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ABSTRACT

Dynamic link prediction aims to predict the future links on dy-
namic graphs, which can be applied to wide scenarios such as
recommender systems and social networks on the World Wide
Web. Existing methods mainly (1) focus on the in-graph learning,
which cannot generalize to graphs unobserved during training; or
(2) achieve the cross-graph predictions in a many-many mecha-
nism by training on multiple graphs across various domains, which
results in a large computational cost. In this paper, we propose
a cross-graph dynamic link predictor named CrossDyG, which
achieves the cross-graph transferability in a one-many mechanism
which trains on one single source graph and test on different target
graphs. Specifically, we provide causal and empirical analysis on
the structural bias caused by the graph-specific structural character-
istics in cross-graph predictions. Then, we conduct deconfounded
training to learn the universal network evolution pattern from one
single source graph during training. Finally, we apply the causal
intervention to leverage the graph-specific structural characteris-
tics of each target graph during inference. Extensive experiments
conducted on three benchmark data of dynamic graphs demon-
strate that CrossDyG outperforms the state-of-the-art baselines by
up to 11.01% and 17.02% in terms of AP and AUC, respectively. In
addition, the improvements are especially significant when training
on small source graphs. The implementation of our approach is
available in https://anonymous.4open.science/r/CrossDyG-8B70.
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1 INTRODUCTION

Graph networks are effective tools for representing realistic com-
plex systems on the World Wide Web like social networks [7, 17, 36],
social media [25, 28] and recommender systems [23, 33, 37], where
the contained elements are regarded as nodes and the interactions
between them are deemed as edges, respectively [13, 39]. More-
over, graph networks usually continuously evolve in the real-world
scenarios on the Web [15, 18, 27]. For instance, users build social
connections with different friends on social networks at different
timestamps, and users interact with items sequentially in recom-
mender systems. Such temporal dynamics lead the graph networks
to dynamic graphs, where the contained nodes and edges keep
changing over time [3, 12]. As a fundamental task of forecasting
the temporal network evolution, dynamic link prediction is widely
investigated [2, 41, 43], which aims to predict the future links to
appear in dynamic graphs.

Existing methods for dynamic link prediction mainly focus on
the in-graph setting as explained in Fig. 1(a), where the evolution
pattern is learned from the previously observed network (marked
by solid lines) and then applied to the same network to predict
its future links (marked by dashed lines). For instance, the liter-
ature [2, 24, 41] propose to model the temporal and structural
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Figure 1: Explanations of tasks associated with cross-graph
transferability of dynamic link prediction, where different
subscripts represent different graphs.

neighborhood by including the node/edge features and the tem-
poral features for dynamic representation learning. Moreover, the
explicit structural correlations on the temporal topology are also
taken into consideration using the neighbor co-occurrence mecha-
nism of single hop [43, 45] or multiple hops [10, 35]. However, these
models are generally designed for the in-graph scenarios, which
cannot generalize to other graphs unobserved in training.

Recently, the dynamic graph foundation model has also been
investigated to achieve cross-graph dynamic link prediction. For
example, Huang et al. [8] propose DyExpert, which trains a decode-
only Transformer on extensive dynamic graphs of various domains
for achieving cross-graph transferability. That is, DyExpert follows
a many-many mechanism as explained in Fig. 1(b), which learns
the evolution pattern from the combination of multiple dynamic
graphs, i.e., {Ga, GB, Gc} and then applies the learned model on
other graphs, i.e., Gp and Gg. However, such a foundation model
mechanism requires a large computational cost during both the
data collection and model training stages, leading to a low efficiency
in applications. Thus, it remains a challenging problem of how to
efficiently achieve the cross-graph dynamic link prediction.

To solve the above-mentioned issues, we propose to investigate
the cross-graph dynamic link prediction using a one-many mecha-
nism as explained in Fig. 1(c), which trains on a single source graph
G4 and test on different target graphs Gg and G¢. However, consid-
ering that the structural characteristics in different dynamic graphs
are diverse, there exist two main challenges: (1) Challenge I: How
to accurately learn the universal network evolution pattern across
different graphs by eliminating the bias of structural characteristics
on the single source dynamic graph during training? (2) Challenge
II: How to effectively leverage the graph-specific structural char-
acteristics in each target dynamic graph for making predictions
during inference?

To tackle the challenges, we propose a novel framework named
Cross-graph Dynamic Graph link predictor (CrossDyG) for im-
proving the c&s-graph transferability of dynamic link prediction.
Specifically, we first analyze how the structural characteristics intro-
duce the bias in cross-graph dynamic link prediction based on both
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causal analysis and empirical analysis. Then during the training
stage, we perform deconfounded training to eliminate the structural
bias on the single source dynamic graph, thus accurately capturing
the universal network evolution pattern across different dynamic
graphs. Finally, in the inference stage, based on the learned evo-
lution pattern, we further adopt causal intervention to leverage
the graph-specific structural characteristics of each target dynamic
graph for making accurate predictions.
The main contributions in this paper are summarized as follows:
(1) To the best of our knowledge, we are the first to investigate the
cross-graph dynamic link prediction in a one-many mechanism,
and study the impact of structural bias on the cross-graph
transferability based on causal analysis and empirical analysis.
(2) We adopt the deconfouded training to learn the universal net-
work evolution pattern across different graphs from one single
source graph in training, and design causal intervention strat-
egy to leverage the graph-specific structural characteristics of
each target graph for accurate predictions during inference.
(3) Extensive experiments conducted on three real-world dynamic
graphs present the superiority of CrossDyG against the state-
of-the-art baselines, where the performance gains are up to
11.01% and 17.02% in terms of AP and AUC, respectively.

