Initialize θ # denoiser parameter
2: repeat
3: x, y, z ∼ pd(x, y, z)
4: # x: GT traj, y: anchor, z: guidance
5: t ∼ ptrunc(t) # t ∈ [0, Ttrunc]
6: ϵ ∼ N (0, I) # random noise
7: yt = αty + σtϵ # noisy anchor
8: Update θ with the gradient

w(t)∇θ∥xθ(yt, t, z)− x∥2

9: until convergence
10: return θ

3.2 A GENERATIVE PARADIGM FOR ANCHOR-GUIDED DIFFUSION POLICY

To incorporate anchors into diffusion models in a principled way, we propose to factorize the joint
distribution of the ground-truth trajectory x, anchor y, and guidance information z as

pd(x, y, z) = pd(x|y, z)pd(y|z)pd(z). (4)

This factorization defines a two-step generative process. First, for a driving scene z ∼ pd(z), we
sample an anchor y ∼ pd(y|z) given the scene information in z (e.g., BEV, agent/map queries, and
a target point). Then, the planned trajectory x ∼ pd(x|y, z) is generated according to the guidance
of the chosen anchor y and scene information z.

We propose to parameterize the conditional planning distribution pd(x|y, z) with a conditional diffu-
sion bridge model pθ(xt|xT , z), which constructs a diffusion bridge (Zhou et al., 2024; Zheng et al.,
2025a) between the ground-truth trajectory x0 := x and anchor xT := y (Doob & Doob, 1984):

dxt = f(t)xtdt+ g(t)2∇xt
log q(xT |xt) + g(t)dwt, x0 ∼ pd, xT = y, (5)

where t ∈ [0, T ] denotes the diffusion timestep, the definitions of f(t), g(t) follow those in Eq. (1),
and ∇xt

log q(xT |xt) = ∇xt
log q(xt|x0, xT )−∇xt

log q(xt|x0). It turns out that Eq. (5) also owns
an analytical Gaussian transition kernel for any given trajectory x0 and anchor xT :

q(xt|x0, xT ) = N (xt|atxT + btx0, c
2
t I), (6)

at = αtγ
2
t /αT , bt = αt(1− γ2

t ), c2t = σ2
t (1− γ2

t ), (7)

where αt = exp
(∫ t

0
f(s)ds

)
, σ2

t = α2
t

∫ t

0
g(s)2

α2
s

ds, and γt = αTσt

αtσT
(Zheng et al., 2025a), which

defines a diffusion bridge xt = atxT + btx0 + ctϵt that interpolates between x0 and xT with
added Gaussian noise ctϵt. Zhou et al. (2024) show that there exists a PF-ODE that shares identical
marginal densities {q(xt|xT )}t∈[0,T ] as the forward diffusion bridge SDE in Eq. (5):

dxt

dt
= f(t)xt − g(t)2

(
∇xt

log q(xt|xT , z)

2
−∇xt

log q(xT |xt)

)
, (8)

which allows us to translate an anchor xT to a planned trajectory x0 given the driving scene z.
To simulate this PF-ODE, we need to approximate the score function ∇xt

log q(xt|xT , z) for the
conditional diffusion bridge model. In the next section, we will introduce our training and planning
algorithms for this diffusion bridge policy.

3.3 TRAINING AND PLANNING ALGORITHMS

In our diffusion bridge planner, each diffusion bridge is constructed between a ground-truth trajec-
tory x0 := x and the nearest anchor xT := y ∈ Y to it. During training, we fit a neural network

4
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Algorithm 3 BridgeDrive Planning

1: z ∼ pd(z) # sample a driving scene
2: xT = hϕ(z,Y) # choose which anchor to use
3: for i = N, · · · , 1 do # discretize timesteps into T := tN < · · · < t1 < t0 := 0
4: x̂0|ti = xθ(xti , ti, xT , z) # compute the denoised mean trajectory
5: ŝti = (atixT + bti x̂0|ti − xti)/c

2
ti # compute the score function

6: dti = f(ti)xti − g(ti)
2
(
ŝti/2−∇xti

log q(xT |xti)
)

# compute the derivative dxt/dt
7: xti−1

= ODESolverStep(xti , dti , ti, ti−1) # simulate the diffusion bridge PF-ODE
8: end for
9: return x0

denoiser xθ(xt, t, xT , z) to predict the denoising mean x̂0|t ≈ E[x0|xt, xT , z] given noisy trajectory
xt ∼ q(xt|x0, xT ) at timestep t, the nearest anchor xT = y to x0, and the conditional information z
for the driving scene. This denoiser is trained by minimizing the mean squared denoising error:

min
θ

Ep(t)pd(x0,xT ,z)q(xt|x0,xT )

[
w(t)∥xθ(xt, t, xT , z)− x0∥2

]
. (9)

Our training algorithm is summarized in Algorithm 1. Notice that our forward and reverse diffusion
paths both result in the end point x0 = x since a0 = c0 = 0 and b0 = 1, ensuring that the denoiser
is trained to reverse the forward diffusion process. On the other hand, in DiffusionDrive (Liao
et al., 2025) (Algorithm 2), for all αt and σt, the noisy anchor yt deviates from x, failing to adhere
to the symmetry requirement of diffusion models. Also, the training procedure of BridgeDrive is
simulation-free, which allows us to efficiently train the denoiser without simulating the forward SDE
in Eq. (5) or the PF-ODE in Eq. (8). In addition, since the ground-truth trajectory x0 is not available
for computing the nearest anchor y at inference time, we also train a classifier hϕ(z,Y) to predict
the nearest anchor y to x0 given z with the cross entropy loss.

