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Abstract

In this study, we leverage the deliberate and systematic fault-injection capabilities
of an open-source benchmark suite to perform a series of experiments on state-of-
the-art deep and robust reinforcement learning algorithms. We aim to benchmark
robustness in the context of continuous action spaces—crucial for deployment in
robot control. We find that robustness is more prominent for action disturbances
than it is for disturbances to observations and dynamics. We also observe that
state-of-the-art approaches that are not explicitly designed to improve robustness
perform at a level comparable to that achieved by those that are. Our study and
results are intended to provide insight into the current state of safe and robust rein-
forcement learning and a foundation for the advancement of the field, in particular,
for deployment in robotic systems.

1 Introduction

Reinforcement learning (RL) has become a promising approach for robotic control, showing how
robotic agents can learn to perform a variety of tasks, such as trajectory tracking and goal-reaching,
on several robotic systems, from robotic manipulators to self-driving vehicles [9, 21, 24]. While many
of these results have been achieved in highly controlled simulated environments [12], the next wave
of artificial intelligence (AI) research is now faced with the challenge to deploy in the real world.
When using reinforcement learning to solve real-world problems, safety must be paramount [25, 4,
2, 27, 11, 3]. Unsafe interaction with the environment and/or people in that environment can have
very serious consequences, ranging from the destruction of the robot itself to, most importantly, harm
to humans. For safety to be guaranteed, an embodied RL agent (i.e., the robot) must be robust to
variations in the environment, its dynamics, and unseen situations that can emerge in the real world.
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In this paper, we quantitatively study and report on the performance of a set of state-of-the-art
reinforcement learning approaches in the context of continuous control. We systematically evaluate
RL agents (or “controllers”) on their performance (i.e., the ability to accomplish the task specified by
the environment’s reward signal) as well as their robustness [30, 6, 13, 15, 17]. To do so, we use an
open-source RL safety benchmarking suite [29]. First, we empirically compare the control policies
produced by both traditional and robust RL agents at baseline and then when a variety of disturbances
are injected into the environment.
We observe that both the traditional and robust RL agents are more robust to disturbances injected
through the actions of the agent, while disturbances injected in the observations and dynamics can
cause much more rapid destabilisation. We also note that “vanilla” agents show similar performance
to the robust RL agents even when disturbances are injected, despite not being explicitly designed
with this purpose in mind. By leveraging open-source simulation, we hope that this work and our
insights can provide a basis for further research into safe and robust RL, especially for robot control.

2 Evaluation Setup

Our objective then is to train vanilla and robust RL agents (see additional detail in the Supplementary
Material) to perform a task (cart-pole stabilisation) in ideal conditions (i.e., without disturbances) and
then assess the robustness of the resulting policies in environments that include injected disturbances
in actions, observations, or dynamics (see additional detail in the Supplementary Material).
Each RL agent was trained by randomising the initial state across episodes to improve performance [29]
while at test/evaluation time, a unique initial state was used for fairness and consistency. The range
of disturbances used in each experiment was selected to include (low) values, at which all or most
agents still succeeded in completing the tasks, up until (high) values at which the robustness of all
agents eventually fails. In the case of the cart-pole, the goal of the controller is to stabilise the system
at a pose of 0 m, or centre, in 𝑥 and 0 rads in 𝜃, when the pole is upright.

Evaluation Metrics To measure the performance of the control policies, the exponentiated negated
quadratic return is averaged over the length of each episode, over 25 evaluation episodes. The same
metric was used for training and evaluation.

Cost ∶ 𝐽𝑄
𝑖 = (𝑥𝑖 − 𝑥𝑔𝑜𝑎𝑙𝑖 )𝑇𝑊𝑥(𝑥𝑖 − 𝑥𝑔𝑜𝑎𝑙𝑖 ) + (𝑢𝑖 − 𝑢𝑔𝑜𝑎𝑙𝑖 )𝑇𝑊𝑢(𝑢𝑖 − 𝑢𝑔𝑜𝑎𝑙𝑖 ) (1)

Ep. Return ∶ 𝐽𝑅 =
𝐿
∑

𝑖=0
exp (−𝐽𝑄

𝑖 ) (2)

Avg. Norm. Return ∶ 𝐽𝑅
𝑒𝑣𝑎𝑙 =

1
𝑁

𝑁
∑

𝑗=0

𝐽𝑅
𝑗

𝐿𝑗
(3)

Equation (1) shows the task’s cost computed at each episode’s step 𝑖, where 𝑥 and 𝑥𝑔𝑜𝑎𝑙 are the actual
and goal states of the system, 𝑢 and 𝑢𝑔𝑜𝑎𝑙 the actual and goal inputs, and 𝑊𝑥 and 𝑊𝑢 are constant
weight matrices. 𝐿 is the total number of steps in a given episode. Equation (2) shows how to
compute the return of an episode 𝑗 of length 𝐿𝑗 from the cost function. 𝐿𝑗 is equal (or lower) than the
maximum episode duration of 250 steps. Equation (3) shows the average return for 𝑁 (25) evaluation
runs normalised by the length of the run.