2 RELATED WORK
2.1 Dynamic Link Prediction

As an important foundation of predicting temporal network evolu-
tion, dynamic link prediction is widely investigated recently. Specif-
ically, most methods focus on the in-graph learning which learns
the network evolution from the historically observed graph and
then predicts future links in the same graph.

Early methods mainly focus on generating dynamic node repre-
sentations by learning from the temporal features and node/edge
features [2, 24, 41, 42]. For instance, Xu et al. [41] introduce the tem-
poral graph attention layer, which efficiently considers the temporal
and topological neighborhood information using the self-attention
mechanism [32]. And Cong et al. [2] design a conceptually and tech-
nically simple architecture GraphMixer which summarizes features
from one-hop temporal neighbors using the MLP-mixer [30].

Moreover, some recent literatures [10, 29, 35, 43] propose to
leverage the structural correlations between nodes on the temporal
structural topology. Specifically, Wang et al. [35] first design a causal
anonymous walk strategy to automatically extract the temporal
network motifs for considering the node correlations. And Yu et al.
[43] simplify the causal anonymous walk by introducing a simple
but effective neighbor co-occurrence mechanism to learn from the
historical neighbor sequence, i.e., one-hop neighbors.

In addition to the above in-graph learning methods, a recent
dynamic graph foundation model DyExpert is designed to achieve
the cross-graph transferability [8]. Specifically, DyExpert follows a
many-many mechanism which learns the universal network evo-
lution pattern from multiple graphs of various domains, and then
applies the learned link predictor on other graphs.

However, on the one hand, the in-graph dynamic link predic-
tion methods cannot generalize to other graphs which are not
observed during the training stage. And on the other hand, though
the current dynamic foundation model achieves the cross-graph
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predictions, its many-many transferability strategy requires large
computational cost in both the data collection and model training
stages. Thus, we investigate the cross-graph transferability in a
one-many mechanism, which still remains a challenging problem.

2.2 Causal Inference

Causal inference [20] constitutes a field of study dedicated to quan-
tifying the causal connections among variables, which is widely
adopted to eliminate the negative bias in various real-world appli-
cations, such as recommender systems [26, 38, 44] and graph analy-
sis [4, 16, 19]. For example, Wei et al. [38] design a model-agnostic
counterfactual reasoning framework which uses multi-task learn-
ing to obtain the contribution of difference causes to the user-item
interactions, and then perform counterfactual inference to remove
the item popularity bias during inference. Moreover, Zhang et al.
[44] propose to conduct deconfounded learning using do-calculus
to remove the popularity bias during training and then causally
intervene the predicted future item popularity for inference. In ad-
dition, Fan et al. [4] introduce a general disentangling graph neural
network (GNN) framework to learn the separate causal substructure
and bias substructure for generating the counterfactual unbiased
samples, thus improving the generalization ability of GNNs.

Inspired by the above works, we utilize deconfounded learning
to eliminate the structural bias to learn the universal network evolu-
tion pattern from one single source graph, and further adopt causal
intervention to leverage the graph-specific structural characteristics
for predictions on other dynamic graphs during inference.

3 APPROACH

3.1 Problem Statement

Dynamic graph. We first give the definition of dynamic graph,
which can be denoted as G = {V,&E}. Here V is the node set,
the size of which continuously increases with time in dynamic
graphs, and & is the edge set, each edge (u,0,t) € & connects
nodes u and v at the timestamp ¢. In addition, each node and each
edge is associated with a node feature x, € R and an edge
feature e, € RY, respectively, where dyy and d are the respective
dimensions of node feature and edge feature.

In-graph dynamic link prediction. Existing dynamic graph models
generally concentrate on the in-graph dynamic link prediction.
Specifically, given a timestamp #’, the observed dynamic graph can
be denoted as G" = {V’,E’}, where V' is the node set containing
nodes appearing before t’ and &’ is the edge set consisting of edges
happening before ¢’. In-graph dynamic link prediction aims to learn
the temporal network evolution pattern from G’ = {V’, &’} and
then predicts each link with timestamp ¢ > ¢/, i.e,, (u,0,t) € E\ &E'.

Cross-graph dynamic link prediction. Different from the in-graph
setting, our research focuses on a more challenging task: cross-
graph dynamic link prediction. Specifically, we aim to train a dy-
namic link predictor f to learn the universal network evolution
pattern from source dynamic graph Gs = {Vs, Es}, and then apply
the learned model fj to target dynamic graph G; = {V;, &}

3.2 System Overview

Given source node u and target node v in dynamic graph G =
{V, E}, we predict the probability of forming a future link between
u and v at the timestamp ¢ by the following three steps:
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3.2.1 Neighbor sequence sampling. Given the future link (u, v, t) to
predict, the neighbor sequence is first sampled for both source node
u and target node v by backtracking the interaction timestamps.
For example, the sampled neighbor sequence for source node u can
be denoted as Ny, = {(v1,t1), ..., (vK, tx) }, where K is the sampled
neighbor number and t; < --- < tg < t.