Similar to standard diffusion models, the trained denoiser xθ(xt, t, xT , z) can be used to approxi-
mate the conditional score function for our conditional diffusion bridge model (Zheng et al., 2025a):

∇xt
log q(xt|xT , z) ≈

atxT + btxθ(xt, t, xT , z)− xt

c2t
. (10)

Our planning algorithm is summarized in Algorithm 3 and depicted in Fig. 2. Specifically, for a
given driving scene z, we first use the classifier hϕ(z,Y) to choose an anchor y ∈ Y , which is the
starting point xT = y of the denoising process in our diffusion bridge planner. Then, we iteratively
compute the denoised mean trajectory x̂0|t using our denoiser xθ(xt, t, xT , z), calculate the score
function ŝt using Eq. (10), and simulate the PF-ODE in Eq. (8) with the score ŝt using a numerical
ODE solver. Although image diffusion models use higher-order ODE solvers (Karras et al., 2022;
Lu et al., 2022) to accelerate sampling, we find that first-order methods, such as the DDIM sampler
(Song et al., 2021a), are sufficient for the planning task with minimal number of function evaluations.
Fig. 1 visualizes the denoising process of BridgeDrive for an example driving scenario.

3.4 MODEL ARCHITECTURE

Our model consists of three major components: perception module, denoiser, and classifier. Imple-
mentation and training details are provided in Appendix C.

Perception Module. The perception module extract useful features from lidar, front camera image,
and target point for the downstream diffusion planner. We use a pre-trained perception backbone
from TransFuser++ (Jaeger et al., 2023) to obtain BEV segmentation, bounding boxes of traffic
participants, general traffic information (e.g., stop signs and traffic lights), and fused features from
the inputs. The output of the perception module is denoted as z and will be used as the conditional
guidance information in the denoiser module xθ(xt, t, xT , z).

Denoiser. The architecture of the denoiser xθ(xt, t, xT , z) is illustrated in the light blue box in
Fig. 2. For a noisy trajectory xt at timestep t and its corresponding anchor xT = y, we first interact
them with BEV via deformable spatial cross-attention modules. Subsequently, cross-attention with
fused features from lidar, front camera, and target point is applied. The resulting feature vectors
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Figure 2: Diagram for the planning procedure of BridgeDrive in Algorithm 3. The model architec-
ture of the neural network denoiser xθ(xt, t, xT , z) is detailed in the light blue box.

are further processed by feed-forward networks (FFNs), and their concatenation is modulated by the
timestep t. Finally, an MLP network is employed to predict the denoised mean trajectory x̂0|t.

Anchor Classifier. The classifier hϕ(z,Y) employs cross BEV attention module and cross feature
attention module between z and all anchors Y , followed by an FFN which outputs the probability
that each anchor yi ∈ Y should be used for trajectory generation. We select the anchor y with the
highest probability as the input xT to the denoiser xθ(xt, t, xT = y, z). Note that the classifier only
needs to be run once prior to the iterative denoising process.

4 EXPERIMENTS

4.1 BENCHMARK, DATASET AND BASELINES

Benchmark. In this paper, we focus on closed-loop evaluation since it simulates dynamic traffic
conditions which can better reflect a policy’s real-world planning capability. Bench2Drive (Jia et al.,
2024) is a widely used closed-loop evaluation benchmark (Jaeger et al., 2023; Jia et al., 2025; Fu
et al., 2025; Renz et al., 2025), which contains 220 routes for evaluation under the CARLA Leader-
board 2.0 protocol for end-to-end autonomous driving. Each route is around 150 meters in length
and contains a specific driving scenario, which allows for a detailed assessment of autonomous
driving systems’ proficiency in different driving skills.

Dataset. While Bench2Drive provides an official training set, empirical studies (Zimmerlin et al.,
2024; Renz et al., 2025; Fu et al., 2025) showed that official dataset collected by (Li et al., 2024a)
leads to suboptimal performance. Therefore, data augmentation and cleansing scheme are applied
to enhance the performance. For example, ORION (Fu et al., 2025) generated Visual Question An-
swering (VQA) to enhance their Vision-Language-Action (VLA) models’ capability, such as scene
description, behavior description, meta-driving decision and reasoning, and recall of essential histor-
ical information. Chitta et al. (2023) and Zimmerlin et al. (2024) use PDM-lite (Beißwenger, 2024;
Sima et al., 2025), an open source rule-based expert to collect ground-truth trajectories for imitation
learning. SimLingo (Renz et al., 2025) generates additional driving data and applies intricate filtra-
tion on training routes of Chitta et al. (2023) and the official CARLA LB 2.0 routes. We use the
datasets proposed by (Zimmerlin et al., 2024). The dataset actively filters for critical change frames
and refines expert behavior, thereby focusing on high-quality decision-making moments while re-
ducing its size, which improves training efficiency and strengthens the model’s learning in crucial
driving scenarios. For more details please refer to Appendix C.1.
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Table 1: Comparison between BridgeDrive and previous baselines on Bench2Drive. Our method
shows SOTA performance on both Driving Score (DS) and Success Rate (SR). Notably, by using a
principled diffusion bridge model, our method achieves significant improvements over previous dif-
fusion baselines (including those with prior knowledge from VLA), demonstrating the effectiveness
of the diffusion module in the autonomous driving task when following our paradigm as discussed
in Section 3.2. A potential avenue to further improve our method is to integrate prior knowledge
from VLA, which is left as future work.