3 Results

In the Supplementary Material (Fig. 5), we report the training results when no additional disturbances
are applied, showing the reference performance of each controller at baseline. The three algorithms
which reach convergence fastest were SAC, PPO, and RAP. SAC and PPO benefit from the stochastic
characteristics of their updates. RARL trains more slowly which is what we expect as RARL is also
learning to counteract the adversary. However, the same behaviour is not observed for the other robust
approach RAP, which also converges quickly, suggesting RAP can be trained more efficiently.
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White Noise Step Sawtooth Wave

Figure 1: Disturbances injected in the experiments in Section 3: white noise, step, and sawtooth wave.
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Figure 2: Average normalised return with the injection of white noise disturbances applied to (left to
right) dynamics, actions, and observations on the cart-pole stabilisation task for the four RL agents.

3.1 Non-periodic Disturbances

We want to assess the robustness of the trained policies for two vanilla (PPO, SAC) and two robust
(RARL, RAP) RL agents. In Figure 1, we introduce three types of disturbances, two non-periodic
and a periodic one (see the Supplementary Material for more).

White Noise Disturbances We first look at white noise disturbances (Figure 1a), often used to
mimic the natural stochastic noise that an agent encounters in the real world. The noise is applied, from
zero, at increasing values of standard deviation. In Figure 2, we see very similar low robustness across
all control approaches for disturbances on external dynamics, with, as expected, a linear decrease
in performance as the noise increases. However, the robust approaches, RARL and RAP, show no
significant difference in performance w.r.t. PPO.
For action disturbances, RAP consistently has the highest average normalised return. For observation
disturbances, PPO has the highest average normalised return at high levels of disturbances. Overall,
the difference across the four approaches is small and they all demonstrate similarly good robustness
when white noise is applied to observations or actions.

Step Disturbances Step disturbances (Figure 1b) allow us to see the system’s response to a sudden
and sustained change. As in all experiments, the disturbance is applied at varying levels, here
representing the magnitude of the step. The step occurs two steps into the episode for all runs.
As expected, compared to white noise disturbances, step disturbances have a much greater effect and
even low magnitudes result in a large decrease in performance. There are especially steep decreases
in average normalised return when the agent can no longer stabilise the cart-pole, e.g., in the second
and third plots of Figure 3.
For the step disturbance on external dynamics, there is no unique better controller, with RARL
marginally outperforming the others. For actions and observations, PPO again achieves the best
overall performance, yielding almost ideal average normalised return up until the step magnitude
reaches, for action disturbances, as high as 5 N. SAC’s performance is technically higher at low levels
of disturbances but fails quickly as the magnitude of the step increases.
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Figure 3: Average normalised return with the injection of step disturbances applied to (left to right)
dynamics, actions, and observations on the cart-pole stabilisation task for the four RL agents.
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Figure 4: Average normalised return with the injection of sawtooth wave disturbances applied to (left
to right) dynamics, actions, and observations on the cart-pole stabilisation task for the four RL agents.

3.2 Periodic Disturbances

Beyond episodic disturbances, we also want to explore the ability of the controllers to deal with
periodic disturbances. Such disturbances further challenge the agents as they introduce long-lasting
perturbations, that force them to seek robustness in an environment that never behaves as ideal.

Saw Wave Disturbances A saw (or sawtooth) wave (Figure 1c) is a cyclic wave that increases
linearly to a set magnitude and instantaneously drops back to a starting point before repeating the
cycle. Thus, this disturbance type includes aspects of the step and impulse disturbances, yet it is
applied periodically throughout the evaluation episodes.
In Figure 4, the difference in performance between the approaches is less marked (in comparison to
the disturbances applied in previous experiments). For disturbances in the dynamics, there is little
difference in performance (and low overall robustness) for all control approaches. RARL performs
better than the other approaches at low amplitude disturbances. For action disturbances, PPO is the
agent that best preserves its average normalised return, while the other approaches, in particular SAC,
display lower robustness.
When the policy behaviour of the controllers was re-played, it was evident that RAP and RARL failed
more often than PPO and SAC, resulting in a lower average normalised return. When the saw wave
disturbance is applied to observations, all approaches have great difficulty stabilising and the average
normalised return quickly drops to zero.
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4 Conclusions and Outlook