3.2.2 Dynamic representation learning. After that, the dynamic
representations of nodes u and v are generated by combining the
structural encoding, the temporal encoding and the node/edge
features. Here we take node u as an example for illustrations.

Structural encoding. Neighbor co-occurrence mechanism (NCM),
which we denote as fy, is a commonly adopted strategy for encoding
the node structures in dynamic link prediction. Specifically, given
node u with neighbors AV, and node v with neighbors Ny, fy, counts
the occurrence frequency of each node v; € Ny, U N, in NV, and
Ny, respectively. This can be formulated as follows:

Ty i) = [9(vi, Nu), g(0i, No) 1, 1)

where fy (v;) € R? is the structural encoding vector of neighbor
v;, and g indicates the function counting the occurrence frequency
of v; in Ny, as g(v;, Ny) = {ovjlvj € Ny, vj = v;}|. For instance,
given Ny, = {v1,02,02,04} and Ny = {01, 01,02, 03}, fy (1) = [1,2],
fy(v2) = [2,1], fy(v3) = [0,1] and fy(vs) = [1,0]. Correspond-
ingly, the structural encoding of u and v are [[1, 2], [2,1], [2, 1], 1, 0]1"
and [[1,2], [1, 2], [2,1], [0, 1]]T, respectively.

Then, the neighbor co-occurrence mechanism fy, and a multi-
layer perceptrons (MLP) which we denote as f; are combined to
encode the structural features of each neighbor v; € N, as follows:

si = fp(fy(01)) = MLP(fy (01)), )

where s; € RY is the generated structural embedding of v;.
Temporal encoding. Moreover, a continuous time encoding func-
tion [40] is adopted for temporal encoding, to model the time in-
terval At; = t — t; between the timestamp ¢ and the interaction
timestamp ¢; with neighbor v;, which can be formulated as follows:

t; = [cos(w1Aty), sin(wiAt;), . . ., cos(wgAt;), sin(wgAti)],  (3)

where [w1,. .., wq] are the learnable parameters.

Information fusion. After that, we generate the fused embeddings
of u’s neighbors, for example, the representation of neighbor v; €
Ny, can be generated by combining the structural embedding s;, the
temporal embedding t;, the node features x; and the edge features
e;, which can be formulated as z; = [s}, t},x}, e¥] € R2d+dn+dE

3.2.3  Prediction and model optimization. Finally, predictions are
made by fusing the representations of neighbors of u and v, i.e.,
Zoy, Zy € REX(2d+dn+dg) by inputting them to Transformer [32],
MLP-Mixer [30], etc, for obtaining the prediction score as y,,,. Then,
we adopt cross-entropy as the loss function for model optimization:

L= > -log(o(yly) — log(a(1 - yly)). @)
(u,0,t) €8s

where (u,0,t) € &; denotes each temporal edge in the source
dynamic graph Gs = {V, Es}, and y?,,, is the prediction score of
the randomly sampled negative edge (u, n, t).
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(a) Conventional methods. (b) Removing structural bias.

T: Temporal characteristics; F: Node/edge features;

S: Structural characteristics;  C: Structural Correlations;
Y: Prediction probability.

Figure 2: Causal graphs for (a) the conventional methods and
(b) the version removing the structural bias.

3.3 Analysis of Structural Bias

3.3.1 Effect of Structural Bias from a Causal View. To clearly under-
stand the bias caused by the structural characteristics (i.e., fl/,(v,-)
obtained by Eq. (1)) on the prediction probability, we adopt the
causal graph [20], which denotes variables as nodes and describe
relations between them as edges. Here we construct the causal
graph of conventional dynamic graph models and our improved
version which removes the structural bias, which are presented in

Fig. 2. As shown in Fig. 2, there are five variables, including: (1) S

denotes the structural characteristics of nodes; (2) C denotes the

structural correlations between nodes; (3) T denotes the temporal

characteristics of nodes; (4) F denotes the node/edge features; (5) Y

denotes the probability of future link formation.

Then, we can observe that there exist two main causal relations
in conventional dynamic models as shown in Fig 2(a) as follows:
e {S,C,T,F} — Y denotes that the probability of forming a future

link (u,v,t) is determined by the combination of the structural

characteristics S, the structural correlations C, the temporal char-

acteristics T and the node/edge features F;

e S — C — Y denotes that learning the structural correlations C
is influenced by the structural characteristics S and then affects
the prediction probability Y;

Moreover, from the causal graph, we can observe that there
exist two causal paths from the structural characteristics S to the
prediction probability Y, i.e,S — C — Y and S — Y. The first path
influences the accurate estimation of the structural correlations C’s
impact on the prediction probability Y, thus cannot accurately learn
the universal network evolution pattern (i.e., {C,T,F} — Y)
across different dynamic graphs. The second path indicates that
the graph-specific structural characteristics in each graph also
affects the prediction probability (i.e., S — Y), which is expected
when applied in one specific dynamic graph.

3.3.2  Analysis on conventional methods. Existing methods suffers
from the structural bias S when learning the universal network
evolution pattern {C, T, F} — Y. Specifically, the conditional prob-
ability P(Y|C, T, F) in conventional methods can be calculated as:

PYICT,F) € Y Py sIC T ),
S
@ 3 PG T.ES)PGICT,F),
’ 5)

@ N P(YIC.T,F5)P(s[O),
S

@ > P(Y|C.T,F,5)P(Cls)P(s).
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where (1) is the definition of marginal distribution; (2) is because of
the Bayes’ theorem; (3) is because T and F are independent to S ac-
cording to the causal graph; (4) is because of Bayes’ theorem. Then,
we can observe that there exists a term P(C|S), which indicates
the influence of the structural characteristics S on the structural
correlations C, and thus affecting the prediction probability Y.