Method Expert VLA Diffusion DS SR(%)

DiffusionDrivetemp (Liao et al., 2025) PDM-Lite ✘ 77.68 52.72

DiffusionDrivegeo (Liao et al., 2025) PDM-Lite ✘ 80.79 58.18

TCP-traj* (Wu et al., 2022) Think2Drive ✘ ✘ 59.90 30.00

UniAD-Base (Hu et al., 2023) Think2Drive ✘ ✘ 45.81 16.36

VAD (Jiang et al., 2023) Think2Drive ✘ ✘ 42.35 15.00

DriveTransformer (Jia et al., 2025) Think2Drive ✘ ✘ 63.46 35.01

ORION (Fu et al., 2025) Think2Drive ✘ 77.74 54.62

ORION diffusion (Fu et al., 2025) Think2Drive 71.97 46.54

SimLingo (Renz et al., 2025) PDM-Lite ✘ 85.07 67.27

TransFuser++ (Zimmerlin et al., 2024) PDM-Lite ✘ ✘ 84.21 67.27

BridgeDrive (ours) PDM-Lite ✘ 87.99(+2.92) 74.99(+7.72)

Baselines. We compare against the following baselines. TCP-traj (Wu et al., 2022) is a monocular
camera-based method that jointly learns planning and direct control with a situation-based fusion.
UniAD (Hu et al., 2023) is a unified end-to-end framework that integrates full-stack driving tasks
through query-based interfaces. VAD (Jiang et al., 2023) is an end-to-end vectorized paradigm that
models driving scenes with vectorized representations. DriveTransformer (Jia et al., 2025) employs
task parallelism, sparse representation, and streaming to enable efficient cross-task knowledge trans-
fer and temporal fusion. ORION (Fu et al., 2025) integrates a QT-Former for history aggregation,
a reasoning large language model (LLM), and a VAE for planning. Simlingo (Renz et al., 2025)
leverages VLA and achieves current SOTA performance on Bench2Drive. TransFuser++ (Chitta
et al., 2023) (Zimmerlin et al., 2024) (Jaeger et al., 2023) ranks second in the 2024 CARLA chal-
lenge and first on the Bench2Drive test routes. In addition, we adapt DiffusionDrive to Bench2Drive
benchmark (denoted as DiffusionDrivetemp). Adaptation details are provided in Appendix C.2.

4.2 MAIN RESULTS

Evaluation results on Bench2Drive benchmark are demonstrated in Table 1. For all models that
exceeded previous SOTA result, we performed experiments with three random seeds to ensure re-
producibility. The performance of our work significantly exceeds that of all previous work. In
particular, our BridgeDrive outperform the SimLingo (Renz et al., 2025), the latest SOTA, by +1.8
and +5% in driving score and success rate, respectively. Moreover, BridgeDrive exhibits outstanding
multi-ability capability, especially in Merging (+10.87), and Traffic Sign (+7.02), resulting in over-
all improvement by +6.12 than SOTA, as shown in Table 4 in the Appendix. However, BridgeDrive
demonstrates suboptimal performance in the Comfortness and Give Way metrics, suggesting a ten-
dency toward frequent or poorly timed braking. This outcome may imply that our model prioritizes
safety considerations, potentially at the expense of passenger comfort. Furthermore, the inference
speed of BridgeDrive is suitable for real-time deployment, as detailed in Table 5. Additional results
on the NAVSIM dataset are provided in Table 6.

4.3 ABLATION STUDY AND QUALITATIVE ANALYSIS

The primer focus of this paper is on the design and study of diffusion models for trajectory planning;
therefore, we prioritize the most vital aspects that could influence the performance, namely 1) what
kind of trajectory representation is more compatible with diffusion model; 2) how our diffusion
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Figure 3: A consecutive four frames of a sample Bench2Drive scene. Overtaking maneuver per-
formed by BridgeDrivetemp. The ego car exhibited deficiencies in overtaking maneuver coordina-
tion and speed control, which directly led to a collision with the white vehicle. For video demon-
stration, please refer to supplementary materials.

Figure 4: On the same scene as in Fig. 3, overtaking maneuver performed by BridgeDrivegeo. The
ego vehicle adapts its planning to overtake a sequence of parked cars. For video demonstration,
please refer to supplementary materials.

bridge policy with anchor guidance differs from other diffusion planners. Further ablation study
results on the influence of anchors and classifiers are provided in Appendix D.