In this article, we presented results that provide insight into the robustness of reinforcement learning,
in particular in the context of continuous control. One of our main findings for roboticists is that the
RL agents are more susceptible to disturbances injected into dynamics and observations. On the other
hand, all agents under test, both vanilla RL agents and robust ones, display some inherent robustness
to action disturbances.
As the field of robust reinforcement learning develops, our results indicate that particular care should
be dedicated to improving robustness to observation and dynamics disturbances. Nonetheless, building
on traditional RL approaches that already demonstrate to generalise well against disturbances may be
a promising path for robust robot control using reinforcement learning.
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Supplementary Material

In RL, an agent, in our case, a robot, performs an action and receives feedback (reward) from the
environment on how well it is doing at the environment’s task, perceives the updated state of the
environment resulting from the action taken and repeats the process, learning over time to improve the
actions it takes to maximise reward collection (and this to correctly perform the task). The resulting
behaviour is called the agent’s policy and maps the environment’s state to actions [26]. While early
RL research was demonstrated in the context of grid worlds and games, in recent years, we have seen
a growing interest in physics-based simulation for robot learning [7, 10, 18, 5]. For simplicity and
reproducibility reasons, however, many of these simulators are still fully deterministic (and prone to
be exploited by the agents). In this study, we deliberately inject disturbances at different points of the
RL learning and control interaction loop to emulate the conditions an agent might encounter in the
real world.

Injecting Disturbances in Robotic Environments

We systematically inject each of the disturbances in Figures 1 and 6 in one of three possible sites:
observations, actions, and dynamics of the environment that the RL agent interacts with.

Observation/state Disturbances Observation/state disturbances occur when the robot’s sensors
cannot perceive the exact state of the robot. This is a very common problem in robotics and is tackled
with state estimation methods [1]. In the case of the cart-pole, this disturbance is four-dimensional—
as is the state—and is measured in metres in the first dimension, radians in the second, metres per
second in the third, and radians per second in the fourth. This disturbance is implemented by directly
modifying the state observed by the system.

Action Disturbances Action disturbances occur when the actuation of the robot’s motors is not
exactly as the control output specifies, resulting in a difference between the actual and expected action.
For example, action delays are often neglected or coarsely modeled in simple simulations. In the case
of the cart-pole, this disturbance is a one-dimensional force (in Newtons) in the 𝑥-direction directly
applied to the slider-to-cart joint.

External Dynamics Disturbances External dynamics disturbances are disturbances directly applied
to the robot that can be thought of as environmental factors such as wind or other external forces. In
the case of the cart-pole, this disturbance is two-dimensional and implemented as a tapping force (in
Newtons) applied to the top of the pole.

Reinforcement Learning Agents for Continuous and Robust Control

While some of the most notable results of deep RL control [14] were achieved in the context of
discrete action spaces, we focus on actor-critic agents capable of dealing with the continuous actions
spaces needed for embodied AI and robotics [20, 16]. Here, we summarise the agent whose results
we reported in Section 3.

Proximal Policy Optimisation (PPO) PPO [23] is a state-of-the-art policy gradient method pro-
posed for the tasks of robot locomotion and Atari game playing. It improves upon previous policy
optimisation methods such as ACER (Actor-Critic with Experience Replay) and TRPO (Trust Region
Policy Optimisation) [22]. PPO reduces the complexity of implementation, sampling, and parameter
tuning using a novel objective function that performs a trust-region update that is compatible with
stochastic gradient descent.

Soft Actor-Critic (SAC) SAC [8] is an off-policy actor-critic deep RL algorithm proposed for
continuous control tasks. The algorithm merges stochastic policy optimisation and off-policy methods
like DDPG (Deep Deterministic Policy Gradient). This allows it to better tackle the exploration-
exploitation trade-off pervasive in all reinforcement learning problems by having the actor maximise
both the reward and the entropy of the policy. This helps to increase exploration and prevent the
policy from getting stuck in local optima.
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environments without disturbances for all agents on the cart-pole stabilisation task.
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Figure 6: Disturbances injected in the Supplementary Material: impulse and triangle wave.

Robust Adversarial Reinforcement Learning (RARL) Unlike the previous two approaches,
RARL [19], as well as the following approach, RAP, are designed to be robust and bridge the gap
between simulated results for control and performance in the real world. To achieve this, an adversary
is introduced that learns an optimal destabilisation policy and applies these destabilising forces to the
agent, increasing its robustness to real disturbances.