3.3.3 Empirical analysis. In addition, we further explain why the
structural bias exists in cross-graph dynamic link prediction using
empirical analysis. Specifically, we plot the occurrence frequency
(i.e., fY(v;) generated by Eq. (1)) of neighbors obtained by the
commonly adopted recent sampling [43] (i.e., selecting the most
recent interacted neighbors) in Fig. 3a. It can be observed that the
occurrence frequency distributions obtained by recent sampling
are obviously different across three graphs. Such differences lead to
the unsatisfactory performance of existing dynamic graph models
on cross-graph dynamic link prediction, since the learned model
trained to fit the distribution of source dynamic graph fails to gener-
alize to target dynamic graph. Through the above analysis, we can
conclude that the bias of structural characteristics causes negative
effect on the cross-graph transferability of dynamic link prediction.

3.3.4 Repeat neighbor sampling. To better model the uniformity of
different dynamic graphs from improving the cross-graph trasfer-
ability, we adopt repeat sampling [45] for neighbor extraction in
our proposal. Specifically, given source node u and target node
v and their neighbors as N, and N, for node u, we sample the
historical neighbors equal to target node v, i.e., {v; € Ny|v; = v}.
For instance, given source node 1, target node v, and all historical
neighbors of v as {(vg, t1), (v3, t2), (v2, 3), (v4, t4) }, We extract the
neighbor sequence of v; as {(v, t1), (v2, t3) }. In addition, if target
node v does not appear in the historical neighbors of source node
u, then the neighbors of u are sampled using the recent sampling.
And the neighbors of target node v are obtained in the same way.
Through the recent neighbor sampling, we can extract the neigh-
bors most related to the node structural correlations by removing
the noisy neighbors. To clearly illustrate this, we plot the occur-
rence frequency distributions of neighbors obtained by the repeat
sampling in Fig. 3b, from which we can observe that the distribu-
tions of three dynamic graphs obtained by repeat sampling are
obviously closer than recent sampling. Such close distributions
largely contribute to learning the cross-graph transferability.
However, it can also be observed that there still exist differences
between the occurrence frequency distributions of three dynamic
graphs obtained by repeat sampling, which is caused by the graph-
specific structural characteristics in different graphs. Thus, we pro-
pose CrossDyG, which resorts to deconfounded training to learn
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Figure 4: Pipeline of CrossDyG, where the blue and red lines
denote the training and inference stages, respectively.

the universal network evolution pattern across different graphs
by removing structural bias during training (see Section 3.4) on
source graph and then utilize the graph-specific structural char-
acteristics for making predictions during inference on target graph
(see Section 3.5). The pipeline of CrossDyG is plotted in Fig. 4.

3.4 Deconfounded Training

To achieve our aim that removes the structural bias S in learning
{C,T,F} — Y, we adopt the do-calculus [20] in causal science,
which forces to remove the impact of {C, T, F}’s parent nodes, i.e.,
C’s patent node S. Then, let the causal graphs in Fig. 2(a) and 2(b)
be G and G’, respectively, P(Y|do(C, T, F)) is calculated as:

P(Yldo(C. T, F)) ¥ Po (YIC,T, F),
S Po (YIC.T.F.5)Po (SIC. T, ),
S

6
@ > Por (YIC.T.F.)PG(s), ©

@ > P(YIC.T.F,5)P(s).
S

where Pg/ (+) indicates the probability evaluated on G’. (1) is be-
cause of backdoor criterion [20] as the backdoor paths of C « S —
Y in G have been blocked by do(C, T, F); (2) is because of Bayes’
theorem; (3) is because of that {C, T, F} are independent with S in
G’; (4) is because that the causal mechanism {S,C, T, F} — Y is not
changed when cutting oft S — C, P(S) = Pg/(S) since S have the
same prior on the two graphs.

Comparing Eq. (6) with Eq. (5), we can find that the term P(C|S)
in Eq. (5) disappears. This indicates that by applying the do-calculus
on the variables {C, T, F}, i.e., C, we can obtain the debiased pre-
diction probability as P(Y|do(C,T,F)) = X P(Y|C,T,F,s)P(s).
Specifically, this eliminates the impact of the bias of structural
characteristics (i.e., {S — Y}) in source dynamic graph during
training, thus learning the universal network evolution pattern
(i.e., {C,T,F} — Y) across different dynamic graphs. Next, we aim
to estimate P(Y|do(C, T, F)) from the training data on source dy-
namic graph Gs = {Vs, &}, including two steps, i.e., estimating
P(Y|S,C,T,F) and P(Y|C, T, F,s)P(s), respectively.
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Step 1: Estimating P(Y|S,C, T, F). This conditional probability
function evaluates that given a node pair (u, v, t) with node correla-
tions as C = ¢, temporal characteristics as T = t, node/edge features
as F = f and structural characteristics as S = s, how is the proba-
bility P(y = 1|s, ¢, t, f) of forming a future link between u and v at
the timestamp ¢. This can be implemented by the dynamic graph
models with the learnable parameters 6 introduced in Section 3.2,
where the parameters 6 can be optimized by the cross-entropy loss
formulated by Eq. (4).