Effectiveness of the representation of geometric path waypoints. To account for the influence of
different representations of the trajectory, namely the temporal speed waypoints vs. geometric path
waypoints, we implement these two configurations for each version of diffusion models, denoted as
temp and geo, respectively. It should be noted that, for DiffusionDrivegeo, all modules remain iden-
tical to those of our method except for the diffusion part to ensure a fair comparison. The results are
compared in Table 2. It can be seen that the representation of geometric path waypoints outperforms
their temporal counterpart, with an improvement of +5.46%, +9.09%, +12.37% in the success rate
for DiffusionDrive, Full Diffusion, BridgeDrive, respectively. We argue the main reasons for this
are as follows. 1) Temporal waypoints encode speed control information in the spacing between
subsequent waypoints. Such an encoding is ambiguous and difficult to generalize. For example, for
overtaking maneuvers with different speeds, geometric waypoints only require a model to learn the
similar geometric pattern of driving path plus a varying speed scalar. In comparison, the general-
ization of temporal waypoints require a model to stretch spacing between waypoints to account for
different speeds. 2) Geometric waypoints are more compliant with route topology and is therefore
less likely to violate route lane constrain; similar arguments are also provided in (Jaeger et al., 2023).

The advantage of BridgeDrive model. As illustrated in Table 2, benefiting from the multi-modality
of diffusion models, both Full Diffusiongeo and BridgeDrivegeo outperform DiffusionDrivegeo by
a large margin. In addition, compared with full diffusion, BridgeDrive further leverages anchor
information to guide its diffusion process. This is of particular importance when facing ambiguous
situations. An example is visualized in Fig. 5 and Fig. 6. In this case, the target point for lane
change is given in a short distance ahead of the ego vehicle. Due to inherent inertial of the ego car,
it is unlikely for full diffusion to change lane. Therefore, the ego car kept traveling in a straight path
and missed the target point; subsequently, the ego car was unable to make a sharp turn to the left
lane and hit the road barrier. In comparison, BridgeDrive, under the strong guidance of the anchor,
was able to strictly follow the target point and entered the correct lane at the road fork.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Full Diffusion model in a consecutive four frames of a sample Bench2Drive scene. It
failed to adhere to the target time window for lane-changing maneuvers, which consequently led to
a collision with the road barrier. For video demonstration, please refer to supplementary materials.

Figure 6: BridgeDrive on the same scene as in Fig. 5. The BridgeDrive model achieved timely
lane changing due to anchor guidance and successfully navigated through the road fork. For video
demonstration, please refer to supplementary materials.

Table 2: Ablation study for the effects of temporal and geometric path waypoints for DiffusionDrive,
full diffusion, and BridgeDrive. All methods use identical modules except for the diffusion part. Our
BridgeDrivegeo achieves SOTA DS and SR, prioritizing safety over Comfortness.

Configuration Principled Anchor DS SR(%) Efficiency Comfortness

DiffusionDrivetemp ✘ 77.68 52.72 248.18 24.56

DiffusionDrivegeo ✘ 80.79 58.18 245.34 15.49

Full Diffusiontemp ✘ 79.75 58.18 246.31 24.42

Full Diffusiongeo ✘ 83.85 67.27 238.90 21.40

BridgeDrivetemp 81.97 59.90 243.88 22.61

BridgeDrivegeo 87.99 ± 0.67 74.99 ± 1.35 236.49 ± 2.32 20.98 ± 0.74

5 CONCLUSIONS AND FUTURE WORK

We presented BridgeDrive–an autonomous driving solution based on diffusion bridge policy. Our
method provides a principled bridge diffusion framework incorporating anchor guidance and out-
performed prior work by 7.72% in success rate. Extensive experiments validated that BridgeDrive
yielded significant performance improvements in closed-loop planning tasks.

Limitations and future work. (1) While some existing methods only relies on camera input (e.g.,
Renz et al. (2025)), BridgeDrive also requires lidar input. Future work is expected to investigate
BridgeDrive’s capability in the absence of lidar. (2) Although the inference speed of BridgeDrive
is suitable for real-time deployment, further acceleration can be achieved by distilling our model
into a one-step model without sacrificing the generation quality (Xie et al., 2024). (3) Despite
BridgeDrive’s extraordinary capacity to learn complex planning tasks, it still struggles to handle
out-of-distribution scenarios, as illustrated in Appendix B.3. This limitation may be overcome by
incorporating prior knowledge from VLA and post-training with reinforcement learning.
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Table 3: Comprehensive comparison between BridgeDrive and Baselines. BridgeDrive prioritizes
safety over Comfortness.

Method Expert Key technique DS SR(%) Effi. Comfort.