Robust Adversarial Reinforcement Learning with Adversarial Populations (RAP) RAP [28]
extends RARL by introducing a population of adversaries that are sampled from and trained against.
This algorithm hopes to reduce the vulnerability that previous adversarial formulations had to new
adversaries by increasing the kinds of adversaries and therefore adversarial behaviours seen in training.
Similar to RARL, RAP was originally evaluated on continuous control problems.
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8



0 0.5 1 1.5
0

0.2
0.4
0.6

Amplitude (N)Av
g.

No
rm

.R
etu

rn
𝐽
𝑅 𝑒𝑣
𝑎𝑙

Triangle Wave Disturbance
on External Dynamics

0 1 2 3 4
0.3

0.5

0.7

Amplitude (N)

Triangle Wave Disturbance
on Actions

PPO RARL RAP SAC

0 1 2 3 4
0

0.2

0.4

0.6

Amplitude
(m, rads, m/s, rads/s)

Triangle Wave Disturbance
on Observations

Figure 8: Average normalised return with the injection of triangle wave disturbances applied to (left
to right) dynamics, actions, and observations on the cart-pole stabilisation task for the four RL agents.

Impulse Disturbances

Impulse disturbances (Figure 6a) allow us to see the system’s response to a sudden, but temporary
change. Again, we look at varying levels of the impulse’s magnitude to test the controllers’ robustness.
The width of the impulse is two steps and it is applied two steps into the run for all runs.
In the case of dynamic and action impulse disturbances, the dramatic decrease in performance seen
in the previous experiment (with the step disturbances) is just as pronounced. We expected impulse
disturbances to be more easily handled than step disturbances, as step responses may require the system
to adapt to a new baseline whereas the impulse disturbances’ change is only temporary. However,
the first two plots in Figure 7 show a dramatic change in average normalised return as the sharp
disturbance causes the agent to fail to stabilise. PPO is the most robust to impulse disturbances on
external dynamics while RARL displays more robust performance than it did with step disturbances.
For disturbances applied to actions, SAC, PPO, and RARL are able to handle higher magnitudes of
impulse disturbance than RAP. On the other hand, the short-lived impulse disturbance on observations
does not significantly affect any of the control approaches, even at very high values.
Triangle Wave Disturbance

A triangle wave (Figure 6b) is a cyclic wave that increases linearly to a set magnitude and decreases
at the same rate to a starting point before repeating. This disturbance type is very similar to the saw
wave disturbance but also acts more similarly to a sinusoidal wave.
Not surprisingly, the results for triangle wave disturbances (Figure 8) are similar to those of the saw-
tooth wave disturbances. The triangle wave disturbance results in a slightly lower average normalised
return than the sawtooth wave disturbances but the relative performance of the control approaches
remains the same. SAC performs slightly worse in the case of disturbances applied to dynamics. For
disturbances applied to observations, the drop in performance occurs even earlier for all controllers,
showing the increased sensitivity to the triangle wave disturbance compared to the sawtooth wave.
Training with Disturbances

In the results presented so far, no additional disturbances were introduced during training. It is
natural to wonder whether including disturbances during training (and reducing the distributional
shift between train and test scenario) can improve the evaluation performance of the controllers.
Disturbances during training—akin to how the RARL and RAP use adversaries to increase their
robustness—can potentially lead to the learning of more generalisable policies. In Figure 9, we look
at two of the control approaches, PPO, the best performing vanilla RL approach, and RAP, the best
performing robust approach, trained with varying levels of white noise (for 1,000,000 steps).
The evaluation/test performance with higher levels of noise is almost always still better when training
with low levels of noise, and achieving the best performance when trained with no disturbances. For
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Figure 9: Heat maps of the average normalised return for PPO (left) and RAP (right) trained on
(𝑦-axes) and tested (𝑥-axes) with varying levels of white noise on the cart-pole stabilisation task.
Rows, from top to bottom, report on disturbances in dynamics, actions, and observations.

external dynamics disturbances, the average normalised return gradually decreases as the training
noise is increased. At higher values of training noise, the performance when the levels of testing
noise are also higher improves slightly, suggesting there are small improvements. This phenomenon,
however, is only visible for disturbances in the dynamics (first row of Figure 9).
For action disturbances, the average normalised return is not affected by increased training noise
or testing noise, except at specific, high values where the average normalised return decreases
dramatically, showing no obvious performance improvement. For noise added to observations, there
is a sudden decrease to nearly zero average normalised return when noise is introduced during training.
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