Moreover, given the structural characteristics as s, to learn the
universal network evolution pattern, we propose to decouple the
structural characteristics s from the modeling processing of pre-
dicting Y, i.e., Pg(y = 1|c, t, f,s). In addition, considering that T
and F are independent from S in G’ as shown in Fig. 3(b), the vari-
ables we need to decouple are the structural correlations C and
the structural characteristics S, which are together modeled by the
structural encoding function in Eq. (2). Specifically, to achieve such
an aim of decoupling C and S, we design a decoupled structural
encoding function by improving Eq. (2) as follows:

Jo(fy (0i) = fo (H(fy (0:))) x (I(fy (v:)))Y, ™

where y is the parameter for smoothing the occurrence frequency,
I(-) is the Identity Function, and H(-) denotes the Unit Step Func-
tion defined as follows:

1 ifx >0,
H = 8
() {O if x <0. ®

Here the former part fy (H(fy(v:))) indicates that only neigh-
bor v;’s appearances in N, and N, (i.e., if the occurrence hap-
pens or not) are inputted to the MLP fy, while the occurrence
frequency is ignored. That is, fg (H(fy (vi))) is decoupled with the
latter part (I( f]r/,(vi)))y which records the occurrence frequency
of v; in Ny, and N,. For instance, given N, = {v1,02,0v2,02} and
No = {o1,02,03,03, H(fy(02)) = [1,1], H(f (03)) = [0,1], while
I(fy (02)) = [3,1]. I(fy (03)) = [0,2].

Step 2: Estimating P(Y|C, T, F, s)P(s). Then we proceed to esti-
mate the interventional probability P(Y|do(C, T, F)). Considering
that the space of S is extremely large, it is impractical to perform a
summation over its space for making predictions. Fortunately, we
can employ the following reduction to eliminate the need for this
summation as follows:

P(Y]do(C.T,F)) ¥ 3 P(Y|C.T.F,5)P(s).

@ fovg (. ) + qus(C) x sYP(s),
s )

e fovg (. ) + f(c) Z sYP(s),

D fors (1) + f3()E(SY).

where E(SY) denotes the expectation of S¥, which is a constant.
Moreover, considering that the value E(SY) is equal for all node
pairs in the same dynamic graph, the existence of E(SY) does
not change the results when comparing the prediction probabil-
ity of different links in a single graph. Thus, we can adopt the
learned model with parameters 0 including fp\4 and f to estimate
P(Y|do(C, T, F)).
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To sum up, in the deconfounded learning, we train the learned
model with parameters 0 by fitting the links in source dynamic
graph, and then use fg\ 4 and fy contained in the learned model to
capture the universal network evolution pattern, i.e, {C,T,F} —» Y
by removing the negative impact of structural bias, i.e., C — Y.

3.5 Structural Intervention in Inference

Through calculating the probability P(Y|do(C, T, F)), we can elimi-
nate the negative effect of the structural bias, thus accurately learn
the universal network evolution pattern across different graphs.
Then, after training on source dynamic graph Gs = {Vs, Es}, in
the inference stage of predicting links in target dynamic graph
Gt = {V4, &}, we propose to leverage the graph-specific struc-
tural characteristics for better fitting in the target graph. Specifi-
cally, given the structural characteristics of target graph as S =3,
this can be achieved by the intervention do(S = ) as:
P(Y|do(C=c,T=t,F = f),do(S = §))
=Pyo(y=1lc,,f.3), (10)
= forng (6. ) + fp (H(f, (0:))) x (I(fy, (0:))".
where f 1/;(Ui) indicates the graph-specific structural characteristics,
i.e., the occurrence frequency, in target graph G;. In addition, in our
improved causal graph G’ shown in Fig. 2(b), the above calculated
result directly equals to the conditional probability P(Y|S,C, T, F),
since there is no backdoor path between S and C in G’.

4 EXPERIMENTS

4.1 Research questions

We validate the effectiveness of our proposed CrossDyG by answer-
ing the following five research questions:

RQ1 Can CrossDyG improve the cross-graph transferability across
different graphs in a one-many mechanism by learning from
one single source dynamic graph?

RQ2 How is the contribution of different contained components
in CrossDyG to the prediction performance?

RQ3 How is the performance of CrossDyG compared with the
baselines when training on multiple source dynamic graphs?

RQ4 Can CrossDyG mitigate the bias of structural characteristics
in training and leverage them in inference, respectively?

RQ5 How is the sensitivity of CrossDyG’s performance to the
contained hyper-parameters?

4.2 Experimental Settings

4.2.1 Datasets and evaluation metrics. To validate the effectiveness
of CrossDyG, we evaluate the prediction performance of CrossDyG
and the baselines on three real-world dynamic graphs of different
sizes, i.e., Wikipedia, Reddit and LastFM, which are widely adopted

in dynamic link prediction [2, 14, 35].

o Wikipedia is a temporal interaction graph where the contained
nodes represent the Wikipedia editors and the pages they mod-
ify, and edges signify the timestamped editing actions over one
month. In addition, each edge is associated with a 172-dimensional
Linguistic Inquiry and Word Count (LIWC) feature.

o Reddit is a temporal interaction graph recording the activity of
users engaging with different subreddits over a monthly period.
Nodes in Reddit include users and subreddits, and edges represent
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Table 1: Performance of CrossDyG and the baselines, where we adopt each of Wikipedia, Reddit and LastFM as Source for
training and utilize each other dataset as Target for evaluation. The best performer and the best baseline in each line are bold
and underlined, respectively, and “Improve.” indicates the improvement percentage of CrossDyG above the best baseline.