DiffusionDrivetemp PDM-Lite Diffusion 77.68 52.72 248.18 24.56

TCP-traj* Think2Drive CNN, MLP, GRU 59.90 30.00 76.54 18.08

UniAD-Base Think2Drive Transformer 45.81 16.36 129.21 43.58

VAD Think2Drive Transformer 42.35 15.00 157.94 46.01

DriveTransformer Think2Drive Transformer 63.46 35.01 100.64 20.78

ORION Think2Drive VLA+VAE 77.74 54.62 151.48 17.38

ORION diffusion Think2Drive VLA+Diffusion 71.97 46.54 NA NA

SimLingo PDM-Lite VLA 85.07 67.27 259.23 33.67

TransFuser++ PDM-Lite Transformer 84.21 67.27 NA NA

BridgeDrive (ours) PDM-Lite Diffusion 87.99 (+2.72) 74.99 (+7.72) 236.49 20.98

A RELATED WORK

End-to-end autonomous driving. Traditional motion planning pipelines often decompose the task
into separate stages—perception, prediction, and planning—which inevitably introduce latency and
information degradation across modules (Sadat et al., 2020). To overcome these limitations, recent
studies have shifted toward planning-centric, end-to-end autonomous driving frameworks. End-to-
end autonomous driving aims to map raw sensory inputs directly to trajectory predictions or control
commands, enabling holistic system optimization that mitigates error propagation across modules
(Wu et al., 2022; Zhang et al., 2021). UniAD (Hu et al., 2023) shows the feasibility of end-to-
end autonomous driving by unifying multiple perception tasks to benefit planning. Building on
this, VAD (Jiang et al., 2023) introduces compact vectorized scene representations to boost effi-
ciency. VADv2 (Chen et al., 2024) proposes a probabilistic planning framework that models the
distribution over possible actions and samples one for vehicle control. SimLingo (Renz et al., 2025)
and GPTDriverV2 (Xu et al., 2025) incorporate vision-language understanding and language-action
alignment, aiming to enhance closed-loop driving performance.

Deterministic planners. Some end-to-end autonomous driving planners relies on models such as
multilayer perceptrons (MLPs) or variational autoencoders (VAEs). Transfuser (Chitta et al., 2023)
and its extension Transfuser++ (Jaeger et al., 2023) exemplify this line of work by fusing multi-
modal sensor inputs—such as camera images and LiDAR point clouds—through transformer-based
encoders and decoding them into trajectory outputs via compact MLP heads. These models highlight
the importance of effective sensor fusion in improving closed-loop driving performance. ORION (Fu
et al., 2025) adopts a VAE-based latent planning architecture, which enables the model to capture
multi-modal trajectory distributions while maintaining computational efficiency. These methods
demonstrate how MLP and VAE-style architectures can serve as efficient baselines for end-to-end
planning, though they often face limitations in modeling the full multi-modality of human driving
behaviors compared to generative paradigms such as diffusion or flow-based models.

Diffusion-based planners. Diffusion policies provide a generative paradigm which can model
the multi-modal nature of human driving behaviors with enhanced guidance control. Diffusion-ES
(Yang et al., 2024) exhibits zero-shot instruction-following ability in planning. Diffusion-Planner
(Zheng et al., 2025b) uses joint prediction modeling to achieve safe and adaptive planning. GoalFlow
(Xing et al., 2025) leverages flow matching to produce diverse goal-conditioned trajectories and
further uses a trajectory scorer to efficiently select trajectory using the goal point as a reference.
DiffusionDrive (Liao et al., 2025) points out the issue of mode collapse, wherein the generated
trajectories lack diversity, as different random noise inputs tend to converge to similar trajectories
during the denoising process, proposing truncated diffusion policy that begins the denoising process
from an anchored gaussian distribution instead of a standard Gaussian distribution to avoid mode
collapse. TransDiffuser (Jiang et al., 2025) emphasizes another underlying bottleneck that leads to
mode collapse in generated trajectories: The under-utilization of the encoded multi-modal condi-
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Table 4: Multi-Ability evaluation results. BridgeDrive outperforms all baselines in all categories
except for Give Way.

Method
Ability (%)

Merg. Overtak. Emer. Brake Give Way Traf. Sign Mean

DiffusionDrivetemp 50.63 26.67 68.33 50.00 76.32 54.38

TCP-traj* 8.89 24.29 51.67 40.00 46.28 34.22

UniAD-Base 14.10 17.78 21.67 10.00 14.21 15.55

VAD 8.11 24.44 18.64 20.00 19.15 18.07

DriveTransformer 17.57 35.00 48.36 40.00 52.10 38.60

ORION 25.00 71.11 78.33 30.00 69.15 54.72

SimLingo 54.01 57.04 88.33 53.33 82.45 67.03

TransFuser++ 58.75 57.77 83.33 40.00 82.11 64.39

BridgeDrive (ours) 69.92 (+10.87) 66.67 (-4.44) 90.00 (+1.67) 50.00 (-3.33) 89.47 (+7.02) 73.15 (+6.12)

Table 5: Inference wall-clock time comparison. The full diffusion model is approximately half the
size of BridgeDrive, as it does not have cross-attention modules for anchors. BridgeDrive achieves
reasonable inference speed even without any additional optimization, indicating its suitability for
real-time deployment.

Configuration Inference speed per frame #diffusion timesteps

DiffusionDrivetemp 0.05 sec 2

DiffusionDrivegeo 0.05 sec 2

Full Diffusiontemp 0.05 sec 100

Full Diffusiongeo 0.05 sec 100

BridgeDrivetemp 0.10 sec 20

BridgeDrivegeo 0.10 sec 20

tional information. Therefore, it implements multi-modal representation decorrelation optimization
mechanism during the denoising process, which aims to better exploit the multi-modal representa-
tion space to guide more diverse feasible planning trajectories from the continuous action space.