Metric ‘ Source ‘ Wikipedia | Reddit | LastFM
| Target |  Reddit LastFtM |  Wikipedia LastFM |  Wikipedia Reddit
TGAT 0.7894+0.0124 0.6103+0.0020 0.8641+0.0058 0.5356+0.0115 0.9022+0.0083 0.5764+0.0125
TCL 0.7125£0.0154 0.6182+0.0052 0.8178+0.0135 0.5403+0.0045 0.9393+0.0135 0.5377+0.0118
GraphMixer | 0.9055+0.0032 0.6935+0.0034 0.9277+0.0029 0.6999+0.0052 0.9127+0.0066 0.7496+0.1121
AP CAWN 0.8711+0.0056  0.7460+0.0101 0.9499+0.0037  0.8196%0.0099 0.9368+0.0053  0.9298+0.0087
DyGFormer | 0.8961+0.0083 0.7537+0.0318 0.9578+0.0045 0.8305+0.0128 | 0.9511+0.0069 0.9354+0.0138
CrossDyG | 0.9532+0.0083 0.8367+0.0072 | 0.9616+0.0031  0.8453+0.0047 | 0.9650+0.0033 0.9525+0.0016
Improve. 5.27% 11.01% 0.40% -0.22% 1.46% 1.79%
TGAT 0.8055+0.0057 0.6058+0.0015 0.8682+0.0033 0.5464+0.0091 0.8898+0.0098 0.5870+0.0146
TCL 0.7137+0.0191 0.6042+0.0045 0.8230+0.0078 0.5542+0.0052 0.9240+0.0171 0.5248+0.0089
GraphMixer | 0.8997+0.0038  0.6928+0.0034 0.9247+0.0026 ~ 0.7088+0.0042 0.9043+0.0073  0.7627+0.1016
AUC CAWN 0.8560+0.0061  0.7117+0.0112 0.9325+0.0042  0.8250+0.0103 0.9083+0.0089  0.9176+0.0094
DyGFormer | 0.8877+0.0075 0.7311+0.0305 0.9435+0.0078 0.8319+0.0193 0.9323+0.0134 0.9210+0.0210
CrossDyG | 0.9503+0.0055 0.8555+0.0092 | 0.9602+0.0031 0.8666+0.0037 | 0.9648+0.0022 0.9481+0.0014
Improve. 5.62% 17.02% 1.77% 4.17% 3.49% 2.94%

the posting requests with timestamps, where each edge contains
a 172-dimensional LIWC feature vector.

o LastFM is a temporal graph that captures the user-song interac-
tions over a one-month window, where users as well as songs
are represented as nodes and the behaviors of users listening to
songs are regarded as edges, respectively.

The statistics of three adopted datasets are shown in Table 2. In

addition, following [35, 41, 43], average precision (AP) and area

under the ROC curve (AUC) are adopted as the evaluation metrics.

4.2.2  Baselines for comparison. We select five state-of-the-art base-

lines to compare with CrossDyG for validating its superiority, in-

cluding TGAT [41], TCL [34], GraphMixer [2], CAWN [35] and

DyGFormer [43].

o TGAT [41] uses self-attention [32] and a continuous time encod-
ing technique [40] based on the classical Bochner’s theorem [22]
to learn time-dependent node embeddings for predictions.

e TCL [34] designs a topology-aware Transformer containing a
two-stream encoder with co-attention for modeling the semantic-
level inter-dependencies, and introduces contrastive learning [6]
to maximize mutual information between future interaction
nodes.

e GraphMixer [2] designs a simple architecture for temporal
graph learning that uses multi-layer perceptrons (MLP) and mean
pooling for link and node encoding, respectively, followed by an
MLP-based link classifier for making predictions.

o CAWN [35] designs a causal anonymous walk method which
uses temporal random walks to extract motifs that represent
network dynamics, with an anonymization strategy replacing
the node identities with the hitting counts.

e DyGFormer [43] is a Transformer-based dynamic graph learn-
ing method that uses a neighbor co-occurrence mechanism and a
patching technique to capture nodes’ correlations and long-term
temporal dependencies, respectively.

Table 2: Statistics of the datasets used in our experiments.

Statistics #Nodes  #Links #N&L Feat Unique Steps
Wikipedia 9,227 157,474 -&172 152,757
Reddit 10,984 672,447 -&172 669,065
LastFM 1,980 1,293,103 -&- 1,283,614

It is worth noting that several memory networks based methods
such as JODIE [14], DyRep [31] and TGN [24] are not included in
comparison since their designs are not applicable to cross-graph
link prediction. In addition, the dynamic graph foundation model
DyExpert [8], which achieves the cross-graph transferability in a
many-many mechanism, is not directly included because of the
unfair comparison, since it adopts multiple dynamic graphs from
various domains for training. Instead in RQ3, we compare the per-
formance of CrossDyG and the baselines by training on multiple
source dynamic graphs by following the setting in DyExpert.