B ADDITIONAL RESULTS, VISUALIZATION AND LIMITATION

B.1 COMPARISON WITH EXISTING WORKS

A comprehensive evaluation on Bench2Drive metrics is provided in Tables 3 and 4. Our
method shows SOTA performance on both Driving Score (DS) and Success Rate (SR). Moreover,
BridgeDrive exhibits outstanding multi-ability capability, especially in Merging (+10.87), and Traf-
fic Sign (+7.02), resulting in overall improvement by +6.12 than SOTA. However, BridgeDrive
demonstrates suboptimal performance in the Comfortness and Give Way metrics, suggesting a ten-
dency toward frequent or poorly timed braking. This outcome may imply that our model prioritizes
safety considerations, potentially at the expense of passenger comfort. This limitation should be
addressed in the future work.

B.2 INFERENCE SPEED

Inference wall-clock time comparison is detailed in Table 5. Note that the full diffusion model is
slightly faster than BridgeDrive since it is approximately half the size of BridgeDrive. This is be-
cause full diffusion does not use anchors and thus omit all anchor-related cross-attention modules.
BridgeDrive achieves reasonable inference speed even without any additional optimization, indicat-
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Figure 7: BridgeDrive cannot handle imperfect timing of lane-changing, which resulted from cumu-
lative errors. This situation is outside of the training data distribution.

ing its suitability for real-time deployment. It should be noted that in both DiffusionDrive and our
BridgeDrive model, the primary computational cost stems from the perception and cross-attention
modules. The diffusion process itself is applied only to a small trajectory matrix (8×2 or 11×2),
contributing a minor portion of the total cost. Consequently, the overall computation time does not
increase proportionally with the number of diffusion steps.

B.3 CASE STUDY FOR AN OUT-OF-DISTRIBUTION SCENARIO

Despite the extraordinary modeling capacity of BridgeDrive, it cannot generalize to out-of-
distribution scenarios, which is very common in closed-loop evaluation. For instance, the overtaking
maneuver shall be aborted if oncoming vehicles are present in the adjacent lane. However, there are
almost no such data in the training set. The reason is that training data are collected by a rule-based
expert with privileged information (i.e., the expert has direct access to the ground truth of other traf-
fic participants’ location and dynamics). This expert has long-term planning capability and will only
perform an overtaking maneuver when there is sufficient longitudinal space in adjacent lanes. Such
an ideal timing is not always feasible in closed-loop evaluation due to cumulative difference between
predicted and ground-truth speed. An example of imperfect timing for lane changing is provided in
Fig. 7. This limitation may be overcome by integrating scene understanding prior knowledge from
VLA into BridgeDrive or posting-training with reinforcement learning, which is left for future work.

B.4 EXPERIMENTS ON ADDITIONAL BENCHMARKS

We conducted additional evaluations of our method on the NAVSIM dataset, adhering to the metrics
established in DiffusionDrive (Liao et al., 2025). These metrics are summarized by the PDM score
(PDMS), a weighted composite of no at-fault collisions (NC), drivable area compliance (DAC),
time-to-collision (TTC), comfort (Comf.), and ego progress (EP). As shown in Table 6, our pro-
posed BridgeDrive achieves competitive performance on NAVSIM. We posit that this performance
is notable, as NAVSIM is a mature dataset, where existing state-of-the-art models have already satu-
rated its performance potential (NAVSIM is an open-loop dataset with non-reactive agents that does
not capture real-world driving behavior, as they artificially reset the agent to the ground-truth state
at every step, preventing error accumulation).

For this reason, our paper primarily targets the more realistic closed-loop setting (i.e., Bench2Drive),
as emphasized in the paper title. The closed-loop setting is more challenging and better reflects a
policy’s real-world planning capability, since the ego vehicle’s decisions influence both its own
future states and those of surrounding agents. This interaction creates a feedback loop that can
amplify small prediction errors over time, as discussed in Section 2.1. We also highlight that eval-
uating in closed-loop settings has become an emerging trend in the autonomous driving community
(Chitta et al., 2023; Zheng et al., 2025b; H. Caesar, 2021; Yang et al., 2025; Jia et al., 2024), driving
more realistic assessments that better reflect actual technological progress. Our experimental results
demonstrated that our BridgeDrive method outperformed previous state-of-the-art methods in this
challenging setting.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 6: Performance comparison on planning-oriented NAVSIM navtest split.