4.2.3 Model implementation. We implement our proposed Cross-
DyG and the baselines based on the open-source toolkit proposed
in [43]. Specifically, we adopt Adam with a learning rate of 1e~*
for model optimization, where the batch size is set to 200 and the
dimensions of structural and temporal encodings are both set to 100.
Moreover, different from existing works [21, 41, 43] which separate
each dynamic graph to different parts for training and evaluation,
we directly adopt each full dynamic graph for training or evaluation.
It is worth noting that considering there is no validation data for
early stopping in model training, we tune the number of training
epochs a a hyper-parameter. Specifically, we search the training
epoch on source dynamic graph in {1,2,..., 10}. In addition, we
tune the scaling number y in {0.1,0.2,.. ., 1.0}, the sampled neigh-
bor number in {16,32,...,160}, respectively, to find the optimal
performance on each dataset. Furthermore, all experimental results
are implemented using PyTorch 1.8.1 on a Ubuntu 18.04 server with
NVIDIA GeForce RTX 3090 GPU with 24 GB memories.
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Table 3: Ablation study on different designed components in CrossDyG, where the performance decreasing percent of each
variant is shown below its performance, and the biggest drop in each column is marked using the symbol |.

. ‘ Source ‘ Wikipedia \ Reddit | LastFM
Metric
|  Target |  Reddit LastFM |  Wikipedia LastFtM |  Wikipedia Reddit
CrossDyG 0.9532+0.0083 0.8367+0.0072 0.9616+0.0031 0.8453+0.0047 0.9650+0.0033 0.9525+0.0016
AP w/o Repeat | 0.6929+0.0106]  0.5452+0.0096] | 0.7614+0.0256]  0.5254+0.0220| | 0.7757+0.0024 0.5511+0.0241]
w/o Causal | 0.8023+0.0415 0.6053+0.0348 0.9282+0.0073 0.8560+0.0013 0.5801£0.0094]  0.6929+0.0107
CrossDyG | 0.9503£0.0055  0.8555+0.0092 | 0.9602+0.0031  0.8666+0.0037 | 0.9648+0.0022  0.9481+0.0014
AUC | w/oRepeat | 0.7030+0.0117]  0.5483%0.0100] | 0.7783%0.0138]  0.5349+0.0197] | 0.7487+0.0026  0.5794%0.0317|
w/o Causal | 0.8341+0.0507  0.6447+0.0387 | 0.9505:0.0020  0.8742£0.0014 | 0.3992+0.0066]  0.67620.0251
4.3 Overall Performance (RQ1) o5 -
® c
We compare the performance of CrossDyG and the baselines in oee = — 080 o o
terms of AP and AUC by training on each of Wikipedia, Reddit and &*” // g R
LastFM and test on each other dataset. The results are presented in o7 / DyGFomer | 070 DyGFomer
Table 1, from which we can obtain the following observations: 068 ’ oes ”
e Dynamic link prediction which reflects the network evolu- o0 060

tion is generalizable across different graphs. First, we can
observe that the baselines which are designed for in-graph set-
ting can also achieve satisfactory performance on the cross-graph
dynamic link prediction. Moreover, comparing with the methods
TGAT, TCL and GraphMixer which model the temporal charac-
teristics and the node/edge features, the structural correlations
aware models CAWN and DyGFormer obviously improve the per-
formance. These observations indicate that various features on
dynamic graphs which represent the network evolution pattern
is universal across different graphs and thus can be generalizable.

o CrossDyG effectively improves the performance of the cross-
graph dynamic link prediction task. Moreover, compared
with the competitive baselines, we can observe that our pro-
posed CrossDyG generally achieves the state-of-the-art perfor-
mance in terms of AP and AUC on various scenarios transferring
across different dynamic graphs. This benefits from our novel de-
signs which utilize deconfounded learning to learn the universal
network evolution pattern during training and adopt causal in-
tervention to utilize the graph-specific structural characteristics
in each target dynamic graph during inference.

e The advantages of CrossDyG are especially obvious when
learning from small dynamic graphs. In addition, it is worth
noting that the improvements of CrossDyG above the baselines
are especially obvious when training on small dynamic graphs.
For example, on the AP metric, CrossDyG outperforms the best
baselines by 5.27% and 11.01% when training on the smallest
graph Wikipedia, while the improvements are 0.40%, -0.22% and
1.46%, 1.79% when training on Reddit and LastFM, respectively.
This specifies the strong ability of CrossDyG to learn the cross-
graph transferability across dynamic graphs from limited data.

4.4 Ablation Study (RQ2)

To answer RQ2, we provide more detailed analysis on CrossDyG by
validating the utility of its contained different components. Specifi-
cally, we compare CrossDyG with its two variants: (1) w/o Repeat,
which replaces the adopted repeat sampling with the commonly
used recent sampling; (2) w/o Causal, which removes the causal

15" 3e* 45e" Ge' 7.5e" 9e' 1.05e°12e’1.35e°15e 15e" 3e' 45e" Ge' 7.5e' 9e' 1.05e°12e°1.35e°15e”
Data size of multiple graphs

Data size of multiple graphs
(a) Performance in terms of AP. (b) Performance in terms of AUC.
Figure 5: Results by training on Wikipedia and Reddit of

different size and evaluating on LastFM.

mechanisms including deconfounded training to eliminate the struc-
tural bias in training and causal intervention to leverage the struc-
tural characteristics in inference. The results are shown in Table 3.
From Table 3, we can observe that CrossDyG obviously out-
performs its two variants in terms of AP and AUC in different
cases. This indicates the utility of the repeat sampling for removing
the noisy neighbors and the causal mechanisms including decon-
founded training and causal intervention for dealing with the struc-
tural characteristics during training and inference, respectively. In
addition, comparing w/o Repeat and w/o Causal, we can find that
the performance decreasing is generally larger when remove the
repeat sampling. We analyze this is due to that the adopted repeat
sampling can not only extract the most related neighbors for learn-
ing the node correlations, but also serve as a basis for deconfounded
training and causal intervention as we point out in Section 3.3.4.