NC DAC TTC Comf. EP PDMS

VADv2-V8192 (Chen et al., 2024) 97.2 89.1 91.6 100 76.0 80.9

Hydra-MDP-V8192-W-EP (Li et al., 2024b) 98.3 96 94.6 100 78.7 86.5

DiffusionDrive (reported in Liao et al. (2025)) 98.2 96.2 94.7 100 82.2 88.1

DiffusionDrive (reproduced with a different seed) 98.2 95.9 94.3 100 81.9 87.6

BridgeDrive (ours) 98.2 96.1 94.5 100 82.3 88.0

B.5 THE SUPERIORITY OF GEOMETRIC WAYPOINTS REMAINS UNDEREXPLORED

We briefly summarizes key experimental findings regarding temporal and geometric waypoints in
autonomous driving models:

1. A prominent line of research has achieved SOTA performance primarily through the use
of temporal waypoints (Liao et al., 2025; Zheng et al., 2025b; Chitta et al., 2023; Chen &
Krähenbühl, 2022; Wu et al., 2022).

2. TransFuser++ (Jaeger et al., 2023) identified ambiguities inherent in temporal waypoints.
To address this, the authors implemented a path predictor (analogous to our geometric way-
points) and a speed predictor. The speed is predicted via an MLP head using classification,
which also outputs an associated uncertainty. Their experiments demonstrated that inter-
polating between target speeds, weighted by this uncertainty, effectively reduces collision
rates.

3. SimLingo (Renz et al., 2025) trained a Vision-Language Model (VLM) to predict both tem-
poral and geometric waypoints (termed ”temporal speed waypoints” and ”geometric path
waypoints,” respectively). They found that using only temporal waypoints resulted in poor
steering performance, whereas incorporating geometric waypoints significantly improved
vehicle control. In their framework, the control commands are derived from both repre-
sentations: target speed is computed from temporal waypoints, while the steering angle is
determined by geometric waypoints.

4. DriveGPT4-V2 (Xu et al., 2025) does not directly output waypoints for control. Instead, it
predicts a target speed and steering angle directly, using temporal and geometric waypoints
(referred to as ”waypoints” and ”route points”) solely as supervisory signals during train-
ing. Their ablation study concluded that predicting the final control commands (speed and
angle) is more effective than predicting intermediate waypoints.

These findings suggest that optimal control performance may not be achieved by relying exclusively
on either temporal or geometric waypoints. Instead, superior performance likely arises from the
interplay between these two representations and their derived control variables. The field has not yet
reached a definitive conclusion on this matter.

A comprehensive understanding of the fundamental roles of temporal and geometric waypoints
would require an extensive experimental evaluation of various SOTA algorithms across multiple
mainstream benchmarks, which is left for future work. Therefore, in our experiments, we adopt
the conventional practice established by TransFuser++ (Jaeger et al., 2023), as our model architec-
ture most closely resembles theirs. Consequently, the experiments presented in this paper primarily
demonstrate the superiority of geometric waypoints within the Bench2Drive benchmark.

C EXPERIMENT DETAILS

C.1 DATASETS FILTERING AND AUGMENTATION

Zimmerlin et al. (2024) proposed a data filtering method to reduce redundancy in training datasets.
The method involves keeping frames where significant changes occur compared to the previous
frame. Specifically, a frame is retained if either of the following conditions is met.
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Table 7: Comparison among the major modules in the model architectures of DiffusionDrive,
DiffusionDrivetemp, DiffusionDrivegeo, and BridgeDrive.

Module DiffusionDrive DiffusionDrivetemp DiffusionDrivegeo BridgeDrive

Perception Transfuser Transfuser++ Transfuser++ Transfuser++

Classifier Transfuser Transfuser++ Transfuser++ BridgeDrive

Denoiser DiffusionDrive DiffusionDrive DiffusionDrive BridgeDrive

Output Temporal waypoints Temporal waypoints Geometric waypoints Geometric waypoints

• The target speed changes by more than 0.1m/s.

• The angle to any predicted geometric path waypoints changes by more than 0.5◦.

From the remaining frames, 14% are randomly selected and kept. This strategy results in a 50%
reduction in the dataset size.

Additionally, the authors adjust the expert’s driving style by modifying behaviors, such as the timing
of braking when approaching pedestrians. This adjustment ensures the expert’s actions are more
interpretable and provide clearer learning signals for the model. Furthermore, the paper removes
class weights for target speed values, particularly for over-represented classes like braking, to avoid
biasing the model towards more frequent behaviors. This ensures the model learns from frames
critical for driving tasks, rather than focusing on frequent but less important ones.

C.2 ADAPTATION OF DIFFUIONDRIVE TO BENCH2DRIVE BENCHMARK

We denote adapted versions of DiffusionDrive as DiffusionDrivetemp and DiffusionDrivegeo. We
explain our adaption from four aspects.

Perception module. The original DiffusionDrive was built on the backbone of Transfuser (Chitta
et al., 2023), whereas our BridgeDrive is based on Transfuser++ (Jaeger et al., 2023). To ensure
a competitive baseline for fair comparison, for the adaptation of DiffusionDrive, we use the per-
ception module from Transfuser++, which is proven to achieve SOTA on Bench2Drive benchmark
(Zimmerlin et al., 2024).

Denoiser. We keep the model architecture of the denoiser identical to its original design as it is
unique to each model under comparison.

Classifier. The classifier in DiffusionDrive consists of cross-attention modules to process the per-
ception features. We keep its architecture in line with the perception module.