4.5 Training on Multiple Graphs (RQ3)

To answer RQ3, we adopt two small datasets Wikipedia and Reddit
for training and utilize the largest dataset LastFM for evaluation.
Specifically, we randomly sample the same number of dynamic links
from Wikipedia and Reddit, then combine them together for model
optimization. In addition, we range the sampled link number in each
dataset in {1.5¢%,3.0¢%,...,1.5¢°} to further analyze the impact of
the data size of multiple graphs on the prediction performance. The
performance of CrossDyG and the baselines in terms of AP and
AUC are shown in Fig. 5.

From Fig. 5, we can observe that CrossDyG outperforms the
baselines when learning from different sizes of multiple graphs,
indicating the robustness of CrossDyG when training on multiple
graphs. Moreover, we can observe that for the baselines TGAT, TCL
and GraphMixer without modeling the node correlations, the per-
formance is stably low when the data size increases. Differently for
CAWN and DyGFormer which consider the node correlations, its
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Figure 6: Performance on different occurrence numbers.
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performance increases rapidly with the data size increasing, while
the performance is especially poor with small data sizes. However,
supported by the ability of learning the universal network evolu-
tion pattern, CrossDyG obtains stably outstanding performance on
different data sizes and shows large performance gap between the
baselines when learning from limited multiple graph data especially.

4.6 Effect of Structural Bias

To answer RQ4, we provide an intuitive observation of the util-
ity of deconfounded training and causal intervention for dealing
with the structural characteristics in CrossDyG, we compare the
performance of CrossDyG and its variant w/o Causal as well as
DyGFormer on groups containing links with various occurrence fre-
quencies. Specifically, we divide the dynamic links in each dataset
into 8 groups, where the group size is set to 2, 3 and 4 for Wikipedia,
Reddit and LastFM considering their different dataset size, respec-
tively. The results are shown in Fig. 6.

First, by comparing the variant w/o Causal with DyGFormer,
we can find that on small occurrence frequencies, w/o Causal per-
forms well and can generally outperform DyGFormer. This is due to
that through the repeat neighbor sampling, w/o Causal accurately
extracts the neighbors most related to the structural correlations,
thus eliminating the noisy neighbors for accurate predictions. How-
ever, the performance of w/o Causal is poor on large occurrence
frequencies, which is due to that w/o Causal trained on the source
graph cannot well adapt to each test target graph during inference.
By solving this problem using the causal mechanisms including
deconfounded training and causal intervention, CrossDyG ensures
outstanding performance on various occurrence frequencies, thus
achieving the state-of-the-art overall performance.

Anon. Submission Id: 2210
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Figure 7: Hyper-parameter sensitivity.

4.7 Hyper-Parameter Sensitivity

To answer RQ5, we tune the hyper parameters of CrossDyG includ-
ing the training epoch, the scaling parameter y and the neighbor
number as stated in Section 4.2.3, to analyze the sensitivity of
CrossDyG to its contained different hyper parameters. The results
in terms of AP are presented in Fig. 7.

Training epoch. For the training epoch, we can observe that epoch
= 1 can already ensures satisfactory performance in cases trained
on Reddit and LastFM. Differently when trained on Wikipedia, the
performance increases in the first several epochs with the pretrain-
ing epoch increasing, which may be due to its smaller dataset size
than Reddit and LastFM. That is, more iterations are required for
model optimization with small size of training data.

Scaling parameter. For the scaling parameter y, we can see that
with y increasing, the performance tested on Wikipedia and Reddit
first increases and then obviously decreases, while the performance
tested on LastFM shows a stable trend when y is large. This may be
due to that the occurrence frequencies are generally large on the
largest dataset LastFM, thus a large y is proper for smoothing the
occurrence frequency.

Neighbor number. For the neighbor number, it can be observed
that a small neighbor number of 32 is generally enough for achiev-
ing the optimal performance in various cases. This may be due to
that large neighbor numbers may introduce noisy neighbors, which
represent the specificity of each dataset, thus bringing in negative
impact on transferring the universal network evolution pattern.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we focus on improving the cross-graph transferability
of dynamic link prediction in a one-many mechanism (i.e., training
on one single dynamic graph and testing on multiple unobserved
graphs) and propose a novel framework named CrossDyG. Specif-
ically, CrossDyG learns the universal network evolution pattern
across different graphs using deconfounded training from the single
source graph in training, and then adopts causal intervention to
leverage the graph-specific structural characteristics of each target
graph for making predictions during inference. Comprehensive
experiments on three benchmark datasets of dynamic graphs val-
idate the effectiveness of CrossDyG, with steady and significant
performance improvements.

As to future work, we would like to exploit the utility of large lan-
guage models (LLMs) [1, 9] for modeling the contained node/edge
features in dynamic graphs. In addition, we are also interested in
further improving the efficiency of cross-graph transferability using
the graph condensation strategy [5, 11].
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