Output. The output trajectory representation of DiffusionDrivetemp is temporal waypoints, which
is kept the same as DiffusionDrive. The analysis of the impact of output representation is provided
in Section 4.3, where DiffusionDrivetemp’s geometric waypoints counterpart DiffusionDrivegeo is
implemented and evaluated.

An overview comparing the architectures of the major modules across DiffusionDrive,
DiffusionDrivetemp, and BridgeDrive is provided in Table 7. The rest of the implementation and
training details of DiffusionDrivetemp are kept the same as BridgeDrive for a fair comparison.

C.3 IMPLEMENTATION AND TRAINING DETAILS

As mentioned in Section 3.4, our model consists of three modules. For perception module, we keep
the original design as described in (Jaeger et al., 2023) and (Zimmerlin et al., 2024). Once the
perception module is pre-trained, it is frozen during the training phase of the denoiser and classifier
modules. The joint loss for the denoiser and classifier is defined as:

Loverall = wdiffusionLdiffusion + wclassificationLclassification, (11)

where Ldiffusion is as defined in Eq. (9) and Lclassification is the cross-entropy loss. By default, both
wdiffusion and wclassification are set to 1. We optimize them using AdamW (Loshchilov & Hutter, 2017a)
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Table 8: Influence of anchor classification accuracy on the performance of BridgeDrive.

Anchor-selected Best 2nd best 3rd best 4th best

Success rate (%) 74.99 69.09 61.36 57.72

Driving score 87.99 85.31 80.76 77.53

with a cosine annealing learning schedule (Loshchilov & Hutter, 2017b). The learning rate is set as
lr0 = 3 × 10−4, T0 = 10, Tmult = 2. In line with DiffusionDrive, we use Nanchor = 20 anchors in
BridgeDrive. Our models are trained for 10 epochs on a single H20 GPU, which takes around 10
hours.

For diffusion schedule, we employ the variance preserving (VP) schedule from Karras et al. (2022).
Specifically, we first define s(t) = 1/

√
eβdt2/2+βmint and σ(t) =

√
eβdt2/2+βmint − 1. We then

set the diffusion coefficients in the forward diffusion bridge SDE Eq. (5) to f(t) = ṡ(t)/s(t) and
g(t) =

√
2s(t)2σ̇(t)σ(t). We choose βd = 2.0 and βmin = 0.1 following Zheng et al. (2025a).

D ADDITIONAL ABLATION STUDY

D.1 INFLUENCE OF ANCHOR CLASSIFICATION ACCURACY

To assess the impact of anchor selection, we generated trajectories using sub-optimal anchors (i.e.,
the 2nd, 3rd, and 4th most likely from the classifier). The result is presented in Table 8. Our bridge
diffusion model exhibited significant resilience, achieving > 60% success rate with the 2nd and 3rd
anchors. However, both success rate and driving score decreased as lower-probability anchors were
chosen, which demonstrate the importance of anchor classification accuracy.

D.2 INFLUENCE OF DIFFUSION BRIDGE MODULE AND ANCHOR PRIOR

We perform ablation study to quantify the contribution of diffusion bridge module and anchor, re-
spectively.

To isolate the contribution of the diffusion blocks, we construct a BridgeDrive model with only 1
anchor. As shown in Table 9, without the prior information of the anchor, the BridgeDrive model
achieves a performance comparable to that of the full diffusion model in Table 2.

To isolate the contribution of the diffusion blocks, we conducted an ablation where we used only
the anchor selector (without any diffusion refinement) on the Bench2Drive benchmark. As shown in
Table 9, the anchor-only model fails to achieve competent performance, even with a very large num-
ber of anchors. This provides compelling evidence that diffusion blocks are essential for generating
high-quality trajectories and are not merely minor enhancement.

In addition, we constructed a regression model by removing the time-embedding component from
our denoiser model while keeping the rest of the architecture unchanged. Table 9 shows that the
anchor regression model performs consistently worse than our BridgeDrive model. This supports
our claim that the iterative, probabilistic refinement provided by the diffusion bridge process in
BridgeDrive is essential for achieving higher performance.

D.3 INFLUENCE OF THE NUMBER OF ANCHORS

The impact of the number of anchors, which directly influences anchor diversity, was evaluated
through an ablation study. The results in Table 9 indicate that BridgeDrive’s success rate initially
rises with the number of anchors, peaking at 60 and affirming the positive role of diversity. A subse-
quent decline in performance suggests that a larger anchor set compromises classification accuracy.
Consequently, the model’s optimal performance is achieved at an equilibrium between anchor diver-
sity and classification precision.
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Table 9: Influence of the number of anchors on the performance of BridgeDrive and anchor-based
models.

Number of anchors k=1 k=20 k=40 k=60 k=80 k=200 k=500 k=1000

Success rate (%)

BridgeDrive 67.27 72.27 73.18 74.99 72.72 - - -

Anchor classification - 2.72 8.18 16.81 19.54 25.92 36.81 36.36

Anchor-based regression - 68.18 72.72 70.91 70.91 - - -

Driving score

BridgeDrive 84.88 87.02 87.24 87.99 87.27 - - -

Anchor classification - 27.71 35.78 45.43 49.02 57.89 63.12 62.3

Anchor-based regression - 86.73 87.09 86.91 86.77 - - -
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